1
|
Gallo F, Myachykov A, Abutalebi J, DeLuca V, Ellis J, Rothman J, Wheeldon LR. Bilingualism, sleep, and cognition: An integrative view and open research questions. BRAIN AND LANGUAGE 2025; 260:105507. [PMID: 39644806 DOI: 10.1016/j.bandl.2024.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Sleep and language are fundamental to human existence and have both been shown to substantially affect cognitive functioning including memory, attentional performance, and cognitive control. Surprisingly, there is little-to-no research that examines the shared impact of bilingualism and sleep on cognitive functions. In this paper, we provide a general overview of existing research on the interplay between bilingualism and sleep with a specific focus on executive functioning. First, we highlight their interconnections and the resulting implications for cognitive performance. Second, we emphasize the need to explore how bilingualism and sleep intersect at cognitive and neural levels, offering insights into potential ways of studying the interplay between sleep, language learning, and bilingual language use. Finally, we suggest that understanding these relationships could enhance our knowledge of reserve and its role in mitigating age-related cognitive decline.
Collapse
Affiliation(s)
- F Gallo
- Uit The Arctic University of Norway, Tromsø, Norway; Higher School of Economics, Moscow, Russian Federation.
| | - A Myachykov
- Higher School of Economics, Moscow, Russian Federation; University of Macau, Taipa, Macau SAR, China
| | - J Abutalebi
- Uit The Arctic University of Norway, Tromsø, Norway; Higher School of Economics, Moscow, Russian Federation; University Vita Salute San Raffaele, Milan, Italy
| | - V DeLuca
- Uit The Arctic University of Norway, Tromsø, Norway
| | - J Ellis
- Northumbria University, Newcastle-upon-Tyne, UK
| | - J Rothman
- Uit The Arctic University of Norway, Tromsø, Norway; Lancaster University, Lancaster, UK; Nebrija Research Center in Cognition, Madrid, Spain
| | | |
Collapse
|
2
|
Beckers L, Philips B, Huinck W, Mylanus E, Büchner A, Kral A. Auditory working memory in noise in cochlear implant users: Insights from behavioural and neuronal measures. Hear Res 2024; 456:109167. [PMID: 39719815 DOI: 10.1016/j.heares.2024.109167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
OBJECTIVE We investigated auditory working-memory using behavioural measures and electroencephalography (EEG) in adult Cochlear Implant (CI) users with varying degrees of CI performance. METHODS 24 adult CI listeners (age: M = 61.38, SD = 12.45) performed the Sternberg auditory-digit-in-working-memory task during which EEG, accuracy, and promptness were captured. Participants were presented with 2, 4, or 6 digits at Signal-to-Noise Ratios (SNR) of 0, +5 and +10dB. They had to identify a probe stimulus as present in the preceding sequence. ANOVA models were used to compare conditions. RESULTS ANOVA revealed that increasing memory load (ML) led to decreased task performance and CI performance interacted with ML and SNR. Centro-parietal alpha power increased during memory encoding but did not differ between conditions. Frontal alpha power was positively correlated with accuracy in conditions most affected by SNR (r = 0.57, r = 0.52) and theta power in conditions most affected by ML (r = 0.55, r = 0.57). CONCLUSIONS While parietal alpha power is modulated by the task, it is frontal alpha that relates quantitatively to sensory aspects of processing (noise) and frontal theta to memory load in this group of CI listeners. SIGNIFICANCE These results suggest that alpha and theta show distinct relationships to behaviour, providing additional insight into neurocognitive (auditory working-memory) processes in CI users.
Collapse
Affiliation(s)
- Loes Beckers
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; Cochlear Ltd., Schaliënhoevedreef 20 Building i, B-2800 Mechelen, Belgium.
| | - Birgit Philips
- Cochlear Ltd., Schaliënhoevedreef 20 Building i, B-2800 Mechelen, Belgium.
| | - Wendy Huinck
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| | - Emmanuel Mylanus
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| | - Andreas Büchner
- Clinics of Otolaryngology, Hannover Medical School, Hearing Center Hannover (DHZ), Karl-Wiechert-Allee 3, 30625 Hannover, Germany.
| | - Andrej Kral
- Clinics of Otolaryngology, Hannover Medical School, Hearing Center Hannover (DHZ), Karl-Wiechert-Allee 3, 30625 Hannover, Germany; Institute of AudioNeuroTechnology (VIANNA) & Dept. of Experimental Otology, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.
| |
Collapse
|
3
|
Huang LZ, Cao Y, Janse E, Piai V. Functional Roles of Sensorimotor Alpha and Beta Oscillations in Overt Speech Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611312. [PMID: 39416142 PMCID: PMC11482788 DOI: 10.1101/2024.09.04.611312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Power decreases, or desynchronization, of sensorimotor alpha and beta oscillations (i.e., alpha and beta ERD) have long been considered as indices of sensorimotor control in overt speech production. However, their specific functional roles are not well understood. Hence, we first conducted a systematic review to investigate how these two oscillations are modulated by speech motor tasks in typically fluent speakers (TFS) and in persons who stutter (PWS). Eleven EEG/MEG papers with source localization were included in our systematic review. The results revealed consistent alpha and beta ERD in the sensorimotor cortex of TFS and PWS. Furthermore, the results suggested that sensorimotor alpha and beta ERD may be functionally dissociable, with alpha related to (somato-)sensory feedback processing during articulation and beta related to motor processes throughout planning and articulation. To (partly) test this hypothesis of a potential functional dissociation between alpha and beta ERD, we then analyzed existing intracranial electro-encephalography (iEEG) data from the primary somatosensory cortex (S1) of picture naming. We found moderate evidence for alpha, but not beta, ERD's sensitivity to speech movements in S1, lending supporting evidence for the functional dissociation hypothesis identified by the systematic review.
