1
|
Egervärn M, Flink C. Shiga toxin-producing Escherichia coli (STEC) in meat and leafy greens available in the Swedish retail market - Occurrence and diversity of stx subtypes and serotypes. Int J Food Microbiol 2024; 408:110446. [PMID: 37857019 DOI: 10.1016/j.ijfoodmicro.2023.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major cause of foodborne illness, ranging from mild diarrhea to permanent kidney failure. This study summarizes the results of four surveys performed at different time periods, which investigated the occurrence and characteristics of STEC in beef, lamb and leafy greens available in the Swedish retail market. Such data is required when assessing the public health risk of varying types of STEC in different foods, and for establishing risk management measures. Samples from domestic and imported products were collected based on their availability in the retail market. The occurrence of STEC was investigated in 477 samples of beef, 330 samples of lamb and 630 samples of leafy greens. The detection of virulence genes (stx1, stx2, eae) was performed using real-time PCR followed by the isolation of bacteria from stx-positive enriched samples using immunomagnetic separation or an immunoblotting method. All STEC isolated from the food samples was further characterised in terms of stx subtyping and serotyping through whole genome sequencing. STEC was isolated from 2 to 14 % of beef samples and 20 to 61 % of lamb samples, depending on the region of origin. STEC was not isolated from samples of leafy greens, although stx genes were detected in 11 (2 %) of the samples tested. In total, 5 of the 151 sequenced STEC isolates from meat contained stx2 and eae, of which 4 such combinations had the stx2a subtype. The stx2 gene, stx2a in particular, is strongly associated with serious disease in humans, especially in combination with the eae gene. The isolates belonged to 20 different serotypes. Two isolates from beef and one from lamb belonged to the serotype O157:H7 and contained genes for stx2 and eae. Overall, several combinations of stx subtypes were found in isolates from beef, whereas stx1c, either alone or together with stx2b, was the dominant combination found in STEC from lamb. In conclusion, STEC was rare in whole meat samples of domestic beef in the Swedish retail market, whereas such bacteria were frequently found in minced meat and whole meat samples of imported beef and domestic and imported lamb. Although the number of isolates containing genes linked to an increased risk of severe disease was low, beef and lamb in the Swedish retail market is a common source of human exposure to potentially pathogenic STEC.
Collapse
|
2
|
Li JY, Chen XP, Tie YQ, Sun XL, Zhang RQ, He AN, Nie MZ, Fan GH, Li FY, Tian FY, Shen XX, Feng ZS, Ma XJ. Detection of low-load Epstein-Barr virus in blood samples by enriched recombinase aided amplification assay. AMB Express 2022; 12:71. [PMID: 35689713 PMCID: PMC9188631 DOI: 10.1186/s13568-022-01415-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
Epstein-Barr virus (EBV), a common human γ-herpesvirus, infects more than 90% of adults worldwide. The purpose of this study was to establish a novel EBV detection method by combining the recombinase aided amplification (RAA) assay with an initial enrichment step that utilizes magnetic beads coated with a recombinant human mannan-binding lectin (rhMBL, M1 protein). An M1 protein–protein A magnetic bead complex (M1 beads) was prepared and used to achieve separation and enrichment of EBV from blood. After nucleic acid extraction, DNA was amplified by RAA. Using 388 whole blood samples and 1 serum sample, we explored the specificity, sensitivity and applicability of the newly developed detection method and compared it with commercial quantitative real-time polymerase chain reaction (qPCR) following M1 bead enrichment, traditional qPCR and traditional RAA. After enrichment, the positivity rate of EBV was increased from 15.94% to 17.74% by RAA (P < 0.05) and from 7.20% to 15.17% by qPCR (P < 0.05). The viral loads after enrichment were increased by 1.13 to 23.19-fold (P < 0.05). Our data demonstrates that an RAA assay incorporating M1 bead enrichment is a promising tool for detecting low EBV viral loads in blood samples that will facilitate an early response to EBV infection. The RAA with an enrichment step that utilizes magnetic beads coated with M1 protein. A very effective method for detecting low-load virus in blood samples. The first report describing virus detection using this method.
