1
|
Atuheire CGK, Okwee-Acai J, Taremwa M, Terence O, Ssali SN, Mwiine FN, Kankya C, Skjerve E, Tryland M. Descriptive analyses of knowledge, attitudes, and practices regarding rabies transmission and prevention in rural communities near wildlife reserves in Uganda: a One Health cross-sectional study. Trop Med Health 2024; 52:48. [PMID: 39030649 PMCID: PMC11264860 DOI: 10.1186/s41182-024-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Despite urban (domestic dog) rabies cycles being the main target for rabies elimination by 2030, sylvatic (wildlife) rabies cycles can act as rabies spillovers especially in settlements contiguous to wildlife reserves. Rural communities next to wildlife reserves are characterized by unique socio-demographic and cultural practices including bat consumption, hunting for bushmeat, and non-vaccination of hunting dogs against rabies among others. This study aimed to compare the knowledge, attitudes, and practices (KAPs) related to rabies transmission and prevention in the three districts of Uganda; (1) Nwoya, neighboring Murchison Falls National Park (MFNP) in the north, (2) Kamwenge neighboring Kibaale National Park (KNP), Queen Elizabeth National Park (QENP) and Katonga Game Reserve (KGR) in the west, and (3) Bukedea, neighboring Pian Upe Game Reserve (PUGR) in the east of Uganda. METHODS A community-based cross-sectional survey was conducted in settlements contiguous to these wildlife reserves. Using a semi-structured questionnaire, data were collected from 843 households owning dogs and livestock. Data were collected between the months of January and April 2023. Stratified univariate analyses by district were carried out using the Chi-square test for independence and Fisher's exact test to compare KAPs in the three study districts. RESULTS The median age of study participants was 42 years (Q1, Q3 = 30, 52) with males comprising the majority (67%, n = 562). The key findings revealed that participants from the Nwoya district in the north (MFNP) had little knowledge about rabies epidemiology (8.5%, n = 25), only 64% (n = 187) of them knew its signs and symptoms such as a rabid dog presenting with aggressiveness and showed negative attitudes towards prevention measures (15.3%, n = 45). Participants in the Kamwenge district-west (KNP, QENP, and KGR) had little knowledge and negative attitude towards wildlife-human interaction pertaining to rabies transmission and prevention especially those with no or primary level of education (20.9%, n = 27) while participants from Bukedea in the east (PUGR) had remarkedly poor practices towards rabies transmission, prevention, and control (37.8%, n = 114). CONCLUSIONS Rabies from sylvatic cycles remains a neglected public health threat in rural communities surrounding national parks and game reserves in Uganda. Our study findings highlight key gaps in knowledge, attitudes, and practices related to rabies transmission and prevention among such communities. Communication and action between veterinary services, wildlife authority, public health teams, social science and community leaders through available community platforms is key in addressing rabies among the sympatric at-risk communities in Uganda.
Collapse
Affiliation(s)
- Collins G K Atuheire
- Department of Biosecurity, Ecosystems & Veterinary Public Health, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda.
| | - James Okwee-Acai
- Department of Veterinary Pharmacy, Clinical and Comparative Medicine, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Martha Taremwa
- Department of Biosecurity, Ecosystems & Veterinary Public Health, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Odoch Terence
- Department of Biosecurity, Ecosystems & Veterinary Public Health, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Sarah N Ssali
- School of Women and Gender Studies, College of Humanities, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Frank N Mwiine
- Department of Biomolecular Resources and Bio-Lab Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Clovice Kankya
- Department of Biosecurity, Ecosystems & Veterinary Public Health, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Eystein Skjerve
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Tryland
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway
| |
Collapse
|
2
|
Apoorva, Singh SK. A tale of endurance: bats, viruses and immune dynamics. Future Microbiol 2024; 19:841-856. [PMID: 38648093 PMCID: PMC11382704 DOI: 10.2217/fmb-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/09/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007, India
| |
Collapse
|
3
|
Tolentino JE, Lytras S, Ito J, Sato K. Recombination analysis on the receptor switching event of MERS-CoV and its close relatives: implications for the emergence of MERS-CoV. Virol J 2024; 21:84. [PMID: 38600521 PMCID: PMC11008012 DOI: 10.1186/s12985-024-02358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND PlMERS-CoV is a coronavirus known to cause severe disease in humans, taxonomically classified under the subgenus Merbecovirus. Recent findings showed that the close relatives of MERS-CoV infecting vespertillionid bats (family Vespertillionidae), named NeoCoV and PDF-2180, use their hosts' ACE2 as their entry receptor, unlike the DPP4 receptor usage of MERS-CoV. Previous research suggests that this difference in receptor usage between these related viruses is a result of recombination. However, the precise location of the recombination breakpoints and the details of the recombination event leading to the change of receptor usage remain unclear. METHODS We used maximum likelihood-based phylogenetics and genetic similarity comparisons to characterise the evolutionary history of all complete Merbecovirus genome sequences. Recombination events were detected by multiple computational methods implemented in the recombination detection program. To verify the influence of recombination, we inferred the phylogenetic relation of the merbecovirus genomes excluding recombinant segments and that of the viruses' receptor binding domains and examined the level of congruency between the phylogenies. Finally, the geographic distribution of the genomes was inspected to identify the possible location where the recombination event occurred. RESULTS Similarity plot analysis and the recombination-partitioned phylogenetic inference showed that MERS-CoV is highly similar to NeoCoV (and PDF-2180) across its whole genome except for the spike-encoding region. This is confirmed to be due to recombination by confidently detecting a recombination event between the proximal ancestor of MERS-CoV and a currently unsampled merbecovirus clade. Notably, the upstream recombination breakpoint was detected in the N-terminal domain and the downstream breakpoint at the S2 subunit of spike, indicating that the acquired recombined fragment includes the receptor-binding domain. A tanglegram comparison further confirmed that the receptor binding domain-encoding region of MERS-CoV was acquired via recombination. Geographic mapping analysis on sampling sites suggests the possibility that the recombination event occurred in Africa. CONCLUSION Together, our results suggest that recombination can lead to receptor switching of merbecoviruses during circulation in bats. These results are useful for future epidemiological assessments and surveillance to understand the spillover risk of bat coronaviruses to the human population.
