1
|
Chang MC, Wang SR, Lin DPC, Chang HH. Hepatic inflammation, ballooning, and pyknosis caused by LED light exposure in a mouse model, with differential effects by age and gender. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116984. [PMID: 39265263 DOI: 10.1016/j.ecoenv.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Light-emitting diode (LED) is commonly used in lighting and digital devices in modern life, which delivers higher levels of blue light than other light sources. Previous work indicated that exposure to blue lights increases serum oxidative stress and affects hepatic functions in animals. However, the detailed hepatic pathogenesis caused by blue lights remains largely elusive. This study investigated the characteristics of hepatic injuries caused by LED light exposure in a mouse model. C57BL/6 mice were exposed the LED lights at 1000 lux, 12 h per day for 45 days or at 4500 lux, 1 h per day for 7 days. The mice were aged 8 weeks or 36 weeks in both genders and maintained under a 12 h light/dark cycle without alteration of diet pattern. Liver tissue sections were obtained for hematoxylin and eosin (H&E) and immunohistochemical staining. The mice with 1000 lux exposure displayed severe liver injuries, including inflammation, ballooning, and pyknosis, which were found to a lesser extent in the 4500 lux mice, and aging aggravated the hepatic injuries. The hepatocellular ballooning was found more severe in the males than the females. In contrast, the females expressed the F4/80 and TNF-α inflammatory markers more evidently. Taken together, LED light exposure may have detrimental effects on liver health, particularly in vulnerable groups such as the elderly and the females with excessive exposure to LED lights, even if they maintain a normal diet and regular light/dark cycles. The potential risk should be considered by both the clinicians and the public.
Collapse
Affiliation(s)
- Min-Chun Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Rong Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taiwan; Department of Ophthalmology, Chung Shan Medical University Hospital, Taiwan.
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Ophthalmology, Chung Shan Medical University Hospital, Taiwan.
| |
Collapse
|
2
|
He Y, Lin T, Liang R, Xiang Q, Tang T, Ge N, Yue J. Interleukin 25 promotes muscle regeneration in sarcopenia by regulating macrophage-mediated Sonic Hedgehog signaling. Int Immunopharmacol 2024; 139:112662. [PMID: 39038385 DOI: 10.1016/j.intimp.2024.112662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Sarcopenia manifests as a chronic, low-level inflammation along with multiple inflammatory cells infiltration. Interleukin (IL)-25 can regulate the function of macrophages. However, the specific role and mechanisms through which IL-25 functions in sarcopenia are still not fully understood and require further investigation. METHODS Aged mice were utilized as sarcopenia models and examined the expression of inflammatory factors. To investigate the effects of IL-25 on sarcopenia, the model mice received IL-25 treatment and underwent in vivo adoptive transfer of IL-25-induced macrophages. Meanwhile, RAW264.7 cells, bone marrow-derived macrophages, satellite cells and C2C12 cells were used in vitro. Shh insufficiency was induced through intramuscular administration of SHH-shRNA adenoviruses. Then, various assays including scratch wound, cell counting kit-8 and Transwell assays, as well as histological staining and molecular biological methods, were conducted. RESULTS Aged mice exhibited an accelerated decline in muscle strength and mass, along with an increased muscle lipid droplets and macrophage infiltration, and decreased IL-25 levels compared to the young group. IL-25 therapy and the transfer of IL-25-preconditioned macrophages could improve these conditions by promoting M2 macrophage polarization in vivo as well as in vitro. M2 macrophage conditioned medium enhanced satellite cell proliferation and migration, as well as the vitality, migration, and differentiation of C2C12 cells in vitro. Furthermore, IL-25 enhanced Shh expression in macrophages in vitro, and activated the Shh signaling pathway in muscle tissue of aged mice, which could be suppressed by either the inhibitor cyclopamine or Shh knockdown. Mechanistic studies showed that Shh insufficiency suppressed the activation of Akt/mTOR signaling pathway in muscle tissue of aged mice. CONCLUSION IL-25 promotes the secretion of Shh by M2 macrophages and activates the Shh/Akt/mTOR signaling pathway, which improves symptoms and function in sarcopenia mice. This suggests that IL-25 has potential as a therapeutic agent for treating sarcopenia.
Collapse
Affiliation(s)
- Yan He
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Geriatrics, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Taiping Lin
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Liang
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Xiang
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianjiao Tang
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Ge
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jirong Yue
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Li JZ, Chen N, Ma N, Li MR. Mechanism and Progress of Natural Products in the Treatment of NAFLD-Related Fibrosis. Molecules 2023; 28:7936. [PMID: 38067665 PMCID: PMC10707854 DOI: 10.3390/molecules28237936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disorder worldwide, with liver fibrosis (LF) serving as a pivotal juncture in NAFLD progression. Natural products have demonstrated substantial antifibrotic properties, ushering in novel avenues for NAFLD treatment. This study provides a comprehensive review of the potential of natural products as antifibrotic agents, including flavonoids, polyphenol compounds, and terpenoids, with specific emphasis on the role of Baicalin in NAFLD-associated fibrosis. Mechanistically, these natural products have exhibited the capacity to target a multitude of signaling pathways, including Hedgehog, Wnt/β-catenin, TGF-β1, and NF-κB. Moreover, they can augment the activities of antioxidant enzymes, inhibit pro-fibrotic factors, and diminish fibrosis markers. In conclusion, this review underscores the considerable potential of natural products in addressing NAFLD-related liver fibrosis through multifaceted mechanisms. Nonetheless, it underscores the imperative need for further clinical investigation to authenticate their effectiveness, offering invaluable insights for future therapeutic advancements in this domain.
Collapse
Affiliation(s)
- Jin-Zhong Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Ning Chen
- General Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Nan Ma
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min-Ran Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24:668-687. [PMID: 36932157 DOI: 10.1038/s41580-023-00591-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Chen T, Dalton G, Oh SH, Maeso-Diaz R, Du K, Meyers RA, Guy C, Abdelmalek MF, Henao R, Guarnieri P, Pullen SS, Gregory S, Locker J, Brown JM, Diehl AM. Hepatocyte Smoothened Activity Controls Susceptibility to Insulin Resistance and Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 15:949-970. [PMID: 36535507 PMCID: PMC9957752 DOI: 10.1016/j.jcmgh.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH), a leading cause of cirrhosis, strongly associates with the metabolic syndrome, an insulin-resistant proinflammatory state that disrupts energy balance and promotes progressive liver degeneration. We aimed to define the role of Smoothened (Smo), an obligatory component of the Hedgehog signaling pathway, in controlling hepatocyte metabolic homeostasis and, thereby, susceptibility to NASH. METHODS We conditionally deleted Smo in hepatocytes of healthy chow-fed mice and performed metabolic phenotyping, coupled with single-cell RNA sequencing (RNA-seq), to characterize the role of hepatocyte Smo in regulating basal hepatic and systemic metabolic homeostasis. Liver RNA-seq datasets from 2 large human cohorts were also analyzed to define the relationship between Smo and NASH susceptibility in people. RESULTS Hepatocyte Smo deletion inhibited the Hedgehog pathway and promoted fatty liver, hyperinsulinemia, and insulin resistance. We identified a plausible mechanism whereby inactivation of Smo stimulated the mTORC1-SREBP1c signaling axis, which promoted lipogenesis while inhibiting the hepatic insulin cascade. Transcriptomics of bulk and single Smo-deficient hepatocytes supported suppression of insulin signaling and also revealed molecular abnormalities associated with oxidative stress and mitochondrial dysfunction. Analysis of human bulk RNA-seq data revealed that Smo expression was (1) highest in healthy livers, (2) lower in livers with NASH than in those with simple steatosis, (3) negatively correlated with markers of insulin resistance and liver injury, and (4) declined progressively as fibrosis severity worsened. CONCLUSIONS The Hedgehog pathway controls insulin sensitivity and energy homeostasis in adult livers. Loss of hepatocyte Hedgehog activity induces hepatic and systemic metabolic stress and enhances susceptibility to NASH by promoting hepatic lipoxicity and insulin resistance.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Medicine, Duke University, Durham, North Carolina
| | - George Dalton
- Department of Medicine, Duke University, Durham, North Carolina
| | - Seh-Hoon Oh
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina
| | - Rachel A Meyers
- Department of Medicine, Duke University, Durham, North Carolina
| | - Cynthia Guy
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Ricardo Henao
- Department of Medicine, Duke University, Durham, North Carolina
| | - Paolo Guarnieri
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Simon Gregory
- Department of Medicine, Duke University, Durham, North Carolina
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
6
|
Methacrylic Acid-Based Regenerative Biomaterials: Explorations into the MAAgic. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. Int J Mol Sci 2021; 23:ijms23010171. [PMID: 35008597 PMCID: PMC8745434 DOI: 10.3390/ijms23010171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (Hh) pathway is a sophisticated conserved cell signaling pathway that plays an essential role in controlling cell specification and proliferation, survival factors, and tissue patterning formation during embryonic development. Hh signal activity does not entirely disappear after development and may be reactivated in adulthood within tissue-injury-associated diseases, including idiopathic pulmonary fibrosis (IPF). The dysregulation of Hh-associated activating transcription factors, genomic abnormalities, and microenvironments is a co-factor that induces the initiation and progression of IPF.
