1
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2024:10.1007/s00204-024-03889-x. [PMID: 39443317 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
van den Boom R, Vergauwen L, Koedijk N, da Silva KM, Covaci A, Knapen D. Combined western diet and bisphenol A exposure induces an oxidative stress-based paraoxonase 1 response in larval zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109758. [PMID: 37757927 DOI: 10.1016/j.cbpc.2023.109758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme linked to metabolic disorders by genome-wide association studies in humans. Exposure to metabolic disrupting chemicals (MDCs) such as bisphenol A (BPA), together with genetic and dietary factors, can increase the risk of metabolic disorders. The objective of this study was to investigate how PON1 responds to the metabolic changes and oxidative stress caused by a western diet, and whether exposure to BPA alters the metabolic and PON1 responses. Zebrafish larvae at 14 days post fertilization were fed a custom-made western diet with and without aquatic exposure to two concentrations of BPA for 5 days. A combination of western diet and 150 μg/L BPA exposure resulted in a stepwise increase in weight, length and oxidative stress, suggesting that BPA amplifies the western diet-induced metabolic shift. PON1 arylesterase activity was increased in all western diet and BPA exposure groups and PON1 lactonase activity was increased when western diet was combined with exposure to 1800 μg/L BPA. Both PON1 activities were positively correlated to oxidative stress. Based on our observations we hypothesize that a western diet caused a shift towards fatty acid-based metabolism, which was increased by BPA exposure. This shift resulted in increased oxidative stress, which in turn was associated with a PON1 activity increase as an antioxidant response. This is the first exploration of PON1 responses to metabolic challenges in zebrafish, and the first study of PON1 in the context of MDC exposure in vertebrates.
Collapse
Affiliation(s)
- Rik van den Boom
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Noortje Koedijk
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Katyeny Manuela da Silva
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium.
| |
Collapse
|
3
|
Castañé H, Jiménez-Franco A, Martínez-Navidad C, Placed-Gallego C, Cambra-Cortés V, Perta AM, París M, del Castillo D, Arenas M, Camps J, Joven J. Serum Arylesterase, Paraoxonase, and Lactonase Activities and Paraoxonase-1 Concentrations in Morbidly Obese Patients and Their Relationship with Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2023; 12:2038. [PMID: 38136158 PMCID: PMC10741051 DOI: 10.3390/antiox12122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Paraoxonase-1 (PON1) is an antioxidant enzyme associated with high-density lipoproteins (HDL). Reduced serum PON1 activity is found in diseases marked by oxidative stress and inflammation, but its role in obesity remains unclear. This study investigated PON1 activities and concentrations in morbidly obese individuals and explored the impacts of the genetic polymorphism PON1 rs662 and non-alcoholic fatty liver disease on enzymatic properties. We recruited 1349 morbidly obese patients undergoing bariatric surgery and 823 non-obese volunteers. PON1-related variables, including arylesterase, paraoxonase, and lactonase activities and PON1 concentrations, were examined. Our results showed that morbidly obese individuals exhibited higher PON1 concentrations but lower enzymatic activities than non-obese individuals. We observed inverse associations of arylesterase and paraoxonase activities with waist circumference (rho = -0.24, p < 0.001, and rho = -0.30, p < 0.001, respectively) and body mass index (rho = -0.15, p = 0.001, and rho = -0.23, p < 0.001), as well as direct associations of arylesterase, paraoxonase, and lactonase activities with HDL cholesterol (rho = 0.11, p = 0.005, rho = 0.20, p < 0.001, and rho = 0.20, p < 0.001). No significant differences were observed regarding metabolic syndrome, type 2 diabetes mellitus, hypertension, dyslipidemia, rs662 polymorphism allele frequencies, or the diagnosis of non-alcoholic steatohepatitis. Nevertheless, correlations were found between certain PON1-related variables, steatosis, and ballooning. In conclusion, changes in PON1-related variables in morbidly obese patients are dependent on the disease itself and HDL levels. The relationships between these variables and specific liver histological changes raise intriguing questions for consideration in future studies.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Cristian Martínez-Navidad
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Cristina Placed-Gallego
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Vicente Cambra-Cortés
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Adelina-Miruna Perta
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Marta París
- Department of Bariatric Surgery, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (M.P.); (D.d.C.)
| | - Daniel del Castillo
- Department of Bariatric Surgery, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (M.P.); (D.d.C.)
| | - Meritxell Arenas
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| | - Jorge Joven
- Unitat de Recerca Biomédica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, 43204 Reus, Spain; (H.C.); (A.J.-F.); (C.M.-N.); (C.P.-G.); (V.C.-C.); (A.-M.P.); (M.A.)