Collapse
Affiliation(s)
- Jarel Elgin Tolentino
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Spyros Lytras
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Barabona G, Ngare I, Kamori D, Nkinda L, Kosugi Y, Mawazo A, Ekwabi R, Kinasa G, Chuwa H, Sato K, Sunguya B, Ueno T. Neutralizing immunity against coronaviruses in Tanzanian health care workers. Sci Rep 2024; 14:5508. [PMID: 38448564 PMCID: PMC10917759 DOI: 10.1038/s41598-024-55989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
The ongoing vaccination efforts and exposure to endemic and emerging coronaviruses can shape the population's immunity against this group of viruses. In this study, we investigated neutralizing immunity against endemic and emerging coronaviruses in 200 Tanzanian frontline healthcare workers (HCWs). Despite low vaccination rates (19.5%), we found a high SARS-CoV-2 seroprevalence (94.0%), indicating high exposure in these HCWs. Next, we determined the neutralization capacity of antisera against human coronavirus NL63, and 229E, SARS-CoV-1, MERS-CoV and SARS-CoV-2 (including Omicron subvariants: BA.1, BQ.1.1 and XBB.1.5) using pseudovirus neutralization assay. We observed a broad range of neutralizing activity in HCWs, but no neutralization activity detected against MERS-CoV. We also observed a strong correlation between neutralizing antibody titers for SARS-CoV-2 and SARS-CoV-1, but not between other coronaviruses. Cross-neutralization titers against the newer Omicron subvariants, BQ.1.1 and XBB.1.5, was significantly reduced compared to BA.1 and BA.2 subvariants. On the other hand, the exposed vaccinated HCWs showed relatively higher median cross-neutralization titers against both the newer Omicron subvariants and SARS-CoV-1, but did not reach statistical significance. In summary, our findings suggest a broad range of neutralizing potency against coronaviruses in Tanzanian HCWs with detectable neutralizing immunity against SARS-CoV-1 resulting from SARS-CoV-2 exposure.
Collapse
Affiliation(s)
- Godfrey Barabona
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Isaac Ngare
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Doreen Kamori
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Lilian Nkinda
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ambele Mawazo
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Rayi Ekwabi
- Amana Regional Referral Hospital, Dar es Salaam, Tanzania
| | | | | | - Kei Sato
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Bruno Sunguya
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Community Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| |
Collapse
|
5
|
Cao L, Song X, Qian Y, Li Y, Xu J, Chen X, Wang X, Chen J. Identification of a novel adenovirus in liver tissue sample of the Great Himalayan leaf-nosed bat (Hipposideros armiger). Braz J Microbiol 2024; 55:117-123. [PMID: 38261263 PMCID: PMC10920538 DOI: 10.1007/s42770-024-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Bats are important reservoirs for many zoonotic viruses. To explore and monitor potential novel viruses carried by bats, 21 liver samples of bats (Hipposideros armiger) were collected from Yunnan Province in southern China. Only one (4.8%) of all models was detected with adenovirus. The whole genome strain obtained by the viral metagenomics method combined with PCR was temporarily named YN01. The complete genome of YN01 was 37,676 bp, with a G + C content of 55.20% and 28 open reading frames. Phylogenetic analysis indicated that the strain YN01 can be classified as genus Mastadenovirus and was the most similar to the adenovirus isolated from Rhinolophus sinicus in China in 2016. The analysis is needed to verify the possibility of cross-species transmission. This virological investigation has increased our understanding of the ecology of bat-borne viruses in this area and provided a reference for possible future infectious diseases.
Collapse
Affiliation(s)
- Ling Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xulai Song
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jian Xu
- Department of Oncology, The Second People's Hospital of Nantong, Nantong, China
| | - Xurong Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Jianguo Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
6
|
Cantoni D, Mayora-Neto M, Derveni M, da Costa K, Del Rosario J, Ameh VO, Sabeta CT, Auld B, Hamlet A, Jones IM, Wright E, Scott SD, Giotis ES, Banyard AC, Temperton N. Serological evidence of virus infection in Eidolon helvum fruit bats: implications for bushmeat consumption in Nigeria. Front Public Health 2023; 11:1283113. [PMID: 38106901 PMCID: PMC10723585 DOI: 10.3389/fpubh.2023.1283113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction The Eidolon helvum fruit bat is one of the most widely distributed fruit bats in Africa and known to be a reservoir for several pathogenic viruses that can cause disease in animals and humans. To assess the risk of zoonotic spillover, we conducted a serological survey of 304 serum samples from E. helvum bats that were captured for human consumption in Makurdi, Nigeria. Methods Using pseudotyped viruses, we screened 304 serum samples for neutralizing antibodies against viruses from the Coronaviridae, Filoviridae, Orthomyxoviridae and Paramyxoviridae families. Results We report the presence of neutralizing antibodies against henipavirus lineage GH-M74a virus (odds ratio 6.23; p < 0.001), Nipah virus (odds ratio 4.04; p = 0.00031), bat influenza H17N10 virus (odds ratio 7.25; p < 0.001) and no significant association with Ebola virus (odds ratio 0.56; p = 0.375) in this bat cohort. Conclusion The data suggest a potential risk of zoonotic spillover including the possible circulation of highly pathogenic viruses in E. helvum populations. These findings highlight the importance of maintaining sero-surveillance of E. helvum, and the necessity for further, more comprehensive investigations to monitor changes in virus prevalence, distribution over time, and across different geographic locations.
Collapse
Affiliation(s)
- Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, United Kingdom
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, United Kingdom
| | - Mariliza Derveni
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Kelly da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, United Kingdom
| | - Joanne Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, United Kingdom
| | - Veronica O. Ameh
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi, Nigeria
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Claude T. Sabeta
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- World Organisation for Animal Health Rabies Reference Laboratory, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Bethany Auld
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Arran Hamlet
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Simon D. Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, United Kingdom
| | - Efstathios S. Giotis
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | | | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, United Kingdom
| |
Collapse
|
7
|
Geldenhuys M, Ross N, Dietrich M, de Vries JL, Mortlock M, Epstein JH, Weyer J, Pawęska JT, Markotter W. Viral maintenance and excretion dynamics of coronaviruses within an Egyptian rousette fruit bat maternal colony: considerations for spillover. Sci Rep 2023; 13:15829. [PMID: 37739999 PMCID: PMC10517123 DOI: 10.1038/s41598-023-42938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023] Open
Abstract
Novel coronavirus species of public health and veterinary importance have emerged in the first two decades of the twenty-first century, with bats identified as natural hosts for progenitors of many coronaviruses. Targeted wildlife surveillance is needed to identify the factors involved in viral perpetuation within natural host populations, and drivers of interspecies transmission. We monitored a natural colony of Egyptian rousette bats at monthly intervals across two years to identify circulating coronaviruses, and to investigate shedding dynamics and viral maintenance within the colony. Three distinct lineages were detected, with different seasonal temporal excretion dynamics. For two lineages, the highest periods of coronavirus shedding were at the start of the year, when large numbers of bats were found in the colony. Highest peaks for a third lineage were observed towards the middle of the year. Among individual bat-level factors (age, sex, reproductive status, and forearm mass index), only reproductive status showed significant effects on excretion probability, with reproductive adults having lower rates of detection, though factors were highly interdependent. Analysis of recaptured bats suggests that viral clearance may occur within one month. These findings may be implemented in the development of risk reduction strategies for potential zoonotic coronavirus transmission.