Collapse
Affiliation(s)
- Jing-Yi Li
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Xiao-Ping Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Yan-Qing Tie
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China
| | - Xiu-Li Sun
- Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China.,North China University of Science and Technology, No. 46 West Xinhua Road, Tangshan, 063009, Hebei, China
| | - Rui-Qing Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - An-Na He
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China.,North China University of Science and Technology, No. 46 West Xinhua Road, Tangshan, 063009, Hebei, China
| | - Ming-Zhu Nie
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Guo-Hao Fan
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Feng-Yu Li
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Feng-Yu Tian
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China.,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.,NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China
| | - Xin-Xin Shen
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China.
| | - Zhi-Shan Feng
- Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050031, Hebei, China. .,Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang, 050070, Hebei, China.
| | - Xue-Jun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, No. 155, Changbai Street, Changping District, Beijing, 102206, China.
| |
Collapse
|
3
|
Prevalence and Epidemiology of Non-O157 Escherichia coli Serogroups O26, O103, O111, and O145 and Shiga Toxin Gene Carriage in Scottish Cattle, 2014-2015. Appl Environ Microbiol 2021; 87:AEM.03142-20. [PMID: 33712425 PMCID: PMC8117755 DOI: 10.1128/aem.03142-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023] Open
Abstract
Cattle are reservoirs for Shiga toxin Escherichia coli (STEC), bacteria shed in animal feces. Humans are infected through consumption of contaminated food or water and by direct contact, causing serious disease and kidney failure in the most vulnerable. Cattle are a reservoir for Shiga toxin-producing Escherichia coli (STEC), zoonotic pathogens that cause serious clinical disease. Scotland has a higher incidence of STEC infection in the human population than the European average. The aim of this study was to investigate the prevalence and epidemiology of non-O157 serogroups O26, O103, O111, and O145 and Shiga toxin gene carriage in Scottish cattle. Fecal samples (n = 2783) were collected from 110 herds in 2014 and 2015 and screened by real-time PCR. Herd-level prevalence (95% confidence interval [CI]) for O103, O26, and O145 was estimated as 0.71 (0.62, 0.79), 0.43 (0.34, 0.52), and 0.23 (0.16, 0.32), respectively. Only two herds were positive for O111. Shiga toxin prevalence was high in both herds and pats, particularly for stx2 (herd level: 0.99; 95% CI: 0.94, 1.0). O26 bacterial strains were isolated from 36 herds on culture. Fifteen herds yielded O26 stx-positive isolates that additionally harbored the intimin gene; six of these herds shed highly pathogenic stx2-positive strains. Multiple serogroups were detected in herds and pats, with only 25 herds negative for all serogroups. Despite overlap in detection, regional and seasonal effects were observed. Higher herd prevalence for O26, O103, and stx1 occurred in the South West, and this region was significant for stx2 at the pat level (P = 0.015). Significant seasonal variation was observed for O145 prevalence, with the highest prevalence in autumn (P = 0.032). Negative herds were associated with Central Scotland and winter. Herds positive for all serogroups were associated with autumn and larger herd size and were not housed at sampling. IMPORTANCE Cattle are reservoirs for Shiga toxin-producing Escherichia coli (STEC), bacteria shed in animal feces. Humans are infected through consumption of contaminated food or water and by direct contact, resulting in serious disease and kidney failure in the most vulnerable. The contribution of non-O157 serogroups to STEC illness was underestimated for many years due to the lack of specific tests. Recently, non-O157 human cases have increased, with O26 STEC of particular note. It is therefore vital to investigate the level and composition of non-O157 in the cattle reservoir and to compare them historically and by the clinical situation. In this study, we found cattle prevalence high for toxin, as well as for O103 and O26 serogroups. Pathogenic O26 STEC were isolated from 14% of study herds, with toxin subtypes similar to those seen in Scottish clinical cases. This study highlights the current risk to public health from non-O157 STEC in Scottish cattle.