Collapse
Affiliation(s)
- Lydia Z. Huang
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Yang Cao
- Donders Centre for Cognition, Radboud University, Nijmegen, Netherlands
| | - Esther Janse
- Centre for Language Studies, Radboud University, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
4
|
Dekydtspotter L, Miller AK, Swanson K, Cha JH, Xiong Y, Ahn JH, Gilbert JA, Pope D, Iverson M, Meinert K. Hierarchical neural processing in γ oscillations for syntactic and semantic operations accounts for first- and second-language epistemology. Front Hum Neurosci 2024; 18:1372909. [PMID: 39376494 PMCID: PMC11456458 DOI: 10.3389/fnhum.2024.1372909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction We discuss event-related power differences (ERPDs) in low- and broadband-γ oscillations as the embedded-clause edge is processed in wh-dependencies such as Which decision regarding/about him/her did Paul say that Lydie rejected without hesitation? in first (L1) and second language (L2) French speakers. Methods The experimental conditions manipulated whether pronouns appeared in modifiers (Mods; regarding him/her) or in noun complements (Comps; about him/her) and whether they matched or mismatched a matrix-clause subject in gender. Results Across L1 and L2 speakers, we found that anaphora-linked ERPDs for Mods vs. Comps in evoked power first arose in low γ and then in broadband γ. Referential elements first seem to be retrieved from working memory by narrowband processes in low γ and then referential identification seems to be computed in broadband-γ output. Interactions between discourse- and syntax-based referential processes for the Mods vs. Comps in these ERPDs furthermore suggest that multidomain γ-band processing enables a range of elementary operations for discourse and semantic interpretation. Discussion We argue that a multidomain mechanism enabling operations conditioned by the syntactic and semantic nature of the elements processed interacts with local brain microcircuits representing features and feature sets that have been established in L1 or L2 acquisition, accounting for a single language epistemology across learning contexts.
Collapse
Affiliation(s)
- Laurent Dekydtspotter
- Department of French & Italian, Indiana University, Bloomington, IN, United States
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - A. Kate Miller
- Department of World Languages and Cultures, Indiana University–Indianapolis, Indianapolis, IN, United States
| | - Kyle Swanson
- Oral English Proficiency Program, Purdue University, West Lafayette, IN, United States
| | - Jih-Ho Cha
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - Yanyu Xiong
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States
| | - Jae-Hyun Ahn
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - Jane A. Gilbert
- Department of French & Italian, Indiana University, Bloomington, IN, United States
| | - Decker Pope
- Department of French & Italian, Indiana University, Bloomington, IN, United States
| | - Mike Iverson
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - Kent Meinert
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| |
Collapse
|
5
|
Lum JAG, Barham MP, Hill AT. Pupillometry reveals resting state alpha power correlates with individual differences in adult auditory language comprehension. Cortex 2024; 177:1-14. [PMID: 38821014 DOI: 10.1016/j.cortex.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 06/02/2024]
Abstract
Although individual differences in adult language processing are well-documented, the neural basis of this variability remains largely unexplored. The current study addressed this gap in the literature by examining the relationship between resting state alpha activity and individual differences in auditory language comprehension. Alpha oscillations modulate cortical excitability, facilitating efficient information processing in the brain. While resting state alpha oscillations have been tied to individual differences in cognitive performance, their association with auditory language comprehension is less clear. Participants in the study were 80 healthy adults with a mean age of 25.8 years (SD = 7.2 years). Resting state alpha activity was acquired using electroencephalography while participants looked at a benign stimulus for 3 min. Participants then completed a language comprehension task that involved listening to 'syntactically simple' subject-relative clause sentences and 'syntactically complex' object-relative clause sentences. Pupillometry measured real-time processing demand changes, with larger pupil dilation indicating increased processing loads. Replicating past research, comprehending object relative clauses, compared to subject relative clauses, was associated with lower accuracy, slower reaction times, and larger pupil dilation. Resting state alpha power was found to be positively correlated with the pupillometry data. That is, participants with higher resting state alpha activity evidenced larger dilation during sentence comprehension. This effect was more pronounced for the 'complex' object sentences compared to the 'simple' subject sentences. These findings suggest the brain's capacity to generate a robust resting alpha rhythm contributes to variability in processing demands associated with auditory language comprehension, especially when faced with challenging syntactic structures. More generally, the study demonstrates that the intrinsic functional architecture of the brain likely influences individual differences in language comprehension.
Collapse
Affiliation(s)
- Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Australia.
| | - Michael P Barham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Australia
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Australia
| |
Collapse
|
6
|
Do J, James O, Kim YJ. Choice-dependent delta-band neural trajectory during semantic category decision making in the human brain. iScience 2024; 27:110173. [PMID: 39040068 PMCID: PMC11260863 DOI: 10.1016/j.isci.2024.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/15/2024] [Accepted: 05/31/2024] [Indexed: 07/24/2024] Open
Abstract
Recent human brain imaging studies have identified widely distributed cortical areas that represent information about the meaning of language. Yet, the dynamic nature of widespread neural activity as a correlate of the semantic information processing remains poorly explored. Our state space analysis of electroencephalograms (EEGs) recorded during semantic match-to-category task show that depending on the semantic category and decision path chosen by participants, whole-brain delta-band dynamics follow distinct trajectories that are correlated with participants' response time on a trial-by-trial basis. Especially, the proximity of the neural trajectory to category decision-specific region in the state space was predictive of participants' decision-making reaction times. We also found that posterolateral regions primarily encoded word categories while postero-central regions encoded category decisions. Our results demonstrate the role of neural dynamics embedded in the evolving multivariate delta-band activity patterns in processing the semantic relatedness of words and the semantic category-based decision-making.
Collapse
Affiliation(s)
- Jongrok Do
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Oliver James
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yee-Joon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
7
|
Lydon EA, Panfil HB, Yako S, Mudar RA. Behavioral and neural measures of semantic conflict monitoring: Findings from a novel picture-word interference task. Brain Res 2024; 1834:148900. [PMID: 38555981 DOI: 10.1016/j.brainres.2024.148900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Conflict monitoring has been studied extensively using experimental paradigms that manipulate perceptual dimensions of stimuli and responses. The picture-word interference (PWI) task has historically been used to examine semantic conflict, but primarily for the purpose of examining lexical retrieval. In this study, we utilized two novel PWI tasks to assess conflict monitoring in the context of semantic conflict. Participants included nineteen young adults (14F, age = 20.79 ± 3.14) who completed two tasks: Animals and Objects. Task and conflict effects were assessed by examining behavioral (reaction time and accuracy) and neurophysiological (oscillations in theta, alpha, and beta band) measures. Results revealed conflict effects within both tasks, but the pattern of findings differed across the two semantic categories. Participants were slower to respond to unmatched versus matched trials on the Objects task only and were less accurate responding to matched versus unmatched trials in the Animals task only. We also observed task differences, with participants responding more accurately on conflict trials for Animals compared to Objects. Differences in neural oscillations were observed, including between-task differences in low beta oscillations and within-task differences in theta, alpha, and low beta. We also observed significant correlations between task performance and standard measures of cognitive control. This work provides new insights into conflict monitoring, highlighting the importance of examining conflict across different semantic categories, especially in the context of animacy. The findings serve as a benchmark to assess conflict monitoring using PWI tasks across populations of varying cognitive ability.
