1
|
Ding T, Liu C, Li Z. The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications. Mol Cancer 2025; 24:18. [PMID: 39815314 PMCID: PMC11734361 DOI: 10.1186/s12943-025-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis. Fungal microbes (the mycobiome), although representing only ∼ 0.1-1% of the microbiome, are a critical immunologically active component of the tumor microbiome. Accumulating evidence suggests a possible involvement of commensal and pathogenic fungi in cancer initiation, progression, and treatment responsiveness. The tumor-associated mycobiome mainly consists of the gut mycobiome, the oral mycobiome, and the intratumoral mycobiome. However, the role of fungi in cancer remains poorly understood, and the diversity and complexity of analytical methods make it challenging to access this field. This review aims to elucidate the causal and complicit roles of mycobiome in cancer development and progression while highlighting the issues that need to be addressed in executing such research. We systematically summarize the advantages and limitations of current fungal detection and analysis methods. We enumerate and integrate these recent findings into our current understanding of the tumor mycobiome, accompanied by the prospect of novel and exhilarating clinical implications.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Xia X, He X, Huang J, Hou X, Lin C, Liu Y, Liu M. Emodin induced hepatic steatosis in BALb/c mice by modulating the gut microbiota composition and fatty acid metabolism. Front Pharmacol 2024; 15:1516272. [PMID: 39776579 PMCID: PMC11703826 DOI: 10.3389/fphar.2024.1516272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The aim of this study is to examine the physiological effects of emodin on intestinal microorganisms and the liver in the BALb/c mice. Method and Results Following an 8-week administration of emodin at doses of 25, 50, and 100 mg/kg/day,pathological analyses revealed that emodin significantly reduced the colon length, induced colonic crypt inflammation,diminished the colonic mucus layer,and decreased the fluorescence intensity of colonic tight junction proteins ZO-1 and Occludin. Concurrently, 16S rDNA gene sequencing corroborated that emodin altered the diversity and composition of the intestinal microbiota by increasing the Firmicutes to Bacteroides ratio. Simultaneously, the non-targeted metabolomics analyses exhibited significant alternations in both short chain fatty acids and free fatty acids between the emodin-treated and the normal groups, indicating emodin-induced disturbance in intestinal metabolic disorder. Furthermore, emodin exhibited a significant elevation in LPS levels in colon, serum and liver as well an marked increase in the levels of TC, TG, AST, and ALT in serum. Additionally, histological examination employing by HE and oil-red O staining furtherly verified that the administration of varying doses emodin induced hepatic inflammation and lipid accumulation. Whereas qRT-PCR and Western blot analyses demonstrated that the administering of varying doses of emodin upregulated the mRNA levels of TNF-α, IL-1β, IL-6, and IL-18 as well as the expression of TLR4, Myd88, and P-65. Following the combined administration of probiotics, the high-dose emodin did not significantly influence ALT and AST levels in mice. However, the faeces of the high-dose emodin transplanted in mice and induced a significant increase in AST levels and in the relative abundance of Firmicutes and Proteobacteria. Discussion These findings further corroborate that emodin induces liver injury via the intestinal dysfunction. These findings suggested that emodin may disrupt intestinal microbiota and resulted in significant alternations in endogenous metabolites in mice, thereby facilitating the entry of LPS and FFAs into the liver, potentially leading to hepatic injury.
