1
|
Zhuang L, Zhao Y, Shen J, Sun L, Hao P, Yang J, Zhang Y, Shen Q. Advances in porcine epidemic diarrhea virus research: genome, epidemiology, vaccines, and detection methods. DISCOVER NANO 2025; 20:48. [PMID: 40029472 DOI: 10.1186/s11671-025-04220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV). The economic impact of PEDV on the global pig industry has been significant, resulting in considerable losses. This paper presents a review of the latest research progress on PEDV genome, molecular epidemiology, vaccine development, and molecular detection methods. It was determined that the genetic diversity of the PEDV spike (S) gene was closely associated with the epidemiological trend of PEDV. The prevalence of S gene variants of different genotypes exhibited variability across regions and pig populations. Epidemiological analyses have demonstrated that PEDV can be transmitted via multiple routes, including direct contact, airborne aerosol, and water source contamination. With regard to vaccine research, the available vaccines can be classified into several categories, including live-attenuated vaccines, inactivated vaccines, subunit vaccines, bacterial vector vaccines, viral vector vaccines, mRNA vaccines, etc. Each of these has distinctive characteristics in terms of immunogenicity, protection efficiency, and safety. Molecular detection methods, including PCR-based methods, isothermal amplification techniques, immunological assays, and biosensors, play an important role in the diagnosis and monitoring of PEDV. Furthermore, this paper examines the current developments in PEDV research and identifies the key areas of future investigation. The objective of this paper is to establish a theoretical foundation for the prevention and control strategies of PED, and to provide a point of reference for further research on the genomics, epidemiology, vaccine development and detection methods of PEDV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Pan Hao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Yuan C, Zhao X, Feng Y, Chen L, Lin Y, Li T, Song Q. Comparison of B cells' immune response induced by PEDV virulent and attenuated strains. Front Microbiol 2024; 15:1344344. [PMID: 38585694 PMCID: PMC10995339 DOI: 10.3389/fmicb.2024.1344344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an acute, highly contagious enterovirus that infects pigs of all ages. The B cells are important for antigen presentation, antibody production, and cytokine secretion to resist infection. However, the role of B cells in PEDV infection remains unclear. In this study, the effects of PEDV virulent (QY2016) and attenuated strains (CV777) on B cells sorted from neonatal piglets, nursery piglets, and gilts were investigated. The results showed that PEDV-QY2016 and PEDV-CV777 could significantly increase the expression of CD54 and CD27 in B cells from neonatal piglets. The percentages of CD80, MHC II, and IgM expressed on neonatal piglet B cells infected with PEDV-QY2016 were significantly lower than those expressed on the B cells infected with PEDV-CV777. Both PEDV-QY2016 and PEDV-CV777 could stimulate IFN-α and GM-CSF secretions in neonatal piglet B cells; IL-1, IFN-α, and IL-4 secretion in nursery piglet B cells; and IL-1, TGF-β secretion, and GM-CSF in gilt B cells. Furthermore, both PEDV-QY2016 and PEDV-CV777 could induce the secretion of IgA, IgM, and IgG in nursery piglet B cells but could not induce the secretion of IgA, IgM, and IgG in neonatal piglet B cells. The secretion of IgA, IgM, and IgG was significantly higher by the PEDV-CV777 strains infected B cells than those by the PEDV-QY2016 strains infected gilt B cells. In conclusion, the surface molecule expression, cytokine secretion, and antibody production of B cells induced by PEDV are closely related to the ages of pigs and the virulence of the PEDV strain.