Collapse
Affiliation(s)
- Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| | | | - Muriel Dietrich
- UMR Processus Infectieux en Milieu Insulaire Tropical, Sainte-Clotilde, Reunion Island, France
| | - John L de Vries
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jonathan H Epstein
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- EcoHealth Alliance, New York, USA
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Janusz T Pawęska
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
8
|
Vidovszky MZ, Kapitány S, Gellért Á, Harrach B, Görföl T, Boldogh SA, Kohl C, Wibbelt G, Mühldorfer K, Kemenesi G, Gembu GC, Hassanin A, Tu VT, Estók P, Horváth A, Kaján GL. Detection and genetic characterization of circoviruses in more than 80 bat species from eight countries on four continents. Vet Res Commun 2023; 47:1561-1573. [PMID: 37002455 PMCID: PMC10066014 DOI: 10.1007/s11259-023-10111-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Several bat-associated circoviruses and circular rep-encoding single-stranded DNA (CRESS DNA) viruses have been described, but the exact diversity and host species of these viruses are often unknown. Our goal was to describe the diversity of bat-associated circoviruses and cirliviruses, thus, 424 bat samples from more than 80 species were collected on four continents. The samples were screened for circoviruses using PCR and the resulting amino acid sequences were subjected to phylogenetic analysis. The majority of bat strains were classified in the genus Circovirus and some strains in the genus Cyclovirus and the clades CRESS1 and CRESS3. Some strains, however, could only be classified at the taxonomic level of the order and were not classified in any of the accepted or proposed clades. In the family Circoviridae, 71 new species have been predicted. This screening of bat samples revealed a great diversity of circoviruses and cirliviruses. These studies underline the importance of the discovery and description of new cirliviruses and the need to establish new species and families in the order Cirlivirales.
Collapse
Affiliation(s)
| | | | - Ákos Gellért
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Balázs Harrach
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Tamás Görföl
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
| | | | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Gudrun Wibbelt
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Kristin Mühldorfer
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gábor Kemenesi
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
| | - Guy-Crispin Gembu
- Faculté des Sciences, Université de Kisangani, Kisangani, République Démocratique du Congo
| | - Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Péter Estók
- Department of Zoology, Eszterházy Károly Catholic University, Eger, Hungary
| | - Anna Horváth
- QUIRÓN, Center for Equine Assisted Interventions and Training for Well-Being and Sustainability, Comitán de Domínguez, Mexico
| | - Győző L. Kaján
- Veterinary Medical Research Institute, Budapest, Hungary
| |
Collapse
|
9
|
Wood MR, de Vries JL, Epstein JH, Markotter W. Variations in small-scale movements of, Rousettus aegyptiacus, a Marburg virus reservoir across a seasonal gradient. Front Zool 2023; 20:23. [PMID: 37464371 DOI: 10.1186/s12983-023-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Bats are increasingly being recognized as important hosts for viruses, some of which are zoonotic and carry the potential for spillover within human and livestock populations. Biosurveillance studies focused on assessing the risk of pathogen transmission, however, have largely focused on the virological component and have not always considered the ecological implications of different species as viral hosts. The movements of known viral hosts are an important component for disease risk assessments as they can potentially identify regions of higher risk of contact and spillover. As such, this study aimed to synthesize data from both virological and ecological fields to provide a more holistic assessment of the risk of pathogen transmission from bats to people. RESULTS Using radiotelemetry, we tracked the small-scale movements of Rousettus aegyptiacus, a species of bat known to host Marburg virus and other viruses with zoonotic potential, in a rural settlement in Limpopo Province, South Africa. The tracked bats exhibited seasonal variations in their movement patterns including variable usage of residential areas which could translate to contact between bats and humans and may facilitate spillover. We identified a trend for increased usage of residential areas during the winter months with July specifically experiencing the highest levels of bat activity within residential areas. July has previously been identified as a key period for increased spillover risk for viruses associated with R. aegyptiacus from this colony and paired with the increased activity levels, illustrates the risk for spillover to human populations. CONCLUSION This study emphasizes the importance of incorporating ecological data such as movement patterns with virological data to provide a better understanding of the risk of pathogen spillover and transmission.
Collapse
Affiliation(s)
- Matthew R Wood
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - J Low de Vries
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Jonathan H Epstein
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
- EcoHealth Alliance, New York, NY, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
10
|
Gwenzi W, Marumure J, Makuvara Z, Simbanegavi TT, Njomou-Ngounou EL, Nya EL, Kaetzl K, Noubactep C, Rzymski P. The pit latrine paradox in low-income settings: A sanitation technology of choice or a pollution hotspot? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163179. [PMID: 37003330 DOI: 10.1016/j.scitotenv.2023.163179] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Pit latrines are widely promoted to improve sanitation in low-income settings, but their pollution and health risks receive cursory attention. The present narrative review presents the pit latrine paradox; (1) the pit latrine is considered a sanitation technology of choice to safeguard human health, and (2) conversely, pit latrines are pollution and health risk hotspots. Evidence shows that the pit latrine is a 'catch-all' receptacle for household disposal of hazardous waste, including; (1) medical wastes (COVID-19 PPE, pharmaceuticals, placenta, used condoms), (2) pesticides and pesticide containers, (3) menstrual hygiene wastes (e.g., sanitary pads), and (4) electronic wastes (batteries). Pit latrines serve as hotspot reservoirs that receive, harbour, and then transmit the following into the environment; (1) conventional contaminants (nitrates, phosphates, pesticides), (2) emerging contaminants (pharmaceuticals and personal care products, antibiotic resistance), and (3) indicator organisms, and human bacterial and viral pathogens, and disease vectors (rodents, houseflies, bats). As greenhouse gas emission hotspots, pit latrines contribute 3.3 to 9.4 Tg/year of methane, but this could be an under-estimation. Contaminants in pit latrines may migrate into surface water, and groundwater systems serving as drinking water sources and pose human health risks. In turn, this culminates into the pit latrine-groundwater-human continuum or connectivity, mediated via water and contaminant migration. Human health risks of pit latrines, a critique of current evidence, and current and emerging mitigation measures are presented, including isolation distance, hydraulic liners/ barriers, ecological sanitation, and the concept of a circular bioeconomy. Finally, future research directions on the epidemiology and fate of contaminants in pit latrines are presented. The pit latrine paradox is not meant to downplay pit latrines' role or promote open defaecation. Rather, it seeks to stimulate discussion and research to refine the technology to enhance its functionality while mitigating pollution and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP 167, Zimbabwe
| | | | - Esther Laurentine Nya
- Faculty of Arts, Letters and Social Sciences, University of Maroua, P.O. Box 644, Maroua, Cameroon
| | - Korbinian Kaetzl
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany.