| |
Collapse
|
4
|
Winans T, Oaks Z, Choudhary G, Patel A, Huang N, Faludi T, Krakko D, Nolan J, Lewis J, Blair S, Lai Z, Landas SK, Middleton F, Asara JM, Chung SK, Wyman B, Azadi P, Banki K, Perl A. mTOR-dependent loss of PON1 secretion and antiphospholipid autoantibody production underlie autoimmunity-mediated cirrhosis in transaldolase deficiency. J Autoimmun 2023; 140:103112. [PMID: 37742509 PMCID: PMC10957505 DOI: 10.1016/j.jaut.2023.103112] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Transaldolase deficiency predisposes to chronic liver disease progressing from cirrhosis to hepatocellular carcinoma (HCC). Transition from cirrhosis to hepatocarcinogenesis depends on mitochondrial oxidative stress, as controlled by cytosolic aldose metabolism through the pentose phosphate pathway (PPP). Progression to HCC is critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Although AR inactivation blocked susceptibility to hepatocarcinogenesis, it enhanced growth restriction, carbon trapping in the non-oxidative branch of the PPP and failed to reverse the depletion of glucose 6-phosphate (G6P) and liver cirrhosis. Here, we show that inactivation of the TAL-AR axis results in metabolic stress characterized by reduced mitophagy, enhanced overall autophagy, activation of the mechanistic target of rapamycin (mTOR), diminished glycosylation and secretion of paraoxonase 1 (PON1), production of antiphospholipid autoantibodies (aPL), loss of CD161+ NK cells, and expansion of CD38+ Ito cells, which are responsive to treatment with rapamycin in vivo. The present study thus identifies glycosylation and secretion of PON1 and aPL production as mTOR-dependent regulatory checkpoints of autoimmunity underlying liver cirrhosis in TAL deficiency.
Collapse
Affiliation(s)
- T Winans
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - Z Oaks
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - G Choudhary
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - A Patel
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - N Huang
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - T Faludi
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - D Krakko
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - J Nolan
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - J Lewis
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - Sarah Blair
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - Z Lai
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - S K Landas
- Departments of Pathology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - F Middleton
- Departments of Neuroscience, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - J M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S K Chung
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - B Wyman
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - P Azadi
- University of Georgia, Athens, GA 30602, USA
| | - K Banki
- Departments of Pathology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA
| | - A Perl
- Departments of Medicine, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Microbiology and Immunology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA; Departments of Biochemistry and Molecular Biology, State University of New York, Norton College of Medicine, Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Kosmalski M, Szymczak-Pajor I, Drzewoski J, Śliwińska A. Non-Alcoholic Fatty Liver Disease Is Associated with a Decreased Catalase (CAT) Level, CT Genotypes and the T Allele of the -262 C/T CAT Polymorphism. Cells 2023; 12:2228. [PMID: 37759451 PMCID: PMC10527641 DOI: 10.3390/cells12182228] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND It is well known that oxidative stress plays an important role in the development of non-alcoholic fatty liver disease (NAFLD). It has been suggested that an insufficient antioxidant defense system composed of antioxidant enzymes, including catalase (CAT) and nonenzymatic molecules, is a key factor triggering oxidative damage in the progression of liver disease. Therefore, the aim of our study was to assess whether the level of CAT and -262 C/T polymorphism in the promoter of CAT (rs1001179) are associated with NAFLD. METHODS In total, 281 adults (152/129 female/male, aged 65.61 ± 10.44 years) were included in the study. The patients were assigned to an NAFLD group (n = 139) or a group without NAFLD (n = 142) based on the results of an ultrasound, the Hepatic Steatosis Index, and the Fatty Liver Index (FLI). CAT levels were determined using an ELISA test, and genomic DNA was extracted via the standard phenol/chloroform-based method and genotyped via RFLP-PCR. RESULTS The CAT level was decreased in NAFLD patients (p < 0.001), and an ROC analysis revealed that a CAT level lower than 473.55 U/L significantly increases the risk of NAFLD. In turn, genotyping showed that the CT genotype and the T allele of -262 C/T CAT polymorphism elevate the risk of NAFLD. The diminished CAT level in the NAFLD group correlated with increased FLI, waist circumference and female gender. CONCLUSION The obtained results support observations that oxidative damage associated with NAFLD may be the result of a decreased CAT level as a part of the antioxidant defense system.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (I.S.-P.); (A.Ś.)
| | - Józef Drzewoski
- Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (I.S.-P.); (A.Ś.)
| |
Collapse
|
6
|
Meng X, Peng L, Xu J, Guo D, Cao W, Xu Y, Li S. Betaine attenuate chronic restraint stress-induced changes in testicular damage and oxidative stress in male mice. Reprod Biol Endocrinol 2022; 20:80. [PMID: 35597951 PMCID: PMC9123792 DOI: 10.1186/s12958-022-00949-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
SCOPE Male fertility and sperm quality are negatively affected by psychological stress. Chronic restraint stress (CRS) is a common psychological stress that has a negative effect on sperm. Betaine (BET), an active ingredient isolated from Lycium barbarum, has anti-oxidant, anti-inflammatory and other pharmacological activities. This study aims to explore whether betaine has a therapeutic effect on sperm deformity and vitality under CRS and its mechanism. METHODS AND RESULTS Chronic restraint stress was induced in 8-week-old male C57BL/6 J mice by fixation for 6 h a day for 35 days. Mice were intraperitoneally injected with betaine (BET) or normal saline (NS) for 14 days. Thirty-five days later, the animals were sacrificed. The results showed that the detrimental effects of CRS on testes as evident by disrupted histoarchitecture, increased oxidative stress, inflammation and apoptosis that compromised male fertility. BET injections can reverse these symptoms. CONCLUSIONS BET can improve spermatogenesis dysfunction caused by CRS, which may provide potential dietary guidance.
