1
|
Ai J, Gao Y, Yang F, Zhao Z, Dong J, Wang J, Fu S, Ma Y, Gu X. Development and application of a physiologically-based pharmacokinetic model for ractopamine in goats. Front Vet Sci 2024; 11:1399043. [PMID: 39415957 PMCID: PMC11479929 DOI: 10.3389/fvets.2024.1399043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Physiologically Based Pharmacokinetic (PBPK) models can provide forecasts of the drug residues within the organism. Ractopamine (RAC) is a typical β-agonist. In this study, we developed a PBPK model for RAC in goats. The goal was to predict the distribution of the drug after multiple oral administrations. The preliminary PBPK model for RAC in goats performed well in predicting the drug's distribution in most tissues. In our sensitivity analysis, we found that the parameter of Qclu (Blood Flow Volume through Lungs) had the greatest impact on the RAC concentrations in plasma, liver, and kidney and was the most sensitive parameter. Furthermore, our study aimed to assess the withdrawal time (WT) of RAC in different tissues after RAC long-term exposure in goats. We found that the WT of RAC in the kidney was the longest, lasting for 13 days. Overall, the insights gained from this study have important implications for optimizing drug administration in goats and ensuring appropriate withdrawal times to prevent any potential risks.
Collapse
Affiliation(s)
- Jing Ai
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunfeng Gao
- Heilongjiang Technical Appraisal Station of Agricultural Products, Veterinary Pharmaceuticals and Feed, Harbin, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhen Zhao
- Beijing Nutrient Source Research Institute Co., Ltd., Beijing, China
| | - Jin Dong
- ZiBo Government Service Center, Zibo, Shandong, China
| | - Jing Wang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shiyi Fu
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Ying Ma
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xu Gu
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Kang DW, Kim JH, Choi GW, Cho SJ, Cho HY. PBPK model-based gender-specific risk assessment of N-nitrosodimethylamine (NDMA) using human biomonitoring data. Arch Toxicol 2024; 98:3269-3288. [PMID: 39096368 DOI: 10.1007/s00204-024-03828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Despite several screening levels for NDMA reported in water, soil, air, and drugs, the human risk assessment using biomonitoring concentrations has not been performed. In this study, gender-specific exposure guidance values were determined in humans, then biomonitoring measurements in healthy Korean subjects (32 men and 40 women) were compared to the exposure guidance values to evaluate the current exposure level to NDMA. For the human risk assessment of NDMA, the gender-specific physiologically based pharmacokinetic (PBPK) model was developed in humans using proper physiological parameters, partition coefficients, and biochemical parameters. Using the PBPK model, a Monte Carlo simulation was performed to describe the magnitudes of inter-individual variability and uncertainty on the single model predictions. The PBPK modeling and Monte Carlo simulation allowed the estimation of the relationship between external dose and blood concentration for the risk assessment. The procedure for the human risk assessment was summarized as follows: (1) estimating a steady-state blood concentration (Cavg) corresponding to the daily no observed adverse effect level (NOAEL) administration in rats; (2) applying uncertainty factors (UFs) for deriving the human Cavg; (3) determining the exposure guidance values as screening criteria; (4) interpreting the human biomonitoring measurements by forward and reverse dosimetry approaches. Using the biomonitoring concentrations, current daily exposures to NDMA were estimated to be 3.95 μg/day/kg for men and 10.60 μg/day/kg for women, respectively. The result of the study could be used as a basis for implementing further risk management and regulatory decision-making for NDMA.
Collapse
Affiliation(s)
- Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seok-Jin Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
3
|
Lamonica D, Charvy L, Kuo D, Fritsch C, Coeurdassier M, Berny P, Charles S. A brief review on models for birds exposed to chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34628-5. [PMID: 39133414 DOI: 10.1007/s11356-024-34628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
"A Who's Who of pesticides is therefore of concern to us all. If we are going to live so intimately with these chemicals eating and drinking them, taking them into the very marrow of our bones - we had better know something about their nature and their power."-Rachel Carson, Silent Spring. In her day, Rachel Carson was right: plant protection products (PPP), like all the other chemical substances that humans increasingly release into the environment without further precaution, are among our worst enemies today (Bruhl and Zaller, 2019; Naidu et al., 2021; Tang et al., 2021; Topping et al., 2020). All compartments of the biosphere, air, soil and water, are potential reservoirs within which all species that live there are impaired. Birds are particularly concerned: PPP are recognized as a factor in the decline of their abundance and diversity predominantly in agricultural landscapes. Due to the restrictions on vertebrates testing, in silico-based approaches are an ideal choice alternative given input data are available. This is where the problem lies as we will illustrate in this paper. We performed an extensive literature search covering a long period of time, a wide diversity of bird species, a large range of chemical substances, and as many model types as possible to encompass all our future need to improve environmental risk assessment of chemicals for birds. In the end, we show that poultry species exposed to pesticides are the most studied at the individual level with physiologically based toxicokinetic models. To go beyond, with more species, more chemical types, over several levels of biological organization, we show that observed data are crucially missing (Gilbert, 2011). As a consequence, improving existing models or developing new ones could be like climbing Everest if no additional data can be gathered, especially on chemical effects and toxicodynamic aspects.
Collapse
Affiliation(s)
- Dominique Lamonica
- University Lyon 1, Laboratory of Biometry and Evolutionary Biology - UMR CNRS5558, 43 boulevard du 11 novembre 1918, Villeurbanne Cedex, 69622, France.
- Research Institute for Development, BotAny and Modeling of Plant Architecture and Vegetation - UMR AMAP, TA A51/PS2, Montpellier Cedex 05, 34398, France.