Collapse
|
4
|
Forghani F, Li S, Zhang S, Mann DA, Deng X, den Bakker HC, Diez-Gonzalez F. Salmonella enterica and Escherichia coli in Wheat Flour: Detection and Serotyping by a Quasimetagenomic Approach Assisted by Magnetic Capture, Multiple-Displacement Amplification, and Real-Time Sequencing. Appl Environ Microbiol 2020; 86:e00097-20. [PMID: 32358002 PMCID: PMC7301854 DOI: 10.1128/aem.00097-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Food safety is a new area for novel applications of metagenomics analysis, which not only can detect and subtype foodborne pathogens in a single workflow but may also produce additional information with in-depth analysis capabilities. In this study, we applied a quasimetagenomic approach by combining short-term enrichment, immunomagnetic separation (IMS), multiple-displacement amplification (MDA), and nanopore sequencing real-time analysis for simultaneous detection of Salmonella and Escherichia coli in wheat flour. Tryptic soy broth was selected for the 12-h enrichment of samples at 42°C. Enrichments were subjected to IMS using beads capable of capturing both Salmonella and E. coli MDA was performed on harvested beads, and amplified DNA fragments were subjected to DNA library preparation for sequencing. Sequencing was performed on a portable device with real-time basecalling adaptability, and resulting sequences were subjected to two parallel pipelines for further analysis. After 1 h of sequencing, the quasimetagenomic approach could detect all targets inoculated at approximately 1 CFU/g flour to the species level. Discriminatory power was determined by simultaneous detection of dual inoculums of Salmonella and E. coli, absence of detection in control samples, and consistency in microbial flora composition of the same flour samples over several rounds of experiments. The total turnaround time for detection was approximately 20 h. Longer sequencing for up to 15 h enabled serotyping for many of the samples with more than 99% genome coverage, which could be subjected to other appropriate genetic analysis pipelines in less than a total of 36 h.IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) and Salmonella are of serious concern in low-moisture foods, including wheat flour and its related products, causing illnesses, outbreaks, and recalls. The development of advanced detection methods based on molecular principles of analysis is essential to incorporate into interventions intended to reduce the risk from these pathogens. In this work, a quasimetagenomic method based on real-time sequencing analysis and assisted by magnetic capture and DNA amplification was developed. This protocol is capable of detecting multiple Salmonella and/or E. coli organisms in the sample within less than a day, and it can also generate sufficient whole-genome sequences of the target organisms suitable for subsequent bioinformatics analysis. Multiplex detection and identification were accomplished in less than 20 h and additional whole-genome analyses of different nature were attained within 36 h, in contrast to the several days required in previous sequencing pipelines.
Collapse
Affiliation(s)
- Fereidoun Forghani
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Shaoting Li
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Shaokang Zhang
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - David A Mann
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Xiangyu Deng
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Henk C den Bakker
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Francisco Diez-Gonzalez
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
5
|
Jiang W, Ren Y, Han X, Xue J, Shan T, Chen Z, Liu Y, Wang Q. Recombinase polymerase amplification-lateral flow (RPA-LF) assay combined with immunomagnetic separation for rapid visual detection of Vibrio parahaemolyticus in raw oysters. Anal Bioanal Chem 2020; 412:2903-2914. [PMID: 32128642 DOI: 10.1007/s00216-020-02532-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
This study was the first attempt to optimize a recombinase polymerase amplification (RPA) and lateral flow (LF) assay combined with immunomagnetic separation (IMS) for the detection of Vibrio parahaemolyticus in raw oysters. The newly developed IMS-RPA-LF assay effectively combines sample preparation, amplification, and detection into a single platform. Under optimal conditions, the average capture efficiency (CE) for 104 colony forming units (CFU)/mL of four V. parahaemolyticus strains with 0.4 mg of immunomagnetic beads within 45 min was 80.3%. After optimization, the RPA-LF assay was able to detect V. parahaemolyticus within 15 min, comprising DNA amplification with RPA for 10 min at 37 °C and visualization of the amplicons through LF strips for 5 min. The RPA-LF assay exhibited good specificity by showing a test line for eight V. parahaemolyticus strains with different serotypes but no cross-reaction with 12 non-V. parahaemolyticus bacteria. RPA-LF assay was found to be sensitive and detected as low as 10 pg genomic DNA of V. parahaemolyticus. For spiked oyster samples, the detection sensitivity of V. parahaemolyticus was improved to 2 CFU/g by IMS-RPA-LF after enrichment for 4 h; in contrast, the IMS-PCR method required 8 h. Hence, even when V. parahaemolyticus was present in very low numbers in samples, the IMS-RPA-LF assay could be completed within half a workday. Because of the high sensitivity, specificity, and speed of the IMS-RPA-LF assay, this newly developed method opens a novel pathway for rapid diagnostic screening of V. parahaemolyticus in seafood, which is an increasingly important health issue worldwide. Graphical abstract.