Collapse
Affiliation(s)
- Xingqi Meng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lixuan Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Xu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dongming Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yang Xu
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Suyun Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
A targeted multi-omics approach reveals paraoxonase-1 as a determinant of obesity-associated fatty liver disease. Clin Epigenetics 2021; 13:158. [PMID: 34389043 PMCID: PMC8360816 DOI: 10.1186/s13148-021-01142-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Background The multifactorial nature of non-alcoholic fatty liver disease cannot be explained solely by genetic factors. Recent evidence revealed that DNA methylation changes take place at proximal promoters within susceptibility genes. This emphasizes the need for integrating multiple data types to provide a better understanding of the disease’s pathogenesis. One such candidate gene is paraoxonase-1 (PON1). Substantial interindividual differences in PON1 are apparent and could influence disease risk later in life. The aim of this study was therefore to determine the different regulatory aspects of PON1 variability and to examine them in relation to the predisposition to obesity-associated fatty liver disease.
Results A targeted multi-omics approach was applied to investigate the interplay between PON1 genetic variants, promoter methylation, expression profile and enzymatic activity in an adult patient cohort with extensive metabolic and hepatic characterisation including liver biopsy. Alterations in PON1 status were shown to correlate with waist-to-hip ratio and relevant features of liver pathology. Particularly, the regulatory polymorphism rs705379:C > T was strongly associated with more severe liver disease. Multivariable data analysis furthermore indicated a significant association of combined genetic and epigenetic PON1 regulation. This identified relationship postulates a role for DNA methylation as a mediator between PON1 genetics and expression, which is believed to further influence liver disease progression via modifications in PON1 catalytic efficiency. Conclusions Our findings demonstrate that vertical data-integration of genetic and epigenetic regulatory mechanisms generated a more in-depth understanding of the molecular basis underlying the development of obesity-associated fatty liver disease. We gained novel insights into how NAFLD classification and outcome are orchestrated, which could not have been obtained by exclusively considering genetic variation. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01142-1.
Collapse
|
8
|
Paraoxonase 1 and Non-Alcoholic Fatty Liver Disease: A Meta-Analysis. Molecules 2021; 26:molecules26082323. [PMID: 33923656 PMCID: PMC8072946 DOI: 10.3390/molecules26082323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 01/26/2023] Open
Abstract
Oxidative stress is involved in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). However, reliable biomarkers of NAFLD in relation to oxidative stress are not available. While paraoxonase 1 (PON1) is an antioxidant biomarker, there appears to be mixed data on PON-1 in patients with NAFLD. The aim of this meta-analysis was to assess the current data on PON1 activity (i.e., paraoxonase and arylesterase) in patients with NAFLD. A PubMed, CENTRAL, and Embase search identified 12 eligible articles. In the meta-analysis, the paraoxonase activity was low in patients with NAFLD (mean difference (MD) −27.17 U/L; 95% confidence interval (CI) −37.31 to −17.03). No difference was noted in the arylesterase activity (MD 2.45 U/L; 95% CI −39.83 to 44.74). In a subgroup analysis, the paraoxonase activity was low in biopsy-proven nonalcoholic steatohepatitis (MD −92.11 U/L; 95% CI −115.11 to −69.11), while the activity in NAFLD as diagnosed by ultrasonography or laboratory data was similar (MD −2.91 U/L; 95% CI −11.63 to 5.80) to that of non-NAFLD. In summary, the PON1, especially paraoxonase, activity could be a useful biomarker of NAFLD. Further studies are warranted to ascertain the relevance of PON1 measurements in patients with NAFLD.