| | - Lison Charvy
- INSA Lyon, Biosciences department, 20 avenue Albert Einstein, Villeurbanne, 69100, France
| | - Dave Kuo
- Institute of Environmental Engineering (GIEE), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Clémentine Fritsch
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 route de Gray, Besançon cedex, 25030, France
| | - Michaël Coeurdassier
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 route de Gray, Besançon cedex, 25030, France
| | - Philippe Berny
- UR ICE, VetAgro Sup Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, Marcy l'étoile, F-69280, France
| | - Sandrine Charles
- University Lyon 1, Laboratory of Biometry and Evolutionary Biology - UMR CNRS5558, 43 boulevard du 11 novembre 1918, Villeurbanne Cedex, 69622, France
| |
Collapse
|
4
|
Mi K, Sun L, Zhang L, Tang A, Tian X, Hou Y, Sun L, Huang L. A physiologically based pharmacokinetic/pharmacodynamic model to determine dosage regimens and withdrawal intervals of aditoprim against Streptococcus suis. Front Pharmacol 2024; 15:1378034. [PMID: 38694922 PMCID: PMC11061430 DOI: 10.3389/fphar.2024.1378034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Streptococcus suis (S. suis) is a zoonotic pathogen threatening public health. Aditoprim (ADP), a novel veterinary medicine, exhibits an antibacterial effect against S. suis. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was used to determine the dosage regimens of ADP against S. suis and withdrawal intervals. Methods: The PBPK model of ADP injection can predict drug concentrations in plasma, liver, kidney, muscle, and fat. A semi-mechanistic pharmacodynamic (PD) model, including susceptible subpopulation and resistant subpopulation, is successfully developed by a nonlinear mixed-effect model to evaluate antibacterial effects. An integrated PBPK/PD model is conducted to predict the time-course of bacterial count change and resistance development under different ADP dosages. Results: ADP injection, administrated at 20 mg/kg with 12 intervals for 3 consecutive days, can exert an excellent antibacterial effect while avoiding resistance emergence. The withdrawal interval at the recommended dosage regimen is determined as 18 days to ensure food safety. Discussion: This study suggests that the PBPK/PD model can be applied as an effective tool for the antibacterial effect and safety evaluation of novel veterinary drugs.
Collapse
Affiliation(s)
- Kun Mi
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lei Sun
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lan Zhang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoran Tang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyuan Tian
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yixuan Hou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingling Sun
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Joachim T, Cyril F, Ronan C, Gaud D, Agnès F. Design of a generic model based on physiology for persistent organic pollutants in laying hens: Applications on chlordecone and chlorinated paraffins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170447. [PMID: 38290669 DOI: 10.1016/j.scitotenv.2024.170447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
A Physiology Based Pharmacokinetic (PBPK) model has been developed to predict the kinetics of Persistent Organic Pollutants (POPs) in laying hens. Different datasets have enabled the calibration of the model for chlordecone (CLD), an organochlorine pesticide used in the French West Indies between 1972 and 1993, as well as for chlorinated paraffins (CPs), widely used for various industrial applications worldwide. For this purpose, the sensitivity analysis showed that intake parameters, laying rate, partition coefficients of yolk, hepatic clearance, percentage of metabolism and age were key parameters. Applied to CLD and CPs, this model shows a good capacity for prediction, with 88 % of the experimental values ranging within 1.5-fold of the predicted value at steady state for CPs and 100 % for CLD. The fine modelling of the physiology and the laying process contributes to precision of the model and gives genericity, enabling the switch from one bird species to another. The model can be implemented with other POPs if the clearance and partition coefficient are known.
Collapse
Affiliation(s)
| | - Feidt Cyril
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy
| | | | | | | |
Collapse
|
6
|
Kang DW, Kim JH, Choi GW, Cho SJ, Cho HY. Physiologically-based pharmacokinetic model for evaluating gender-specific exposures of N-nitrosodimethylamine (NDMA). Arch Toxicol 2024; 98:821-835. [PMID: 38127128 DOI: 10.1007/s00204-023-03652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
N-nitrosodimethylamine (NDMA) is classified as a human carcinogen and could be produced by both natural and industrial processes. Although its toxicity and histopathology have been well-studied in animal species, there is insufficient data on the blood and tissue exposures that can be correlated with the toxicity of NDMA. The purpose of this study was to evaluate gender-specific pharmacokinetics/toxicokinetics (PKs/TKs), tissue distribution, and excretion after the oral administration of three different doses of NDMA in rats using a physiologically-based pharmacokinetic (PBPK) model. The major target tissues for developing the PBPK model and evaluating dose metrics of NDMA included blood, gastrointestinal (GI) tract, liver, kidney, lung, heart, and brain. The predictive performance of the model was validated using sensitivity analysis, (average) fold error, and visual inspection of observations versus predictions. Then, a Monte Carlo simulation was performed to describe the magnitudes of inter-individual variability and uncertainty of the single model predictions. The developed PBPK model was applied for the exposure simulation of daily oral NDMA to estimate blood concentration ranges affecting health effects following acute-duration (≤ 14 days), intermediate-duration (15-364 days), and chronic-duration (≥ 365 days) intakes. The results of the study could be used as a scientific basis for interpreting the correlation between in vivo exposures and toxicological effects of NDMA.
Collapse
Affiliation(s)
- Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Seok-Jin Cho
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
7
|
Chou WC, Tell LA, Baynes RE, Davis JL, Cheng YH, Maunsell FP, Riviere JE, Lin Z. Development and application of an interactive generic physiologically based pharmacokinetic (igPBPK) model for adult beef cattle and lactating dairy cows to estimate tissue distribution and edible tissue and milk withdrawal intervals for per- and polyfluoroalkyl substances (PFAS). Food Chem Toxicol 2023; 181:114062. [PMID: 37769896 DOI: 10.1016/j.fct.2023.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Humans can be exposed to per- and polyfluoroalkyl substances (PFAS) through dietary intake from milk and edible tissues from food animals. This study developed a physiologically based pharmacokinetic (PBPK) model to predict tissue and milk residues and estimate withdrawal intervals (WDIs) for multiple PFAS including PFOA, PFOS and PFHxS in beef cattle and lactating dairy cows. Results showed that model predictions were mostly within a two-fold factor of experimental data for plasma, tissues, and milk with an estimated coefficient of determination (R2) of >0.95. The predicted muscle WDIs for beef cattle were <1 day for PFOA, 449 days for PFOS, and 69 days for PFHxS, while the predicted milk WDIs in dairy cows were <1 day for PFOA, 1345 days for PFOS, and zero day for PFHxS following a high environmental exposure scenario (e.g., 49.3, 193, and 161 ng/kg/day for PFOA, PFOS, and PFHxS, respectively, for beef cattle for 2 years). The model was converted to a web-based interactive generic PBPK (igPBPK) platform to provide a user-friendly dashboard for predictions of tissue and milk WDIs for PFAS in cattle. This model serves as a foundation for extrapolation to other PFAS compounds to improve safety assessment of cattle-derived food products.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA.
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA.
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, 66506, USA; Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA.
| | - Jim E Riviere
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA; 1Data Consortium, Kansas State University, Olathe, KS, 66061, USA.