| | - Chicgoua Noubactep
- Centre for Modern Indian Studies (CeMIS), University of Göttingen, Waldweg 26, 37073 Göttingen, Germany; Department of Applied Geology, University of Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany; School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, 211100 Nanjing, PR China.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland.
| |
Collapse
|
11
|
Italiya J, Bhavsar T, Černý J. Assessment and strategy development for SARS-CoV-2 screening in wildlife: A review. Vet World 2023; 16:1193-1200. [PMID: 37577208 PMCID: PMC10421538 DOI: 10.14202/vetworld.2023.1193-1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 08/15/2023] Open
Abstract
Coronaviruses (members of the Coronaviridae family) are prominent in veterinary medicine, with several known infectious agents commonly reported. In contrast, human medicine has disregarded coronaviruses for an extended period. Within the past two decades, coronaviruses have caused three major outbreaks. One such outbreak was the coronavirus disease 2019 (COVID-19) caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Over the 3-year COVID-19 outbreak, several instances of zooanthroponosis have been documented, which pose risks for virus modifications and possible re-emergence of the virus into the human population, causing a new epidemic and possible threats for vaccination or treatment failure. Therefore, widespread screening of animals is an essential technique for mitigating future risks and repercussions. However, mass detection of SARS-CoV-2 in wild animals might be challenging. In silico prediction modeling, experimental studies conducted on various animal species, and natural infection episodes recorded in various species might provide information on the potential threats to wildlife. They may be useful for diagnostic and mass screening purposes. In this review, the possible methods of wildlife screening, based on experimental data and environmental elements that might play a crucial role in its effective implementation, are reviewed.
Collapse
Affiliation(s)
- Jignesh Italiya
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| | - Tanvi Bhavsar
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| |
Collapse
|
12
|
Leopardi S, Desiato R, Mazzucato M, Orusa R, Obber F, Averaimo D, Berjaoui S, Canziani S, Capucchio MT, Conti R, di Bella S, Festa F, Garofalo L, Lelli D, Madrau MP, Mandola ML, Moreno Martin AM, Peletto S, Pirani S, Robetto S, Torresi C, Varotto M, Citterio C, Terregino C. One health surveillance strategy for coronaviruses in Italian wildlife. Epidemiol Infect 2023; 151:e96. [PMID: 37263583 PMCID: PMC10282179 DOI: 10.1017/s095026882300081x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023] Open
Abstract
The recent reinforcement of CoV surveillance in animals fuelled by the COVID-19 pandemic provided increasing evidence that mammals other than bats might hide further diversity and play critical roles in human infectious diseases. This work describes the results of a two-year survey carried out in Italy with the double objective of uncovering CoV diversity associated with wildlife and of excluding the establishment of a reservoir for SARS-CoV-2 in particularly susceptible or exposed species. The survey targeted hosts from five different orders and was harmonised across the country in terms of sample size, target tissues, and molecular test. Results showed the circulation of 8 CoV species in 13 hosts out of the 42 screened. Coronaviruses were either typical of the host species/genus or normally associated with their domestic counterpart. Two novel viruses likely belonging to a novel CoV genus were found in mustelids. All samples were negative for SARS-CoV-2, with minimum detectable prevalence ranging between 0.49% and 4.78% in the 13 species reaching our threshold sample size of 59 individuals. Considering that within-species transmission in white-tailed deer resulted in raising the prevalence from 5% to 81% within a few months, this result would exclude a sustained cycle after spillback in the tested species.
Collapse
Affiliation(s)
- Stefania Leopardi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Rosanna Desiato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Riccardo Orusa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
- National Reference Center Wildlife Diseases, Aosta Valley, Quart, Italy
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Daniela Averaimo
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Teramo, Italy
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Teramo, Italy
| | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, Centro Animali Non Convenzionali (C.A.N.C), University of Turin, Turin, Italy
| | - Raffaella Conti
- Istituto Zooprofilattico Sperimentale di Lazio e Toscana, Roma, Italy
| | - Santina di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Francesca Festa
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Luisa Garofalo
- Istituto Zooprofilattico Sperimentale di Lazio e Toscana, Roma, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
- Molecular Medicine PhD Program, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Maria Lucia Mandola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
| | | | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
| | - Silvia Pirani
- Istituto Zooprofilattico Sperimentale di Umbria e Marche, Perugia, Italy
| | - Serena Robetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Quart, Italy
| | - Claudia Torresi
- Istituto Zooprofilattico Sperimentale di Umbria e Marche, Perugia, Italy
| | - Maria Varotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Carlo Citterio
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | |
Collapse
|
13
|
Coertse J, Mortlock M, Grobbelaar A, Moolla N, Markotter W, Weyer J. Development of a Pan- Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats. Viruses 2023; 15:v15040987. [PMID: 37112966 PMCID: PMC10145118 DOI: 10.3390/v15040987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Recent studies have indicated that bats are hosts to diverse filoviruses. Currently, no pan-filovirus molecular assays are available that have been evaluated for the detection of all mammalian filoviruses. In this study, a two-step pan-filovirus SYBR Green real-time PCR assay targeting the nucleoprotein gene was developed for filovirus surveillance in bats. Synthetic constructs were designed as representatives of nine filovirus species and used to evaluate the assay. This assay detected all synthetic constructs included with an analytical sensitivity of 3-31.7 copies/reaction and was evaluated against the field collected samples. The assay's performance was similar to a previously published probe based assay for detecting Ebola- and Marburgvirus. The developed pan-filovirus SYBR Green assay will allow for more affordable and sensitive detection of mammalian filoviruses in bat samples.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Antoinette Grobbelaar
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Naazneen Moolla
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| |
Collapse
|
14
|
Detection and Characterization of an H9N2 Influenza A Virus in the Egyptian Rousette Bat in Limpopo, South Africa. Viruses 2023; 15:v15020498. [PMID: 36851712 PMCID: PMC9958621 DOI: 10.3390/v15020498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, bats have been shown to host various novel bat-specific influenza viruses, including H17N10 and H18N11 in the Americas and the H9N2 subtype from Africa. Rousettus aegyptiacus (Egyptian Rousette bat) is recognized as a host species for diverse viral agents. This study focused on the molecular surveillance of a maternal colony in Limpopo, South Africa, between 2017-2018. A pan-influenza hemi-nested RT-PCR assay targeting the PB1 gene was established, and influenza A virus RNA was identified from one fecal sample out of 860 samples. Genome segments were recovered using segment-specific amplification combined with standard Sanger sequencing and Illumina unbiased sequencing. The identified influenza A virus was closely related to the H9N2 bat-influenza virus, confirming the circulation of this subtype among Egyptian fruit bat populations in Southern Africa. This bat H9N2 subtype contained amino acid residues associated with transmission and virulence in either mammalian or avian hosts, though it will likely require additional adaptations before spillover.