Collapse
|
8
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
|
9
|
Radojcic V, Pletneva M, Lee CJ, Ivcevic S, Sarantopoulos S, Couriel D. Hedgehog blockade in steroid-refractory sclerotic chronic graft-versus-host disease. Br J Haematol 2021; 195:e120-e122. [PMID: 34142367 DOI: 10.1111/bjh.17657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Vedran Radojcic
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Maria Pletneva
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Catherine J Lee
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sanja Ivcevic
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke Cancer Institute, Duke University Medical Center, Durham, England
| | - Daniel Couriel
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Ma H, Liu X, Zhang M, Niu J. Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms. Mol Biol Rep 2021; 48:2803-2815. [PMID: 33730288 DOI: 10.1007/s11033-021-06269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases are attributed to liver injury. Development of fibrosis from chronic liver diseases is a dynamic process that involves multiple molecular and cellular processes. As the first to be impacted by injury, liver sinusoidal endothelial cells (LSECs) are involved in the pathogenesis of liver diseases caused by a variety of etiologies. Moreover, capillarization of LSECs has been recognized as an important event in the development of chronic liver diseases and fibrosis. Studies have reported that various cytokines (such as vascular endothelial growth factor, transforming growth factor-β), and pathways (such as hedgehog, and Notch), as well as epigenetic and metabolic factors are involved in the development of LSEC-mediated liver fibrosis. This review describes the complexity and plasticity of LSECs in fibrotic liver diseases from several perspectives, including the cross-talk between LSECs and other intra-hepatic cells. Moreover, it summarizes the mechanisms of several kinds of LSECs-targeting anti-fibrosis chemicals, and provides a theoretical basis for future studies.
Collapse
Affiliation(s)
- Heming Ma
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Xu Liu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Mingyuan Zhang
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, NO. 71, Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
11
|
Pereira TA, Vaz de Melo Trindade G, Trindade Santos E, Pereira FEL, Souza MMD. Praziquantel pharmacotherapy reduces systemic osteopontin levels and liver collagen content in murine schistosomiasis mansoni. Int J Parasitol 2021; 51:437-440. [PMID: 33493521 DOI: 10.1016/j.ijpara.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
The pathogenesis of schistosomiasis and the mechanism of disease regression after Praziquantel pharmacotherapy are not fully elucidated. Schistosoma mansoni egg antigens directly stimulate the expression of the profibrogenic molecule osteopontin (OPN), and systemic OPN levels strongly correlate with disease severity, suggesting its use as a potential morbidity biomarker. In this study, we investigated the impact of Praziquantel use on systemic OPN levels and on liver collagen deposition in chronic murine schistosomiasis. Praziquantel treatment significantly reduced systemic OPN levels and liver collagen deposition, indicating that OPN could be a reliable tool for monitoring PZQ efficacy and fibrosis regression in murine schistosomiasis.
Collapse
Affiliation(s)
- Thiago A Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil.
| | | | - Elisangela Trindade Santos
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | | | - Márcia Maria de Souza
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| |
Collapse
|
12
|
Teal E, Dua-Awereh M, Hirshorn ST, Zavros Y. Role of metaplasia during gastric regeneration. Am J Physiol Cell Physiol 2020; 319:C947-C954. [PMID: 32755448 DOI: 10.1152/ajpcell.00415.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spasmolytic polypeptide/trefoil factor 2 (TFF2)-expressing metaplasia (SPEM) is a mucous-secreting reparative lineage that emerges at the ulcer margin in response to gastric injury. Under conditions of chronic inflammation with parietal cell loss, SPEM has been found to emerge and evolve into neoplasia. Cluster-of-differentiation gene 44 (CD44) is known to coordinate normal and metaplastic epithelial cell proliferation. In particular, CD44 variant isoform 9 (CD44v9) associates with the cystine-glutamate transporter xCT, stabilizes the protein, and provides defense against reactive oxygen species (ROS). xCT stabilization by CD44v9 leads to defense against ROS by cystine uptake, glutathione (GSH) synthesis, and maintenance of the redox balance within the intracellular environment. Furthermore, p38 signaling is a known downstream ROS target, leading to diminished cell proliferation and migration, two vital processes of gastric epithelial repair. CD44v9 emerges during repair of the gastric epithelium after injury, where it is coexpressed with other markers of SPEM. The regulatory mechanisms for the emergence of CD44v9 and the role of CD44v9 during the process of gastric epithelial regeneration are largely unknown. Inflammation and M2 macrophage infiltration have recently been demonstrated to play key roles in the induction of SPEM after injury. The following review proposes new insights into the functional role of metaplasia in the process of gastric regeneration in response to ulceration. Our insights are extrapolated from documented studies reporting oxyntic atrophy and SPEM development and our current unpublished findings using the acetic acid-induced gastric injury model.
Collapse
Affiliation(s)
- Emma Teal
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martha Dua-Awereh
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Sabrina T Hirshorn
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
13
|
Macrophage transcriptome modification induced by hypoxia and lactate. Exp Ther Med 2019; 18:4811-4819. [PMID: 31798707 PMCID: PMC6878900 DOI: 10.3892/etm.2019.8164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
The production of lactate under hypoxic conditions or by cancer cells was reported to promote the M2 polarization of tumor-associated macrophages. However, the exact effect of lactate on macrophages, particularly under hypoxic conditions, has remained largely elusive. In the present study, an in-depth bioinformatics analysis of previously published transcriptome data of macrophages was performed. A total of 6, 101 and 764 upregulated genes were identified in the lactate, hypoxia and hypoxia-lactate groups, respectively, whereas 4, 41 and 588 genes were downregulated in the same respective groups. Furthermore, differentially expressed genes (DEGs) of the hypoxia and hypoxia-lactate groups were significantly enriched in the hypoxia-inducible factor 1 (HIF-1) signaling pathway and the Hedgehog pathway. Upregulation of the mTOR and Hedgehog pathways in the hypoxia-lactate group was identified by gene set enrichment analysis. Furthermore, a set of HIF-1 pathway-associated genes was identified to be positively correlated with hypoxia using weighted gene co-expression network analysis. Lactate was indicated to inhibit the cell cycle in a hypoxia-independent manner. The DEGs of the hypoxia and hypoxia-lactate groups, including C-C motif chemokine receptor type 1 and 5, were enriched in the cytokine-cytokine receptor interaction pathway. In conclusion, under normoxic conditions, lactate exerted a weak effect on macrophages, while the combination of lactate and hypoxia markedly promoted the M2-polarization of macrophages via the HIF-1, Hedgehog and mTOR pathways. Lactate and hypoxia may also contribute to the formation of the spatial structure of tumor niches by inhibiting the proliferation of resident macrophages and by regulating the recruitment of peripheral macrophages.