Collapse
Affiliation(s)
- Chen Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, China
| | - Xue Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, China
| | - Yawen Feng
- Hebei Provincial Institute of Veterinary Drug Control, Shijiazhuang, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, China
| | - Yidan Lin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, China
| | - Tanqing Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, China
| | - Qinye Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, China
| |
Collapse
|
3
|
Wang F, Zhang Q, Zhang F, Zhang E, Li M, Ma S, Guo J, Yang Z, Zhu J. Adenovirus vector-mediated single chain variable fragments target the nucleocapsid protein of porcine epidemic diarrhea virus and protect against viral infection in piglets. Front Immunol 2023; 14:1058327. [PMID: 36761768 PMCID: PMC9902916 DOI: 10.3389/fimmu.2023.1058327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) mainly infects the intestinal epithelial cells of pigs, causing porcine epidemic diarrhea (PED). In particular, the virus causes severe diarrhea, dehydration, and death in neonatal piglets. Maternal immunity effectively protects neonatal piglets from PEDV infection; however, maternal antibodies can only prevent PEDV attachment and entry into target cells, but have no effects on intracellular viruses. Intracellular antibodies targeting virus-encoded proteins are effective in preventing viral infection. We previously identified four single chain variable fragments (scFvs), ZW1-16, ZW3-21, ZW1-41, and ZW4-16, which specifically targeted the PEDV N protein and significantly inhibited PEDV replication and up-regulated interferon-λ1 (IFN-λ1) expression in host cells. In our current study, the four scFvs were subcloned into replication-defective adenovirus vectors to generate recombinant adenoviruses rAdV-ZW1-16, rAdV-ZW3-21, rAdV-ZW1-41, and rAdV-ZW4-16. ScFvs were successfully expressed in Human Embryonic Kidney 293 (HEK293) cells and intestinal porcine epithelial cell line J2 (IPEC-J2) and were biosafe for piglets as indicated by body temperature and weight, scFv excretion in feces, IFN-γ and interleukin-4 (IL-4) expression in jejunum, and pathological changes in porcine tissue after oral administration. Western blotting, immunofluorescence, and immunohistochemical analyses showed that scFvs were expressed in porcine jejunum. The prophylactic effects of rAdV-ZW, a cocktail of the four rAdV-scFvs, on piglet diarrhea caused by PEDV was investigated. Clinical symptoms in piglets orally challenged with PEDV, following a two-time treatment with rAdV-ZW, were significantly reduced when compared with PEDV-infected piglets treated with phosphate buffered saline (PBS) or rAdV-wild-type. Also, no death and jejunal lesions were observed. ScFv co-localization with the PEDV N protein in vivo was also observed. Next, the expression of pro-inflammatory serum cytokines such as tumor necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, and IFN-λ was assessed by enzyme-linked immunosorbent assay (ELISA), which showed that scFvs significantly suppressed PEDV-induced pro-inflammatory cytokine expression and restored PEDV-inhibited IFN-λ expression. Therefore, our study supported a promising role for intracellular scFvs targeting the PEDV N protein to prevent and treat diarrhea in PEDV-infected piglets.
Collapse
Affiliation(s)
- Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Qing Zhang, ; Jianguo Zhu,
| | - Fanqing Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - En Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianming Guo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Qing Zhang, ; Jianguo Zhu,
| |
Collapse
|
4
|
Nguyen Thi TH, Chen CC, Chung WB, Chaung HC, Huang YL, Cheng LT, Ke GM. Antibody Evaluation and Mutations of Antigenic Epitopes in the Spike Protein of the Porcine Epidemic Diarrhea Virus from Pig Farms with Repeated Intentional Exposure (Feedback). Viruses 2022; 14:551. [PMID: 35336958 PMCID: PMC8954129 DOI: 10.3390/v14030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
The feedback strategy, or controlled exposure of pig herd to the porcine epidemic diarrhea virus (PEDV), significantly decreased losses during a severe outbreak in late 2013 in Taiwan. However, some pig farms still suffered from recurrent outbreaks. To evaluate the association between antibody titers and clinical manifestations, sera and colostra were analyzed from one pig farm that employed the feedback strategy. Furthermore, spike (S) gene full sequences from six positive samples of two farms with and without using feedback were compared to investigate the evolution of PEDV variants circulating in pig herds. The results in this study showed that high PEDV antibody titers do not correlate with the high rate of protection from PEDV infection. In addition, repeated feedback generated the emergence of PEDV variants with unique substitutions of N537S and Y561H in the COE domain and S769F in the SS6 epitopes. These mutations indicated the pathogenetic evolution of PEDV strains existing in the cycle of the feedback method. A very strict biosecurity practice to block the routes of pathogen transfer should be followed to achieve successful control of PEDV infections in pig herds.
Collapse
Affiliation(s)
- Thu Hien Nguyen Thi
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, No.1, Shuefu Road, Neipu, Pingtung 91201, Taiwan;
| | - Chi-Chih Chen
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Wen-Bin Chung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Yen-Li Huang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Guan-Ming Ke
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| |
Collapse
|
5
|
Immune Responses in Pregnant Sows Induced by Recombinant Lactobacillus johnsonii Expressing the COE Protein of Porcine Epidemic Diarrhea Virus Provide Protection for Piglets against PEDV Infection. Viruses 2021; 14:v14010007. [PMID: 35062210 PMCID: PMC8779658 DOI: 10.3390/v14010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea (PED) induced by porcine epidemic diarrhea virus (PEDV) is an intestinal infectious disease in pigs that causes serious economic losses to the pig industry. To develop an effective oral vaccine against PEDV infection, we used a swine-origin Lactobacillus johnsonii (L. johnsonii) as an antigen delivery carrier. A recombinant strain pPG-T7g10-COE/L. johnsonii (L. johnsonii-COE) expressing COE protein (a neutralizing epitope of the viral spike protein) was generated. The immunomodulatory effect on dendritic cell in vitro and immunogenicity in pregnant sows was evaluated following oral administration. L. johnsonii-COE could activate monocyte-derived dendritic cell (MoDC) maturation and triggered cell immune responses. After oral vaccination with L. johnsonii-COE, levels of anti-PEDV-specific serum IgG, IgA, and IgM antibodies as well as mucosal secretory immunoglobulin A (SIgA) antibody were induced in pregnant sows. High levels of PEDV-specific SIgA and IgG antibodies were detected in the maternal milk, which provide effective protection for the piglets against PEDV infection. In summary, oral L. johnsonii-COE was able to efficiently activate anti-PEDV humoral and cellular immune responses, demonstrating potential as a vaccine for use in sows to provide protection of their piglets against PEDV.