Collapse
Affiliation(s)
- Xinhua Xia
- TCM Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integrated Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xueling He
- Guangdong Provincial Key Laboratory of Research and Development in TCM, Guangdong Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinzhou Huang
- TCM Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integrated Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuyang Hou
- TCM Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integrated Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chen Lin
- TCM Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integrated Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaxiong Liu
- The Key Laboratory of Rapid Testing, State Food and Drug Administration, Guangdong Institute for Drug Control, Guangzhou, Guangdong, China
| | - Mei Liu
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Li Y, Liu D, He Y, Zhang Z, Zeng A, Fan C, Lyu L, He Z, Ding H. The signatures and crosstalk of gut microbiome, mycobiome, and metabolites in decompensated cirrhotic patients. Front Microbiol 2024; 15:1443182. [PMID: 39234546 PMCID: PMC11372394 DOI: 10.3389/fmicb.2024.1443182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Background Numerous studies have confirmed that gut microbiota plays a crucial role in the progression of cirrhosis. However, the contribution of gut fungi in cirrhosis is often overlooked due to the relatively low abundance. Methods We employed 16S ribosomal RNA sequencing, internal transcribed spacer sequencing, and untargeted metabolomics techniques to investigate the composition and interaction of gut bacteria, fungi, and metabolites in cirrhotic patients. Results Cirrhotic patients exhibited significant differences in the diversity and composition of gut microbiota and their metabolites in cirrhotic patients compared to healthy individuals. Increase in pathogenic microbial genera and a decrease in beneficial microbial genera including bacteria and fungi were observed. Various clinical indexes were closely connected with these increased metabolites, bacteria, fungi. Additionally, endoscopic treatment was found to impact the gut microbiota and metabolites in cirrhotic patients, although it did not significantly alter the gut ecology. Finally, we constructed a cirrhosis diagnostic model based on different features (bacteria, fungi, metabolites, clinical indexes) with an AUC of 0.938. Conclusion Our findings revealed the characteristics of gut microbial composition and their intricate internal crosstalk in cirrhotic patients, providing cutting-edge explorations of potential roles of gut microbes in cirrhosis.
Collapse
Affiliation(s)
- Yangjie Li
- Department of Gastroenterology and Hepatology, Laboratory for Clinical Medicine, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Danping Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Yanglan He
- Department of Gastroenterology and Hepatology, Laboratory for Clinical Medicine, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zeming Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Ajuan Zeng
- Department of Gastroenterology and Hepatology, Laboratory for Clinical Medicine, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunlei Fan
- Department of Gastroenterology and Hepatology, Laboratory for Clinical Medicine, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Lingna Lyu
- Department of Gastroenterology and Hepatology, Laboratory for Clinical Medicine, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Laboratory for Clinical Medicine, Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zeng S, Schnabl B. Gut mycobiome alterations and implications for liver diseases. PLoS Pathog 2024; 20:e1012377. [PMID: 39116092 PMCID: PMC11309506 DOI: 10.1371/journal.ppat.1012377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Chronic liver disease and its complications are a significant global health burden. Changes in fungal communities (mycobiome), an integral component of the gut microbiome, are associated with and contribute to the development of liver disease. Fungal dysbiosis can induce intestinal barrier dysfunction and allow fungal products to translocate to the liver causing progression of disease. This review explores recent progress in understanding the compositional and functional diversity of gut mycobiome signatures across different liver diseases. It delves into causative connections between gut fungi and liver diseases. We emphasize the significance of fungal translocation, with a particular focus on fungal-derived metabolites and immune cells induced by fungi, as key contributors to liver disease. Furthermore, we review the potential impact of the intrahepatic mycobiome on the progression of liver diseases.
Collapse
Affiliation(s)
- Suling Zeng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, United States of America
| |
Collapse
|
5
|
Özdirik B, Schnabl B. Microbial Players in Primary Sclerosing Cholangitis: Current Evidence and Concepts. Cell Mol Gastroenterol Hepatol 2023; 17:423-438. [PMID: 38109970 PMCID: PMC10837305 DOI: 10.1016/j.jcmgh.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease with progressive biliary inflammation, destruction of the biliary tract, and fibrosis, resulting in liver cirrhosis and end-stage liver disease. To date, liver transplantation is the only definitive treatment option for PSC. The precise etiology of PSC remains elusive, but it is widely accepted to involve a complex interplay between genetic predisposition, immunologic dysfunction, and environmental influence. In recent years, the gut-liver axis has emerged as a crucial pathway contributing to the pathogenesis of PSC, with particular focus on the role of gut microbiota. However, the role of the fungal microbiome or mycobiome has been overlooked for years, resulting in a lack of comprehensive studies on its involvement in PSC. In this review, we clarify the present clinical and mechanistic data and concepts concerning the gut bacterial and fungal microbiota in the context of PSC. This review sheds light on the role of specific microbes and elucidates the dynamics of bacterial and fungal populations. Moreover, we discuss the latest insights into microbe-altering therapeutic approaches involving the gut-liver axis and bile acid metabolism.