Collapse
Affiliation(s)
- Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China
| | - Yaling Ren
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China
| | - Junxin Xue
- Shanghai Customs, Shanghai, 200135, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China.
| |
Collapse
|
6
|
Costa M, Sucari A, Epszteyn S, Oteiza J, Gentiluomo J, Melamed C, Figueroa Y, Mingorance S, Grisaro A, Spioussas S, Almeida MB, Caruso M, Pontoni A, Signorini M, Leotta G. Comparison of six commercial systems for the detection of non-O157 STEC in meat and vegetables. Food Microbiol 2019; 84:103273. [DOI: 10.1016/j.fm.2019.103273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
7
|
MERCANOGLU TABAN B, AYTAC SA. An evaluation of immunomagnetic separation-real-time PCR (IMS-RTiPCR) combined assay for rapid and specific detection of Escherichia coli O157:H7 in raw milk and ground beef. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.15818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Triplett OA, Xuan J, Foley S, Nayak R, Tolleson WH. Immunomagnetic Capture of Big Six Shiga Toxin-Producing Escherichia coli Strains in Apple Juice with Detection by Multiplex Real-Time PCR Eliminates Interference from the Food Matrix. J Food Prot 2019; 82:1512-1523. [PMID: 31414899 DOI: 10.4315/0362-028x.jfp-19-134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Having reliable methods for detecting Shiga toxin-producing Escherichia coli (STEC) in foods is an important food safety goal. The majority of STEC outbreaks have involved either the O157:H7 serotype or one of six non-O157 serogroups, O26, O45, O103, O111, O121, and O145, termed "The Big Six." We have compared detection by PCR of the Shiga toxin genes stx1a and stx2a from STEC bacteria isolated from unclarified apple juice by simple centrifugation with the use of an immunocapture technique to minimize contaminants (such as pectin and polyphenols that may copurify with DNA) that may interfere with DNA amplification efficiencies and limit sensitivity. An internal control for successful immunocapture, DNA extraction, and PCR amplification was generated by introducing the pmRaspberry plasmid into an stx null strain, yielding an E. coli O45 pmRaspberry derivative that can be added to food samples directly. Using serial dilutions of a representative Big Six STEC in apple juice, our immunocapture method resulted in a 50% probability of detection value of 3.34, 2.25, and 4.25 CFU for detection by multiplex real-time PCR, growth on solid agar, and multiplex endpoint PCR, respectively. The time to result was 6.5 h, 9.5 h, and 1.5 days for immunocapture of Big Six STECs and detection by multiplex real-time PCR, endpoint PCR, and growth on solid agar, respectively. A set of 52 Big Six STEC isolates and 30 non-Big Six STEC strains was used to establish the inclusivity and exclusivity of the method. Finally, the ability to detect Big Six STEC contamination reliably was confirmed at 4.5 and 45 CFU/25-mL portions of refrigerated apple juice.
Collapse
Affiliation(s)
- Odbert A Triplett
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | - Jiekun Xuan
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | - Steven Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | - Rajesh Nayak
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| |
Collapse
|
9
|
Stromberg ZR, Redweik GAJ, Mellata M. Detection, Prevalence, and Pathogenicity of Non-O157 Shiga Toxin-Producing Escherichia coli from Cattle Hides and Carcasses. Foodborne Pathog Dis 2019; 15:119-131. [PMID: 29638166 DOI: 10.1089/fpd.2017.2401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli (STEC) and harbor these bacteria in the intestinal tract. The prevalence, concentration, and STEC serogroup isolated in cattle varies between individuals. Hide removal at slaughter serves as a major point of carcass contamination and ultimately beef products. Certain STEC serogroups, such as O26, O45, O103, O111, O121, O145, and O157, containing the intestinal adherence factor intimin, pose a large economic burden to food producers because of testing and recalls. Human infection with STEC can cause illnesses ranging from diarrhea to hemorrhagic colitis and hemolytic uremic syndrome, and is commonly acquired through ingestion of contaminated foods, often beef products. Previously, most studies focused on O157 STEC, but there is growing recognition of the importance of non-O157 STEC serogroups. This review summarizes detection methods, prevalence, and methods for prediction of pathogenicity of non-O157 STEC from cattle hides and carcasses. A synthesis of procedures is outlined for general non-O157 STEC and targeted detection of specific STEC serogroups. Standardization of sample collection and processing procedures would allow for more robust comparisons among studies. Presence of non-O157 STEC isolated from cattle hides and carcasses and specific factors, such as point of sample collection and season, are summarized. Also, factors that might influence STEC survival on these surfaces, such as the microbial population on hides and microbial adherence genes, are raised as topics for future investigation. Finally, this review gives an overview on studies that have used genetic and cell-based methods to identify specific phenotypes of non-O157 STEC strains isolated from cattle to assess their risk to human health.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| | - Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| |
Collapse
|
10
|