Collapse
|
14
|
Melo Muniz VRV, Nunes FD, Xavier FCDA, Cangussu MCT, Almeida Freitas R, Cury PR, Gurgel CA, Santos JN. Potential role of Hedgehog signaling pathway and myofibroblastic differentiation in central giant cell granuloma—A preliminary study. J Oral Pathol Med 2019; 48:855-860. [DOI: 10.1111/jop.12949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Fábio Daumas Nunes
- Laboratory of Oral and Maxillofacial Pathology School of Dentistry University of São Paulo São Paulo SP Brazil
| | - Flávia Caló de Aquino Xavier
- Dentistry and Health Postgraduation Program School of Dentistry Federal University of Bahia Salvador BA Brazil
- Laboratory of Oral and Maxillofacial Pathology School of Dentistry Federal University of Bahia Salvador BA Brazil
| | | | - Roseana Almeida Freitas
- Laboratory of Oral and Maxillofacial Pathology School of Dentistry Federal University of Rio Grande do Norte Natal RN Brazil
| | - Patrícia Ramos Cury
- Dentistry and Health Postgraduation Program School of Dentistry Federal University of Bahia Salvador BA Brazil
| | - Clarissa Araújo Gurgel
- Dentistry and Health Postgraduation Program School of Dentistry Federal University of Bahia Salvador BA Brazil
| | - Jean Nunes Santos
- Dentistry and Health Postgraduation Program School of Dentistry Federal University of Bahia Salvador BA Brazil
- Laboratory of Oral and Maxillofacial Pathology School of Dentistry Federal University of Bahia Salvador BA Brazil
| |
Collapse
|
15
|
Lin X, Zhang Y, Pan Y, He S, Dai Y, Zhu B, Wei C, Xin L, Xu W, Xiang C, Zhang S. Endometrial stem cell-derived granulocyte-colony stimulating factor attenuates endometrial fibrosis via sonic hedgehog transcriptional activator Gli2. Biol Reprod 2019; 98:480-490. [PMID: 29329377 DOI: 10.1093/biolre/ioy005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
Intrauterine adhesion (IUA) is characterized by endometrial fibrosis, which ultimately leads to menstrual abnormalities, infertility, and recurrent miscarriages. The Shh/Gli2 pathway plays a critical role in tissue fibrogenesis and regeneration; Gli2 activation induces profibrogenic effects in various tissues, such as the liver and kidney. However, the role of Gli2 in endometrial fibrosis remains unknown. The purpose of this study was to test the hypothesis that activated Gli2 promotes endometrial fibrosis. Endometrial samples from moderate and severe IUA patients exhibited significantly enhanced expression of Gli2 compared with normal endometrial samples and mild IUA samples. Transfection with overactive Gli2 plasmids induced higher fibrosis-related protein expression, while blocking Gli2 signaling with cyclopamine caused the opposite effect in endometriotic stromal cells (ESCs), including inducing cell-cycle arrest. Menstrual-derived stem cell conditioned medium (MenSCs-CM) reduced endometrial fibrosis by reducing Gli2 protein levels and causing cell-cycle arrest in ESCs through granulocyte-colony stimulating factor (G-CSF). The effect was weakened after neutralization with a G-CSF antibody. Gli2 overexpression reduced the effects of MenSC-CM and G-CSF on fibrosis and cell-cycle progression in vitro. The antifibrotic effect of G-CSF was also observed in murine model. These findings demonstrate that Gli2 signaling promotes endometrial fibrosis, and the inhibition of Gli2 through MenSCs-secreted G-CSF may be of therapeutic value for managing endometrial fibrosis.
Collapse
Affiliation(s)
- Xiaona Lin
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yanling Zhang
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yibin Pan
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Shilin He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongdong Dai
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Bingqing Zhu
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Cheng Wei
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Liaobing Xin
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Wenzhi Xu
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chunsheng Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songying Zhang
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
Caradu C, Guy A, James C, Reynaud A, Gadeau AP, Renault MA. Endogenous Sonic Hedgehog limits inflammation and angiogenesis in the ischaemic skeletal muscle of mice. Cardiovasc Res 2019; 114:759-770. [PMID: 29365079 DOI: 10.1093/cvr/cvy017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/19/2018] [Indexed: 12/23/2022] Open
Abstract
Aims Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. Methods and results To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Conclusion Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.
Collapse
Affiliation(s)
- Caroline Caradu
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Alexandre Guy
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Chloé James
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Annabel Reynaud
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Alain-Pierre Gadeau
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| | - Marie-Ange Renault
- Biology of Cardiovascular Diseases, Univ. Bordeaux, Inserm, CHU de Bordeaux, F-33604 Pessac, France
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Macrophages play key roles in tissue homeostasis and immune surveillance, mobilizing immune activation in response to microbial invasion and promoting wound healing to repair damaged tissue. However, failure to resolve macrophage activation can lead to chronic inflammation and fibrosis, and ultimately to pathology. Activated macrophages have been implicated in the pathogenesis of systemic sclerosis (SSc), although the triggers that induce immune activation in SSc and the signaling pathways that underlie aberrant macrophage activation remain unknown. RECENT FINDINGS Macrophages are implicated in fibrotic activation in SSc. Targeted therapeutic interventions directed against SSc macrophages may ameliorate inflammation and fibrosis. While current studies have begun to elucidate the role of macrophages in disease initiation and progression, further work is needed to address macrophage subset heterogeneity within and among SSc end-target tissues to determine the disparate functions mediated by these subsets and to identify additional targets for therapeutic intervention.
Collapse
|
18
|
Suppli MP, Rigbolt KTG, Veidal SS, Heebøll S, Eriksen PL, Demant M, Bagger JI, Nielsen JC, Oró D, Thrane SW, Lund A, Strandberg C, Kønig MJ, Vilsbøll T, Vrang N, Thomsen KL, Grønbæk H, Jelsing J, Hansen HH, Knop FK. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am J Physiol Gastrointest Liver Physiol 2019; 316:G462-G472. [PMID: 30653341 DOI: 10.1152/ajpgi.00358.2018] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of conditions ranging from simple steatosis (NAFL), over nonalcoholic steatohepatitis (NASH) with or without fibrosis, to cirrhosis with end-stage disease. The hepatic molecular events underlying the development of NAFLD and transition to NASH are poorly understood. The present study aimed to determine hepatic transcriptome dynamics in patients with NAFL or NASH compared with healthy normal-weight and obese individuals. RNA sequencing and quantitative histomorphometry of liver fat, inflammation and fibrosis were performed on liver biopsies obtained from healthy normal-weight ( n = 14) and obese ( n = 12) individuals, NAFL ( n = 15) and NASH ( n = 16) patients. Normal-weight and obese subjects showed normal liver histology and comparable gene expression profiles. Liver transcriptome signatures were largely overlapping in NAFL and NASH patients, however, clearly separated from healthy normal-weight and obese controls. Most marked pathway perturbations identified in both NAFL and NASH were associated with markers of lipid metabolism, immunomodulation, extracellular matrix remodeling, and cell cycle control. Interestingly, NASH patients with positive Sonic hedgehog hepatocyte staining showed distinct transcriptome and histomorphometric changes compared with NAFL. In conclusion, application of immunohistochemical markers of hepatocyte injury may serve as a more objective tool for distinguishing NASH from NAFL, facilitating improved resolution of hepatic molecular changes associated with progression of NAFLD. NEW & NOTEWORTHY Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in Western countries. NAFLD is associated with the metabolic syndrome and can progress to the more serious form, nonalcoholic steatohepatitis (NASH), and ultimately lead to irreversible liver damage. Using gold standard molecular and histological techniques, this study demonstrates that the currently used diagnostic tools are problematic for differentiating mild NAFLD from NASH and emphasizes the marked need for developing improved histological markers of NAFLD progression.