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA.
| |
Collapse
|
8
|
Yang F, Zhang M, Jin YG, Chen JC, Duan MH, Liu Y, Li ZE, Li XP, Yang F. Development and Application of a Physiologically Based Pharmacokinetic Model for Diclazuril in Broiler Chickens. Animals (Basel) 2023; 13:ani13091512. [PMID: 37174549 PMCID: PMC10177140 DOI: 10.3390/ani13091512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Withdrawal periods for diclazuril in broilers have traditionally been determined through regression analysis. However, over the last two decades, the physiologically based pharmacokinetic (PBPK) model has gained prominence as a predictive tool for veterinary drug residues, which offers an alternative method for establishing appropriate withdrawal periods for veterinary drugs. In this current study, a flow-limited PBPK model was developed to predict diclazuril concentrations in broilers following long-duration administration via medicated feed and water. This model consists of nine compartments, including arterial and venous plasma, lung, muscle, skin + fat, kidney, liver, intestine contents, and the rest of the body compartment. Physiological parameters such as tissue weights (Vcxx) and blood flow (Qcxx) were gathered from published studies, and tissue/plasma partition coefficients (Pxx) were calculated through the area method or parameter optimization. Published diclazuril concentrations were compared to the predicted values, indicating the accuracy and validity of the model. The sensitivity analysis showed that parameters associated with cardiac output, drug absorption, and elimination significantly affected diclazuril concentrations in the muscle. Finally, a Monte Carlo analysis, consisting of 1000 iterations, was conducted to calculate the withdrawal period. Based on the Chinese MRL values, we calculated a withdrawal period of 0 days for both recommended dosing regimens (through mediated water and feed at concentrations of 0.5-1 mg/L and 1 mg/kg, respectively). However, based on the European MRLs, longer periods were determined for the mediated feed dosing route. Our model provides a foundation for scaling other coccidiostats and poultry species.
Collapse
Affiliation(s)
- Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yang-Guang Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jun-Cheng Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ming-Hui Duan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ze-En Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Xing-Ping Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
9
|
Notenboom S, Punt A, Hoogenveen R, Zeilmaker MJ, Hoogenboom RLAP, Bokkers BGH. A congener-specific modelling approach for the transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls from feed to eggs of laying hens. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:96-109. [PMID: 36395382 DOI: 10.1080/19440049.2022.2137301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calibration of a kinetic model for the transfer of PCDD/Fs and dl-PCBs from feed to the hen's body and eggs was thus far restricted to the total TEQ concentration, i.e. the summed concentrations of PCDD/Fs and dl-PCBs expressed in terms of equivalents of 2,3,7,8-TCDD. However, this approach may lead to over- or underestimation of the transfer if the mixture contains congeners with kinetic characteristics which differ considerably from those used in such a model. This paper extends a previous transfer model of PCDD/Fs and dl-PCBs from feed to egg yolk fat and abdominal fat of high production laying hens, based on the total TEQ approach, to the level of individual congeners. Both modelling approaches are compared and the new approach is presented as a webtool application. This congener-specific approach enabled the calibration of 25 of the 29 relevant PCDD/F and dl-PCB congeners with respect to their individual transfer characteristics to body fat and egg yolk fat and their clearance from the body. Limitations of the available experimental data prevented the calibration of 1,2,3,4,6,7,8-HpCDD, OCDD, OCDF and PCB 123. The fraction transferred to egg yolk fat after long-term daily intake of contaminated feed was found to be at least 0.78 for 2,3,7,8-TCDD, 0.75 for PeCDD, 0.42-0.61 for HxCDDs, 0.70 for 2,3,7,8-TCDF, 0.71 for PeCDF, 0.54-0.60 for HxCDFs, 0.18-0.24 for HpCDFs and 0.89-1.00 for dl-PCBs. Various experimental and feed incident mixtures were used to compare the total TEQ- model with the congener-specific approach. An overestimation of the transfer by the total TEQ method was shown in particular for mixtures with a substantial contribution of hexa-, hepta- and octa-PCDD/Fs to the total TEQ level.
Collapse
Affiliation(s)
- Sylvia Notenboom
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ans Punt
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Rudolf Hoogenveen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marco J Zeilmaker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Bas G H Bokkers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
10
|
Bandeira LC, Pinto L, Carneiro CM. Pharmacometrics: The Already-Present Future of Precision Pharmacology. Ther Innov Regul Sci 2023; 57:57-69. [PMID: 35984633 DOI: 10.1007/s43441-022-00439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
The use of mathematical modeling to represent, analyze, make predictions or providing information on data obtained in drug research and development has made pharmacometrics an area of great prominence and importance. The main purpose of pharmacometrics is to provide information relevant to the search for efficacy and safety improvements in pharmacotherapy. Regulatory agencies have adopted pharmacometrics analysis to justify their regulatory decisions, making those decisions more efficient. Demand for specialists trained in the field is therefore growing. In this review, we describe the meaning, history, and development of pharmacometrics, analyzing the challenges faced in the training of professionals. Examples of applications in current use, perspectives for the future, and the importance of pharmacometrics for the development and growth of precision pharmacology are also presented.
Collapse
Affiliation(s)
- Lorena Cera Bandeira
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | - Leonardo Pinto
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
11
|
Baier V, Paini A, Schaller S, Scanes CG, Bone AJ, Ebeling M, Preuss TG, Witt J, Heckmann D. A generic avian physiologically-based kinetic (PBK) model and its application in three bird species. ENVIRONMENT INTERNATIONAL 2022; 169:107547. [PMID: 36179644 DOI: 10.1016/j.envint.2022.107547] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Physiologically-based kinetic (PBK) models are effective tools for designing toxicological studies and conducting extrapolations to inform hazard characterization in risk assessment by filling data gaps and defining safe levels of chemicals. In the present work, a generic avian PBK model for male and female birds was developed using PK-Sim and MoBi from the Open Systems Pharmacology Suite (OSPS). The PBK model includes an ovulation model (egg development) to predict concentrations of chemicals in eggs from dietary exposure. The model was parametrized for chicken (Gallus gallus), bobwhite quail (Colinus virginianus) and mallard duck (Anas platyrhynchos) and was tested with nine chemicals for which in vivo studies were available. Time-concentration profiles of chemicals reaching tissues and egg compartment were simulated and compared to in vivo data. The overall accuracy of the PBK model predictions across the analyzed chemicals was good. Model simulations were found to be in the range of 22-79% within a 3-fold and 41-89% were within 10- fold deviation of the in vivo observed data. However, for some compounds scarcity of in-vivo data and inconsistencies between published studies allowed only a limited goodness of fit evaluation. The generic avian PBK model was developed following a "best practice" workflow describing how to build a PBK model for novel species. The credibility and reproducibility of the avian PBK models were scored by evaluation according to the available guidance documents from WHO (2010), and OECD (2021), to increase applicability, confidence and acceptance of these in silico models in chemical risk assessment.
