1
|
Arcan SKC, Yatip P, Munyoo B, Maningas MBB, Soowannayan C, Guzman JPMD. Attenuating Vibrio harveyi Virulence Through Quorum Sensing Interference Using Piperine: An In Vitro and In Silico Approach. JOURNAL OF FISH DISEASES 2025; 48:e14094. [PMID: 39907168 DOI: 10.1111/jfd.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Aquaculture diseases caused by pathogens such as Vibrio spp., amplified by the emergence of antibiotic resistance, threaten the aquaculture industry. Due to its critical role in regulating the expression of genes related to antibiotic resistance and virulence, quorum sensing (QS) was proved to be an ideal target in disease control. In this study, we investigated the effects of the alkaloid piperine on the QS system of a fish pathogenic Vibrio harveyi strain. In vitro assays showed that piperine inhibits biofilm formation of V. harveyi without affecting their growth. Moreover, piperine specifically reduced QS activity in V. harveyi, as evident in the inhibition of biofilm and bioluminescence, likely through the AI-2 pathway. Molecular docking simulations showed significant binding energies between piperine and QS proteins-LuxP, LuxQ, LuxR and LuxS-revealing competitive inhibitory effects against LuxP, LuxR, and LuxS, and non-competitive interactions with LuxQ. This study demonstrated the effects of piperine against V. harveyi and elucidated its mechanism of action against V. harveyi QS, implying its potential application in aquaculture systems.
Collapse
Affiliation(s)
- Stephen Kyle C Arcan
- Environment and Biotechnology Division, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines
| | - Pattanan Yatip
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX SHRIMP), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Bamroong Munyoo
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mary Beth B Maningas
- Laboratory of Aquatic Molecular Biology and Biotechnology, Research Center for Natural and Applied Sciences (RCNAS), University of Santo Tomas, Manila, Philippines
| | - Chumporn Soowannayan
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX SHRIMP), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - John Paul Matthew D Guzman
- Environment and Biotechnology Division, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX SHRIMP), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Owolo O, Audu HJ, Afolayan AO, Ayeni FA. Pepper power: short-term impact of pepper consumption on the gut bacteriome composition in healthy volunteers. PeerJ 2024; 12:e18707. [PMID: 39686991 PMCID: PMC11648697 DOI: 10.7717/peerj.18707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Background Pepper from Capsicum species is a well-established spice with a rich history of culinary use. Some observations have linked its consumption to gastrointestinal discomfort and alterations in stool patterns while it is considered beneficial in some cultures. However, there is lack of information on the direct effect of pepper consumption on human gut microbiota, we conducted dietary intervention studies to assess the impact of pepper on gut bacteriome composition in humans. Methods Ten healthy volunteers were recruited, and each person received 200 ml of 0.14 g/ml fresh Habanero Pepper (Capsicum chinense) daily over a 4-day period after which they abstained from pepper consumption for the subsequent 4 days before resumption of their normal diet. Stool samples were collected at baseline, after pepper consumption, after 4 days without pepper and after 4- and 6-days resumption of normal diet. We sequenced the V3-V4 region of the 16S rRNA gene and analyzed microbial diversity and composition using the QIIME2 pipeline and relevant R packages. Results Consumption of pepper over a 4-day period led to a higher abundance of Verrucomicrobia, a phylum rarely found in significant proportions at other time points. There was a gradual depletion of Shigella and Staphylococcus spp. from baseline untill the end of the study. Other taxa showed timepoint specific associations, emphasizing the potential impact of short-term dietary interventions on the relative abundance of these genera. Conclusions Our study adds nuance to the understanding of diet-microbiota interactions, highlighting the intricate relationship between pepper consumption and gut bacteriome composition. Further exploration of these dynamics holds promise for personalized dietary recommendations and targeted interventions to support gut microbial health.
Collapse
Affiliation(s)
- Oluwafayoke Owolo
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Haruna J. Audu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ayorinde O. Afolayan
- Institute for Infection Prevention and Control, Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany
| | - Funmilola A. Ayeni
- Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Cai F, Wang C. Comprehensive review of the phytochemistry, pharmacology, pharmacokinetics, and toxicology of alkamides (2016-2022). PHYTOCHEMISTRY 2024; 220:114006. [PMID: 38309452 DOI: 10.1016/j.phytochem.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Alkamides refer to a class of natural active small-molecule products composed of fatty acids and amine groups. These compounds are widely distributed in plants, and their unique structures and various pharmacological activities have caught the attention of scholars. This review provides a collection of literatures related to the phytochemistry, pharmacological effects, pharmacokinetics, and toxicity of alkamides published in 2016-2022 and their summary to provide references for further development of this class of ingredients. A total of 234 components (including chiral isomers) were summarized, pharmacological activities, such as anti-inflammatory, antitumor, antidiabetic, analgesic, neuroprotective, insecticidal, antioxidant, and antibacterial, and miscellaneous properties of alkamides were discussed. In addition, the pharmacokinetic characteristics and toxicity of alkamides were reviewed. However, information on the pharmacological mechanisms of the action, drug safety, and pharmacokinetics of alkamides is limited and thus requires further investigation and evaluation.