Collapse
Affiliation(s)
- Malte P Suppli
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | - Sara Heebøll
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | - Mia Demant
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jonatan I Bagger
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | | | - Asger Lund
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Charlotte Strandberg
- Department of Radiology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Merete J Kønig
- Department of Radiology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Tina Vilsbøll
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | | | - Karen L Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus , Denmark
| | | | | | - Filip K Knop
- Department of Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
19
|
Costain AH, MacDonald AS, Smits HH. Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Front Immunol 2018; 9:3042. [PMID: 30619372 PMCID: PMC6306409 DOI: 10.3389/fimmu.2018.03042] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Many parasitic worms possess complex and intriguing life cycles, and schistosomes are no exception. To exit the human body and progress to their successive snail host, Schistosoma mansoni eggs must migrate from the mesenteric vessels, across the intestinal wall and into the feces. This process is complex and not always successful. A vast proportion of eggs fail to leave their definite host, instead becoming lodged within intestinal or hepatic tissue, where they can evoke potentially life-threatening pathology. Thus, to maximize the likelihood of successful egg passage whilst minimizing host pathology, intriguing egg exit strategies have evolved. Notably, schistosomes actively exert counter-inflammatory influences on the host immune system, discreetly compromise endothelial and epithelial barriers, and modulate granuloma formation around transiting eggs, which is instrumental to their migration. In this review, we discuss new developments in our understanding of schistosome egg migration, with an emphasis on S. mansoni and the intestine, and outline the host-parasite interactions that are thought to make this process possible. In addition, we explore the potential immune implications of egg penetration and discuss the long-term consequences for the host of unsuccessful egg transit, such as fibrosis, co-infection and cancer development.
Collapse
Affiliation(s)
- Alice H. Costain
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Hanna A, Metge BJ, Bailey SK, Chen D, Chandrashekar DS, Varambally S, Samant RS, Shevde LA. Inhibition of Hedgehog signaling reprograms the dysfunctional immune microenvironment in breast cancer. Oncoimmunology 2018; 8:1548241. [PMID: 30723576 PMCID: PMC6350695 DOI: 10.1080/2162402x.2018.1548241] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023] Open
Abstract
Host responses to tumor cells include tumor suppressing or promoting mechanisms. We sought to detail the effect of Hedgehog (Hh) pathway inhibition on the composition of the mammary tumor immune portfolio. We hypothesized that Hh signaling mediates a crosstalk between breast cancer cells and macrophages that dictates alternative polarization of macrophages and consequently supports a tumor-promoting microenvironment. We used an immunocompetent, syngeneic mouse mammary cancer model to inhibit Hh signaling with the pharmacological inhibitor, Vismodegib. Using molecular and functional assays, we identified that Hedgehog (Hh) signaling mediates a molecular crosstalk between mammary cancer cells and macrophages that culminates in alternative polarization of macrophages. We carried out an unbiased kinomics and genomics assessment to unravel changes in global kinomic and gene signatures impacted by Hh signaling. Our investigations reveal that in an immunocompetent mammary cancer model, the administration of Vismodegib led to changes in the portfolio of tumor-infiltrating immune cells. This was characterized by a marked reduction in immune-suppressive innate and adaptive cells concomitant with an enrichment of cytotoxic immune cells. Breast cancer cells induce M2 polarization of macrophages via a crosstalk mediated by Hh ligands that alters critical kinomic and genomic signatures. Macrophage depletion improved the benefit of Hedgehog inhibition on eliciting an immunogenic, pro-inflammatory profile. We define a novel role for Hh signaling in disabling anti-tumor immunity. Inhibition of Hh signaling presents with dual advantages of tumor cell-targeting as well as re-educating a dysfunctional tumor microenvironment.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah K. Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Kamdem SD, Moyou-Somo R, Brombacher F, Nono JK. Host Regulators of Liver Fibrosis During Human Schistosomiasis. Front Immunol 2018; 9:2781. [PMID: 30546364 PMCID: PMC6279936 DOI: 10.3389/fimmu.2018.02781] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a wound-healing process purposely aimed at restoring organ integrity after severe injury caused by autoimmune reactions, mechanical stress or infections. The uncontrolled solicitation of this process is pathogenic and a pathognomonic feature of diseases like hepatosplenic schistosomiasis where exacerbated liver fibrosis is centrally positioned among the drivers of the disease morbidity and mortality. Intriguingly, however, liver fibrosis occurs and progresses dissimilarly in schistosomiasis-diseased individuals with the same egg burden and biosocial features including age, duration of residence in the endemic site and gender. This suggests that parasite-independent and currently poorly defined host intrinsic factors might play a defining role in the regulation of liver fibrosis, the hallmark of morbidity, during schistosomiasis. In this review, we therefore provide a comprehensive overview of all known host candidate regulators of liver fibrosis reported in the context of human schistosomiasis.
Collapse
Affiliation(s)
- Severin Donald Kamdem
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Center, Cape Town, South Africa
| | - Roger Moyou-Somo
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Frank Brombacher
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Center, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Justin Komguep Nono
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Center, Cape Town, South Africa
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| |
Collapse
|
22
|
Swart M, Troeberg L. Effect of Polarization and Chronic Inflammation on Macrophage Expression of Heparan Sulfate Proteoglycans and Biosynthesis Enzymes. J Histochem Cytochem 2018; 67:9-27. [PMID: 30205019 DOI: 10.1369/0022155418798770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans on immune cells have the ability to bind to and regulate the bioactivity more than 400 bioactive protein ligands, including many chemokines, cytokines, and growth factors. This makes them important regulators of the phenotype and behavior of immune cells. Here we review how HS biosynthesis in macrophages is regulated during polarization and in chronic inflammatory diseases such as rheumatoid arthritis, atherosclerosis, asthma, chronic obstructive pulmonary disease and obesity, by analyzing published micro-array data and mechanistic studies in this area. We describe that macrophage expression of many HS biosynthesis and core proteins is strongly regulated by macrophage polarization, and that these expression patterns are recapitulated in chronic inflammation. Such changes in HS biosynthetic enzyme expression are likely to have a significant impact on the phenotype of macrophages in chronic inflammatory diseases by altering their interactions with chemokines, cytokines, and growth factors.