Collapse
|
9
|
Milaciu MV, Vesa ȘC, Bocșan IC, Ciumărnean L, Sâmpelean D, Negrean V, Pop RM, Matei DM, Pașca S, Răchișan AL, Buzoianu AD, Acalovschi M. Paraoxonase-1 Serum Concentration and PON1 Gene Polymorphisms: Relationship with Non-Alcoholic Fatty Liver Disease. J Clin Med 2019; 8:jcm8122200. [PMID: 31847187 PMCID: PMC6947206 DOI: 10.3390/jcm8122200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is an important cause of chronic liver diseases around the world. Paraoxonase-1 (PON1) is an enzyme produced by the liver with an important antioxidant role. The aim of this study was to evaluate PON1 serum concentration and PON1 gene polymorphisms in patients with NAFLD. Materials and methods: We studied a group of 81 patients with NAFLD with persistently elevated aminotransferases and a control group of 81 patients without liver diseases. We collected clinical information and performed routine blood tests. We also measured the serum concentration of PON1 and evaluated the PON1 gene polymorphisms L55M, Q192R, and C-108T. Results: There was a significant difference (p < 0.001) in serum PON1 concentrations among the two groups. The heterozygous and the mutated homozygous variants (LM + MM) of the L55M polymorphism were more frequent in the NAFLD group (p < 0.001). These genotypes were found in a multivariate binary logistic regression to be independently linked to NAFLD (Odds ratio = 3.4; p = 0.04). In a multivariate linear regression model, the presence of NAFLD was associated with low PON1 concentration (p < 0.001). Conclusions: PON1 serum concentrations were diminished in patients with NAFLD, and the presence of NAFLD was linked with low PON1 concentration. The LM + MM genotypes of the PON1 L55M polymorphism were an independent predictor for NAFLD with persistently elevated aminotransferases.
Collapse
Affiliation(s)
- Mircea Vasile Milaciu
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
| | - Ștefan Cristian Vesa
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Ioana Corina Bocșan
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Lorena Ciumărnean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
- Correspondence:
| | - Dorel Sâmpelean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
| | - Vasile Negrean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
| | - Raluca Maria Pop
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Daniela Maria Matei
- Department 5—Internal Medicine, 3rd Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Sergiu Pașca
- Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Andreea Liana Răchișan
- Department of Pediatrics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania;
| | - Anca Dana Buzoianu
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Monica Acalovschi
- Doctoral School, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
Sayılan Özgün G, Özgün E, Tabakçıoğlu K, Süer Gökmen S, Eskiocak S. Effect of palmitate-induced steatosis on paraoxonase-1 and paraoxonase-3 enzymes in human-derived liver (HepG2) cells. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2019. [DOI: 10.25000/acem.623975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Veskovic M, Mladenovic D, Milenkovic M, Tosic J, Borozan S, Gopcevic K, Labudovic-Borovic M, Dragutinovic V, Vucevic D, Jorgacevic B, Isakovic A, Trajkovic V, Radosavljevic T. Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol 2019; 848:39-48. [PMID: 30689995 DOI: 10.1016/j.ejphar.2019.01.043] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
We examined the effects of betaine, an endogenous and dietary methyl donor essential for the methionine-homocysteine cycle, on oxidative stress, inflammation, apoptosis, and autophagy in methionine-choline deficient diet (MCD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6 mice received standard chow (control), standard chow and betaine (1.5% w/v in drinking water), MCD, or MCD and betaine. After six weeks, serum and liver samples were collected for analysis. Betaine reduced MCD-induced increase in liver transaminases and inflammatory infiltration, as well as hepatosteatosis and serum levels of low-density lipoprotein, while it increased that of high-density lipoprotein. MCD-induced hepatic production of reactive oxygen and nitrogen species was significantly reduced by betaine, which also improved liver antioxidative defense by increasing glutathione content and superoxide-dismutase, catalase, glutathione peroxidase, and paraoxonase activity. Betaine reduced the liver expression of proinflammatory cytokines tumor necrosis factor and interleukin-6, as well as that of proapoptotic mediator Bax, while increasing the levels of anti-inflammatory cytokine interleukin-10 and antiapoptotic Bcl-2 in MCD-fed mice. In addition, betaine increased the expression of autophagy activators beclin 1, autophagy-related (Atg)4 and Atg5, as well as the presence of autophagic vesicles and degradation of autophagic target sequestosome 1/p62 in the liver of NAFLD mice. The observed effects of betaine coincided with the increase in the hepatic phosphorylation of mammalian target of rapamycin (mTOR) and its activator Akt. In conclusion, the beneficial effect of betaine in MCD-induced NAFLD is associated with the reduction of liver oxidative stress, inflammation, and apoptosis, and the increase in cytoprotective Akt/mTOR signaling and autophagy.
Collapse
Affiliation(s)
- Milena Veskovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Mladenovic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Milenkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Tosic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Suncica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Serbia
| | - Kristina Gopcevic
- Institute of Medical Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic-Borovic
- Institute of Histology and Embriology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vesna Dragutinovic
- Institute of Medical Chemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Vucevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bojan Jorgacevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Tatjana Radosavljevic
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", School of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
12
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ, Zhu R, Zhu L. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018; 67:1881-1891. [PMID: 28774887 DOI: 10.1136/gutjnl-2017-314307] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. DESIGN Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. RESULTS Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na+-taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. CONCLUSIONS The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome.
