1
|
Pagliarini E, Totaro G, Saccani A, Gaggìa F, Lancellotti I, Di Gioia D, Sisti L. Valorization of coffee wastes as plant growth promoter in mulching film production: A contribution to a circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162093. [PMID: 36758689 DOI: 10.1016/j.scitotenv.2023.162093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Food waste valorization, considered as energy and/or chemicals source, via biorefinery or biotechnology, gained great attention in recent years, because of the fast depletion of primary resources, increased waste generation and landfilling worldwide. Coffee by-products for example (i.e. coffee pulp, coffee husks, silver skin, spent coffee, etc.) have been investigated in different forms either as a source of antioxidant and valuable chemicals and as a filler in composites. A new valorization route for coffee silver skin (CSS), up to now just sent to damping, is here investigated: particulate bio-composites based on poly(butylene succinate-co-adipate) (PBSA), an aliphatic biodegradable polyester commercially available, have been formulated with up to a 30 wt% of CSS, in order to prepare mulching films for agriculture. The bacterial analysis of the filler indeed, has underlined the presence of potential Plant Growth-Promoting Bacteria species, mainly ascribed to the Bacillus genus, which can survive both the roasting and the compounding processes. The obtained composites have been characterized mechanically and thermally and their hydrophilic nature has been investigated by measuring their contact angle. Eventually, the bacteria release from the composite films has been examined by means of in-vitro tests. The plant growth promoting capability of the films was preliminarily evaluated in pot experiments using lettuce as a model crop. The composite films were able to release the endogenous bacteria in the soil and to stimulate plant and root growth of the assayed crop. The possibility to produce functionalized biodegradable mulching films by recycling agricultural wastes can thus be forecast, highlighting potential multiple advantages in terms of soil preservation/fertilization, decrease of polymeric materials in mulching products, exploitation of a waste.
Collapse
Affiliation(s)
- Elia Pagliarini
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 40, Bologna, Italy
| | - Grazia Totaro
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy.
| | - Andrea Saccani
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| | - Francesca Gaggìa
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 40, Bologna, Italy
| | - Isabella Lancellotti
- Department of Engineering "E. Ferrari", University of Modena and Reggio Emilia, Via Vivarelli 10, Modena, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 40, Bologna, Italy
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, Bologna, Italy
| |
Collapse
|
2
|
Lee YG, Cho EJ, Maskey S, Nguyen DT, Bae HJ. Value-Added Products from Coffee Waste: A Review. Molecules 2023; 28:molecules28083562. [PMID: 37110796 PMCID: PMC10146170 DOI: 10.3390/molecules28083562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner.
Collapse
Affiliation(s)
- Yoon-Gyo Lee
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Eun-Jin Cho
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Shila Maskey
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dinh-Truong Nguyen
- School of Biotechnology, Tan Tao University, Duc Hoa 82000, Long An, Vietnam
| | - Hyeun-Jong Bae
- Bio-Energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
3
|
Machado M, Ferreira H, Oliveira MBPP, Alves RC. Coffee by-products: An underexplored source of prebiotic ingredients. Crit Rev Food Sci Nutr 2023; 64:7181-7200. [PMID: 36847145 DOI: 10.1080/10408398.2023.2181761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Consumers' demand for foods with high nutritional value and health benefits has fueled the development of prebiotic foods. In coffee industry, cherries transformation into roasted beans generates a large amount of waste/by-products (pulp/husks, mucilage, parchment, defective beans, silverskin and spent coffee grounds) that usually end up in landfills. The possibility to use coffee by-products as relevant sources of prebiotic ingredients is herein ascertained. As a prelude to this discussion, an overview of pertinent literature on prebiotic action was conducted, including on biotransformation of prebiotics, gut microbiota, and metabolites. Existing research indicates that coffee by-products contain significant levels of dietary fiber and other components that can improve gut health by stimulating beneficial bacteria in the colon, making them excellent candidates for prebiotic ingredients. Oligosaccharides from coffee by-products have lower digestibility than inulin and can be fermented by gut microbiota into functional metabolites, such as short-chain fatty acids. Depending on the concentration, melanoidins and chlorogenic acids may also have prebiotic action. Nevertheless, there is still a lack of in vivo studies to validate such findings in vitro. This review shows how coffee by-products can be interesting for the development of functional foods, contributing to sustainability, circular economy, food security, and health.