Collapse
Affiliation(s)
- Vanessa Baier
- esqLABS GmbH, Hambierich 34, 26683 Saterland, Germany
| | - Alicia Paini
- esqLABS GmbH, Hambierich 34, 26683 Saterland, Germany
| | | | - Colin G Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States; Department of Biological Science, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Audrey J Bone
- Bayer Crop Science, Chesterfield, MO 63017, United States
| | | | | | | | | |
Collapse
|
12
|
A web-based interactive physiologically based pharmacokinetic (iPBPK) model for meloxicam in broiler chickens and laying hens. Food Chem Toxicol 2022; 168:113332. [DOI: 10.1016/j.fct.2022.113332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
|
13
|
Chou WC, Tell LA, Baynes RE, Davis JL, Maunsell FP, Riviere JE, Lin Z. An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol and Penicillin G. Toxicol Sci 2022; 188:180-197. [PMID: 35642931 PMCID: PMC9333411 DOI: 10.1093/toxsci/kfac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Violative chemical residues in edible tissues from food-producing animals are of global public health concern. Great efforts have been made to develop physiologically based pharmacokinetic (PBPK) models for estimating withdrawal intervals (WDIs) for extralabel prescribed drugs in food animals. Existing models are insufficient to address the food safety concern as these models are either limited to 1 specific drug or difficult to be used by non-modelers. This study aimed to develop a user-friendly generic PBPK platform that can predict tissue residues and estimate WDIs for multiple drugs including flunixin, florfenicol, and penicillin G in cattle and swine. Mechanism-based in silico methods were used to predict tissue/plasma partition coefficients and the models were calibrated and evaluated with pharmacokinetic data from Food Animal Residue Avoidance Databank (FARAD). Results showed that model predictions were, in general, within a 2-fold factor of experimental data for all 3 drugs in both species. Following extralabel administration and respective U.S. FDA-approved tolerances, predicted WDIs for both cattle and swine were close to or slightly longer than FDA-approved label withdrawal times (eg, predicted 8, 28, and 7 days vs labeled 4, 28, and 4 days for flunixin, florfenicol, and penicillin G in cattle, respectively). The final model was converted to a web-based interactive generic PBPK platform. This PBPK platform serves as a user-friendly quantitative tool for real-time predictions of WDIs for flunixin, florfenicol, and penicillin G following FDA-approved label or extralabel use in both cattle and swine, and provides a basis for extrapolating to other drugs and species.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Jim E Riviere
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.,1Data Consortium,Kansas State University, Olathe, KS, 66061, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA
| |
Collapse
|
14
|
Lautz LS, Stoopen G, Ginting AJ, Hoogenboom RLAP, Punt A. Fipronil and fipronil sulfone in chicken: From in vitro experiments to in vivo PBK model predictions. Food Chem Toxicol 2022; 165:113086. [PMID: 35500697 DOI: 10.1016/j.fct.2022.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
In 2017 a large-scale fipronil contamination in eggs occurred in several European countries. Fipronil and its metabolites have the potential to be transferred into the eggs of laying hens, thereby entering the human food chain. Here, first the metabolism of fipronil was measured in vitro using chicken liver S9. The results show that fipronil is mainly metabolised into fipronil sulfone and the clearance obtained in vitro was extrapolated to in vivo liver clearance. In a second step a physiologically based kinetic model was developed with a focus on fipronil and its major sulfone metabolite and the model outcome was compared to available in vivo data in eggs from the literature. The experimentally obtained clearance was used as model input to evaluate whether such an in vitro-based model can be used in an early phase of a contamination incident to predict the time-concentration curves. Overall, all model predictions were within a 10-fold difference and the estimated elimination half-life for fipronil equivalents was 14 days. In vitro experiments are definitely recommended compared to in vivo studies, since they provide a fast first insight into the behaviour of a chemical in an organism.
Collapse
Affiliation(s)
- L S Lautz
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB Wageningen, the Netherlands.
| | - G Stoopen
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB Wageningen, the Netherlands
| | - A J Ginting
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB Wageningen, the Netherlands
| | - R L A P Hoogenboom
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB Wageningen, the Netherlands
| | - A Punt
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708, WB Wageningen, the Netherlands
| |
Collapse
|
15
|
A physiologically based pharmacokinetic (PBPK) model exploring the blood-milk barrier in lactating species - A case study with oxytetracycline administered to dairy cows and goats. Food Chem Toxicol 2022; 161:112848. [DOI: 10.1016/j.fct.2022.112848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
|
16
|
Pharmacokinetics of toltrazuril and its metabolites after oral and parenteral administration of novel oil-based suspension based on micro-environmental pH-modifying solid dispersion in rabbits. Vet Parasitol 2021; 299:109580. [PMID: 34597913 DOI: 10.1016/j.vetpar.2021.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Toltrazuril (TOL) is a broad-spectrum anticoccidial drug which is widely used in poultry and livestock. A novel oral suspension based on soybean oil-based TOL micro-environmental pH-modifying solid dispersion (micro pHm SD) and a novel injectable suspension based on white oil-based TOL micro pHm SD were developed, showing high physicochemical stability and high drug release in vitro with good histocompatibility. The present study is to evaluate the pharmacokinetic profiles of TOL and its major metabolites, e.g. toltrazuril sulfoxide (TOLSO) and toltrazuril sulfone (TOLSO2) in rabbits following oral or subcutaneous administration with these two TOL SD suspensions. The plasma concentrations of TOL, TOLSO and TOLSO2 were determined by high performance liquid chromatography (HPLC). Plasma concentration-time data were analyzed by a non-compartmental model analysis. The soybean oil-based TOL suspension after single oral administration at 20 mg/kg body weight (bw) significantly increased the plasma concentrations of TOL, TOLSO and TOLSO2 compared with Baycox® 5 % suspension. Following subcutaneous administration of the white oil-based TOL suspension (20 mg/kg bw), TOL was well absorbed and metabolized more slowly to TOLSO and TOLSO2, compared with oral administration, resulting in the significantly prolonged residence time in rabbits. The two suspensions significantly improved the relative bioavailability of TOL and its two metabolites, showing their potential usage in the control of coccidian in poultry and livestock.