Collapse
Affiliation(s)
- Na Jiao
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Susan S Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Adrian Chapa-Rodriguez
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Wensheng Liu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Colleen A Nugent
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Maria Tsompana
- Department of Biochemistry and Center of Excellence in Bioinformatics and Life Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Lucy Mastrandrea
- Division of Endocrinology, Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Michael J Buck
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, Buffalo, New York, USA
- Department of Biochemistry and Center of Excellence in Bioinformatics and Life Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Robert D Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Robert J Genco
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, Buffalo, New York, USA
- Departments of Oral Biology, Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
14
|
Catalase and nonalcoholic fatty liver disease. Pflugers Arch 2018; 470:1721-1737. [PMID: 30120555 DOI: 10.1007/s00424-018-2195-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Obesity and insulin resistance are considered the main causes of nonalcoholic fatty liver disease (NAFLD), and oxidative stress accelerates the progression of NAFLD. Free fatty acids, which are elevated in the liver by obesity or insulin resistance, lead to incomplete oxidation in the mitochondria, peroxisomes, and microsomes, leading to the production of reactive oxygen species (ROS). Among the ROS generated, H2O2 is mainly produced in peroxisomes and decomposed by catalase. However, when the H2O2 concentration increases because of decreased expression or activity of catalase, it migrates to cytosol and other organelles, causing cell injury and participating in the Fenton reaction, resulting in serious oxidative stress. To date, numerous studies have been shown to inhibit the pathogenesis of NAFLD, but treatment for this disease mainly depends on weight loss and exercise. Various molecules such as vitamin E, metformin, liraglutide, and resveratrol have been proposed as therapeutic agents, but further verification of the dose setting, clinical application, and side effects is needed. Reducing oxidative stress may be a fundamental method for improving not only the progression of NAFLD but also obesity and insulin resistance. However, the relationship between NAFLD progression and antioxidants, particularly catalase, which is most commonly expressed in the liver, remains unclear. Therefore, this review summarizes the role of catalase, focusing on its potential therapeutic effects in NAFLD progression.
Collapse
|
15
|
Feng Q, Liu W, Baker SS, Li H, Chen C, Liu Q, Tang S, Guan L, Tsompana M, Kozielski R, Baker RD, Peng J, Liu P, Zhu R, Hu Y, Zhu L. Multi-targeting therapeutic mechanisms of the Chinese herbal medicine QHD in the treatment of non-alcoholic fatty liver disease. Oncotarget 2018; 8:27820-27838. [PMID: 28416740 PMCID: PMC5438611 DOI: 10.18632/oncotarget.15482] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Beneficial effects of the Chinese herbal medicine Qushi Huayu Decoction (QHD) were observed with non-alcoholic fatty liver disease (NAFLD) patients and animal models. The impact of QHD or its active components (geniposide and chlorogenic acid, GC) on NAFLD liver transcriptome and gut microbiota was examined with NAFLD rats. Increased expression for genes required for glutathione production and decreased expression for genes required for lipid synthesis was observed in NAFLD livers treated with QHD and GC. GC treatment decreased serum LPS, which could be explained by reduced mucosal damage in the colon of GC-treated rats. Further, our data suggest an increased abundance of Treg-inducing bacteria that stimulated the Treg activity in GC treated colon, which in turn down-regulated inflammatory signals, improved gut barrier function and consequently reduced hepatic exposure to microbial products. Our study suggests that QHD simultaneously enhanced the hepatic anti-oxidative mechanism, decreased hepatic lipid synthesis, and promoted the regulatory T cell inducing microbiota in the gut.
Collapse
Affiliation(s)
- Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Wensheng Liu
- Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Susan S Baker
- Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hongshan Li
- Ningbo No.2 Hospital, Ningbo, Zhejiang Province, China
| | - Cheng Chen
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shijie Tang
- Department of Bioinformatics, Tongji University, Shanghai, China
| | - Lingyu Guan
- Department of Bioinformatics, Tongji University, Shanghai, China
| | - Maria Tsompana
- Center of Excellence in Bioinformatics and Life Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Rafal Kozielski
- Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pathology, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Robert D Baker
- Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Jinghua Peng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruixin Zhu
- Department of Bioinformatics, Tongji University, Shanghai, China
| | - Yiyang Hu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA.,Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Ajith TA. Role of mitochondria and mitochondria-targeted agents in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol 2017; 45:413-421. [PMID: 29112771 DOI: 10.1111/1440-1681.12886] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Abstract
Mitochondria play a pivotal role in the fatty acid oxidation and have been found to be affected early during the macrovesicular fat accumulation in the hepatocytes. The fatty infiltration is the primary cause of oxidative stress and inflammation in the non-alcoholic fatty liver disease (NAFLD), which can lead to the peroxidation of phospholipids, such as cardiolipin. Oxidative stress-induced damage to mitochondrial DNA can result in the impairment of oxidative phosphorylation and further increases the generation of reactive oxygen species. The mitochondrial damage may eventually lead to apoptotic death of hepatocytes. The apoptosis along with the generated cytokines from the stellate and Kupffer cells further augment the fibrotic changes to advance the disease. Hence, alleviation of the mitochondrial impairment, particularly in the early stages of NAFLD, may prevent the progression of the disease. Among the various experimentally studied mitochondrial-targeted agents, triphenylphosphonium cation ligated ubiquinone Q10 and vitamin E, Szeto-Scheller peptides, and superoxide dismutase mimetic-salen manganese complexes (EUK-8 and EUK-134) have been found to be most promising. In addition to these mitochondrial-targeted agents, a novel area of therapy called mitotherapy have also emerged. However, clinical studies conducted so far are still fragmentary to validate their efficacy. This review article discusses the mitochondria-targeted molecules and their potential role in the treatment of NAFLD.