Collapse
Affiliation(s)
- Elizabeth A Lydon
- Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Holly B Panfil
- Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Sharbel Yako
- Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Raksha A Mudar
- Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
8
|
Nix KC, Oh A, Goad BS, Wu W, Lucas MV, Baumer FM. Detection of Language Lateralization Using Spectral Analysis of EEG. J Clin Neurophysiol 2024; 41:334-343. [PMID: 38710040 PMCID: PMC11076005 DOI: 10.1097/wnp.0000000000000988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
PURPOSE Language lateralization relies on expensive equipment and can be difficult to tolerate. We assessed if lateralized brain responses to a language task can be detected with spectral analysis of electroencephalography (EEG). METHODS Twenty right-handed, neurotypical adults (28 ± 10 years; five males) performed a verb generation task and two control tasks (word listening and repetition). We measured changes in EEG activity elicited by tasks (the event-related spectral perturbation [ERSP]) in the theta, alpha, beta, and gamma frequency bands in two language (superior temporal and inferior frontal [ST and IF]) and one control (occipital [Occ]) region bilaterally. We tested whether language tasks elicited (1) changes in spectral power from baseline (significant ERSP) at any region or (2) asymmetric ERSPs between matched left and right regions. RESULTS Left IF beta power (-0.37±0.53, t = -3.12, P = 0.006) and gamma power in all regions decreased during verb generation. Asymmetric ERSPs (right > left) occurred between the (1) IF regions in the beta band (right vs. left difference of 0.23±0.37, t(19) = -2.80, P = 0.0114) and (2) ST regions in the alpha band (right vs. left difference of 0.48±0.63, t(19) = -3.36, P = 0.003). No changes from baseline or hemispheric asymmetries were noted in language regions during control tasks. On the individual level, 16 (80%) participants showed decreased left IF beta power from baseline, and 16 showed ST alpha asymmetry. Eighteen participants (90%) showed one of these two findings. CONCLUSIONS Spectral EEG analysis detects lateralized responses during language tasks in frontal and temporal regions. Spectral EEG analysis could be developed into a readily available language lateralization modality.
Collapse
Affiliation(s)
- Kerry C Nix
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, U.S.A
- Wu Tsai Neurosciences Institute, Stanford, California, U.S.A.; and
| | - Ahyuda Oh
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - Beattie S Goad
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - Wei Wu
- Wu Tsai Neurosciences Institute, Stanford, California, U.S.A.; and
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - Molly V Lucas
- Wu Tsai Neurosciences Institute, Stanford, California, U.S.A.; and
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - Fiona M Baumer
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, U.S.A
- Wu Tsai Neurosciences Institute, Stanford, California, U.S.A.; and
| |
Collapse
|
9
|
Zioga I, Zhou YJ, Weissbart H, Martin AE, Haegens S. Alpha and Beta Oscillations Differentially Support Word Production in a Rule-Switching Task. eNeuro 2024; 11:ENEURO.0312-23.2024. [PMID: 38490743 PMCID: PMC10988358 DOI: 10.1523/eneuro.0312-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Research into the role of brain oscillations in basic perceptual and cognitive functions has suggested that the alpha rhythm reflects functional inhibition while the beta rhythm reflects neural ensemble (re)activation. However, little is known regarding the generalization of these proposed fundamental operations to linguistic processes, such as speech comprehension and production. Here, we recorded magnetoencephalography in participants performing a novel rule-switching paradigm. Specifically, Dutch native speakers had to produce an alternative exemplar from the same category or a feature of a given target word embedded in spoken sentences (e.g., for the word "tuna", an exemplar from the same category-"seafood"-would be "shrimp", and a feature would be "pink"). A cue indicated the task rule-exemplar or feature-either before (pre-cue) or after (retro-cue) listening to the sentence. Alpha power during the working memory delay was lower for retro-cue compared with that for pre-cue in the left hemispheric language-related regions. Critically, alpha power negatively correlated with reaction times, suggestive of alpha facilitating task performance by regulating inhibition in regions linked to lexical retrieval. Furthermore, we observed a different spatiotemporal pattern of beta activity for exemplars versus features in the right temporoparietal regions, in line with the proposed role of beta in recruiting neural networks for the encoding of distinct categories. Overall, our study provides evidence for the generalizability of the role of alpha and beta oscillations from perceptual to more "complex, linguistic processes" and offers a novel task to investigate links between rule-switching, working memory, and word production.
Collapse
Affiliation(s)
- Ioanna Zioga
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Ying Joey Zhou
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Oxford, United Kingdom
| | - Hugo Weissbart
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Andrea E Martin
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Saskia Haegens
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
10
|
Eisenhauer S, Gonzalez Alam TRDJ, Cornelissen PL, Smallwood J, Jefferies E. Individual word representations dissociate from linguistic context along a cortical unimodal to heteromodal gradient. Hum Brain Mapp 2024; 45:e26607. [PMID: 38339897 PMCID: PMC10836172 DOI: 10.1002/hbm.26607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Language comprehension involves multiple hierarchical processing stages across time, space, and levels of representation. When processing a word, the sensory input is transformed into increasingly abstract representations that need to be integrated with the linguistic context. Thus, language comprehension involves both input-driven as well as context-dependent processes. While neuroimaging research has traditionally focused on mapping individual brain regions to the distinct underlying processes, recent studies indicate that whole-brain distributed patterns of cortical activation might be highly relevant for cognitive functions, including language. One such pattern, based on resting-state connectivity, is the 'principal cortical gradient', which dissociates sensory from heteromodal brain regions. The present study investigated the extent to which this gradient provides an organizational principle underlying language function, using a multimodal neuroimaging dataset of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) recordings from 102 participants during sentence reading. We found that the brain response to individual representations of a word (word length, orthographic distance, and word frequency), which reflect visual; orthographic; and lexical properties, gradually increases towards the sensory end of the gradient. Although these properties showed opposite effect directions in fMRI and MEG, their association with the sensory end of the gradient was consistent across both neuroimaging modalities. In contrast, MEG revealed that properties reflecting a word's relation to its linguistic context (semantic similarity and position within the sentence) involve the heteromodal end of the gradient to a stronger extent. This dissociation between individual word and contextual properties was stable across earlier and later time windows during word presentation, indicating interactive processing of word representations and linguistic context at opposing ends of the principal gradient. To conclude, our findings indicate that the principal gradient underlies the organization of a range of linguistic representations while supporting a gradual distinction between context-independent and context-dependent representations. Furthermore, the gradient reveals convergent patterns across neuroimaging modalities (similar location along the gradient) in the presence of divergent responses (opposite effect directions).