Collapse
Affiliation(s)
- Burcin Özdirik
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
6
|
Zheng R, Xiang X, Shi Y, Qiu A, Luo X, Xie J, Russell R, Zhang D. Chronic jet lag alters gut microbiome and mycobiome and promotes the progression of MAFLD in HFHFD-fed mice. Front Microbiol 2023; 14:1295869. [PMID: 38130943 PMCID: PMC10733492 DOI: 10.3389/fmicb.2023.1295869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide. Circadian disruptors, such as chronic jet lag (CJ), may be new risk factors for MAFLD development. However, the roles of CJ on MAFLD are insufficiently understood, with mechanisms remaining elusive. Studies suggest a link between gut microbiome dysbiosis and MAFLD, but most of the studies are mainly focused on gut bacteria, ignoring other components of gut microbes, such as gut fungi (mycobiome), and few studies have addressed the rhythm of the gut fungi. This study explored the effects of CJ on MAFLD and its related microbiotic and mycobiotic mechanisms in mice fed a high fat and high fructose diet (HFHFD). Forty-eight C57BL6J male mice were divided into four groups: mice on a normal diet exposed to a normal circadian cycle (ND-NC), mice on a normal diet subjected to CJ (ND-CJ), mice on a HFHFD exposed to a normal circadian cycle (HFHFD-NC), and mice on a HFHFD subjected to CJ (HFHFD-CJ). After 16 weeks, the composition and rhythm of microbiota and mycobiome in colon contents were compared among groups. The results showed that CJ exacerbated hepatic steatohepatitis in the HFHFD-fed mice. Compared with HFHFD-NC mice, HFHFD-CJ mice had increases in Aspergillus, Blumeria and lower abundances of Akkermansia, Lactococcus, Prevotella, Clostridium, Bifidobacterium, Wickerhamomyces, and Saccharomycopsis genera. The fungi-bacterial interaction network became more complex after HFHFD and/or CJ interventions. The study revealed that CJ altered the composition and structure of the gut bacteria and fungi, disrupted the rhythmic oscillation of the gut microbiota and mycobiome, affected interactions among the gut microbiome, and promoted the progression of MAFLD in HFHFD mice.
Collapse
Affiliation(s)
- Ruoyi Zheng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anqi Qiu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Luo
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyan Xie
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Ren Y, Ciwang R, Wang J, Mehmood K, Ataya FS, Li K. Effect of Different Feeds on the Fungi Microbiome of Suffolk Crossed with Tibetan Sheep. Life (Basel) 2023; 13:2210. [PMID: 38004350 PMCID: PMC10672365 DOI: 10.3390/life13112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiome plays an important role in the metabolism, nutrient absorption and immunocompetency of animals. The dynamics of the microbiota can be influenced by modulatory factors that involve nutrition, environment, health, diseases, etc. Few reports have been documented regarding the effects of different feeds on the fungi microbiome of Suffolk crossed with Tibetan sheep. A total of 30 Suffolk crossed with Tibetan sheep (ST sheep) were selected for the study and randomly divided into five equal groups (n = 6): AZ, BZ, CZ, DZ and EZ. Group AZ was fed with alfalfa and oat grass, whereas group BZ was fed with mixture of concentrated feed, alfalfa and oat grass. Groups CZ, DZ and EZ were fed with concentrated feed #1, #2 and #3, respectively. All experimental animals were fed twice a day for four months, and rectum samples were collected for microbiota analysis. Results revealed that 2,781,461 raw reads and 2,333,239 clean reads were achieved in the ST sheep. When compared with the sheep of groups AZ and BZ (164), the shared amplicon sequence variants (ASVs) between AZ and CZ (109), AZ (113) and DZ (118) as well as AZ along with EZ were fewer. Conspicuous different phyla (8) and genera (56) were examined and compared with free-range sheep in AZ. Genera including Xeromyces, Kazachstania, Cordyceps, Rhodotorula, Pichia, Spor, etc. were found higher in animals in the CZ, DZ and EZ groups. The results of this study provide new insights regarding the effects of different feeds on the fungi microbiome of sheep farmed on the plateau. We concluded that the differences in feed in Suffolk crossed with Tibetan sheep altered their gut microbiota.