Collapse
|
17
|
dos Santos Carvalho J, Cardoso Guimarães Vasconcelos AC, Herlany Pereira Alves E, dos Santos Carvalho A, da Silva FRP, de Carvalho França LF, de Pádua Rocha Nóbrega Neto A, Di Lenardo D, de Souza LKM, Barbosa ALDR, Medeiros JVR, de Oliveira JS, Vasconcelos DFP. Steatosis caused by experimental periodontitis is reversible after removal of ligature in rats. J Periodontal Res 2017; 52:883-892. [DOI: 10.1111/jre.12459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- J. dos Santos Carvalho
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piaui; Parnaiba PI Brazil
| | - A. C. Cardoso Guimarães Vasconcelos
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piaui; Parnaiba PI Brazil
- Medicine School; Education Institute of Parnaiba Valley (IESVAP); Parnaiba PI Brazil
| | - E. Herlany Pereira Alves
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piaui; Parnaiba PI Brazil
| | - A. dos Santos Carvalho
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piaui; Parnaiba PI Brazil
| | - F. R. P. da Silva
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piaui; Parnaiba PI Brazil
| | - L. F. de Carvalho França
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piaui; Parnaiba PI Brazil
| | | | - D. Di Lenardo
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piaui; Parnaiba PI Brazil
| | - L. K. M. de Souza
- Laboratory of Experimental Physiopharmacology (LAFFEX); Federal University of Piaui; Parnaiba PI Brazil
| | - A. L. dos R. Barbosa
- Laboratory of Experimental Physiopharmacology (LAFFEX); Federal University of Piaui; Parnaiba PI Brazil
| | - J.-V. R. Medeiros
- Laboratory of Experimental Physiopharmacology (LAFFEX); Federal University of Piaui; Parnaiba PI Brazil
| | - J. S. de Oliveira
- Laboratory of Biology and Biochemistry Plants (BIOqPLANT); Federal University of Piaui; Parnaiba PI Brazil
| | - D. F. P. Vasconcelos
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piaui; Parnaiba PI Brazil
| |
Collapse
|
18
|
Vasconcelos DFP, Pereira da Silva FR, Pinto MESC, Santana LDAB, Souza IG, Miranda de Souza LK, Oliveira NCM, Ventura CA, Novaes PD, Barbosa ALDR, Medeiros JVR, Mikolasevic I, Mani A, Soares de Oliveira J. Decrease of Pericytes is Associated With Liver Disease Caused by Ligature-Induced Periodontitis in Rats. J Periodontol 2016; 88:e49-e57. [PMID: 27666673 DOI: 10.1902/jop.2016.160392] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Damage caused by periodontitis not only affects periodontal tissues, but also increases the severity of various illnesses such as rheumatoid arthritis, diabetes, and liver diseases. The aim of this study is to investigate the association between induced periodontitis and damage caused through its systemic effects on the liver. METHODS Twenty rats were divided into two groups: control and periodontitis. The following parameters were evaluated: gingival bleeding index (GBI), probing depth (PD), myeloperoxidase (MPO) activity, alveolar bone loss (ABL) for periodontal tissues; histopathologic examination of gingival and liver tissues; immunohistochemistry to cells positive for neural/glial antigen 2 (NG2) expressed in hepatic pericytes, glutathione (GSH), and malondialdehyde (MDA) concentrations in liver; and serum levels of alanine aminotransferase and aspartate aminotransferase. RESULTS GBI, PD, MPO, ABL, and histopathologic examinations demonstrated the development of periodontitis. There was a significant increase in microvesicular steatosis accompanied by a marked reduction in NG2+ pericytes in the periodontitis group compared with the control group. The periodontitis group had significantly lower GSH and higher MDA concentration in the liver compared with the control group. CONCLUSIONS The present study results link the systemic effects of induced periodontitis with changes in hepatic tissues such as microvesicular steatosis, likely caused by an increase in oxidative stress and lipid peroxidation. The findings from the present study implicate an association between a decrease of pericytes and liver disease caused by ligature-induced periodontitis in rats.