Collapse
Affiliation(s)
- Maarten Swart
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Verdelho Machado M, Diehl AM. The hedgehog pathway in nonalcoholic fatty liver disease. Crit Rev Biochem Mol Biol 2018; 53:264-278. [PMID: 29557675 DOI: 10.1080/10409238.2018.1448752] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of obesity-associated liver diseases and it has become the major cause of cirrhosis in the Western world. The high prevalence of NAFLD-associated advanced liver disease reflects both the high prevalence of obesity-related fatty liver (hepatic steatosis) and the lack of specific treatments to prevent hepatic steatosis from progressing to more serious forms of liver damage, including nonalcoholic steatohepatitis (NASH), cirrhosis, and primary liver cancer. The pathogenesis of NAFLD is complex, and not fully understood. However, compelling evidence demonstrates that dysregulation of the hedgehog (Hh) pathway is involved in both the pathogenesis of hepatic steatosis and the progression from hepatic steatosis to more serious forms of liver damage. Inhibiting hedgehog signaling enhances hepatic steatosis, a condition which seldom results in liver-related morbidity or mortality. In contrast, excessive Hh pathway activation promotes development of NASH, cirrhosis, and primary liver cancer, the major causes of liver-related deaths. Thus, suppressing excessive Hh pathway activity is a potential approach to prevent progressive liver damage in NAFLD. Various pharmacologic agents that inhibit Hh signaling are available and approved for cancer therapeutics; more are being developed to optimize the benefits and minimize the risks of inhibiting this pathway. In this review we will describe the Hh pathway, summarize the evidence for its role in NAFLD evolution, and discuss the potential role for Hh pathway inhibitors as therapies to prevent NASH, cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- a Division of Gastroenterology, Department of Medicine , Duke University Medical Center , Durham , NC , USA.,b Department of Gastroenterology , Hospital de Santa Maria, CHLN , Lisbon , Portugal
| | - Anna Mae Diehl
- a Division of Gastroenterology, Department of Medicine , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
24
|
Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018; 68:550-562. [PMID: 29107151 PMCID: PMC5957514 DOI: 10.1016/j.jhep.2017.10.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Liver disease remains a leading cause of mortality worldwide despite recent successes in the field of viral hepatitis, because increases in alcohol consumption and obesity are fuelling an epidemic of chronic fatty liver disease for which there are currently no effective medical therapies. About 20% of individuals with chronic liver injury ultimately develop end-stage liver disease due to cirrhosis. Hence, treatments to prevent and reverse cirrhosis in individuals with ongoing liver injury are desperately needed. The development of successful treatments requires an improved understanding of the mechanisms controlling liver disease progression. The liver responds to diverse insults with a conserved wound healing response, suggesting that it might be generally beneficial to optimise pathways that are crucial for effective liver repair. The Hedgehog pathway has emerged as a potential target based on compelling preclinical and clinical data, which demonstrate that it critically regulates the liver's response to injury. Herein, we will summarise evidence of the Hedgehog pathway's role in liver disease and discuss how modulating pathway activity might be applied to improve liver disease outcomes.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Shen X, Peng Y, Li H. The Injury-Related Activation of Hedgehog Signaling Pathway Modulates the Repair-Associated Inflammation in Liver Fibrosis. Front Immunol 2017; 8:1450. [PMID: 29163520 PMCID: PMC5681491 DOI: 10.3389/fimmu.2017.01450] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis is a wound healing response initiated by inflammation responding for different iterative parenchymal damages caused by diverse etiologies. Immune cells, which exert their ability of either inducing injury or promoting repair, have been regarded as crucial participants in the fibrogenic response. A characteristic feature of the fibrotic microenvironment associated with chronic liver injury is aberrant activation of hedgehog (Hh) signaling pathway. Growing evidence from a number of different studies in vivo and in vitro has indicated that immune-mediated events involved in liver fibrogenesis are regulated by Hh signaling pathway. In this review, we emphasize the impacts of injury-activated Hh signaling on liver fibrogenesis through modulating repair-related inflammation and focus on the regulatory action of aberrant Hh signaling on repair-related inflammatory responses mediated by hepatic classical and non-classical immune cell populations in the progression of liver fibrosis. Moreover, we also assess the potentiality of Hh pathway inhibitors as good candidates for anti-fibrotic therapeutic agents because of their immune regulation actions for fibrogenic liver repair. The identification of immune-modulatory mechanisms of Hh signaling pathway underlying the fibrotic process of chronic liver diseases might provide a basis for Hh-centered therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Xin Shen
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu Peng
- Department of Information Engineering, Hubei University of Chinese Medicine, Wuhan, China
| | - Hanmin Li
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
26
|
Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M. Emerging concepts in biliary repair and fibrosis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G102-G116. [PMID: 28526690 PMCID: PMC5582882 DOI: 10.1152/ajpgi.00452.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 01/31/2023]
Abstract
Chronic diseases of the biliary tree (cholangiopathies) represent one of the major unmet needs in clinical hepatology and a significant knowledge gap in liver pathophysiology. The common theme in cholangiopathies is that the target of the disease is the biliary tree. After damage to the biliary epithelium, inflammatory changes stimulate a reparative response with proliferation of cholangiocytes and restoration of the biliary architecture, owing to the reactivation of a variety of morphogenetic signals. Chronic damage and inflammation will ultimately result in pathological repair with generation of biliary fibrosis and clinical progression of the disease. The hallmark of pathological biliary repair is the appearance of reactive ductular cells, a population of cholangiocyte-like epithelial cells of unclear and likely mixed origin that are able to orchestrate a complex process that involves a number of different cell types, under joint control of inflammatory and morphogenetic signals. Several questions remain open concerning the histogenesis of reactive ductular cells, their role in liver repair, their mechanism of activation, and the signals exchanged with the other cellular elements cooperating in the reparative process. This review contributes to the current debate by highlighting a number of new concepts derived from the study of the pathophysiology of chronic cholangiopathies, such as congenital hepatic fibrosis, biliary atresia, and Alagille syndrome.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy; .,Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut.,International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Carlo Spirli
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Massimiliano Cadamuro
- 3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| | - Romina Fiorotto
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Mario Strazzabosco
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| |
Collapse
|
27
|
Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE, de Almeida VM, de Paula Guerra DA, Pinheiro Dos Santos GS, Mintz A, Delbono O, Birbrair A. Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 2017; 427:6-11. [PMID: 28479340 PMCID: PMC6076854 DOI: 10.1016/j.ydbio.2017.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Pericytes heterogeneity is based on their morphology, distribution, and markers. It is well known that pericytes from different organs may have distinct embryonic sources. Yamazaki et al. (2017) using several transgenic mouse model reveal by cell-lineage tracing that pericytes are even more heterogeneous than previously appreciated. This study shows that pericytes from within the same tissue may be heterogeneous in their origin. Remarkably, a subpopulation of embryonic dermal pericytes derives from the hematopoietic lineage, an unexpected source. Reconstructing the lineage of pericytes is central to understanding development, and also for the diagnosis and treatment of diseases in which pericytes play important roles.
Collapse
Affiliation(s)
| | | | | | | | - Julia Peres Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Emília de Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
28
|
Possible antifibrotic effect of GDC-0449 (Vismodegib), a hedgehog-pathway inhibitor, in mice model of Schistosoma-induced liver fibrosis. Parasitol Int 2017; 66:545-554. [PMID: 28408356 DOI: 10.1016/j.parint.2017.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/18/2017] [Accepted: 04/07/2017] [Indexed: 12/29/2022]
Abstract
Liver fibrosis is a pathological process complicating schistosomiasis. It is an active process of continuous extracellular matrix accumulation. In Egypt, schistosomiasis re-infection is a continuing problem especially in rural areas. In this study we examined the antifibrotic effect of GDC-0449 (Vismodegib), a hedgehog-pathway inhibitor as a new molecular target for Schistosoma-induced liver fibrosis, in addition to exploring its effect as antischistosomal drug. The effect of GDC-0449 alone or combined with Praziquantel was tried experimentally in infected mice with Schistosoma mansoni. Fifty CD-1 Swiss female albino mice were used, forty mice were infected with Schistosoma mansoni cercariae. Animals were grouped into five groups; uninfected control, infected untreated, infected treated with Praziquantel (500mg/kg/day) for two days, infected treated with GDC-0449 (40mg/kg/day) for seven days, and infected treated with combined Praziquantel and GDC-0449. Parasitological and chemical parameters, hydroxyproline level and liver granuloma were assessed. Liver fibrosis was reduced significantly evidenced by reduced hydroxyproline levels [P<0.01 for combined (Praziquantel/GDC-0449) treatment groups, P<0.001 for GDC-0449-treated group]. Also, histopathological examination of liver tissues revealed that the mean diameter of granulomas was statistically reduced (P=0.001) with a reduction rate of 24.4% on treatment with GDC-0449. In GDC-0449/Praziquantel combined treatment group, number and mean diameter of the granulomas were reduced significantly P<0.001, and P=0.001 respectively. No antischistosomal effect was recorded for GDC-0449 in this study.
Collapse
|
29
|
Standing ASI, Yánez DC, Ross R, Crompton T, Furmanski AL. Frontline Science: Shh production and Gli signaling is activated in vivo in lung, enhancing the Th2 response during a murine model of allergic asthma. J Leukoc Biol 2017; 102:965-976. [PMID: 28235772 PMCID: PMC5597515 DOI: 10.1189/jlb.3hi1016-438rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/23/2017] [Accepted: 02/05/2017] [Indexed: 12/12/2022] Open
Abstract
Hh/Gli signals are received by multiple pulmonary and immune cell types in response to allergen inhalation in vivo; this autocrine/paracrine activation enhances Th2 immune responses. The pathophysiology of allergic asthma is driven by Th2 immune responses after aeroallergen inhalation. The mechanisms that initiate, potentiate, and regulate airway allergy are incompletely characterized. We have shown that Hh signaling to T cells, via downstream Gli transcription factors, enhances T cell conversion to a Th2 phenotype. In this study, we showed for the first time, to our knowledge, that Gli-dependent transcription is activated in T cells in vivo during murine AAD, a model for the immunopathology of asthma, and that genetic repression of Gli signaling in T cells decreases the differentiation and recruitment of Th2 cells to the lung. T cells were not the only cells that expressed activated Gli during AAD. A substantial proportion of eosinophils and lung epithelial cells, both central mediators of the immunopathology of asthma, also underwent Hh/Gli signaling. Finally, Shh increased Il-4 expression in eosinophils. We therefore propose that Hh signaling during AAD is complex, involving multiple cell types, signaling in an auto- or paracrine fashion. Improved understanding of the role of this major morphogenetic pathway in asthma may give rise to new drug targets for this chronic condition.