Blais BW, Tapp K, Dixon M, Carrillo CD. Genomically Informed Strain-Specific Recovery of Shiga Toxin-Producing Escherichia coli during Foodborne Illness Outbreak Investigations. J Food Prot 2019; 82:39-44. [PMID: 30586325 DOI: 10.4315/0362-028x.jfp-18-340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Next-generation sequencing plays an important role in the characterization of clinical bacterial isolates for source attribution purposes during investigations of foodborne illness outbreaks. Once an illness cluster and a suspect food vehicle have been identified, food testing is initiated for confirmation and to determine the scope of a contamination event so that the implicated lots may be removed from the marketplace. For biochemically diverse families of pathogens such as Shiga toxin-producing Escherichia coli (STEC), the ability to detect specific strains may be hampered by the lack of a universal selective enrichment approach for their recovery against high levels of background microbiota. The availability of whole genome sequence data for a given outbreak STEC strain prior to commencement of food testing may provide food microbiologists an opportunity to customize selective enrichment techniques favoring the recovery of the outbreak strain. Here we demonstrate the advantages of using the publicly available ResFinder tool in the analysis of STEC model strains belonging to serotypes O111 and O157 to determine antimicrobial resistance traits that can be used in formulating strain-specific enrichment media to enhance recovery of these strains from microbiologically complex food samples. The improved recovery from ground beef of model STEC strains with various antimicrobial resistance profiles was demonstrated using three classes of antibiotics as selective agents, suggesting the universal applicability of this new approach in supporting foodborne illness investigations.
Collapse
Affiliation(s)
- Burton W Blais
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0C6
| | - Kyle Tapp
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0C6
| | - Martine Dixon
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0C6
| | - Catherine D Carrillo
- Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0C6
| |
Collapse
|
11
|
Hunt D, Figley C, Manage DP, Lauzon J, Figley R, Pilarski LM, McMullen LM, Pilarski PM. Monitoring food pathogens: Novel instrumentation for cassette PCR testing. PLoS One 2018; 13:e0197100. [PMID: 29746561 PMCID: PMC5945031 DOI: 10.1371/journal.pone.0197100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/26/2018] [Indexed: 01/13/2023] Open
Abstract
In this manuscript, we report the design and development of a fast, reliable instrument to run gel-based cassette polymerase chain reactions (PCR). Here termed the GelCycler Mark II, our instrument is a miniaturized molecular testing system that is fast, low cost and sensitive. Cassette PCR utilizes capillary reaction units that carry all reagents needed for PCR, including primers and Taq polymerase, except the sample, which is loaded at the time of testing. Cassette PCR carries out real time quantitative PCR followed by melt curve analysis (MCA) to verify amplicon identity at the expected melt temperature (Tm). The cassette PCR technology is well developed, particularly for detecting pathogens, and has been rigorously validated for detecting pathogenic Escherichia coli in meat samples. However, the work has been hindered by the lack of a robust and stable instrument to carry out the PCR, which requires fast and accurate temperature regulation, improved light delivery and fluorescent recording, and faster PCR reactions that maintain a high sensitivity of detection. Here, we report design and testing of a new instrument to address these shortcomings and to enable standardized testing by cassette PCR and commercial manufacture of a robust and accurate instrument that can be mass produced to deliver consistent performance. As a corollary to our new instrument development, we also report the use of an improved design approach using a machined aluminum cassette to meet the new instrument standards, prevent any light bleed across different trenches in each cassette, and allow testing of a larger number of samples for more targets in a single run. The GelCycler Mark II can detect and report E. coli contamination in 41 minutes. Sample positives are defined in as having a melt curve comparable to the internal positive control, with peak height exceeding that of the internal negative control. In a fractional analysis, as little as 1 bacterium per capillary reaction unit is directly detectable, with no enrichment step, in 35 cycles of PCR/MCA, in a total time of 53 minutes, making this instrument and technology among the very best for speed and sensitivity in screening food for pathogenic contamination.
Collapse
Affiliation(s)
- Darin Hunt
- CBF Systems Inc., College Plaza, Edmonton, AB, Canada
| | - Curtis Figley
- CBF Systems Inc., College Plaza, Edmonton, AB, Canada
| | - Dammika P. Manage
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, AB, Canada
| | - Jana Lauzon
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, AB, Canada
| | - Rachel Figley
- CBF Systems Inc., College Plaza, Edmonton, AB, Canada
| | - Linda M. Pilarski
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, AB, Canada
| | - Lynn M. McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Patrick M. Pilarski
- Division of Physical Medicine & Rehabilitation, Department of Medicine, University of Alberta, 5–005 Katz Group Centre for Pharmacy and Health Research, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|