Collapse
Affiliation(s)
- Susanne Eisenhauer
- Department of PsychologyUniversity of YorkYorkUK
- York Neuroimaging Centre, Innovation WayYorkUK
| | | | | | | | - Elizabeth Jefferies
- Department of PsychologyUniversity of YorkYorkUK
- York Neuroimaging Centre, Innovation WayYorkUK
| |
Collapse
|
11
|
Zoefel B, Kösem A. Neural tracking of continuous acoustics: properties, speech-specificity and open questions. Eur J Neurosci 2024; 59:394-414. [PMID: 38151889 DOI: 10.1111/ejn.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Human speech is a particularly relevant acoustic stimulus for our species, due to its role of information transmission during communication. Speech is inherently a dynamic signal, and a recent line of research focused on neural activity following the temporal structure of speech. We review findings that characterise neural dynamics in the processing of continuous acoustics and that allow us to compare these dynamics with temporal aspects in human speech. We highlight properties and constraints that both neural and speech dynamics have, suggesting that auditory neural systems are optimised to process human speech. We then discuss the speech-specificity of neural dynamics and their potential mechanistic origins and summarise open questions in the field.
Collapse
Affiliation(s)
- Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Toulouse, France
- Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, Bron, France
| |
Collapse
|
12
|
Kim J, Kim HW, Kovar J, Lee YS. Neural consequences of binaural beat stimulation on auditory sentence comprehension: an EEG study. Cereb Cortex 2024; 34:bhad459. [PMID: 38044462 DOI: 10.1093/cercor/bhad459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
A growing literature has shown that binaural beat (BB)-generated by dichotic presentation of slightly mismatched pure tones-improves cognition. We recently found that BB stimulation of either beta (18 Hz) or gamma (40 Hz) frequencies enhanced auditory sentence comprehension. Here, we used electroencephalography (EEG) to characterize neural oscillations pertaining to the enhanced linguistic operations following BB stimulation. Sixty healthy young adults were randomly assigned to one of three listening groups: 18-Hz BB, 40-Hz BB, or pure-tone baseline, all embedded in music. After listening to the sound for 10 min (stimulation phase), participants underwent an auditory sentence comprehension task involving spoken sentences that contained either an object or subject relative clause (task phase). During the stimulation phase, 18-Hz BB yielded increased EEG power in a beta frequency range, while 40-Hz BB did not. During the task phase, only the 18-Hz BB resulted in significantly higher accuracy and faster response times compared with the baseline, especially on syntactically more complex object-relative sentences. The behavioral improvement by 18-Hz BB was accompanied by attenuated beta power difference between object- and subject-relative sentences. Altogether, our findings demonstrate beta oscillations as a neural correlate of improved syntactic operation following BB stimulation.
Collapse
Affiliation(s)
- Jeahong Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States
- Callier Clinical Research Center, The University of Texas at Dallas, Richardson, TX 75080, United States
| | - Hyun-Woong Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States
- Callier Clinical Research Center, The University of Texas at Dallas, Richardson, TX 75080, United States
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX 75235, United States
- Department of Psychology, The University of Texas at Dallas, Richardson, TX 75080, United States
| | - Jessica Kovar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States
- Callier Clinical Research Center, The University of Texas at Dallas, Richardson, TX 75080, United States
| | - Yune Sang Lee
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States
- Callier Clinical Research Center, The University of Texas at Dallas, Richardson, TX 75080, United States
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX 75235, United States
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
13
|
Wu Y, Luo C, Wang Z, Xie H, Huang Y, Su Y. A further specification of the effects of font emphasis on reading comprehension: Evidence from event-related potentials and neural oscillations. Mem Cognit 2024; 52:225-239. [PMID: 37715010 DOI: 10.3758/s13421-023-01457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/17/2023]
Abstract
The attention hypothesis, which assumes that font emphasis captures readers' attention, is usually used to explain the mechanism by which such emphasis operates. This study further delineates the attention hypothesis by investigating the ways in which font emphasis captures attention and its effects on the integration of emphasized information into the previous context. We computed event-related potentials and frequency band-specific electroencephalographic power changes occurring while participants read sentences containing critical words that were either emphasized (i.e., displayed in a color different from the other words in the sentence) or not (i.e., shown in the same color as the rest of the sentence) and semantically congruent with prior words or not. The results showed that the emphasized words (as compared to control words) elicited a reduced N1 and increased P2, indicating that font emphasis reduced familiarity-based visuo-orthographic processing and instead increased controlled attentional processing. We also observed greater P300 and power decreases in the alpha and beta frequency range in response to critical words in the emphasized condition, suggesting that font emphasis enhances focal attention to promote a fuller integration of information into the sentence context. Furthermore, relative to the control condition, the emphasized condition induced delta and theta power increases for the incongruent words. These results suggest that font emphasis increases the efficiency of glyph processing, which facilitates lexical access.