Collapse
Affiliation(s)
- Marlene Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ferreira
- REQUIMTE/UCIBIO, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Ghosh D, Ghorai P, Sarkar S, Maiti KS, Hansda SR, Das P. Microbial assemblage for solid waste bioremediation and valorization with an essence of bioengineering. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16797-16816. [PMID: 36595166 DOI: 10.1007/s11356-022-24849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Environmental solid waste bioremediation is a method of treating contaminated solid waste that involves changing ecological conditions to foster the growth of a broad spectrum of microorganisms and the destruction of the target contaminants. A wide range of microorganisms creates metabolites that may break down and change solid waste-based pollution to various value-added molecules. Diverse bioremediation technologies, their limitations, and the procedure involve recycling solid waste materials from the environment. The existing environmental solid waste disposal services are insufficient and must be upgraded with more lucrative recovery, recycling, and reuse technologies to decrease the enormous expenditures in treatment procedures. Bioremediation of solid waste eliminates the toxic components. It restores the site with the advent of potential microbial communities towards solid waste valorization utilizing agriculture solid waste, organic food waste, plastic solid waste, and multiple industrial solid wastes.Bioengineering on diverse ranges of microbial regimes has accelerated to provide extra momentum toward solid waste recycling and valorization. This approach increases the activity of bioremediating microbes in the commercial development of waste treatment techniques and increases the cost-effective valuable product generation. This framework facilitates collaboration between solid waste and utilities. It can aid in establishing a long-term management strategy for recycling development with the advent of a broad spectrum of potential microbial assemblages, increasing solid waste contamination tolerance efficiency and solid waste degradability. The current literature survey extensively summarises solid waste remediation valorization using a broad spectrum of microbial assemblages with special emphasis on bioengineering-based acceleration. This approach is to attain sustainable environmental management and value-added biomolecule generation.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India.
| | - Palash Ghorai
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Soumita Sarkar
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Kumar Sagar Maiti
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Serma Rimil Hansda
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| | - Parna Das
- Microbial Engineering & Algal Biotechnology Laboratory, Department of Biosciences, JIS University, Kolkata, 700109, India
| |
Collapse
|
5
|
Bhandarkar NS, Mouatt P, Majzoub ME, Thomas T, Brown L, Panchal SK. Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens 2021; 10:pathogens10111369. [PMID: 34832525 PMCID: PMC8624503 DOI: 10.3390/pathogens10111369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
Waste from food production can be re-purposed as raw material for usable products to decrease industrial waste. Coffee pulp is 29% of the dry weight of coffee cherries and contains caffeine, chlorogenic acid, trigonelline, diterpenes and fibre. We investigated the attenuation of signs of metabolic syndrome induced by high-carbohydrate, high-fat diet in rats by dietary supplementation with 5% freeze-dried coffee pulp for the final 8 weeks of a 16-week protocol. Coffee pulp decreased body weight, feed efficiency and abdominal fat; normalised systolic blood pressure, left ventricular diastolic stiffness, and plasma concentrations of triglycerides and non-esterified fatty acids; and improved glucose tolerance in rats fed high-carbohydrate, high-fat diet. Further, the gut microbiota was modulated with high-carbohydrate, high-fat diet and coffee pulp supplementation and 14 physiological parameters were correlated with the changes in bacterial community structures. This study suggested that coffee pulp, as a waste from the coffee industry, is useful as a functional food for improving obesity-associated metabolic, cardiovascular and liver structure and function, and gut microbiota.