Collapse
|
15
|
Kamani J, González-Miguel J, Msheliza EG, Goldberg TL. Straw-Colored Fruit Bats ( Eidolon helvum) and Their Bat Flies ( Cyclopodia greefi) in Nigeria Host Viruses with Multifarious Modes of Transmission. Vector Borne Zoonotic Dis 2022; 22:545-552. [DOI: 10.1089/vbz.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Joshua Kamani
- Parasitology Division, National Veterinary Research Institute (NVRI), Vom, Nigeria
| | - Javier González-Miguel
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Emmanuel G. Msheliza
- Parasitology Division, National Veterinary Research Institute (NVRI), Vom, Nigeria
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Abstract
Bats perform important ecological roles in our ecosystem. However, recent studies have demonstrated that bats are reservoirs of emerging viruses that have spilled over into humans and agricultural animals to cause severe diseases. These viruses include Hendra and Nipah paramyxoviruses, Ebola and Marburg filoviruses, and coronaviruses that are closely related to severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the recently emerged SARS-CoV-2. Intriguingly, bats that are naturally or experimentally infected with these viruses do not show clinical signs of disease. Here we have reviewed ecological, behavioral, and molecular factors that may influence the ability of bats to harbor viruses. We have summarized known zoonotic potential of bat-borne viruses and stress on the need for further studies to better understand the evolutionary relationship between bats and their viruses, along with discovering the intrinsic and external factors that facilitate the successful spillover of viruses from bats.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
17
|
Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25:104782. [PMID: 35982789 PMCID: PMC9379578 DOI: 10.1016/j.isci.2022.104782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
18
|
Chidoti V, De Nys H, Pinarello V, Mashura G, Missé D, Guerrini L, Pfukenyi D, Cappelle J, Chiweshe N, Ayouba A, Matope G, Peeters M, Gori E, Bourgarel M, Liégeois F. Longitudinal Survey of Coronavirus Circulation and Diversity in Insectivorous Bat Colonies in Zimbabwe. Viruses 2022; 14:v14040781. [PMID: 35458511 PMCID: PMC9031365 DOI: 10.3390/v14040781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 04/03/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Studies have linked bats to outbreaks of viral diseases in human populations such as SARS-CoV-1 and MERS-CoV and the ongoing SARS-CoV-2 pandemic. Methods: We carried out a longitudinal survey from August 2020 to July 2021 at two sites in Zimbabwe with bat–human interactions: Magweto cave and Chirundu farm. A total of 1732 and 1866 individual bat fecal samples were collected, respectively. Coronaviruses and bat species were amplified using PCR systems. Results: Analysis of the coronavirus sequences revealed a high genetic diversity, and we identified different sub-viral groups in the Alphacoronavirus and Betacoronavirus genus. The established sub-viral groups fell within the described Alphacoronavirus sub-genera: Decacovirus, Duvinacovirus, Rhinacovirus, Setracovirus and Minunacovirus and for Betacoronavirus sub-genera: Sarbecoviruses, Merbecovirus and Hibecovirus. Our results showed an overall proportion for CoV positive PCR tests of 23.7% at Chirundu site and 16.5% and 38.9% at Magweto site for insectivorous bats and Macronycteris gigas, respectively. Conclusions: The higher risk of bat coronavirus exposure for humans was found in December to March in relation to higher viral shedding peaks of coronaviruses in the parturition, lactation and weaning months of the bat populations at both sites. We also highlight the need to further document viral infectious risk in human/domestic animal populations surrounding bat habitats in Zimbabwe.
Collapse
Affiliation(s)
- Vimbiso Chidoti
- Faculty of Veterinary Science, University of Zimbabwe, Harare P.O. Box MP 167, Zimbabwe; (V.C.); (V.P.); (G.M.); (D.P.); (G.M.); (E.G.)
| | - Hélène De Nys
- ASTRE, CIRAD, INRAE, University of Montpellier, 34980 Montpellier, France; (H.D.N.); (L.G.); (J.C.); (M.B.)
- CIRAD, UMR ASTRE, Harare, Zimbabwe;
| | - Valérie Pinarello
- Faculty of Veterinary Science, University of Zimbabwe, Harare P.O. Box MP 167, Zimbabwe; (V.C.); (V.P.); (G.M.); (D.P.); (G.M.); (E.G.)
- ASTRE, CIRAD, INRAE, University of Montpellier, 34980 Montpellier, France; (H.D.N.); (L.G.); (J.C.); (M.B.)