Collapse
Affiliation(s)
- Yingying Wu
- School of Psychology, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, Fujian, China.
| | - Cuixin Luo
- Department of Preschool Education, Jiangmen Preschool Education College, 1 Chaocui Road, Jiangmen, 529020, Guangdong, China.
| | - Zhenxing Wang
- Concord University College Fujian Normal University, Fuzhou, China
| | - Hanying Xie
- School of Psychology, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, Fujian, China
| | - Yajing Huang
- School of Psychology, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, Fujian, China
| | - Yankui Su
- College of Foreign Languages, Fujian Normal University, Fuzhou, China
| |
Collapse
|
14
|
Huizeling E, Alday PM, Peeters D, Hagoort P. Combining EEG and 3D-eye-tracking to study the prediction of upcoming speech in naturalistic virtual environments: A proof of principle. Neuropsychologia 2023; 191:108730. [PMID: 37939871 DOI: 10.1016/j.neuropsychologia.2023.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
EEG and eye-tracking provide complementary information when investigating language comprehension. Evidence that speech processing may be facilitated by speech prediction comes from the observation that a listener's eye gaze moves towards a referent before it is mentioned if the remainder of the spoken sentence is predictable. However, changes to the trajectory of anticipatory fixations could result from a change in prediction or an attention shift. Conversely, N400 amplitudes and concurrent spectral power provide information about the ease of word processing the moment the word is perceived. In a proof-of-principle investigation, we combined EEG and eye-tracking to study linguistic prediction in naturalistic, virtual environments. We observed increased processing, reflected in theta band power, either during verb processing - when the verb was predictive of the noun - or during noun processing - when the verb was not predictive of the noun. Alpha power was higher in response to the predictive verb and unpredictable nouns. We replicated typical effects of noun congruence but not predictability on the N400 in response to the noun. Thus, the rich visual context that accompanied speech in virtual reality influenced language processing compared to previous reports, where the visual context may have facilitated processing of unpredictable nouns. Finally, anticipatory fixations were predictive of spectral power during noun processing and the length of time fixating the target could be predicted by spectral power at verb onset, conditional on the object having been fixated. Overall, we show that combining EEG and eye-tracking provides a promising new method to answer novel research questions about the prediction of upcoming linguistic input, for example, regarding the role of extralinguistic cues in prediction during language comprehension.
Collapse
Affiliation(s)
- Eleanor Huizeling
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.
| | | | - David Peeters
- Department of Communication and Cognition, TiCC, Tilburg University, Tilburg, the Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Behboudi MH, Castro S, Chalamalasetty P, Maguire MJ. Development of Gamma Oscillation during Sentence Processing in Early Adolescence: Insights into the Maturation of Semantic Processing. Brain Sci 2023; 13:1639. [PMID: 38137087 PMCID: PMC10741943 DOI: 10.3390/brainsci13121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Children's ability to retrieve word meanings and incorporate them into sentences, along with the neural structures that support these skills, continues to evolve throughout adolescence. Theta (4-8 Hz) activity that corresponds to word retrieval in children decreases in power and becomes more localized with age. This bottom-up word retrieval is often paired with changes in gamma (31-70 Hz), which are thought to reflect semantic unification in adults. Here, we studied gamma engagement during sentence processing using EEG time-frequency in children (ages 8-15) to unravel the developmental trajectory of the gamma network during sentence processing. Children heavily rely on semantic integration for sentence comprehension, but as they mature, semantic and syntactic processing units become distinct and localized. We observed a similar developmental shift in gamma oscillation around age 11, with younger groups (8-9 and 10-11) exhibiting broadly distributed gamma activity with higher amplitudes, while older groups (12-13 and 14-15) exhibited smaller and more localized gamma activity, especially over the left central and posterior regions. We interpret these findings as support for the argument that younger children rely more heavily on semantic processes for sentence comprehension than older children. And like adults, semantic processing in children is associated with gamma activity.
Collapse
Affiliation(s)
- Mohammad Hossein Behboudi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (M.H.B.)
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Stephanie Castro
- Department of Human Development and Family Sciences, The University of Texas at Austin, Austin, TX 78705, USA
| | - Prasanth Chalamalasetty
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (M.H.B.)
| | - Mandy J. Maguire
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (M.H.B.)
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX 75235, USA
| |
Collapse
|
16
|
Kim HW, Happe J, Lee YS. Beta and gamma binaural beats enhance auditory sentence comprehension. PSYCHOLOGICAL RESEARCH 2023; 87:2218-2227. [PMID: 36854935 DOI: 10.1007/s00426-023-01808-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/11/2023] [Indexed: 03/02/2023]
Abstract
Binaural beats-an auditory illusion produced when two pure tones of slightly different frequencies are dichotically presented-have been shown to modulate various cognitive and psychological states. Here, we investigated the effects of binaural beat stimulation on auditory sentence processing that required interpretation of syntactic relations (Experiment 1) or an evaluation of syntactic well formedness (Experiment 2) with a large cohort of healthy young adults (N = 200). In both experiments, participants performed a language task after listening to one of four sounds (i.e., between-subject design): theta (7 Hz), beta (18 Hz), and gamma (40 Hz) binaural beats embedded in music, or the music only (baseline). In Experiment 1, 100 participants indicated the gender of a noun linked to a transitive action verb in spoken sentences containing either a subject or object-relative center-embedded clause. We found that both beta and gamma binaural beats yielded better performance, compared to the baseline, especially for syntactically more complex object-relative sentences. To determine if the binaural beat effect can be generalized to another type of syntactic analysis, we conducted Experiment 2 in which another 100 participants indicated whether or not there was a grammatical error in spoken sentences. However, none of the binaural beats yielded better performance for this task indicating that the benefit of beta and gamma binaural beats may be specific to the interpretation of syntactic relations. Together, we demonstrate, for the first time, the positive impact of binaural beats on auditory language comprehension. Both theoretical and practical implications are discussed.
Collapse
Affiliation(s)
- Hyun-Woong Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, USA
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, USA
- Department of Psychology, The University of Texas at Dallas, Dallas, USA
| | - Jenna Happe
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, USA
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, USA
| | - Yune Sang Lee
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, USA.
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, USA.