Collapse
|
17
|
Riad MH, Baynes RE, Tell LA, Davis JL, Maunsell FP, Riviere JE, Lin Z. Development and Application of an interactive Physiologically Based Pharmacokinetic (iPBPK) Model to Predict Oxytetracycline Tissue Distribution and Withdrawal Intervals in Market-Age Sheep and Goats. Toxicol Sci 2021; 183:253-268. [PMID: 34329480 DOI: 10.1093/toxsci/kfab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxytetracycline (OTC) is a widely used antibiotic in food-producing animals. Extralabel use of OTC is common and may lead to violative residues in edible tissues. It is important to have a quantitative tool to predict scientifically-based withdrawal intervals (WDIs) after extralabel use in food animals to ensure human food safety. This study focuses on developing a physiologically based pharmacokinetic (PBPK) model for OTC in sheep and goats. The model included seven compartments: plasma, lung, liver, kidneys, muscle, fat, and rest of the body. The model was calibrated with serum and tissue (liver, muscle, kidney, and fat) concentration data following a single intramuscular (IM, 20 mg/kg) and/or intravenous (IV, 10 mg/kg) administration of a long-acting formulation in sheep and goats. The model was evaluated with independent datasets from Food Animal Residue Avoidance Databank (FARAD). Results showed that the model adequately simulated the calibration datasets with an overall estimated coefficient of determination (R2) of 0.95 and 0.92, respectively, for sheep and goat models and had acceptable accuracy for the validation datasets. Monte Carlo sampling technique was applied to predict the time needed for drug concentrations in edible tissues to fall below tolerances for the 99th percentiles of the population. The model was converted to a web-based interactive PBPK (iPBPK) interface to facilitate model applications. This iPBPK model provides a useful tool to estimate WDIs for OTC after extralabel use in small ruminants to ensure food safety and serves as a basis for extrapolation to other tetracycline drugs and other food animals.
Collapse
Affiliation(s)
- Mahbubul H Riad
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL 32608, USA
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL 32608, USA
| |
Collapse
|
18
|
Lees P, Pelligand L, Giraud E, Toutain PL. A history of antimicrobial drugs in animals: Evolution and revolution. J Vet Pharmacol Ther 2021; 44:137-171. [PMID: 32725687 DOI: 10.1111/jvp.12895] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
The evolutionary process of antimicrobial drug (AMD) uses in animals over a mere eight decades (1940-2020) has led to a revolutionary outcome, and both evolution and revolution are ongoing, with reports on a range of uses, misuses and abuses escalating logarithmically. As well as veterinary therapeutic perspectives (efficacy, safety, host toxicity, residues, selection of drug, determination of dose and measurement of outcome in treating animal diseases), there are also broader, nontherapeutic uses, some of which have been abandoned, whilst others hopefully will soon be discontinued, at least in more developed countries. Although AMD uses for treatment of animal diseases will continue, it must: (a) be sustainable within the One Health paradigm; and (b) devolve into more prudent, rationally based therapeutic uses. As this review on AMDs is published in a Journal of Pharmacology and Therapeutics, its scope has been made broader than most recent reviews in this field. Many reviews have focused on negative aspects of AMD actions and uses, especially on the question of antimicrobial resistance. This review recognizes these concerns but also emphasizes the many positive aspects deriving from the use of AMDs, including the major research-based advances underlying both the prudent and rational use of AMDs. It is structured in seven sections: (1) Introduction; (2) Sulfonamide history; (3) Nontherapeutic and empirical uses of AMDs (roles of agronomists and veterinarians); (4) Rational uses of AMDs (roles of pharmacologists, clinicians, industry and regulatory controls); (5) Prudent use (residue monitoring, antimicrobial resistance); (6) International and inter-disciplinary actions; and (7) Conclusions.
Collapse
Affiliation(s)
- Peter Lees
- The Royal Veterinary College, University of London, London, UK
| | | | - Etienne Giraud
- INTHERES, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Pierre-Louis Toutain
- The Royal Veterinary College, University of London, London, UK
- INTHERES, INRA, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|
19
|
Li M, Wang YS, Elwell-Cuddy T, Baynes RE, Tell LA, Davis JL, Maunsell FP, Riviere JE, Lin Z. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part III: Sheep and goat. J Vet Pharmacol Ther 2020; 44:456-477. [PMID: 33350478 PMCID: PMC8359294 DOI: 10.1111/jvp.12938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
This report is the third in a series of studies that aimed to compile physiological parameters related to develop physiologically based pharmacokinetic (PBPK) models for drugs and environmental chemicals in food‐producing animals including swine and cattle (Part I), chickens and turkeys (Part II), and finally sheep and goats (the focus of this manuscript). Literature searches were conducted in multiple databases (PubMed, Google Scholar, ScienceDirect, and ProQuest), with data on relevant parameters including body weight, relative organ weight (% of body weight), cardiac output, relative organ blood flow (% of cardiac output), residual blood volume (% of organ weight), and hematocrit reviewed and statistically summarized. The mean and standard deviation of each parameter are presented in tables. Equations describing the growth curves of sheep and goats are presented in figures. When data are sufficient, parameter values are reported for different ages or production classes of sheep, including fetal sheep, lambs, and market‐age sheep (mature sheep). These data provide a reference database for developing standardized PBPK models to predict drug withdrawal intervals in sheep and goats, and also provide a basis for extrapolating PBPK models from major species such as cattle to minor species such as sheep and goats.
Collapse
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yu-Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Trevor Elwell-Cuddy
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
20
|
Ya K, Methaneethorn J, Tran QB, Trakulsrichai S, Wananukul W, Lohitnavy M. Development of a Physiologically Based Pharmacokinetic Model of Mitragynine, Psychoactive Alkaloid in Kratom ( Mitragyna Speciosa Korth.), In Rats and Humans. J Psychoactive Drugs 2020; 53:127-139. [PMID: 34003732 DOI: 10.1080/02791072.2020.1849877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitragynine is a major psychoactive alkaloid in leaves of kratom (Mitragyna speciosa Korth.). To understand its disposition in organs, this study aimed to develop a physiologically based pharmacokinetic (PBPK) model that predicts mitragynine concentrations in plasma and organ of interests in rats and humans. The PBPK model consisted of six organ compartments (i.e. lung, brain, liver, fat, slowly perfused tissues, and rapidly perfused tissue). From systematic searching, three pharmacokinetic studies of mitragynine (two studies in rats and 1 study in humans) were retrieved from the literature. Berkeley Madonna Software (version 8.3.18) was used for model development and model simulation. The developed PBPK model consisted of biologically relevant features following involvement of (i) breast cancer-resistant protein (BCRP) in brain, (ii) a hepatic cytochrome P450 3A4 (CYP3A4)-mediated metabolism in the liver, and (iii) a diffusion-limited transport in fat. The simulations adequately describe simulated and observed data in the two species with different dosing regimens. PBPK models of mitragynine in rats and humans were successfully developed. The models may be used to guide optimal mitragynine dosing regimens.