- CIRAD, UMR ASTRE, Harare, Zimbabwe;
| | - Getrude Mashura
- Faculty of Veterinary Science, University of Zimbabwe, Harare P.O. Box MP 167, Zimbabwe; (V.C.); (V.P.); (G.M.); (D.P.); (G.M.); (E.G.)
| | - Dorothée Missé
- MIVEGEC, University of Montpellier, IRD, CNRS, 34394 Montpellier, France;
| | - Laure Guerrini
- ASTRE, CIRAD, INRAE, University of Montpellier, 34980 Montpellier, France; (H.D.N.); (L.G.); (J.C.); (M.B.)
- CIRAD, UMR ASTRE, Harare, Zimbabwe;
| | - Davies Pfukenyi
- Faculty of Veterinary Science, University of Zimbabwe, Harare P.O. Box MP 167, Zimbabwe; (V.C.); (V.P.); (G.M.); (D.P.); (G.M.); (E.G.)
| | - Julien Cappelle
- ASTRE, CIRAD, INRAE, University of Montpellier, 34980 Montpellier, France; (H.D.N.); (L.G.); (J.C.); (M.B.)
- CIRAD, UMR ASTRE, 34398 Montpellier, France
| | | | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, IRD, Inserm, 34394 Montpellier, France; (A.A.); (M.P.)
| | - Gift Matope
- Faculty of Veterinary Science, University of Zimbabwe, Harare P.O. Box MP 167, Zimbabwe; (V.C.); (V.P.); (G.M.); (D.P.); (G.M.); (E.G.)
| | - Martine Peeters
- TransVIHMI, University of Montpellier, IRD, Inserm, 34394 Montpellier, France; (A.A.); (M.P.)
| | - Elizabeth Gori
- Faculty of Veterinary Science, University of Zimbabwe, Harare P.O. Box MP 167, Zimbabwe; (V.C.); (V.P.); (G.M.); (D.P.); (G.M.); (E.G.)
| | - Mathieu Bourgarel
- ASTRE, CIRAD, INRAE, University of Montpellier, 34980 Montpellier, France; (H.D.N.); (L.G.); (J.C.); (M.B.)
- CIRAD, UMR ASTRE, Harare, Zimbabwe;
| | - Florian Liégeois
- Faculty of Veterinary Science, University of Zimbabwe, Harare P.O. Box MP 167, Zimbabwe; (V.C.); (V.P.); (G.M.); (D.P.); (G.M.); (E.G.)
- MIVEGEC, University of Montpellier, IRD, CNRS, 34394 Montpellier, France;
- Correspondence:
| |
Collapse
|
19
|
Shapiro JT, Mollerup S, Jensen RH, Olofsson JK, Nguyen NPD, Hansen TA, Vinner L, Monadjem A, McCleery RA, Hansen AJ. Metagenomic Analysis Reveals Previously Undescribed Bat Coronavirus Strains in Eswatini. ECOHEALTH 2021; 18:421-428. [PMID: 34970712 PMCID: PMC8718178 DOI: 10.1007/s10393-021-01567-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 06/07/2023]
Abstract
We investigated the prevalence of coronaviruses in 44 bats from four families in northeastern Eswatini using high-throughput sequencing of fecal samples. We found evidence of coronaviruses in 18% of the bats. We recovered full or near-full-length genomes from two bat species: Chaerephon pumilus and Afronycteris nana, as well as additional coronavirus genome fragments from C. pumilus, Epomophorus wahlbergi, Mops condylurus, and Scotophilus dinganii. All bats from which we detected coronaviruses were captured leaving buildings or near human settlements, demonstrating the importance of continued surveillance of coronaviruses in bats to better understand the prevalence, diversity, and potential risks for spillover.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA.
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA.
- University of Lyon, CIRI INSERM U1111 - CNRS UMR5308 - ENS Lyon, 46 Allée d'Italie, 69364, Lyon, France.
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Sarah Mollerup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Randi Holm Jensen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Nam-Phuong D Nguyen
- Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Arn Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Vinner
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ara Monadjem
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Department of Biological Sciences, University of Eswatini, Private Bag 4, Kwaluseni, Eswatini
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Robert A McCleery
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Anders J Hansen
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Assessing the extent of land-use change around important bat-inhabited caves. BMC ZOOL 2021; 6:31. [PMID: 34840806 PMCID: PMC8605785 DOI: 10.1186/s40850-021-00095-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Modification and destruction of natural habitats are bringing previously unencountered animal populations into contact with humans, with bats considered important zoonotic transmission vectors. Caves and cave-dwelling bats are under-represented in conservation plans. In South Africa, at least two cavernicolous species are of interest as potential zoonotic hosts: the Natal long-fingered bat Miniopterus natalensis and the Egyptian fruit bat Rousettus aegyptiacus. Little information is available about the anthropogenic pressures these species face around important roost sites. Both bats are numerous and widespread throughout the country; land-use changes and urban expansions are a rising concern for both conservation and increased bat-human contact. Results Our study addressed this shortfall by determining the extent of land-cover change around 47 roosts between 2014 and 2018 using existing land cover datasets. We determined the land-cover composition around important roost sites (including maternity, hibernacula and co-roosts), distances to urban settlements and assessed the current protection levels of roost localities. We detected an overall 4% decrease in natural woody vegetation (trees) within 5 km buffer zones of all roost sites, with a 10% decrease detected at co-roost sites alone. Agricultural land cover increased the most near roost sites, followed by plantations and urban land-cover. Overall, roosts were located 4.15 ± 0.91 km from urban settlements in 2018, the distances decreasing as urban areas expand. According to the South African National Biodiversity Institute Ecosystem Threat Status assessment, 72% of roosts fall outside of well-protected ecosystems. Conclusions The current lack of regulatory protection of cavernicolous bats and their roosts, increasing anthropogenic expansions and proximity to human settlements raises concerns about increased human-bat contact. Furthermore, uncontrolled roost visitation and vandalism are increasing, contributing to bat health risks and population declines, though the extent of roosts affected is yet to be quantified. In an era where pandemics are predicted to become more frequent and severe due to land-use change, our research is an urgent call for the formal protection of bat-inhabited caves to safeguard both bats and humans. Supplementary Information The online version contains supplementary material available at 10.1186/s40850-021-00095-5.