Collapse
Affiliation(s)
| | - Felipe Rodolfo Pereira da Silva
- Department of Biomedicine, Laboratory of Histological Analysis and Preparation, Federal University of Piaui, Parnaiba, Brazil
| | - Moara E Silva Conceição Pinto
- Department of Biomedicine, Laboratory of Histological Analysis and Preparation, Federal University of Piaui, Parnaiba, Brazil
| | | | - Ingrid Grazielle Souza
- Department of Morphology, Division of Histology, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | | | | | - Claudio Angelo Ventura
- Department of Biomedicine, Laboratory of Biology and Biochemistry Plants, Federal University of Piaui
| | - Pedro Duarte Novaes
- Department of Morphology, Division of Histology, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | | | | | - Ivana Mikolasevic
- Department of Nephrology and Dialysis, Division of Internal Medicine, University Hospital Center Rijeka, Rijeka, Croatia
| | - Arya Mani
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
19
|
A Guide to Non-Alcoholic Fatty Liver Disease in Childhood and Adolescence. Int J Mol Sci 2016; 17:ijms17060947. [PMID: 27314342 PMCID: PMC4926480 DOI: 10.3390/ijms17060947] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is now the most prevalent form of chronic liver disease, affecting 10%–20% of the general paediatric population. Within the next 10 years it is expected to become the leading cause of liver pathology, liver failure and indication for liver transplantation in childhood and adolescence in the Western world. While our understanding of the pathophysiological mechanisms underlying this disease remains limited, it is thought to be the hepatic manifestation of more widespread metabolic dysfunction and is strongly associated with a number of metabolic risk factors, including insulin resistance, dyslipidaemia, cardiovascular disease and, most significantly, obesity. Despite this, ”paediatric” NAFLD remains under-studied, under-recognised and, potentially, undermanaged. This article will explore and evaluate our current understanding of NAFLD in childhood and adolescence and how it differs from adult NAFLD, in terms of its epidemiology, pathophysiology, natural history, diagnosis and clinical management. Given the current absence of definitive radiological and histopathological diagnostic tests, maintenance of a high clinical suspicion by all members of the multidisciplinary team in primary and specialist care settings remains the most potent of diagnostic tools, enabling early diagnosis and appropriate therapeutic intervention.
Collapse
|
20
|
Liu W, Baker RD, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 2016; 73:1969-87. [PMID: 26894897 PMCID: PMC11108381 DOI: 10.1007/s00018-016-2161-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease and a risk factor for cirrhosis and hepatocellular carcinoma. The pathological features of NASH include steatosis, hepatocyte injury, inflammation, and various degrees of fibrosis. Steatosis reflects disordered lipid metabolism. Insulin resistance and excessive fatty acid influx to the liver are two important contributing factors. Steatosis is also likely associated with lipotoxicity and cellular stresses such as oxidative stress and endoplasmic reticulum stress, which result in hepatocyte injury. Inflammation and fibrosis are frequently triggered by various signals such as proinflammatory cytokines and chemokines, released by injuried hepatocytes and activated Kupffer cells. Although much progress has been made, the pathogenesis of NASH is not fully elucidated. The purpose of this review is to discuss the current understanding of NASH pathogenesis, mainly focusing on factors contributing to steatosis, hepatocyte injury, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| | - Robert D Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Tavleen Bhatia
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Susan S Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| |
Collapse
|
21
|
Abstract
Apolipoprotein A5 (apoA5) is a potent regulator of triglyceride (TG) metabolism and therefore may contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a disease characterised by excessive TG-rich lipid droplets in hepatocytes. To test this hypothesis, we examined the mRNA expression of apoA5 in paediatric NAFLD livers in comparison to healthy controls. According to microarray and quantitative real-time PCR, human NAFLD livers exhibited elevated apoA5 expression compared to healthy controls. The apoA5 expression levels were positively correlated with hepatic TG storage and a marker for lipid droplets (perilipin), but were not correlated with plasma TG levels. These observations were confirmed with a NAFLD rat model. Interestingly, apoA5 expression was not altered in cultured fat-laden HepG2 cells, demonstrating that fat storage does not induce apoA5 in NAFLD livers. Therefore, the correlation between apoA5 and intracellular fat storage is likely explained by the potent effect of apoA5 in promoting intracellular fat storage. Our NAFLD patients and rats had elevated insulin resistance, which may have a role in elevating apoA5 expression in NAFLD livers. Our data support the hypothesis that apoA5 promotes hepatic TG storage and therefore contributes to the pathogenesis of NAFLD, and may represent a potential target for therapeutic intervention.