Collapse
Affiliation(s)
- Kimheang Ya
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Janthima Methaneethorn
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Quoc Ba Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| | - Satariya Trakulsrichai
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand.,Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Winai Wananukul
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand.,Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Manupat Lohitnavy
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
21
|
Wang Y, Li M, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE, Lin Z. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part II: Chicken and turkey. J Vet Pharmacol Ther 2020; 44:423-455. [PMID: 33289178 PMCID: PMC8359335 DOI: 10.1111/jvp.12931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are growing in popularity due to human food safety concerns and for estimating drug residue distribution and estimating withdrawal intervals for veterinary products originating from livestock species. This paper focuses on the physiological and anatomical data, including cardiac output, organ weight, and blood flow values, needed for PBPK modeling applications for avian species commonly consumed in the poultry market. Experimental and field studies from 1940 to 2019 for broiler chickens (1-70 days old, 40 g - 3.2 kg), laying hens (4-15 months old, 1.1-2.0 kg), and turkeys (1 day-14 months old, 60 g -12.7 kg) were searched systematically using PubMed, Google Scholar, ProQuest, and ScienceDirect for data collection in 2019 and 2020. Relevant data were extracted from the literature with mean and standard deviation (SD) being calculated and compiled in tables of relative organ weights (% of body weight) and relative blood flows (% of cardiac output). Trends of organ or tissue weight growth during different life stages were calculated when sufficient data were available. These compiled data sets facilitate future PBPK model development and applications, especially in estimating chemical residue concentrations in edible tissues to calculate food safety withdrawal intervals for poultry.
Collapse
Affiliation(s)
- Yu‐Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Lisa A. Tell
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California‐DavisDavisCAUSA
| | - Ronald E. Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Jennifer L. Davis
- Department of Biomedical Sciences and PathobiologyVirginia‐Maryland College of Veterinary MedicineBlacksburgVAUSA
| | - Thomas W. Vickroy
- Department of Physiological Sciences, College of Veterinary MedicineUniversity of FloridaGainesvilleFLUSA
| | - Jim E. Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| |
Collapse
|
22
|
George B, Lumen A, Nguyen C, Wesley B, Wang J, Beitz J, Crentsil V. Application of physiologically based pharmacokinetic modeling for sertraline dosing recommendations in pregnancy. NPJ Syst Biol Appl 2020; 6:36. [PMID: 33159093 PMCID: PMC7648747 DOI: 10.1038/s41540-020-00157-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/02/2020] [Indexed: 01/26/2023] Open
Abstract
Pregnancy is a period of significant change that impacts physiological and metabolic status leading to alterations in the disposition of drugs. Uncertainty in drug dosing in pregnancy can lead to suboptimal therapy, which can contribute to disease exacerbation. A few studies show there are increased dosing requirements for antidepressants in late pregnancy; however, the quantitative data to guide dose adjustments are sparse. We aimed to develop a physiologically based pharmacokinetic (PBPK) model that allows gestational-age dependent prediction of sertraline dosing in pregnancy. A minimal physiological model with defined gut, liver, plasma, and lumped placental-fetal compartments was constructed using the ordinary differential equation solver package, ‘mrgsolve’, in R. We extracted data from the literature to parameterize the model, including sertraline physicochemical properties, in vitro metabolism studies, disposition in nonpregnant women, and physiological changes during pregnancy. The model predicted the pharmacokinetic parameters from a clinical study with eight subjects for the second trimester and six subjects for the third trimester. Based on the model, gestational-dependent changes in physiology and metabolism account for increased clearance of sertraline (up to 143% at 40 weeks gestational age), potentially leading to under-dosing of pregnant women when nonpregnancy doses are used. The PBPK model was converted to a prototype web-based interactive dosing tool to demonstrate how the output of a PBPK model may translate into optimal sertraline dosing in pregnancy. Quantitative prediction of drug exposure using PBPK modeling in pregnancy will support clinically appropriate dosing and increase the therapeutic benefit for pregnant women.
Collapse
Affiliation(s)
- Blessy George
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Annie Lumen
- National Center for Toxicological Research, U.S. FDA, Jefferson, AR, USA
| | - Christine Nguyen
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Barbara Wesley
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Jian Wang
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Julie Beitz
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA
| | - Victor Crentsil
- Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, USA.
| |
Collapse
|
23
|
Lin Z, Li M, Wang YS, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. J Vet Pharmacol Ther 2020; 43:385-420. [PMID: 32270548 PMCID: PMC7540321 DOI: 10.1111/jvp.12861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models for chemicals in food animals are a useful tool in estimating chemical tissue residues and withdrawal intervals. Physiological parameters such as organ weights and blood flows are an important component of a PBPK model. The objective of this study was to compile PBPK‐related physiological parameter data in food animals, including cattle and swine. Comprehensive literature searches were performed in PubMed, Google Scholar, ScienceDirect, and ProQuest. Relevant literature was reviewed and tables of relevant parameters such as relative organ weights (% of body weight) and relative blood flows (% of cardiac output) were compiled for different production classes of cattle and swine. The mean and standard deviation of each parameter were calculated to characterize their variability and uncertainty and to allow investigators to conduct population PBPK analysis via Monte Carlo simulations. Regression equations using weight or age were created for parameters having sufficient data. These compiled data provide a comprehensive physiological parameter database for developing PBPK models of chemicals in cattle and swine to support animal‐derived food safety assessment. This work also provides a basis to compile data in other food animal species, including goats, sheep, chickens, and turkeys.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Yu-Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia
| | - Thomas W Vickroy
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
24
|
Lautz LS, Nebbia C, Hoeks S, Oldenkamp R, Hendriks AJ, Ragas AMJ, Dorne JLCM. An open source physiologically based kinetic model for the chicken (Gallus gallus domesticus): Calibration and validation for the prediction residues in tissues and eggs. ENVIRONMENT INTERNATIONAL 2020; 136:105488. [PMID: 31991240 DOI: 10.1016/j.envint.2020.105488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Xenobiotics from anthropogenic and natural origin enter animal feed and human food as regulated compounds, environmental contaminants or as part of components of the diet. After dietary exposure, a chemical is absorbed and distributed systematically to a range of organs and tissues, metabolised, and excreted. Physiologically based kinetic (PBK) models have been developed to estimate internal concentrations from external doses. In this study, a generic multi-compartment PBK model was developed for chicken. The PBK model was implemented for seven compounds (with log Kow range -1.37-6.2) to quantitatively link external dose and internal dose for risk assessment of chemicals. Global sensitivity analysis was performed for a hydrophilic and a lipophilic compound to identify the most sensitive parameters in the PBK model. Model predictions were compared to measured data according to dataset-specific exposure scenarios. Globally, 71% of the model predictions were within a 3-fold change of the measured data for chicken and only 7% of the PBK predictions were outside a 10-fold change. While most model input parameters still rely on in vivo experiments, in vitro data were also used as model input to predict internal concentration of the coccidiostat monensin. Future developments of generic PBK models in chicken and other species of relevance to animal health risk assessment are discussed.