Collapse
|
21
|
Serum Neutralization Profiles of Straw-Colored Fruit Bats ( Eidolon helvum) in Makurdi (Nigeria), against Four Lineages of Lagos Bat Lyssavirus. Viruses 2021; 13:v13122378. [PMID: 34960647 PMCID: PMC8706175 DOI: 10.3390/v13122378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023] Open
Abstract
Lagos bat lyssavirus (LBV) comprising four lineages (A, B, C and D) can potentially cause the fatal disease rabies. Although LBV-B was initially isolated in Nigeria in 1956, there is no information on LBV lineages circulating in Nigeria. This study was undertaken for the first time to measure the neutralizing antibodies against four lineages of LBVs in straw-colored fruit bats (Eidolon helvum) in Makurdi, Nigeria. Serum samples (n = 180) collected during two periods (November 2017-March 2018 and November 2018-March 2019) from terminally bled bats captured for human consumption were tested using a modified fluorescent antibody virus neutralization (mFAVN) assay. A high proportion of bat sera (74%) neutralized at least one lineage of LBV (with reciprocal titers from 9 to >420.89) and most of them neutralized LBV-A (63%), followed by LBV-D (49%), LBV-C (45%) and LBV-B (24%). The majority of positive sera (75%, n = 100) neutralized multiple LBV lineages while the remaining 25% (n = 33) neutralized only a single lineage, i.e., LBV-A (n = 23), LBV-D (n = 8) and LBV-C (n = 2). None exclusively neutralized LBV-B. The results suggest that exposure to LBV is common in E. helvum and that LBV-A (but not LBV-B) is likely to be circulating in this region of Nigeria.
Collapse
|
22
|
Ayolabi CI, Olusola BA, Lawal AA, Chibuike AD, Nzekwue BN. Detection of novel paramyxoviruses in Chaerephon bat species in Nigeria and phylogenetics of paramyxoviruses co-evolution with bats in Africa. Zoonoses Public Health 2021; 69:117-135. [PMID: 34817117 DOI: 10.1111/zph.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Bat paramyxoviruses (PmV) are a diverse group of viruses and include zoonotic viruses such as henipaviruses. Members of this group in other continents have been associated with severe respiratory and neurological infections in animals and humans. Furthermore, despite the richness of diverse bat species that can transmit this virus in African countries like Nigeria, there is very scanty information as to the presence and co-evolution of paramyxoviruses in bats. There is a need for continuous surveillance of zoonotic viruses and their biological reservoirs as this will help in the prevention and management of pathogens' spillovers. This study detected novel paramyxoviruses in Chaerephon nigeriae bat species found in Badagry, Lagos. Phylogenetic analyses of paramyxovirus sequences' co-evolution with frugivorous and insectivorous bats circulating in African countries were also performed using sequences of African origin available in the Database of Bat-Associated Viruses (DBatVir: http://www.mgc.ac.cn/DBatVir/). Oral swabs (n = 18) and blood samples (n = 32) were collected from C. nigeriae bats in Badagry, Lagos. The L gene of bat paramyxovirus was detected in all oral swabs using PCR techniques. Six of the amplicons were successfully sequenced. Estimated phylogenies placed the sequences in close relationship with those isolated from insectivorous bats. Phylogenetic analyses of previously sequenced isolates in the African region showed the likelihood of different co-evolution mechanisms of paramyxoviruses with frugivorous bats compared with insectivorous bats. This may be due to codon usage bias of the L gene. Spatial distribution of paramyxoviruses in African countries showed limited ongoing surveillance of this virus in the continent, especially in southern and northern countries. Extensive surveillance of paramyxoviruses with possible zoonotic potentials among bat species in the continent is recommended. This will provide further insights into co-evolution as well as prevent possible spillover into the human population.
Collapse
|
23
|
Chaber AL, Amstrong KN, Wiantoro S, Xerri V, Caraguel C, Boardman WSJ, Nielsen TD. Bat E-Commerce: Insights Into the Extent and Potential Implications of This Dark Trade. Front Vet Sci 2021; 8:651304. [PMID: 34179158 PMCID: PMC8224922 DOI: 10.3389/fvets.2021.651304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/29/2021] [Indexed: 11/15/2022] Open
Abstract
Little is known about the global bat souvenir trade despite previous research efforts into bat harvest for bushmeat. We screened eBay listings of bats in Australia, Canada, Italy, Switzerland, United Kingdom and USA to assess the nature and extent of the online offers. A total of 237 listings were retrieved in between the 11th and 25th of May 2020 with a median price per item of US$38.50 (range: US$8.50–2,500.00). Items on offer were mostly taxidermy (61.2%) or skull (21.1%) specimens. Overall, 32 different species of bat were advertised, most of which (n = 28) are listed as “Least Concern” on the International Union for Conservation of Nature (IUCN) Red List. One species (Nycteris javanica) is classified as “Vulnerable” and one (Eidolon helvum) as “Near Threatened.” Pteropus spp. specimens were the most expensive specimens on offer and the conservations status of these species may range from “Critically Endangered” to “Data Deficient” by IUCN and the entire genus is listed in the Appendix II by the Convention on the International Trade in Endangered Species of Wild Fauna and Flora (CITES). However, the exact species concerned, and their respective conservation status, could not be confirmed based on the listings' photos. The sourcing of bat was restricted to mostly South-East Asian countries (a third of items sourced from Indonesia) and to two African countries. Our survey revealed that the online offer of bat products is diverse, abundant, and facilitated by worldwide sellers although most offered bats species are from South-East Asia. With a few exceptions, the species on offer were of little present conservation concern, however, many unknowns remain on the potential animal welfare, biosecurity, legal implications, and most importantly public health risks associated with this dark trade.
Collapse
Affiliation(s)
- Anne-Lise Chaber
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Kyle N Amstrong
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,South Australian Museum, Adelaide, SA, Australia
| | - Sigit Wiantoro
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Vanessa Xerri
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Charles Caraguel
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Torben D Nielsen
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
24
|
Overview of Bat and Wildlife Coronavirus Surveillance in Africa: A Framework for Global Investigations. Viruses 2021; 13:v13050936. [PMID: 34070175 PMCID: PMC8158508 DOI: 10.3390/v13050936] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 01/13/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has had devastating health and socio-economic impacts. Human activities, especially at the wildlife interphase, are at the core of forces driving the emergence of new viral agents. Global surveillance activities have identified bats as the natural hosts of diverse coronaviruses, with other domestic and wildlife animal species possibly acting as intermediate or spillover hosts. The African continent is confronted by several factors that challenge prevention and response to novel disease emergences, such as high species diversity, inadequate health systems, and drastic social and ecosystem changes. We reviewed published animal coronavirus surveillance studies conducted in Africa, specifically summarizing surveillance approaches, species numbers tested, and findings. Far more surveillance has been initiated among bat populations than other wildlife and domestic animals, with nearly 26,000 bat individuals tested. Though coronaviruses have been identified from approximately 7% of the total bats tested, surveillance among other animals identified coronaviruses in less than 1%. In addition to a large undescribed diversity, sequences related to four of the seven human coronaviruses have been reported from African bats. The review highlights research gaps and the disparity in surveillance efforts between different animal groups (particularly potential spillover hosts) and concludes with proposed strategies for improved future biosurveillance.