Collapse
|
22
|
Zhu R, Baker SS, Moylan CA, Abdelmalek MF, Guy CD, Zamboni F, Wu D, Lin W, Liu W, Baker RD, Govindarajan S, Cao Z, Farci P, Diehl AM, Zhu L. Systematic transcriptome analysis reveals elevated expression of alcohol-metabolizing genes in NAFLD livers. J Pathol 2016; 238:531-542. [DOI: 10.1002/path.4650] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ruixin Zhu
- Department of Bioinformatics; Tongji University; Shanghai China
| | - Susan S Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics; The State University of New York at Buffalo; Buffalo New York USA
| | - Cynthia A Moylan
- Division of Gastroenterology and Hepatology, Department of Medicine; Duke University; Durham North Carolina USA
- Division of Gastroenterology and Hepatology, Department of Medicine; Durham Veterans Affairs Medical Center; Durham North Carolina USA
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Department of Medicine; Duke University; Durham North Carolina USA
| | - Cynthia D Guy
- Department of Pathology; Duke University; Durham North Carolina USA
| | - Fausto Zamboni
- Liver Transplantation Center; Brotzu Hospital; 09134 Cagliari Italy
| | - Dingfeng Wu
- Department of Bioinformatics; Tongji University; Shanghai China
| | - Weili Lin
- Department of Bioinformatics; Tongji University; Shanghai China
| | - Wensheng Liu
- Digestive Diseases and Nutrition Center, Department of Pediatrics; The State University of New York at Buffalo; Buffalo New York USA
| | - Robert D Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics; The State University of New York at Buffalo; Buffalo New York USA
| | - Sugantha Govindarajan
- Department of Pathology; University of Southern California; Los Angeles California USA
| | - Zhiwei Cao
- Department of Bioinformatics; Tongji University; Shanghai China
| | - Patrizia Farci
- Laboratory of Infectious Diseases; National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda Maryland USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Hepatology, Department of Medicine; Duke University; Durham North Carolina USA
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics; The State University of New York at Buffalo; Buffalo New York USA
| |
Collapse
|
23
|
Kapravelou G, Martínez R, Andrade AM, Nebot E, Camiletti-Moirón D, Aparicio VA, Lopez-Jurado M, Aranda P, Arrebola F, Fernandez-Segura E, Bermano G, Goua M, Galisteo M, Porres JM. Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats. Appl Physiol Nutr Metab 2015; 40:1242-52. [PMID: 26509584 DOI: 10.1139/apnm-2015-0141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P < 0.0001) and suffered significant alterations in plasma lipid profile, area under the curve after oral glucose overload (P < 0.0001), liver histology and functionality, and antioxidant status. The AIT protocol reduced the severity of alterations related to glucose and lipid metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS.
Collapse
Affiliation(s)
- Garyfallia Kapravelou
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Rosario Martínez
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Ana M Andrade
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Elena Nebot
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Daniel Camiletti-Moirón
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Virginia A Aparicio
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Maria Lopez-Jurado
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Pilar Aranda
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Francisco Arrebola
- b Department of Histology, Institute of Neurosciences, University of Granada, Avenida de Madrid s/n, Granada 18071, Spain
| | - Eduardo Fernandez-Segura
- b Department of Histology, Institute of Neurosciences, University of Granada, Avenida de Madrid s/n, Granada 18071, Spain
| | - Giovanna Bermano
- c Institute for Health and Wellbeing Research, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Marie Goua
- c Institute for Health and Wellbeing Research, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Milagros Galisteo
- d Department of Pharmacology, School of Pharmacy, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| | - Jesus M Porres
- a Department of Physiology, Institute of Nutrition and Food Technology, Doctoral Program in Nutrition and Food Sciences, University of Granada, Campus Universitario de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
24
|
Garelnabi M, Younis A. Paraoxonase-1 enzyme activity assay for clinical samples: validation and correlation studies. Med Sci Monit 2015; 21:902-8. [PMID: 25814092 PMCID: PMC4381856 DOI: 10.12659/msm.892668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Paraoxonase-1 (PON1) enzyme is reported in various types of tissues and linked to numerous pathophysiological disorders. It is a potential biomarker in many pathological conditions such as cardiovascular diseases. MATERIAL AND METHODS We conducted several small-scale studies to evaluate PON1 performance as affected by sample types, storage, and interferences. We also carried out short-term studies to compare the performance of the widely used PON1 assay to the similar commercially available PON1 kit assay method; sample size for the method comparison was N=40, and the number varied for other validation experiments. RESULTS Our studies using various types of anticoagulants show that samples collected in tubes with NaF, citrate, EDTA, clot activator, and sodium heparin have increased PON1 levels that are 49%, 24.5%, 19.8%, 11.4%, and 8%, respectively, higher compared to serum samples collected in plain tubes. However, samples collected in lithium heparin tubes demonstrated 10.4% lower PON1 levels compared to serum collected in plain tubes. Biological interference such as hemolysis has little effect on PON1 levels; however, samples spiked with lipids have shown 13% lower PON 1 levels. Our studies comparing the PON1 method commonly available for PON1 assay and a similar non-ELISA commercially available PON1 kit method showed a weak Spearman correlation coefficient of R2=0.40 for the range of 104.9-245.6 U/L. CONCLUSIONS The current study provides new validation data on enzyme PON1 performance. While no appreciable change was seen with storage, samples type affects the enzyme performance. Our results should encourage additional clinical studies to investigate other aspects of factors known to affect PON1 enzyme function and performance.
Collapse
Affiliation(s)
- Mahdi Garelnabi
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Abdelmoneim Younis
- Department of Obstetrics and Gynecology, Mercer University School of Medicine & Central Georgia Fertility Institute, Macon, GA, USA
| |
Collapse
|