Collapse
Affiliation(s)
- Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
4
|
Han J, Zhang S, He J, Li T. Piperine: Chemistry and Biology. Toxins (Basel) 2023; 15:696. [PMID: 38133200 PMCID: PMC10747706 DOI: 10.3390/toxins15120696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Piperine is a plant-derived promising piperamide candidate isolated from the black pepper (Piper nigrum L.). In the last few years, this natural botanical product and its derivatives have aroused much attention for their comprehensive biological activities, including not only medical but also agricultural bioactivities. In order to achieve sustainable development and improve survival conditions, looking for environmentally friendly pesticides with low toxicity and residue is an extremely urgent challenge. Fortunately, plant-derived pesticides are rising like a shining star, guiding us in the direction of development in pesticidal research. In the present review, the recent progress in the biological activities, mechanisms of action, and structural modifications of piperine and its derivatives from 2020 to 2023 are summarized. The structure-activity relationships were analyzed in order to pave the way for future development and utilization of piperine and its derivatives as potent drugs and pesticides for improving the local economic development.
Collapse
Affiliation(s)
- Jin Han
- School of Public Administration, Xi’an University of Finance and Economics, Xi’an 710061, China;
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China;
| | - Jun He
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| | - Tianze Li
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
5
|
Liu Y, Zhu R, Liu X, Li D, Guo M, Fei B, Ren Y, You X, Li Y. Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb Pathog 2023; 185:106397. [PMID: 37852553 DOI: 10.1016/j.micpath.2023.106397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The escalating prevalence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a significant threat to global public health through the spread of its 'high-risk' clones. Immediate and decisive research into antimicrobial agents against CRPA is crucial for the development of effective measures and interventions. Overexpression of the MexAB-OprM efflux pump is one of the major mechanisms of CRPA. Since the active efflux of antibacterial agents plays a significant role in mediating drug resistance in CRPA, the inhibition of efflux pumps has become a promising strategy to restore antibacterial potency. Piperine (PIP) has been proven to be a promising efflux pump inhibitor in some bacteria. However, there are no studies on whether PIP can act as a potential efflux pump inhibitor in CRPA. The present study aimed to identify the antibacterial activity of PIP against CRPA and to evaluate the effect on the MexAB-OprM efflux pump. Molecular docking was used to analyze the possible interaction of PIP with the proteins of the MexAB-OprM efflux pump in CRPA. The effect of PIP on the expression of the MexAB-OprM efflux pump was investigated by real-time quantitative PCR (qPCR) and ethidium bromide accumulation efflux assay. The effect of PIP on CRPA imipenem (IPM) resistance was investigated by the checkerboard dilution method. The results demonstrated that PIP exhibited the lowest binding affinity of -9.1 kcal towards efflux pump proteins. A synergistic effect between PIP and IPM on CRPA was observed. More importantly, PIP effectively hindered the efflux of ethidium bromide and IPM by up-regulating MexR gene expression while down-regulating MexA, MexB, and OprM gene expressions. In conclusion, PIP could enhance the antibacterial activity of IPM by inhibiting the MexAB-OprM efflux pump. Our work proved that PIP had the potential to be an efflux pump inhibitor of CRPA.
Collapse
Affiliation(s)
- Ying Liu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China
| | - Rui Zhu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China
| | - Xinwei Liu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China; Henan Provincial Key Laboratory of Antimicrobials-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China
| | - Dengzhou Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China
| | - Mengyu Guo
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Bing Fei
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Yanying Ren
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaojuan You
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China.
| | - Yongwei Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China; Henan Provincial Key Laboratory of Antimicrobials-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Zhai X, Wu G, Tao X, Yang S, Lv L, Zhu Y, Dong D, Xiang H. Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Adv 2023; 13:7798-7817. [PMID: 36909750 PMCID: PMC9994607 DOI: 10.1039/d3ra00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Microorganisms evolve resistance to antibiotics as a function of evolution. Antibiotics have accelerated bacterial resistance through mutations and acquired resistance through a combination of factors. In some cases, multiple antibiotic-resistant determinants are encoded in these genes, immediately making the recipient organism a "superbug". Current antimicrobials are no longer effective against infections caused by pathogens that have developed antimicrobial resistance (AMR), and the problem has become a crisis. Microorganisms that acquire resistance to chemotherapy (multidrug resistance) are a major obstacle for successful treatments. Pharmaceutical industries should be highly interested in natural product-derived compounds, as they offer new sources of chemical entities for the development of new drugs. Phytochemical research and recent experimental advances are discussed in this review in relation to the antimicrobial efficacy of selected natural product-derived compounds as well as details of synergistic mechanisms and structures. The present review recognizesand amplifies the importance of compounds with natural origins, which can be used to create safer and more effective antimicrobial drugs by combating microorganisms that are resistant to multiple types of drugs.
Collapse
Affiliation(s)
- Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|