Collapse
Affiliation(s)
- L S Lautz
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands.
| | - C Nebbia
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - S Hoeks
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - R Oldenkamp
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - A J Hendriks
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - A M J Ragas
- Department of Environmental Science, Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands; Department of Science, Faculty of Management, Science &Technology, Open University, 6419 AT Heerlen, the Netherlands
| | - J L C M Dorne
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
25
|
Lin Z, He C, Magstadt DR, Cooper VL, Kleinhenz MD, Smith JS, Gorden PJ, Wulf LW, Coetzee JF. Tissue residue depletion and estimation of extralabel meat withdrawal intervals for tulathromycin in calves after pneumatic dart administration. J Anim Sci 2019; 97:3714-3726. [PMID: 31342061 DOI: 10.1093/jas/skz231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/05/2019] [Indexed: 11/14/2022] Open
Abstract
The objectives of this study were to evaluate the injection site pathology and determine tissue residue depletion of tulathromycin in calves following pneumatic dart administration and to calculate the associated extralabel withdrawal interval (WDI). Castrated male Holstein calves were injected with ~2.6 mg/kg tulathromycin via pneumatic dart administration. At 1 (n = 2), 6, 12, 18, and 24 d after drug injection (n = 3/time point), calves were euthanized, and muscle, liver, kidney, fat, and injection site samples were harvested and analyzed for tulathromycin concentrations using a LC-MS/MS method. Gross pathology and histopathology evaluations on the injection site samples were also performed. Pneumatic dart administration of tulathromycin caused severe localized lesions of hemorrhage and edema on days 1 and 6, as well as severe pathological reactions in the subcutaneous muscle on days 1, 6, and 12. Slight to moderate reactions were still observed in the majority of the skin or subcutaneous/muscle samples on day 24. Measured tulathromycin concentrations were converted to calculate the concentrations of the marker residue CP-60,300 by dividing a conversion factor of 1.4. The data were used to calculate extralabel WDIs based on the guidelines from U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). The results showed that tulathromycin concentrations were the highest in the liver (4,877.84 ± 65.33 µg/kg), kidney (5,819.52 ± 1,087.00 µg/kg), muscle (1,717.04 ± 140.35 µg/kg), injection site (51,884.05 ± 7,529.34 µg/kg), and fat (161.69 ± 36.48 µg/kg) at 6, 1, 1, 1, and 1 d, respectively, after treatment. Tulathromycin concentrations remained above the limit of quantification of 5 µg/kg in all tissues at 24 d. The calculated WDIs based on kidney data were 26 d using EMA method, 36 d using FDA method based on CP-60,300 data, and 45 d using FDA method based on tulathromycin data. These results suggest that pneumatic dart administration of tulathromycin causes injection site reactions in calves and an extended WDI is needed. One limitation of this study was the small sample size of 3 that did not meet FDA guideline requirement. Therefore, the calculated WDIs should be considered as preliminary and additional studies that use a larger number of animals and directly measure the concentrations of the marker residue CP-60,300 are needed to make a more conclusive recommendation on the extralabel WDI.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Chunla He
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Drew R Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine (VDPAM), College of Veterinary Medicine, Iowa State University, Ames, IA.,Veterinary Diagnostic Laboratory (VDL), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Vickie L Cooper
- Department of Veterinary Diagnostic and Production Animal Medicine (VDPAM), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Michael D Kleinhenz
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Veterinary Diagnostic and Production Animal Medicine (VDPAM), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Joseph S Smith
- Department of Veterinary Diagnostic and Production Animal Medicine (VDPAM), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Patrick J Gorden
- Department of Veterinary Diagnostic and Production Animal Medicine (VDPAM), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Larry W Wulf
- Department of Veterinary Diagnostic and Production Animal Medicine (VDPAM), College of Veterinary Medicine, Iowa State University, Ames, IA.,Veterinary Diagnostic Laboratory (VDL), College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Johann F Coetzee
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Veterinary Diagnostic and Production Animal Medicine (VDPAM), College of Veterinary Medicine, Iowa State University, Ames, IA.,Veterinary Diagnostic Laboratory (VDL), College of Veterinary Medicine, Iowa State University, Ames, IA
| |
Collapse
|
26
|
Lautz L, Oldenkamp R, Dorne J, Ragas A. Physiologically based kinetic models for farm animals: Critical review of published models and future perspectives for their use in chemical risk assessment. Toxicol In Vitro 2019; 60:61-70. [DOI: 10.1016/j.tiv.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
|
27
|
Xu N, Li M, Fu Y, Zhang X, Ai X, Lin Z. Tissue residue depletion kinetics and withdrawal time estimation of doxycycline in grass carp, Ctenopharyngodon idella, following multiple oral administrations. Food Chem Toxicol 2019; 131:110592. [PMID: 31220539 DOI: 10.1016/j.fct.2019.110592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
This study aimed to determine the plasma and tissue residue depletion kinetics of doxycycline (DC) in grass carp (Ctenopharyngodon idella) after daily oral administrations at 20 mg/kg for 3 days, and to calculate the corresponding withdrawal times. Following drug administrations, samples of plasma, liver, kidney, gill and muscle + skin were collected at predetermined time points (0.25, 0.5, 1, 3, 5, 7, 14, 21, 28, 35, 42, 49 and 56 days) and analyzed for concentrations of DC using a LC-MS/MS method. The results showed that liver had the highest concentrations and the slowest depletion compared to other tissues, with detectable DC up to 49 days (58.9 ± 12.8 μg/kg). The WT 1.4 software and "reschem" package were used to calculate withdrawal times, and the results were similar. The results suggest a withdrawal time of 41 days for Europe and China and 50 days for Japan is needed for DC in grass carp after 3 daily oral administrations at 20 mg/kg. Overall, this study improves our understanding of the tissue residue depletion kinetics of DC in fish, and the results may help regulatory agencies to determine proper withdrawal periods based on different regulatory standards in different countries to ensure safety of aquatic food products.