Collapse
Affiliation(s)
- Yue Ren
- Institute of Livestock Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Renzeng Ciwang
- Institute of Livestock Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Jia Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (K.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 6300, Pakistan;
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (K.L.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
9
|
Perlin CM, Longo L, Keingeski MB, Picon RV, Álvares-da-Silva MR. Gut mycobiota changes in liver diseases: A systematic review. Med Mycol 2023; 61:myad071. [PMID: 37463798 DOI: 10.1093/mmy/myad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/27/2023] [Accepted: 07/16/2023] [Indexed: 07/20/2023] Open
Abstract
Intestinal fungi play an important role in the health-disease process. We observed that in liver diseases, fungal infections lead to high mortality. In this review, we were able to gather and evaluate the available scientific evidence on intestinal mycobiota and liver diseases. We searched PubMed and Embase, using a combination of several entry terms. Only studies in adults ≥ 18 years old with liver disease and published after 2010 were included. We observed that individuals with liver disease have an altered intestinal mycobioma, which accompanies the progression of these diseases. In cirrhotic patients, there are a high number of Candida sp. strains, especially Candida albicans. In early chronic liver disease, there is an increase in alpha diversity at the expense of Candida sp. and conversely, in advanced liver disease, there is a negative correlation between alpha diversity and model for end-stage liver disease score. On the other hand, patients with non-alcoholic fatty liver disease demonstrate greater diversity compared to controls. Our study concluded that the evidence on the subject is sparse, with few studies and a lack of standardization of outcome measures and reporting, and it was not possible to perform a meta-analysis capable of synthesizing relevant parameters of the human mycobiotic profile. However, certain fungal genera such as Candida play an important role in the context of liver disease and that adults with liver disease have a distinct gut mycobiotic profile from healthy controls.
Collapse
Affiliation(s)
- Cássio Marques Perlin
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-002, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-002, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
| | - Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-002, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
| | - Rafael V Picon
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-002, Brazil
- School of Medicine, Department of Internal Medicine, Universidade Federal do Rio Grande do Sul; Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-002, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
- School of Medicine, Department of Internal Medicine, Universidade Federal do Rio Grande do Sul; Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
- CNPq researcher
| |
Collapse
|
10
|
Cao X, Zolnikova O, Maslennikov R, Reshetova M, Poluektova E, Bogacheva A, Zharkova M, Ivashkin V. Differences in Fecal Short-Chain Fatty Acids between Alcoholic Fatty Liver-Induced Cirrhosis and Non-alcoholic (Metabolic-Associated) Fatty Liver-Induced Cirrhosis. Metabolites 2023; 13:859. [PMID: 37512565 PMCID: PMC10383050 DOI: 10.3390/metabo13070859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The objective of this study was to investigate the metabolic activity of the gut microbiota in cirrhosis due to different variants of fatty liver disease (alcoholic vs. non-alcoholic [metabolic-associated] one [AFLD and MAFLD]). The present study included 24 patients with alcoholic liver cirrhosis, 16 patients with MAFLD-related cirrhosis, and 20 healthy controls. The level and spectrum of short-chain fatty acids (SCFAs) were determined via gas-liquid chromatography. All patients with cirrhosis showed a decrease in the total content of SCFAs (p < 0.001) and absolute content of acetate (p < 0.001), propionate (p < 0.001), butyrate (p < 0.001), and isovalerate (p < 0.001). In MAFLD cirrhosis, the metabolic activity of the microbiota was significantly altered compared to patients with alcoholic cirrhosis, as evidenced by a lower total SCFA content (p < 0.001) and absolute content of acetate (p < 0.001), propionate (p < 0.001), and butyrate (p < 0.001); a higher relative content of isovalerate (p < 0.001); and a higher IsoCn/Cn ratio (p < 0.001). Various clinical and laboratory parameters correlate differently with fecal SCFAs and their fractions in cirrhosis due to AFLD and MAFLD. SCFA-producing metabolic activity is reduced more in MAFLD cirrhosis than in alcoholic cirrhosis. According to the etiological factors of cirrhosis, disorders of this metabolic activity may be involved in different pathogenetic pathways.