Collapse
Affiliation(s)
- Nikhil S. Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
- Correspondence: ; Tel.: +61-2-4570-1932
| |
Collapse
|
6
|
Bonaldi DS, Carvalho BF, Ávila CLDS, Silva CF. Effects of Bacillus subtilis and its metabolites on corn silage quality. Lett Appl Microbiol 2021; 73:46-53. [PMID: 33756025 DOI: 10.1111/lam.13474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023]
Abstract
Cellulolytic micro-organisms are potent silage inoculants that decrease the fibrous content in silage and increase the fibre digestibility and nutritional value of silage. This study aimed to evaluate the effects of Bacillus subtilis CCMA 0087 and its enzyme β-glucosidase on the nutritional value and aerobic stability of corn silage after 30 and 60 days of storage. We compared the results among silage without inoculant (SC) and silages inoculated with B. subtilis 8 log10 CFU per kg forage (SB8), 9 log10 CFU per kg forage (SB9) and 9·84 log10 CFU per kg forage + β-glucosidase enzyme (SBE). No differences were observed in the levels of dry matter, crude protein and neutral detergent fibre due to the different treatments or storage times of the silos. Notably, the population of spore-forming bacteria increased in the SB9-treated silage. At 60 days of ensiling, the largest populations of lactic acid bacteria were found in silages treated with SB8 and SBE. Yeast populations were low for all silages, irrespective of the different treatments, and the presence of filamentous fungi was observed only in the SBE-treated silage. Among all silage treatments, SB9 treatment resulted in the highest aerobic stability.
Collapse
Affiliation(s)
- D S Bonaldi
- Biology Department, Federal University of Lavras, Minas Gerais, Brazil
| | - B F Carvalho
- Biology Department, Federal University of Lavras, Minas Gerais, Brazil
| | - C L D S Ávila
- Animal Science Department, Federal University of Lavras, Minas Gerais, Brazil
| | - C F Silva
- Biology Department, Federal University of Lavras, Minas Gerais, Brazil
| |
Collapse
|
7
|
Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019; 9:E220. [PMID: 31174354 PMCID: PMC6627771 DOI: 10.3390/biom9060220] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Rishabh Rathour
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Sonam Jha
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Karan Pandey
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | - Rakesh Singh Sengar
- Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | - Ahamad Faiz Khan
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
8
|
Rojas-Sossa JP, Murillo-Roos M, Uribe L, Uribe-Lorio L, Marsh T, Larsen N, Chen R, Miranda A, Solís K, Rodriguez W, Kirk D, Liao W. Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance. BIORESOURCE TECHNOLOGY 2017; 245:714-723. [PMID: 28917107 DOI: 10.1016/j.biortech.2017.08.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to delineate the effects of different coffee processing residues on the anaerobic microbes and corresponding digestion performance. The results elucidated that mucilage-rich feed enhanced the accumulation of methanogens, which consequently led to better digestion performance of biogas production. Fifty percent more methane and up to 3 times more net energy (heat and electricity) output were achieved by the digestion of the mucilage-rich feed (M3). The microbial community and statistical analyses further elucidated that different residues in the feed had significant impact on microbial distribution and correspondingly influenced the digestion performance.
Collapse
Affiliation(s)
- Juan Pablo Rojas-Sossa
- Agricultural Engineering, University of Costa Rica, San José, Costa Rica; Anaerobic Digestion Research and Education Center, Biosystems and Agricultural Engineering, Michigan State University, MI, USA
| | - Mariana Murillo-Roos
- Agronomy Research Center, University of Costa Rica, San José, Costa Rica; National Institute for Innovation and Transfer of Agricultural Technology, Ministry of Agriculture, San José, Costa Rica
| | - Lidieth Uribe
- Agronomy Research Center, University of Costa Rica, San José, Costa Rica
| | - Lorena Uribe-Lorio
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Terence Marsh
- Microbiology and Molecular Genetics, Michigan State University, MI, USA
| | | | - Rui Chen
- Anaerobic Digestion Research and Education Center, Biosystems and Agricultural Engineering, Michigan State University, MI, USA
| | - Alberto Miranda
- Fabio Baudrit Experimental Station, University of Costa Rica, San José, Costa Rica
| | - Kattia Solís
- Agricultural Engineering, University of Costa Rica, San José, Costa Rica
| | - Werner Rodriguez
- Fabio Baudrit Experimental Station, University of Costa Rica, San José, Costa Rica
| | - Dana Kirk
- Anaerobic Digestion Research and Education Center, Biosystems and Agricultural Engineering, Michigan State University, MI, USA
| | - Wei Liao
- Anaerobic Digestion Research and Education Center, Biosystems and Agricultural Engineering, Michigan State University, MI, USA.
| |
Collapse
|