Collapse
Affiliation(s)
- Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China.
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| | - Yu Fu
- Hunan University of Arts and Science, Changde, 415000, China.
| | - Xiaomei Zhang
- Hunan Applied Technology University, Changde, 415000, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China.
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
28
|
Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug withdrawal interval determination with a mechanistic population-based interactive physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine administration. Arch Toxicol 2019; 93:1865-1880. [PMID: 31025081 DOI: 10.1007/s00204-019-02464-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
Abstract
Violative chemical residues in animal-derived food products affect food safety globally and have impact on the trade of international agricultural products. The Food Animal Residue Avoidance Databank program has been developing scientific tools to provide appropriate withdrawal interval (WDI) estimations after extralabel drug use in food animals for the past three decades. One of the tools is physiologically based pharmacokinetic (PBPK) modeling, which is a mechanistic-based approach that can be used to predict tissue residues and WDIs. However, PBPK models are complicated and difficult to use by non-modelers. Therefore, a user-friendly PBPK modeling framework is needed to move this field forward. Flunixin was one of the top five violative drug residues identified in the United States from 2010 to 2016. The objective of this study was to establish a web-based user-friendly framework for the development of new PBPK models for drugs administered to food animals. Specifically, a new PBPK model for both cattle and swine after administration of flunixin meglumine was developed. Population analysis using Monte Carlo simulations was incorporated into the model to predict WDIs following extralabel administration of flunixin meglumine. The population PBPK model was converted to a web-based interactive PBPK (iPBPK) framework to facilitate its application. This iPBPK framework serves as a proof-of-concept for further improvements in the future and it can be applied to develop new models for other drugs in other food animal species, thereby facilitating the application of PBPK modeling in WDI estimation and food safety assessment.
Collapse
|
29
|
Li M, Mainquist-Whigham C, Karriker LA, Wulf LW, Zeng D, Gehring R, Riviere JE, Coetzee JF, Lin Z. An integrated experimental and physiologically based pharmacokinetic modeling study of penicillin G in heavy sows. J Vet Pharmacol Ther 2019; 42:461-475. [PMID: 31012501 DOI: 10.1111/jvp.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/12/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Abstract
Penicillin G is widely used in food-producing animals at extralabel doses and is one of the most frequently identified violative drug residues in animal-derived food products. In this study, the plasma pharmacokinetics and tissue residue depletion of penicillin G in heavy sows after repeated intramuscular administrations at label (6.5 mg/kg) and 5 × label (32.5 mg/kg) doses were determined. Plasma, urine, and environmental samples were tested as potential antemortem markers for penicillin G residues. The collected new data and other available data from the literature were used to develop a population physiologically based pharmacokinetic (PBPK) model for penicillin G in heavy sows. The results showed that antemortem testing of urine provided potential correlation with tissue residue levels. Based on the United States Department of Agriculture Food Safety and Inspection Service action limit of 25 ng/g, the model estimated a withdrawal interval of 38 days for penicillin G in heavy sows after 3 repeated intramuscular injections at 5 × label dose. This study improves our understanding of penicillin G pharmacokinetics and tissue residue depletion in heavy sows and provides a tool to predict proper withdrawal intervals after extralabel use of penicillin G in heavy sows, thereby helping safety assessment of sow-derived meat products.
Collapse
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Christine Mainquist-Whigham
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Larry W Wulf
- Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Dongping Zeng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Johann F Coetzee
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
30
|
Yang F, Lin Z, Riviere JE, Baynes RE. Development and application of a population physiologically based pharmacokinetic model for florfenicol and its metabolite florfenicol amine in cattle. Food Chem Toxicol 2019; 126:285-294. [DOI: 10.1016/j.fct.2019.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
|
31
|
Zeng D, Lin Z, Zeng Z, Fang B, Li M, Cheng YH, Sun Y. Assessing Global Human Exposure to T-2 Toxin via Poultry Meat Consumption Using a Lifetime Physiologically Based Pharmacokinetic Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1563-1571. [PMID: 30633497 DOI: 10.1021/acs.jafc.8b07133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Residue depletion of T-2 toxin in chickens after oral gavage at 2.0 mg/kg twice daily for 2 days was determined in this study. A flow-limited physiologically based pharmacokinetic (PBPK) model was developed for lifetime exposure assessment in chickens. The model was calibrated with data from the residue depletion study and then validated with independent data. A local sensitivity analysis was performed, and 16 sensitive parameters were subjected to Monte Carlo analysis. The population PBPK model was applied to estimate daily intake values of T-2 toxin in different countries based on reported consumption factors and the guidance value of 0.25 mg/kg in feed for chickens by the European Food Safety Authority (EFSA). The predicted daily intakes in different countries were all lower than the EFSA's total daily intake, suggesting that the EFSA's guidance value has minimal risk. This model provides a foundation for scaling to other mycotoxins and other food animal species.
Collapse
Affiliation(s)
- Dongping Zeng
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Zhenling Zeng
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
| | - Binghu Fang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Yongxue Sun
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
| |
Collapse
|
32
|
Elwell-Cuddy T, Li M, KuKanich B, Lin Z. The construction and application of a population physiologically based pharmacokinetic model for methadone in Beagles and Greyhounds. J Vet Pharmacol Ther 2018; 41:670-683. [DOI: 10.1111/jvp.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Trevor Elwell-Cuddy
- Institute of Computational Comparative Medicine (ICCM); Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM); Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| | - Butch KuKanich
- Institute of Computational Comparative Medicine (ICCM); Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM); Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| |
Collapse
|
33
|
Li M, Gehring R, Riviere JE, Lin Z. Probabilistic Physiologically Based Pharmacokinetic Model for Penicillin G in Milk From Dairy Cows Following Intramammary or Intramuscular Administrations. Toxicol Sci 2018; 164:85-100. [DOI: 10.1093/toxsci/kfy067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|