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, Dallas, USA.
| |
Collapse
|
17
|
Lewis AG, Schoffelen JM, Bastiaansen M, Schriefers H. Is beta in agreement with the relatives? Using relative clause sentences to investigate MEG beta power dynamics during sentence comprehension. Psychophysiology 2023; 60:e14332. [PMID: 37203219 DOI: 10.1111/psyp.14332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
There remains some debate about whether beta power effects observed during sentence comprehension reflect ongoing syntactic unification operations (beta-syntax hypothesis), or instead reflect maintenance or updating of the sentence-level representation (beta-maintenance hypothesis). In this study, we used magnetoencephalography to investigate beta power neural dynamics while participants read relative clause sentences that were initially ambiguous between a subject- or an object-relative reading. An additional condition included a grammatical violation at the disambiguation point in the relative clause sentences. The beta-maintenance hypothesis predicts a decrease in beta power at the disambiguation point for unexpected (and less preferred) object-relative clause sentences and grammatical violations, as both signal a need to update the sentence-level representation. While the beta-syntax hypothesis also predicts a beta power decrease for grammatical violations due to a disruption of syntactic unification operations, it instead predicts an increase in beta power for the object-relative clause condition because syntactic unification at the point of disambiguation becomes more demanding. We observed decreased beta power for both the agreement violation and object-relative clause conditions in typical left hemisphere language regions, which provides compelling support for the beta-maintenance hypothesis. Mid-frontal theta power effects were also present for grammatical violations and object-relative clause sentences, suggesting that violations and unexpected sentence interpretations are registered as conflicts by the brain's domain-general error detection system.
Collapse
Affiliation(s)
- Ashley Glen Lewis
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jan-Mathijs Schoffelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Marcel Bastiaansen
- Academy for Leisure and Events, Breda University of Applied Sciences, Breda, the Netherlands
- Department of Cognitive Neuropsychology, School of Social and Behavioural Sciences, Tilburg University, Tilburg, the Netherlands
| | - Herbert Schriefers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Stinkeste C, Vincent MA, Delrue L, Brunellière A. Between alpha and gamma oscillations: Neural signatures of linguistic predictions and listener's attention to speaker's communication intention. Biol Psychol 2023; 180:108583. [PMID: 37156325 DOI: 10.1016/j.biopsycho.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
When listeners hear a message produced by their interlocutor, they can predict upcoming words thanks to the sentential context and their attention can be focused on the speaker's communication intention. In two electroencephalographical (EEG) studies, we investigated the oscillatory correlates of prediction in spoken-language comprehension and how they are modulated by the listener's attention. Sentential contexts which were strongly predictive of a particular word were ended by a possessive adjective either matching the gender of the predicted word or not. Alpha, beta and gamma oscillations were studied as they were considered to play a crucial role in the predictive process. While evidence of word prediction was related to alpha fluctuations when listeners focused their attention on sentence meaning, changes in high-gamma oscillations were triggered by word prediction when listeners focused their attention on the speaker's communication intention. Independently of the endogenous attention to a level of linguistic information, the oscillatory correlates of word predictions in language comprehension were sensitive to the prosodic emphasis produced by the speaker at a late stage. These findings thus bear major implications for understanding the neural mechanisms that support predictive processing in spoken-language comprehension.
Collapse
Affiliation(s)
- Charlotte Stinkeste
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| | - Marion A Vincent
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| | - Laurence Delrue
- Univ. Lille, CNRS, UMR 8163 - STL - Savoirs Textes Langage, F-59000 Lille, France
| | - Angèle Brunellière
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France.
| |
Collapse
|
19
|
Dekydtspotter L, Miller AK, Iverson M, Xiong Y, Swanson K, Gilbert C. The timing versus resource problem in nonnative sentence processing: Evidence from a time-frequency analysis of anaphora resolution in successive wh-movement in native and nonnative speakers of French. PLoS One 2023; 18:e0275305. [PMID: 36701328 PMCID: PMC9879400 DOI: 10.1371/journal.pone.0275305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
Nonnative processing has been argued to reflect either reduced processing capacity or delayed timing of structural analysis compared to the extraction of lexical/semantic information. The current study simultaneously investigates timing and resource allocation through a time-frequency analysis of the intrinsic neural activity during syntactic processing in native and English-speaking nonnative speakers of French. It involved structurally constrained anaphora resolution in bi-clausal wh-filler-gap dependencies such as Quelle décision à propos de lui est-ce que Paul a dit que Lydie avait rejetée sans hésitation? 'Which decision about him did Paul say that Lydie rejected without hesitation?'. We tested the hypothesis that nonnative speakers may allocate greater resources than native speakers to the computation of syntactic representations based on the grammatical specifications encoded in lexical entries, though both native and nonnative processing involves the immediate application of structural constraints. This distinct resource allocation is likely to arise in response to higher activation thresholds for nonnative knowledge acquired after the first language grammar has been fully acquired. To examine this bias in nonnative neurocognitive processing, we manipulated the wh-filler to contain either a lexically specified noun complement such as à propos de lui 'about him' or a non-lexcially specified noun phrase modifier such as le concernant 'concerning him'. We focused on processing at the intermediate gap site, that is, the point of information exchange between the matrix and the embedded clauses by adopting a measurement window corresponding to the bridge verb dit 'said' and subordinator que 'that' introducing the embedded clause. Our results showed that structural constraints on anaphora produced event-related spectral perturbations at 13-14Hz early into the presentation of the bridge verb across groups. An interaction of structural constraints on anaphora with group was found at 18-19Hz early into the presentation of the bridge verb. In this interaction, the nonnative-speaker activity at 18-19Hz echoed the concurrent general patterns at 13-14Hz, whereas the native-speaker activity revealed distinct power at 18-19Hz and at 13-14Hz. There was no evidence of delay of structural constraints on intermediate gaps with respect to lexical access to the bridge verb and subordinator. However, nonnative speakers' allocation of power in cell assembly synchronizations of fillers and gaps at the intermediate gap site reflected the grammatical specifications lexically encoded in the fillers.