Collapse
|
6
|
Boonsoongnern P, Boodde O, Chumsing W, Sukmak M, Jirawattanapong P, Ratanavanichrojn N, Boonsoongnern A. Correlation between antibody response against porcine epidemic diarrhea virus in sows and their offspring under field conditions. Vet World 2021; 14:1689-1694. [PMID: 34316220 PMCID: PMC8304444 DOI: 10.14202/vetworld.2021.1689-1694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
Background and Aim: Thai pig farmers have suffered huge financial losses from porcine epidemic diarrhea (PED) since 2007. PED, caused by the PED virus (PEDV), leads to severe diarrhea, vomiting, and subsequent dehydration in suckling piglets. Lactogenic immunity derived from colostrum and milk is very important because immunoglobulins (Ig) cannot cross the placenta in pregnant sows. The aim of this study was to investigate the immunological correlation of the sample-to-positive (S/P) ratios of IgA and IgG against PEDV between colostrum, sow serum, and their piglet serum. Materials and Methods: A total of 43 sows were divided into three groups according to the experience of PEDV infection: Negative sow group (n=7) and treatment group (n=36, sows previously infected with PEDV). The treatment group was subdivided into two groups: Sows immunized with live-attenuated PEDV vaccine (n=15) and sows immunized with feedback (n=21) at 3 weeks before farrowing. The 7-day-old piglets (n=425) were obtained from negative sows (n=89), vaccinated sows (n=150), and feedback sows (n=275). Colostrum, sow serum, and their piglet serum were collected and analyzed for S/P ratios of their IgA and IgG levels against PEDV using an enzyme-linked immunosorbent assay. Results: The piglets from sows immunized with live-attenuated PEDV vaccine had a higher S/P ratio of IgG against PEDV (p<0.001), whereas the piglets from the feedback group had a higher S/P ratio of IgA against PEDV (p<0.001) compared with piglets from the negative sows. In addition, the S/P ratios of PEDV-specific IgA and IgG between sow serum and colostrum showed a positive correlation (Pearson’s coefficient r=0.61 and 0.75, respectively). Both S/P ratios of PEDV-specific IgA and IgG in sow serum and colostrum had a positive correlation to those in piglet serum. Conclusion: Overall, this study suggested that pregnant sows immunized with the live-attenuated vaccine against PEDV and feedback may provide maternal immunity against PEDV to their offspring.
Collapse
Affiliation(s)
| | - Orawan Boodde
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Wilairat Chumsing
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Manakorn Sukmak
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Pichai Jirawattanapong
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Nattavut Ratanavanichrojn
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Alongkot Boonsoongnern
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| |
Collapse
|
7
|
Cimolai N. Applying Immune Instincts and Maternal Intelligence from Comparative Microbiology to COVID-19. ACTA ACUST UNITED AC 2020; 2:2670-2683. [PMID: 33195997 PMCID: PMC7652409 DOI: 10.1007/s42399-020-00634-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 01/02/2023]
Abstract
New data specific to COVID-19 are emerging quickly on key issues of immunity and prevention, but past research in coronavirology and for other human pathogens (e.g., Mycoplasma pneumoniae) has been available and of great relevance. Considerable study of endemic human coronaviruses has shown that neutralizing antibody correlates with protection, but effective clinical protection is variable for subsequent virus exposure. Animal coronavirus research has emphasized the importance of local mucosal protection (especially IgA) and systemic responses. Animal model and human post-infection studies for SARS-CoV and MERS-CoV are largely corroborative. Whether for passive therapeutic strategies or vaccination, these findings provide a template for COVID-19. Many approaches to vaccination have emerged, and there may be more than one vaccine that will be applied, but individualized obstacles and concerns for administration, efficacy, and safety are inevitable. Regardless of safeguards or promises that may be understood from laboratory or vertebrate experiments, observations from large-scale human trials will ultimately prove to shape the medical future. Focus on common mucosal immunity can be underrated, and equally or more, focus on lactogenic immunity may be underestimated. In understanding both passive immunity and protection, the body is already primed to educate us with decisions of what constitutes protection and harm. This review provides key insights that drive hypotheses into how the instinct of immunity and the intelligence of the maternal component of the common mucosal immune system has already guided us and may continue to do so effectively into a bright and safe future.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC Canada
- Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC V6H3V4 Canada
| |
Collapse
|
8
|
Won H, Lim J, Noh YH, Yoon I, Yoo HS. Efficacy of Porcine Epidemic Diarrhea Vaccines: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2020; 8:vaccines8040642. [PMID: 33147824 PMCID: PMC7712170 DOI: 10.3390/vaccines8040642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a devastating disease that causes considerable economic damage to the global pig industry. Although the causative agent, the porcine epidemic diarrhea virus (PEDV), was identified about a half century ago, there is still much debate on the preventive measures against the disease, especially regarding the PED vaccine. Recent reports on PEDV variants make the vaccination for PEDV more confusing. Therefore, we systematically reviewed published articles on PED and vaccines against the disease and performed a meta-analysis of vaccine efficacy based on the clinical signs, fecal score and survival rates. A total of 299 articles on the efficacy of PED vaccines were found online, and 21 articles were selected that fulfilled all the criteria. A meta-analysis was performed on the 21 articles based on the fecal scores and survival rates. This analysis showed the efficacy of PED vaccines, and no significant differences in the efficacy depending on vaccine type (killed vs. live) or administration route (intramuscular vs. oral) were found. The results from our study suggest that any vaccination against PED is a useful strategy to control the disease regardless of the type of vaccine and administration route.