Collapse
Affiliation(s)
| | - Diana C Yánez
- Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rosie Ross
- School of Life Sciences, University of Bedfordshire, Luton, UK; and
| | - Tessa Crompton
- Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna L Furmanski
- School of Life Sciences, University of Bedfordshire, Luton, UK; and.,Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
30
|
de Oliveira FL, Carneiro K, Brito JM, Cabanel M, Pereira JX, Paiva LDA, Syn W, Henderson NC, El-Cheikh MC. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis. PLoS Negl Trop Dis 2017; 11:e0005137. [PMID: 28231240 PMCID: PMC5322873 DOI: 10.1371/journal.pntd.0005137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte-macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs, and Hh signaling during progressive liver fibrosis in S. mansoni-infected mice. Further studies focused on macrophage roles could elucidate these questions and clear the potential utility of these molecules as antifibrotic targets.
Collapse
Affiliation(s)
- Felipe Leite de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Marques Brito
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Cabanel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathas Xavier Pereira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ligia de Almeida Paiva
- Departmento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wingkin Syn
- Section of Gastroenterology, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Neil C. Henderson
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcia Cury El-Cheikh
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
31
|
Chronic hepatitis C infection-induced liver fibrogenesis is associated with M2 macrophage activation. Sci Rep 2016; 6:39520. [PMID: 28000758 PMCID: PMC5175173 DOI: 10.1038/srep39520] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/24/2016] [Indexed: 01/23/2023] Open
Abstract
The immuno-pathogenic mechanisms of chronic hepatitis C virus (HCV) infection remain to be elucidated and pose a major hurdle in treating or preventing chronic HCV-induced advanced liver diseases such as cirrhosis. Macrophages are a major component of the inflammatory milieu in chronic HCV–induced liver disease, and are generally derived from circulating inflammatory monocytes; however very little is known about their role in liver diseases. To investigate the activation and role of macrophages in chronic HCV–induced liver fibrosis, we utilized a recently developed humanized mouse model with autologous human immune and liver cells, human liver and blood samples and cell culture models of monocyte/macrophage and/or hepatic stellate cell activation. We showed that M2 macrophage activation was associated with liver fibrosis during chronic HCV infection in the livers of both humanized mice and patients, and direct-acting antiviral therapy attenuated M2 macrophage activation and associated liver fibrosis. We demonstrated that supernatant from HCV-infected liver cells activated human monocytes/macrophages with M2-like phenotypes. Importantly, HCV-activated monocytes/macrophages promoted hepatic stellate cell activation. These results suggest a critical role for M2 macrophage induction in chronic HCV-associated immune dysregulation and liver fibrosis.
Collapse
|
32
|
Pereira TA, Syn WK, Pereira FEL, Lambertucci JR, Secor WE, Diehl AM. Serum osteopontin is a biomarker of severe fibrosis and portal hypertension in human and murine schistosomiasis mansoni. Int J Parasitol 2016; 46:829-832. [PMID: 27729270 PMCID: PMC5584370 DOI: 10.1016/j.ijpara.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/29/2022]
Abstract
Schistosomiasis is a major cause of fibrosis and portal hypertension. The reason 4-10% of infected subjects develops hepatosplenic schistosomiasis remains unclear. Chronically infected male CBA/J mice reproduce the dichotomic forms of human schistosomiasis. Most mice (80%) develop moderate splenomegaly syndrome (similar to hepatointestinal disease in humans) and 20% present severe hypersplenomegaly syndrome (analogous to human hepatosplenic disease). We demonstrated that the profibrogenic molecule osteopontin discriminates between mice with severe and mild disease and could be a novel morbidity biomarker in murine and human schistosomiasis. Failure to downregulate osteopontin during the chronic phase may explain why hepatosplenic subjects develop severe fibrosis.
Collapse
Affiliation(s)
- Thiago Almeida Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA; Departamento de Clínica Médica, Laboratório de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Immunopathogesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wing-Kin Syn
- Liver Regeneration and Repair Research Group, Institute of Hepatology, Foundation for Liver Research, London, UK; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC, USA; Section of Gastroenterology, Ralph H Johnson Veteran Affairs Medical Center, Charleston, SC, USA
| | - Fausto E L Pereira
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - José Roberto Lambertucci
- Departamento de Clínica Médica, Laboratório de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
33
|
Liang R, Šumová B, Cordazzo C, Mallano T, Zhang Y, Wohlfahrt T, Dees C, Ramming A, Krasowska D, Michalska-Jakubus M, Distler O, Schett G, Šenolt L, Distler JHW. The transcription factor GLI2 as a downstream mediator of transforming growth factor-β-induced fibroblast activation in SSc. Ann Rheum Dis 2016; 76:756-764. [PMID: 27793816 DOI: 10.1136/annrheumdis-2016-209698] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/25/2016] [Accepted: 10/09/2016] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Hedgehog signalling plays a critical role during the pathogenesis of fibrosis in systemic sclerosis (SSc). Besides canonical hedgehog signalling with smoothened (SMO)-dependent activation of GLI transcription factors, GLI can be activated independently of classical hedgehog ligands and receptors (so-called non-canonical pathways). Here, we aimed to evaluate the role of non-canonical hedgehog signalling in SSc and to test the efficacy of direct GLI inhibitors that target simultaneously canonical and non-canonical hedgehog pathways. METHODS The GLI inhibitor GANT-61 was used to inhibit canonical as well as non-canonical hedgehog signalling, while the SMO inhibitor vismodegib was used to selectively target canonical hedgehog signalling. Furthermore, GLI2 was selectively depleted in fibroblasts using the Cre-LoxP system. The effects of pharmacological or genetic of GLI2 on transforming growth factor-β (TGF-β) signalling were analysed in cultured fibroblasts, in bleomycin-induced pulmonary fibrosis and in mice with overexpression of a constitutively active TGF-β receptor I. RESULTS TGF-β upregulated GLI2 in a Smad3-dependent manner and induced nuclear accumulation and DNA binding of GLI2. Fibroblast-specific knockout of GLI2 protected mice from TBRact-induced fibrosis. Combined targeting of canonical and non-canonical hedgehog signalling with direct GLI inhibitors exerted more potent antifibrotic effects than selective targeting of canonical hedgehog signalling with SMO inhibitors in experimental dermal and pulmonary fibrosis. CONCLUSIONS Our data demonstrate that hedgehog pathways and TGF-β signalling both converge to GLI2 and that GLI2 integrates those signalling to promote tissue fibrosis. These findings may have translational implications as non-selective inhibitors of GLI2 are in clinical use and selective molecules are currently in development.
Collapse
Affiliation(s)
- Ruifang Liang
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Barbora Šumová
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany.,Department of Clinical and Experimental Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Cinzia Cordazzo
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany.,Dipartimento Cardiotoracico e Vascolare, Laboratory of Respiratory Cell Biology, University of Pisa, Pisa, Italy
| | - Tatjana Mallano
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yun Zhang
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Wohlfahrt
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Poland
| | | | - Oliver Distler
- Rheumaklinik, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ladislav Šenolt
- Department of Clinical and Experimental Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Jörg H W Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
34
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Steatohepatitis. Gastroenterology 2016; 150:1769-77. [PMID: 26928243 PMCID: PMC4887389 DOI: 10.1053/j.gastro.2016.02.066] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/30/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a necro-inflammatory response that ensues when hepatocytes are injured by lipids (lipotoxicity). NASH is a potential outcome of nonalcoholic fatty liver (NAFL), a condition that occurs when lipids accumulate in hepatocytes. NASH may be reversible, but it can also result in cirrhosis and primary liver cancer. We are beginning to learn about the mechanisms of progression of NAFL and NASH. NAFL does not inevitably lead to NASH because NAFL is a heterogeneous condition. This heterogeneity exists because different types of lipids with different cytotoxic potential accumulate in the NAFL, and individuals with NAFL differ in their ability to defend against lipotoxicity. There are no tests that reliably predict which patients with NAFL will develop lipotoxicity. However, NASH encompasses the spectrum of wound-healing responses induced by lipotoxic hepatocytes. Differences in these wound-healing responses among individuals determine whether lipotoxic livers regenerate, leading to stabilization or resolution of NASH, or develop progressive scarring, cirrhosis, and possibly liver cancer. We review concepts that are central to the pathogenesis of NASH.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
35
|
Verdelho Machado M, Diehl AM. Role of Hedgehog Signaling Pathway in NASH. Int J Mol Sci 2016; 17:E857. [PMID: 27258259 PMCID: PMC4926391 DOI: 10.3390/ijms17060857] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual's response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
- Gastroenterology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte (CHLN), Lisboa 1649-035, Portugal.