Collapse
|
25
|
El-Sayed A, Kamel M. Coronaviruses in humans and animals: the role of bats in viral evolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19589-19600. [PMID: 33655480 PMCID: PMC7924989 DOI: 10.1007/s11356-021-12553-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/14/2021] [Indexed: 04/15/2023]
Abstract
Bats act as a natural reservoir for many viruses, including coronaviruses, and have played a crucial epidemiological role in the emergence of many viral diseases. Coronaviruses have been known for 60 years. They are usually responsible for the induction of mild respiratory signs in humans. However, since 2002, the bat-borne virus started to induce fatal epidemics according to WHO reports. In this year, the first serious human coronavirus epidemic (severe acute respiratory syndrome; SARS) occurred (China, 8098 cases, 774 deaths [9.5% of the cases] in 17 countries). The case fatality was higher in elderly patients above 60 years and reached 50% of the cases. SARS epidemic was followed 10 years later by the emergence of the middle east respiratory syndrome (MERS) in Saudi Arabia (in 2012, 2260 cases, 803 deaths [35.5% of the cases] in 27 countries). Finally, in December 2019, a new epidemic in Wuhan, China, (corona virus disease 2019, COVID-19) emerged and could spread to 217 countries infecting more than 86,255,226 cases and killing 1,863,973 people by the end of 2020. There are many reasons why bats are ideal reservoir hosts for viral diseases such as the tolerance of their immune system to the invading viruses for several months. They can actively shed the viruses, although they develop no clinical signs (will be discussed in details later in the review). Bats were directly or indirectly involved in the three previous coronavirus epidemics. The indirect transmission takes place via intermediate hosts including civet cats for SARS and dromedary camels in the case of MERS. Although bats are believed to be the source of COVID-19 pandemic, direct pieces of evidence are still lacking. Therefore, coronaviruses' role in epidemics induction and the epidemiological role of bats are discussed. The current work also presents different evidence (phylogenetic data, animal experiments, bats artificial infection studies, and computerized models of SARS-CoV2 evolution) that underline the involvement of bats in the epidemiology of the pandemic.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Medicine and Infectious Diseases, Cairo University, Giza, 12211, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Medicine and Infectious Diseases, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
26
|
Coertse J, Geldenhuys M, le Roux K, Markotter W. Lagos Bat Virus, an Under-Reported Rabies-Related Lyssavirus. Viruses 2021; 13:576. [PMID: 33805487 PMCID: PMC8067007 DOI: 10.3390/v13040576] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lagos bat virus (LBV), one of the 17 accepted viral species of the Lyssavirus genus, was the first rabies-related virus described in 1956. This virus is endemic to the African continent and is rarely encountered. There are currently four lineages, although the observed genetic diversity exceeds existing lyssavirus species demarcation criteria. Several exposures to rabid bats infected with LBV have been reported; however, no known human cases have been reported to date. This review provides the history of LBV and summarizes previous knowledge as well as new detections. Genetic diversity, pathogenesis and prevention are re-evaluated and discussed.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Sandringham 2192, South Africa;
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Kevin le Roux
- Epidemiology Unit, Allerton Veterinary Laboratory, Pietermaritzburg, KwaZulu-Natal 3200, South Africa;
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| |
Collapse
|
27
|
Begeman L, Suu-Ire R, Banyard AC, Drosten C, Eggerbauer E, Freuling CM, Gibson L, Goharriz H, Horton DL, Jennings D, Marston DA, Ntiamoa-Baidu Y, Riesle Sbarbaro S, Selden D, Wise EL, Kuiken T, Fooks AR, Müller T, Wood JLN, Cunningham AA. Experimental Lagos bat virus infection in straw-colored fruit bats: A suitable model for bat rabies in a natural reservoir species. PLoS Negl Trop Dis 2020; 14:e0008898. [PMID: 33320860 PMCID: PMC7771871 DOI: 10.1371/journal.pntd.0008898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/29/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.
Collapse
Affiliation(s)
- Lineke Begeman
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
- * E-mail: (LB); (AAC)
| | - Richard Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - Ashley C. Banyard
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Christian Drosten
- Institute of Virology, Medical University of Berlin, Berlin, Germany
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
- Thüringer Landesamt für Verbraucherschutz, Bad Langensalza, Thüringen, Germany
| | - Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | - Louise Gibson
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - Hooman Goharriz
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Daisy Jennings
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Denise A. Marston
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Yaa Ntiamoa-Baidu
- Centre for African Wetlands / Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Silke Riesle Sbarbaro
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- University of Cambridge, Cambridge, United Kingdom
| | - David Selden
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Emma L. Wise
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | | | - Andrew A. Cunningham
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- * E-mail: (LB); (AAC)
| |
Collapse
|
28
|
Tiwari SK, Dicks LMT, Popov IV, Karaseva A, Ermakov AM, Suvorov A, Tagg JR, Weeks R, Chikindas ML. Probiotics at War Against Viruses: What Is Missing From the Picture? Front Microbiol 2020; 11:1877. [PMID: 32973697 PMCID: PMC7468459 DOI: 10.3389/fmicb.2020.01877] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.
Collapse
Affiliation(s)
- Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, India,*Correspondence: Santosh Kumar Tiwari,
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Igor V. Popov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexey M. Ermakov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alexander Suvorov
- Institute of Experimental Medicine, Saint Petersburg, Russia,Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| | - Michael L. Chikindas
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| |
Collapse
|
29
|
Lindsey P, Allan J, Brehony P, Dickman A, Robson A, Begg C, Bhammar H, Blanken L, Breuer T, Fitzgerald K, Flyman M, Gandiwa P, Giva N, Kaelo D, Nampindo S, Nyambe N, Steiner K, Parker A, Roe D, Thomson P, Trimble M, Caron A, Tyrrell P. Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat Ecol Evol 2020; 4:1300-1310. [DOI: 10.1038/s41559-020-1275-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023]
|