Collapse
Affiliation(s)
- Xinlu Cao
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119435 Moscow, Russia
| | - Oksana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119435 Moscow, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119435 Moscow, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", 119121 Moscow, Russia
| | - Maria Reshetova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119435 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119435 Moscow, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", 119121 Moscow, Russia
| | - Arina Bogacheva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119435 Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119435 Moscow, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119435 Moscow, Russia
| |
Collapse
|
11
|
Hartmann P, Schnabl B. Fungal infections and the fungal microbiome in hepatobiliary disorders. J Hepatol 2023; 78:836-851. [PMID: 36565724 PMCID: PMC10033447 DOI: 10.1016/j.jhep.2022.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Liver and biliary diseases affect more than a billion people worldwide, with high associated morbidity and mortality. The impact of the intestinal bacterial microbiome on liver diseases has been well established. However, the fungal microbiome, or mycobiome, has been overlooked for a long time. Recently, several studies have shed light on the role of the mycobiome in the development and progression of hepatobiliary diseases. In particular, the fungal genus Candida has been found to be involved in the pathogenesis of multiple hepatobiliary conditions. Herein, we compare colonisation and infection, describe mycobiome findings in the healthy state and across the various hepatobiliary conditions, and point toward communalities. We detail how quantitation of immune responses to fungal antigens can be employed to predict disease severity, e.g. using antibodies to Saccharomyces cerevisiae or specific anti-Candida albicans antibodies. We also show how fungal products (e.g. beta-glucans, candidalysin) activate the host's immune system to exacerbate liver and biliary diseases. Finally, we describe how the gut mycobiome can be modulated to ameliorate hepatobiliary conditions.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Division of Gastroenterology, Hepatology & Nutrition, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
12
|
The Role of the Mycobiome in Women’s Health. J Fungi (Basel) 2023; 9:jof9030348. [PMID: 36983516 PMCID: PMC10051763 DOI: 10.3390/jof9030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Although the human bacteriome and virome have gained a great deal of attention over the years, the human mycobiome has been far more neglected despite having significant value and implications in human health. In women, mycobiome profiles in breastmilk, vaginal regions, the gut, skin, and the oral cavity can provide insight into women’s health, diseases, and microbiome dysbiosis. Analyses of mycobiome composition under factors, such as health, age, diet, weight, and drug exposure (including antibiotic therapies), help to elucidate the various roles of women’s mycobiome in homeostasis, microbiome interactions (synergistic and antagonistic), and health. This review summarizes the most recent updates to mycobiome knowledge in these critical areas.
Collapse
|
13
|
Zeng S, Rosati E, Saggau C, Messner B, Chu H, Duan Y, Hartmann P, Wang Y, Ma S, Huang WJM, Lee J, Lee SM, Carvalho-Gontijo R, Zhang V, Hoffmann JP, Kolls JK, Raz E, Brenner DA, Kisseleva T, LeibundGut-Landmann S, Bacher P, Stärkel P, Schnabl B. Candida albicans-specific Th17 cell-mediated response contributes to alcohol-associated liver disease. Cell Host Microbe 2023; 31:389-404.e7. [PMID: 36893735 PMCID: PMC10039706 DOI: 10.1016/j.chom.2023.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 03/11/2023]
Abstract
Alcohol-associated liver disease is accompanied by intestinal mycobiome dysbiosis, yet the impacts on liver disease are unclear. We demonstrate that Candida albicans-specific T helper 17 (Th17) cells are increased in circulation and present in the liver of patients with alcohol-associated liver disease. Chronic ethanol administration in mice causes migration of Candida albicans (C. albicans)-reactive Th17 cells from the intestine to the liver. The antifungal agent nystatin decreased C. albicans-specific Th17 cells in the liver and reduced ethanol-induced liver disease in mice. Transgenic mice expressing T cell receptors (TCRs) reactive to Candida antigens developed more severe ethanol-induced liver disease than transgene-negative littermates. Adoptively transferring Candida-specific TCR transgenic T cells or polyclonal C. albicans-primed T cells exacerbated ethanol-induced liver disease in wild-type mice. Interleukin-17 (IL-17) receptor A signaling in Kupffer cells was required for the effects of polyclonal C. albicans-primed T cells. Our findings indicate that ethanol increases C. albicans-specific Th17 cells, which contribute to alcohol-associated liver disease.