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
36
|
Lisovsky A, Zhang DKY, Sefton MV. Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model. Biomaterials 2016; 98:203-14. [PMID: 27264502 DOI: 10.1016/j.biomaterials.2016.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 12/23/2022]
Abstract
Poly(methacrylic acid-co-methyl methacrylate) (MAA) beads promote a vascular regenerative response when used in diabetic wound healing. Previous studies reported that MAA beads modulated the expression of sonic hedgehog (Shh) and inflammation related genes in diabetic wounds. The aim of this work was to follow up on these observations in a subcutaneous injection model to study the host response in the absence of the confounding factors of diabetic wound healing. In this model, MAA beads improved vascularization in healthy mice of both sexes compared to control poly(methyl methacrylate) (MM) beads, with a stronger effect seen in males than females. MAA-induced vessels were perfusable, as evidenced from the CLARITY-processed images. In Shh-Cre-eGFP/Ptch1-LacZ non-diabetic transgenic mice, the increased vessel formation was accompanied by a higher density of cells expressing GFP (Shh) and β-Gal (patched 1, Ptch1) suggesting MAA enhanced the activation of the Shh pathway. Ptch1 is the Shh receptor and a target of the pathway. MAA beads also modulated the inflammatory cell infiltrate in CD1 mice: more neutrophils and more macrophages were noted with MAA relative to MM beads at days 1 and 7, respectively. In addition, MAA beads biased macrophages towards a MHCII-CD206+ ("M2") polarization state. This study suggests that the Shh pathway and an altered inflammatory response are two elements of the complex mechanism whereby MAA-based biomaterials effect vascular regeneration.
Collapse
Affiliation(s)
- Alexandra Lisovsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Suite 407, Toronto, Ontario, Canada M5S 3G9
| | - David K Y Zhang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Suite 407, Toronto, Ontario, Canada M5S 3G9
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Suite 407, Toronto, Ontario, Canada M5S 3G9; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 164 College Street, Suite 407, Toronto, Ontario, Canada M5S 3G9.
| |
Collapse
|
37
|
Macrophages and endothelial cells orchestrate tumor-associated angiogenesis in oral cancer via hedgehog pathway activation. Tumour Biol 2016; 37:9233-41. [DOI: 10.1007/s13277-015-4763-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/29/2015] [Indexed: 12/16/2022] Open
|
38
|
Guimarães Cavalcanti M, Marcello de Araujo‐Neto J, Mauro Peralta J. Schistosomiasis: Clinical management of liver disease. Clin Liver Dis (Hoboken) 2015; 6:59-62. [PMID: 31040989 PMCID: PMC6490649 DOI: 10.1002/cld.495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Marta Guimarães Cavalcanti
- Infectious and Parasitic Diseases ServiceHospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil,Department of ImmunologyInstituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - João Marcello de Araujo‐Neto
- Department of Clinical Medicine, Faculdade de MedicinaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - José Mauro Peralta
- Department of ImmunologyInstituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
39
|
Schistosome-induced cholangiocyte proliferation and osteopontin secretion correlate with fibrosis and portal hypertension in human and murine schistosomiasis mansoni. Clin Sci (Lond) 2015. [PMID: 26201095 PMCID: PMC4558314 DOI: 10.1042/cs20150117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schistosomal egg antigens induce host bile ductular cells to proliferate and produce osteopontin (OPN), a pro-fibrogenic factor that stimulates hepatic stellate cells to become myofibroblasts. The numbers of OPN-producing bile ductules correlate with fibrogenesis and portal hypertension in humans and mice. Schistosomiasis is a major cause of portal hypertension worldwide. It associates with portal fibrosis that develops during chronic infection. The mechanisms by which the pathogen evokes these host responses remain unclear. We evaluated the hypothesis that schistosome eggs release factors that directly stimulate liver cells to produce osteopontin (OPN), a pro-fibrogenic protein that stimulates hepatic stellate cells to become myofibroblasts. We also investigated the utility of OPN as a biomarker of fibrosis and/or severity of portal hypertension. Cultured cholangiocytes, Kupffer cells and hepatic stellate cells were treated with soluble egg antigen (SEA); OPN production was quantified by quantitative reverse transcriptase polymerase chain reaction (qRTPCR) and ELISA; cell proliferation was assessed by BrdU (5-bromo-2'-deoxyuridine). Mice were infected with Schistosoma mansoni for 6 or 16 weeks to cause early or advanced fibrosis. Liver OPN was evaluated by qRTPCR and immunohistochemistry (IHC) and correlated with liver fibrosis and serum OPN. Livers from patients with schistosomiasis mansoni (early fibrosis n=15; advanced fibrosis n=72) or healthy adults (n=22) were immunostained for OPN and fibrosis markers. Results were correlated with plasma OPN levels and splenic vein pressures. SEA-induced cholangiocyte proliferation and OPN secretion (P<0.001 compared with controls). Cholangiocytes were OPN (+) in Schistosoma-infected mice and humans. Liver and serum OPN levels correlated with fibrosis stage (mice: r=0.861; human r=0.672, P=0.0001) and myofibroblast accumulation (mice: r=0.800; human: r=0.761, P=0.0001). Numbers of OPN (+) bile ductules strongly correlated with splenic vein pressure (r=0.778; P=0.001). S. mansoni egg antigens stimulate cholangiocyte proliferation and OPN secretion. OPN levels in liver and blood correlate with fibrosis stage and portal hypertension severity.
Collapse
|
40
|
Matz-Soja M, Gebhardt R. The many faces of Hedgehog signalling in the liver: recent progress reveals striking cellular diversity and the importance of microenvironments. J Hepatol 2014; 61:1449-50. [PMID: 25152210 DOI: 10.1016/j.jhep.2014.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/14/2014] [Accepted: 06/08/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
41
|
Yang JJ, Tao H, Li J. Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives. Expert Opin Ther Targets 2014; 18:1011-21. [PMID: 24935558 DOI: 10.1517/14728222.2014.927443] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the hedgehog signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. AREAS COVERED The aim of this review is to describe the present knowledge about the hedgehog signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of hedgehog signaling pathway research. Moreover, we will discuss the different interactions with hedgehog signaling pathway-regulated liver fibrosis. EXPERT OPINION The hedgehog pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the hedgehog pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of hedgehog signaling pathway activation in liver fibrosis and HSC fate, including DNA methylation, methyl CpG binding protein 2, microRNA, irradiation and metabolism that influence hedgehog signaling pathway transduction. These findings identify the hedgehog pathway as a potentially important for biomarker development and therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective hedgehog-based drugs.