Collapse
Affiliation(s)
- Hokeun Won
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.W.); (J.L.)
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Jeonggyo Lim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.W.); (J.L.)
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Yun Hee Noh
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Injoong Yoon
- ChoongAng Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea; (Y.H.N.); (I.Y.)
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.W.); (J.L.)
- Bio-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-1263
| |
Collapse
|
9
|
Xu Z, Gong L, Peng P, Liu Y, Xue C, Cao Y. Porcine enteric alphacoronavirus Inhibits IFN-α, IFN-β, OAS, Mx1, and PKR mRNA Expression in Infected Peyer's Patches in vivo. Front Vet Sci 2020; 7:449. [PMID: 32719818 PMCID: PMC7347908 DOI: 10.3389/fvets.2020.00449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022] Open
Abstract
Porcine enteric alphacoronavirus (PEAV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhea in neonatal piglets. The pathogenesis and host immune responses of PEAV infection are not fully characterized. The reason lies in the stomach environment, which would degrade cell-cultured live viruses via oral infection, making it difficult to establish an effective infection model to study the pathogenesis and host immune responses in pigs with a mature immune system. To solve this problem, in this study, coated PEAV-loaded microspheres were developed by centrifugal granulation-fluidized bed coating and demonstrated as an effective oral delivery system/animal infection model to protect PEAV virion against the complex gastrointestinal environment in vitro and to cause infection in weaned piglets in vivo. Weaned piglets orally inoculated with coated PEAV-loaded microspheres developed diarrhea and virus RNA was detected in rectal swabs from one to seven days post inoculation. In addition, microscopic lesions in the small intestine were observed, and viral antigens were also detected in the small intestines with PEAV immunohistochemical staining. Importantly, PEAV significantly inhibited mRNA expression of IFN-α, IFN-β, OAS, Mx1, and PKR, the genes involved in modulation of the host immune responses, in infected Peyer's patches, indicating that PEAV can overcome the antiviral response to cause damage when infection occurs. Collectively, our research successfully established a PEAV animal infection model in weaned piglets and suggested that the observed gene expression profile might help explain immunological changes associated with PEAV infection.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Lang Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Peng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Yufang Liu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Host Factors Affecting Generation of Immunity Against Porcine Epidemic Diarrhea Virus in Pregnant and Lactating Swine and Passive Protection of Neonates. Pathogens 2020; 9:pathogens9020130. [PMID: 32085410 PMCID: PMC7168134 DOI: 10.3390/pathogens9020130] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly virulent re-emerging enteric coronavirus that causes acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets. Despite this, a safe and effective PEDV vaccine against highly virulent strains is unavailable, making PEDV prevention and control challenging. Lactogenic immunity induced via the gut-mammary gland-secretory IgA (sIgA) axis, remains the most promising and effective way to protect suckling piglets from PEDV. Therefore, a successful PEDV vaccine must induce protective maternal IgA antibodies that passively transfer into colostrum and milk. Identifying variables that influence lymphocyte migration and IgA secretion during gestation and lactation is imperative for designing maternal immunization strategies that generate the highest amount of lactogenic immune protection against PEDV in suckling piglets. Because pregnancy-associated immune alterations influence viral pathogenesis and adaptive immune responses in many different species, a better understanding of host immune responses to PEDV in pregnant swine may translate into improved maternal immunization strategies against enteric pathogens for multiple species. In this review, we discuss the role of host factors during pregnancy on antiviral immunity and their implications for generating protective lactogenic immunity in suckling neonates.
Collapse
|