Collapse
Affiliation(s)
- Suling Zeng
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Elisa Rosati
- Institute of Immunology & Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel and Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology & Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel and Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Berith Messner
- Institute of Immunology & Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel and Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Huikuan Chu
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yi Duan
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Phillipp Hartmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Division of Gastroenterology, Hepatology & Nutrition, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Yanhan Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jihyung Lee
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sung Min Lee
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Vivian Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joseph P Hoffmann
- Center for Translational Research in Infection and Inflammation, Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Eyal Raz
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - David A Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Petra Bacher
- Institute of Immunology & Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel and Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
14
|
Small Intestinal Bacterial Overgrowth and Non-Alcoholic Fatty Liver Disease: What Do We Know in 2023? Nutrients 2023; 15:nu15061323. [PMID: 36986052 PMCID: PMC10052062 DOI: 10.3390/nu15061323] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with the pathological accumulation of lipids inside hepatocytes. Untreated NAFL can progress to non-alcoholic hepatitis (NASH), followed by fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The common denominator of the above-mentioned metabolic disorders seems to be insulin resistance, which occurs in NAFLD patients. Obesity is the greatest risk factor for lipid accumulation inside hepatocytes, but a part of the NAFLD patient population has a normal body weight according to the BMI index. Obese people with or without NAFLD have a higher incidence of small intestinal bacterial overgrowth (SIBO), and those suffering from NAFLD show increased intestinal permeability, including a more frequent presence of bacterial overgrowth in the small intestine (SIBO). The health consequences of SIBO are primarily malabsorption disorders (vitamin B12, iron, choline, fats, carbohydrates and proteins) and bile salt deconjugation. Undetected and untreated SIBO may lead to nutrient and/or energy malnutrition, thus directly impairing liver function (e.g., folic acid and choline deficiency). However, whether SIBO contributes to liver dysfunction, decreased intestinal barrier integrity, increased inflammation, endotoxemia and bacterial translocation is not yet clear. In this review, we focus on gut–liver axis and discuss critical points, novel insights and the role of nutrition, lifestyle, pre- and probiotics, medication and supplements in the therapy and prevention of both SIBO and NAFLD.
Collapse
|
15
|
Zhang L, Chen C, Chai D, Li C, Qiu Z, Kuang T, Liu L, Deng W, Wang W. Characterization of the intestinal fungal microbiome in patients with hepatocellular carcinoma. J Transl Med 2023; 21:126. [PMID: 36793057 PMCID: PMC9933289 DOI: 10.1186/s12967-023-03940-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Gut mycobiota plays a crucial role in benign liver diseases; however, its correlation with hepatocellular carcinoma (HCC) remains elusive. This study aimed to elucidate fungal differences in patients with HCC-associated cirrhosis compared to cirrhotic patients without HCC and healthy controls. METHODS The 72 fecal samples from 34 HCC patients, 20 cirrhotic patients, and 18 healthy controls were collected and analyzed using ITS2 rDNA sequencing. RESULTS Our results revealed the presence of intestinal fungal dysbiosis with significant enrichment of opportunistic pathogenic fungi such as Malassezia, Malassezia sp., Candida, and C. albicans in HCC patients compared with healthy controls and cirrhosis patients. Alpha-diversity analysis demonstrated that patients with HCC and cirrhosis showed decreased fungal diversity compared to healthy controls. Beta diversity analysis indicated that the three groups exhibited significant segregated clustering. Besides, C. albicans was found to be significantly more abundant in the HCC patients with TNM stage III-IV than those with stage I-II, in contrast to the commensal organism S. cerevisiae. We also confirmed that the HCC patients were successfully classified with an area under the curve value of 0.906 based on the fecal fungal signature. Finally, our animal experiments confirm that aberrant colonization of the intestine by C. albicans and M. furfur can promote the development of HCC. CONCLUSIONS This study indicates that dysbiosis of the gut mycobiome might be involved in HCC development. TRIAL REGISTRATION ChiCTR, ChiCTR2100054537. Registered 19 December 2021, http://www.chictr.org.cn/edit.aspx?pid=144550&htm=4.