Collapse
Affiliation(s)
- Jing-Jing Yang
- The Second Hospital of Anhui Medical University, Department of Pharmacology , Hefei 230601 , China
| | | | | |
Collapse
|
42
|
Lambertucci JR. Revisiting the concept of hepatosplenic schistosomiasis and its challenges using traditional and new tools. Rev Soc Bras Med Trop 2014; 47:130-6. [PMID: 24861284 DOI: 10.1590/0037-8682-0186-2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/22/2014] [Indexed: 12/19/2022] Open
Abstract
Different aspects of hepatosplenic schistosomiasis are revisited here. Manson's schistosomiasis causes periportal fibrosis and portal hypertension in approximately 6% of infected subjects, usually with preservation of their hepatic function. The assessment of liver involvement is of major importance in determining the prognosis and risk of complications from schistosomiasis, such as upper digestive bleeding secondary to variceal rupture. For many years, the diagnosis of hepatosplenic schistosomiasis and liver fibrosis was made by abdominal palpation and the finding of liver and/or spleen enlargement. However, there is no consensus regarding the clinical parameters of the liver and spleen to be considered in this physical evaluation. For the last three decades, abdominal ultrasound (US) has become the best imaging technique to evaluate liver fibrosis caused by schistosomiasis mansoni. However, US is a subjective procedure and is therefore examiner-dependent. Magnetic resonance imaging (MRI) findings have provided valuable information in addition to ultrasound and clinical examination. The combination of a comprehensive history and physical examination, basic laboratory tests (a stool examination for Schistosoma mansoni eggs and a blood cell count), biomarkers for liver fibrosis/portal hypertension and imaging methods seem to offer the best approach for evaluating patients with this disease. In situations where research is involved or in patients with severe disease, MRI may be considered.
Collapse
Affiliation(s)
- José Roberto Lambertucci
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BRAZIL
| |
Collapse
|
43
|
Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, Zhang L, Tu Z, Gao Y, Fu Y, Niu J, Wang F, Su L. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog 2014; 10:e1004032. [PMID: 24651854 PMCID: PMC3961374 DOI: 10.1371/journal.ppat.1004032] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/12/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology.
Collapse
Affiliation(s)
- Moses T. Bility
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (MTB); (LS)
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zheng Zhang
- Center of Infectious Disease, Beijing 302 Hospital, Beijing, China
| | - Yan Luan
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Feng Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liqun Chi
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liguo Zhang
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhengkun Tu
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Translational Medicine, Department of Surgery, Department of Medicine, the First Hospital, Jilin University, Changchun, Jilin, China
| | - Yanhang Gao
- Department of Translational Medicine, Department of Surgery, Department of Medicine, the First Hospital, Jilin University, Changchun, Jilin, China
| | - Yangxin Fu
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Junqi Niu
- Department of Translational Medicine, Department of Surgery, Department of Medicine, the First Hospital, Jilin University, Changchun, Jilin, China
| | - Fusheng Wang
- Center of Infectious Disease, Beijing 302 Hospital, Beijing, China
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Translational Medicine, Department of Surgery, Department of Medicine, the First Hospital, Jilin University, Changchun, Jilin, China
- * E-mail: (MTB); (LS)
| |
Collapse
|
44
|
Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 2014; 35:4477-88. [PMID: 24589361 DOI: 10.1016/j.biomaterials.2014.02.012] [Citation(s) in RCA: 645] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/07/2014] [Indexed: 12/27/2022]
Abstract
Angiogenesis is crucial for the success of most tissue engineering strategies. The natural inflammatory response is a major regulator of vascularization, through the activity of different types of macrophages and the cytokines they secrete. Macrophages exist on a spectrum of diverse phenotypes, from "classically activated" M1 to "alternatively activated" M2 macrophages. M2 macrophages, including the subsets M2a and M2c, are typically considered to promote angiogenesis and tissue regeneration, while M1 macrophages are considered to be anti-angiogenic, although these classifications are controversial. Here we show that in contrast to this traditional paradigm, primary human M1 macrophages secrete the highest levels of potent angiogenic stimulators including VEGF; M2a macrophages secrete the highest levels of PDGF-BB, a chemoattractant for stabilizing pericytes, and also promote anastomosis of sprouting endothelial cells in vitro; and M2c macrophages secrete the highest levels of MMP9, an important protease involved in vascular remodeling. In a murine subcutaneous implantation model, porous collagen scaffolds were surrounded by a fibrous capsule, coincident with high expression of M2 macrophage markers, while scaffolds coated with the bacterial lipopolysaccharide were degraded by inflammatory macrophages, and glutaraldehyde-crosslinked scaffolds were infiltrated by substantial numbers of blood vessels, accompanied by high levels of M1 and M2 macrophages. These results suggest that coordinated efforts by both M1 and M2 macrophages are required for angiogenesis and scaffold vascularization, which may explain some of the controversy over which phenotype is the angiogenic phenotype.
Collapse
Affiliation(s)
- Kara L Spiller
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA; School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | - Rachel R Anfang
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Krista J Spiller
- Department of Pathology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Johnathan Ng
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Kenneth R Nakazawa
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Jeffrey W Daulton
- Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
45
|
Machado MV, Diehl AM. Liver renewal: detecting misrepair and optimizing regeneration. Mayo Clin Proc 2014; 89:120-30. [PMID: 24388030 DOI: 10.1016/j.mayocp.2013.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Cirrhosis and liver cancer, the main causes of liver-related morbidity and mortality, result from defective repair of liver injury. This article summarizes rapidly evolving knowledge about liver myofibroblasts and progenitors, the 2 key cell types that interact to orchestrate effective repair, because deregulation of these cells is likely to be central to the pathogenesis of both cirrhosis and liver cancer. We focus on cirrhosis pathogenesis because cirrhosis is the main risk factor for primary liver cancer. Emerging evidence suggests that the defective repair process has certain characteristics that might be exploited for biomarker development. Recent findings in preclinical models also indicate that the newly identified cellular and molecular targets are amenable to therapeutic manipulation. Thus, recent advances in our understanding about key cell types and fundamental mechanisms that regulate liver regeneration have opened new avenues to improve the outcomes of liver injury. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01899859.
Collapse
Affiliation(s)
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, NC.
| |
Collapse
|
46
|
Engevik AC, Feng R, Yang L, Zavros Y. The acid-secreting parietal cell as an endocrine source of Sonic Hedgehog during gastric repair. Endocrinology 2013; 154:4627-39. [PMID: 24092639 PMCID: PMC3836061 DOI: 10.1210/en.2013-1483] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sonic Hedgehog (Shh) has been shown to regulate wound healing in various tissues. Despite its known function in tissue regeneration, the role of Shh secreted from the gastric epithelium during tissue repair in the stomach remains unknown. Here we tested the hypothesis that Shh secreted from the acid-secreting parietal cell is a fundamental circulating factor that drives gastric repair. A mouse model expressing a parietal cell-specific deletion of Shh (PC-ShhKO) was generated using animals bearing loxP sites flanking exon 2 of the Shh gene (Shh(flx/flx)) and mice expressing a Cre transgene under the control of the H(+),K(+)-ATPase β-subunit promoter. Shh(flx/flx), the H(+),K(+)-ATPase β-subunit promoter, and C57BL/6 mice served as controls. Ulcers were induced via acetic acid injury. At 1, 2, 3, 4, 5, and 7 days after the ulcer induction, gastric tissue and blood samples were collected. Parabiosis experiments were used to establish the effect of circulating Shh on ulcer repair. Control mice exhibited an increased expression of Shh in the gastric tissue and plasma that correlated with the repair of injury within 7 days after surgery. PC-ShhKO mice showed a loss of ulcer repair and reduced Shh tissue and plasma concentrations. In a parabiosis experiment whereby a control mouse was paired with a PC-ShhKO littermate and both animals subjected to gastric injury, a significant increase in the circulating Shh was measured in both parabionts. Elevated circulating Shh concentrations correlated with the repair of gastric ulcers in the PC-ShhKO parabionts. Therefore, the acid-secreting parietal cell within the stomach acts as an endocrine source of Shh during repair.
Collapse
Affiliation(s)
- Amy C Engevik
- PhD, Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Room 4255 MSB, Cincinnati, Ohio 45267-0576.
| | | | | | | |
Collapse
|
47
|
Infection: Activation of Hedgehog pathway promotes fibrogenesis and vascular remodelling in human schistosomiasis. Nat Rev Gastroenterol Hepatol 2012; 9:689. [PMID: 23090327 DOI: 10.1038/nrgastro.2012.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|