Collapse
Affiliation(s)
- Laurent Dekydtspotter
- Department of French & Italian, Indiana University, Bloomington, Indiana, United States of America
- Department of Second Language Studies, Indiana University, Bloomington, Indiana, United States of America
| | - A. Kate Miller
- Department of World Languages and Cultures, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mike Iverson
- Department of Second Language Studies, Indiana University, Bloomington, Indiana, United States of America
| | - Yanyu Xiong
- Alabama Life Research Institute, University of Alabama, Birmingham, Alabama, United States of America
| | - Kyle Swanson
- Department of English, Purdue University, West Lafayette, Indiana, United States of America
| | - Charlène Gilbert
- Department of French & Italian, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
20
|
Gastaldon S, Busan P, Arcara G, Peressotti F. Inefficient speech-motor control affects predictive speech comprehension: atypical electrophysiological correlates in stuttering. Cereb Cortex 2023:6995383. [PMID: 36682885 DOI: 10.1093/cercor/bhad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Listeners predict upcoming information during language comprehension. However, how this ability is implemented is still largely unknown. Here, we tested the hypothesis proposing that language production mechanisms have a role in prediction. We studied 2 electroencephalographic correlates of predictability during speech comprehension-pre-target alpha-beta (8-30 Hz) power decrease and the post-target N400 event-related potential effect-in a population with impaired speech-motor control, i.e. adults who stutter (AWS), compared to typically fluent adults (TFA). Participants listened to sentences that could either constrain towards a target word or not, modulating its predictability. As a complementary task, participants also performed context-driven word production. Compared to TFA, AWS not only displayed atypical neural responses in production, but, critically, they showed a different pattern also in comprehension. Specifically, while TFA showed the expected pre-target power decrease, AWS showed a power increase in frontal regions, associated with speech-motor control. In addition, the post-target N400 effect was reduced for AWS with respect to TFA. Finally, we found that production and comprehension power changes were positively correlated in TFA, but not in AWS. Overall, the results support the idea that processes and neural structures prominently devoted to speech planning also support prediction during speech comprehension.
Collapse
Affiliation(s)
- Simone Gastaldon
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Via Venezia 8, Padova (PD) 35131, Italy.,Padova Neuroscience Center (PNC), University of Padova, Via Giuseppe Orus 2/B, Padova (PD) 35131, Italy
| | - Pierpaolo Busan
- IRCCS Ospedale San Camillo, Via Alberoni 70, Lido (VE) 30126, Italy
| | - Giorgio Arcara
- IRCCS Ospedale San Camillo, Via Alberoni 70, Lido (VE) 30126, Italy
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Via Venezia 8, Padova (PD) 35131, Italy.,Padova Neuroscience Center (PNC), University of Padova, Via Giuseppe Orus 2/B, Padova (PD) 35131, Italy.,Centro Interdipartimentale di Ricerca "I-APPROVE-International Auditory Processing Project in Venice", University of Padova, Via Belzoni 160, Padova (PD) 35121, Italy
| |
Collapse
|
21
|
Hardy SM, Jensen O, Wheeldon L, Mazaheri A, Segaert K. Modulation in alpha band activity reflects syntax composition: an MEG study of minimal syntactic binding. Cereb Cortex 2023; 33:497-511. [PMID: 35311899 PMCID: PMC9890467 DOI: 10.1093/cercor/bhac080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Successful sentence comprehension requires the binding, or composition, of multiple words into larger structures to establish meaning. Using magnetoencephalography, we investigated the neural mechanisms involved in binding at the syntax level, in a task where contributions from semantics were minimized. Participants were auditorily presented with minimal sentences that required binding (pronoun and pseudo-verb with the corresponding morphological inflection; "she grushes") and pseudo-verb wordlists that did not require binding ("cugged grushes"). Relative to no binding, we found that syntactic binding was associated with a modulation in alpha band (8-12 Hz) activity in left-lateralized language regions. First, we observed a significantly smaller increase in alpha power around the presentation of the target word ("grushes") that required binding (-0.05 to 0.1 s), which we suggest reflects an expectation of binding to occur. Second, during binding of the target word (0.15-0.25 s), we observed significantly decreased alpha phase-locking between the left inferior frontal gyrus and the left middle/inferior temporal cortex, which we suggest reflects alpha-driven cortical disinhibition serving to strengthen communication within the syntax composition neural network. Altogether, our findings highlight the critical role of rapid spatial-temporal alpha band activity in controlling the allocation, transfer, and coordination of the brain's resources during syntax composition.
Collapse
Affiliation(s)
- Sophie M Hardy
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Psychology, University of Warwick, Coventry CV4 7AL, UK
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Linda Wheeldon
- Department of Foreign Languages and Translations, University of Agder, Kristiansand 4630, Norway
| | - Ali Mazaheri
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
22
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
23
|
Zeller J, Bylund E, Lewis AG. The parser consults the lexicon in spite of transparent gender marking: EEG evidence from noun class agreement processing in Zulu. Cognition 2022; 226:105148. [DOI: 10.1016/j.cognition.2022.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
|
24
|
Tomić A, Kaan E. Oscillatory brain responses to processing code-switches in the presence of others. BRAIN AND LANGUAGE 2022; 231:105139. [PMID: 35687945 DOI: 10.1016/j.bandl.2022.105139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Code-switching, i.e. the alternation between languages in a conversation, is a typical, yet socially-constrained practice in bilingual communities. For instance, code-switching is permissible only when other conversation partners are fluent in both languages. Studying code-switching provides insight in the cognitive and neural mechanisms underlying language control, and their modulation by linguistic and non-linguistic factors. Using time-frequency representations, we analyzed brain oscillation changes in EEG data recorded in a prior study (Kaan et al., 2020). In this study, Spanish-English bilinguals read sentences with and without switches in the presence of a bilingual or monolingual partner. Consistent with prior studies, code-switches were associated with a power decrease in the lower beta band (15-18 Hz). In addition, code-switches were associated with a power decrease in the upper gamma band (40-50 Hz), but only when a bilingual partner was present, suggesting the semantic/pragmatic processing of code-switches differs depending on who is present.