Collapse
Affiliation(s)
- Lilong Zhang
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Chen Chen
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Dongqi Chai
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Chunlei Li
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Zhendong Qiu
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Tianrui Kuang
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Li Liu
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China. .,Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China. .,Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
16
|
Abstract
Recent studies revealed a significant role of the gut fungal community in human health. Here, we investigated the content and variation of gut mycobiota among subjects from the European population. We explored the interplay between gut fungi and various host-related sociodemographic, lifestyle, health, and dietary factors. The study included 923 participants. Fecal DNA samples were analyzed by whole-metagenome high-throughput sequencing. Subsequently, fungi taxonomic profiles were determined and accompanied by computational and statistical analyses of the association with 53 host-related factors. Fungal communities were characterized by a high prevalence of Saccharomyces, Candida, and Sporisorium. Ten factors were found to correlate significantly with the overall mycobiota variation. Most were diet related, including the consumption of chips, meat, sodas, sweetening, processed food, and alcohol, followed by age and marital status. Differences in α- and/or β-diversity were also reported for other factors such as body mass index (BMI), job type, autoimmunological diseases, and probiotics. Differential abundance analysis revealed fungal species that exhibited different patterns of changes under specific conditions. The human gut mycobiota is dominated by yeast, including Saccharomyces, Malassezia, and Candida. Although intervolunteer variability was high, several fungal species persisted across most samples, which may be evidence that a core gut mycobiota exists. Moreover, we showed that host-related factors such as diet, age, and marital status influence the variability of gut mycobiota. To our knowledge, this is the first large and comprehensive study of the European cohort in terms of gut mycobiota associations with such an extensive and differentiated host-related set of factors. IMPORTANCE The human gut is inhabited by many organisms, including bacteria and fungi, that may affect human health. However, research on human gut mycobiome is still rare. Moreover, the large European-based cohort study is missing. Here, we analyzed the first large European cohort in terms of gut mycobiota associations with a differentiated host-related set of factors. Our results showed that chips, meat, sodas, sweetening, processed food, beer, alcohol consumption, age, and marital status were associated with the variability of gut mycobiota. Moreover, our analysis revealed changes in abundances at the fungal species level for many investigated factors. Our results can suggest potentially valuable paths for further, narrowly focused research on gut mycobiome and its impact on human health. In the coming era of gut microbiome-based precision medicine, further research into the relationship between different mycobial structures and host-related factors may result in new preventive approaches or therapeutic procedures.
Collapse
|
17
|
Zeng S, Hartmann P, Park M, Duan Y, Lang S, Llorente C, Wang Y, Cabré N, Fouts DE, Bacher P, Jung WH, Stärkel P, Schnabl B. Malassezia restricta promotes alcohol-induced liver injury. Hepatol Commun 2023; 7:e0029. [PMID: 36706195 PMCID: PMC9988279 DOI: 10.1097/hc9.0000000000000029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/31/2022] [Indexed: 01/29/2023] Open
Abstract
Chronic alcohol consumption is associated with intestinal fungal dysbiosis, yet we understand little about how alterations of intestinal fungi (mycobiota) contribute to the pathogenesis of alcohol-associated liver disease. By reanalyzing internal transcribed spacer 2 amplicon sequencing of fecal samples from a cohort of 66 patients with alcohol use disorder for presence (as opposed to relative abundance) of fungal species, we observed that the presence of Malassezia restricta was associated with increased markers of liver injury. M. restricta exacerbates ethanol-induced liver injury both in acute binge and chronic ethanol-feeding models in mice. Using bone marrow chimeric mice, we found that the disease exacerbating effect by M. restricta was mediated by C-type lectin domain family 4, member N on bone marrow-derived cells. M. restricta induces inflammatory cytokines and chemokines in Kupffer cells through C-type lectin domain family 4, member N signaling. Targeting fungal pathobionts might be a therapeutic strategy for alcohol-associated liver disease.
Collapse
Affiliation(s)
- Suling Zeng
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Korea
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Noemí Cabré
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Derrick E. Fouts
- Genomic Medicine, J. Craig Venter Institute, Rockville, Maryland, USA
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Korea
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
18
|
Mantovani A, Targher G. Editorial: higher levels of certain serum bile acids in non-alcoholic fatty liver disease-new insights from Guatemala. Aliment Pharmacol Ther 2022; 56:357-360. [PMID: 35748840 DOI: 10.1111/apt.16962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|