Collapse
Affiliation(s)
- Aleksandra Tomić
- University of Florida, Department of Linguistics, Gainesville, FL 32611, USA; UiT The Arctic University of Norway, Department of Language and Culture, 9037 Tromsø, Norway.
| | - Edith Kaan
- University of Florida, Department of Linguistics, Gainesville, FL 32611, USA
| |
Collapse
|
25
|
Pereira Soares SM, Prystauka Y, DeLuca V, Rothman J. Type of bilingualism conditions individual differences in the oscillatory dynamics of inhibitory control. Front Hum Neurosci 2022; 16:910910. [PMID: 35966987 PMCID: PMC9369864 DOI: 10.3389/fnhum.2022.910910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
The present study uses EEG time-frequency representations (TFRs) with a Flanker task to investigate if and how individual differences in bilingual language experience modulate neurocognitive outcomes (oscillatory dynamics) in two bilingual group types: late bilinguals (L2 learners) and early bilinguals (heritage speakers-HSs). TFRs were computed for both incongruent and congruent trials. The difference between the two (Flanker effect vis-à-vis cognitive interference) was then (1) compared between the HSs and the L2 learners, (2) modeled as a function of individual differences with bilingual experience within each group separately and (3) probed for its potential (a)symmetry between brain and behavioral data. We found no differences at the behavioral and neural levels for the between-groups comparisons. However, oscillatory dynamics (mainly theta increase and alpha suppression) of inhibition and cognitive control were found to be modulated by individual differences in bilingual language experience, albeit distinctly within each bilingual group. While the results indicate adaptations toward differential brain recruitment in line with bilingual language experience variation overall, this does not manifest uniformly. Rather, earlier versus later onset to bilingualism-the bilingual type-seems to constitute an independent qualifier to how individual differences play out.
Collapse
Affiliation(s)
- Sergio Miguel Pereira Soares
- Department of Linguistics, University of Konstanz, Konstanz, Germany
- Language Development Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Yanina Prystauka
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway
| | - Vincent DeLuca
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jason Rothman
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway
- Nebrija Research Center in Cognition, University of Nebrija, Madrid, Spain
| |
Collapse
|
26
|
Egurtzegi A, Blasi DE, Bornkessel-Schlesewsky I, Laka I, Meyer M, Bickel B, Sauppe S. Cross-linguistic differences in case marking shape neural power dynamics and gaze behavior during sentence planning. BRAIN AND LANGUAGE 2022; 230:105127. [PMID: 35605312 DOI: 10.1016/j.bandl.2022.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Languages differ in how they mark the dependencies between verbs and arguments, e.g., by case. An eye tracking and EEG picture description study examined the influence of case marking on the time course of sentence planning in Basque and Swiss German. While German assigns an unmarked (nominative) case to subjects, Basque specifically marks agent arguments through ergative case. Fixations to agents and event-related synchronization (ERS) in the theta and alpha frequency bands, as well as desynchronization (ERD) in the alpha and beta bands revealed multiple effects of case marking on the time course of early sentence planning. Speakers decided on case marking under planning early when preparing sentences with ergative-marked agents in Basque, whereas sentences with unmarked agents allowed delaying structural commitment across languages. These findings support hierarchically incremental accounts of sentence planning and highlight how cross-linguistic differences shape the neural dynamics underpinning language use.
Collapse
Affiliation(s)
- Aitor Egurtzegi
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Switzerland; English Department, University of Zurich, Switzerland
| | - Damián E Blasi
- Department of Human Evolutionary Biology, Harvard University, United States; Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Germany
| | - Ina Bornkessel-Schlesewsky
- School of Psychology, Social Work and Social Policy, University of South Australia, Australia; Cognitive and Systems Neuroscience Research Hub, University of South Australia, Australia
| | - Itziar Laka
- Department of Linguistics and Basque Studies, University of the Basque Country (UPV/EHU), Spain
| | - Martin Meyer
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Switzerland; Cognitive Psychology Unit, Psychological Institute, University of Klagenfurt, Austria
| | - Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Switzerland
| | - Sebastian Sauppe
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Switzerland.
| |
Collapse
|
27
|
Feng Y, Quon RJ, Jobst BC, Casey MA. Evoked responses to note onsets and phrase boundaries in Mozart's K448. Sci Rep 2022; 12:9632. [PMID: 35688855 PMCID: PMC9187696 DOI: 10.1038/s41598-022-13710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Understanding the neural correlates of perception of hierarchical structure in music presents a direct window into auditory organization. To examine the hypothesis that high-level and low-level structures—i.e. phrases and notes—elicit different neural responses, we collected intracranial electroencephalography (iEEG) data from eight subjects during exposure to Mozart’s K448 and directly compared Event-related potentials (ERPs) due to note onsets and those elicited by phrase boundaries. Cluster-level permutation tests revealed that note-onset-related ERPs and phrase-boundary-related ERPs were significantly different at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-150$$\end{document}-150, 200, and 450 ms relative to note onset and phrase markers. We also observed increased activity in frontal brain regions when processing phrase boundaries. We relate these observations to (1) a process which syntactically binds notes together hierarchically to form larger phrases; (2) positive emotions induced by successful prediction of forthcoming phrase boundaries and violations of melodic expectations at phrase boundaries.
Collapse
Affiliation(s)
- Yijing Feng
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Robert J Quon
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.,Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Barbara C Jobst
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.,Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Michael A Casey
- Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA. .,Department of Music, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
28
|
Oscillatory correlates of linguistic prediction and modality effects during listening to auditory-only and audiovisual sentences. Int J Psychophysiol 2022; 178:9-21. [DOI: 10.1016/j.ijpsycho.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
|
29
|
Coopmans CW, Cohn N. An electrophysiological investigation of co-referential processes in visual narrative comprehension. Neuropsychologia 2022; 172:108253. [DOI: 10.1016/j.neuropsychologia.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
30
|
Rothermich K, Ahn S, Dannhauer M, Pell MD. Social appropriateness perception of dynamic interactions. Soc Neurosci 2022; 17:37-57. [PMID: 35060435 DOI: 10.1080/17470919.2022.2032326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The current study explored the judgement of communicative appropriateness while processing a dialogue between two individuals. All stimuli were presented as audio-visual as well as audio-only vignettes and 24 young adults reported their social impression (appropriateness) of literal, blunt, sarcastic, and teasing statements. On average, teasing statements were rated as more appropriate when processing audiovisual statements compared to the audio-only version of a stimuli, while sarcastic statements were judged as less appropriate with additional visual information. These results indicate a rejection of the Tinge Hypothesis for audio-visual vignettes while confirming it for the reduced, audio-only counterparts. We also analyzed time-frequency EEG data of four frequency bands that have been related to language processing: alpha, beta, theta and low gamma. We found desynchronization in the alpha band literal versus nonliteral items, confirming the assumption that the alpha band reflects stimulus complexity. The analysis also revealed a power increase in the theta, beta and low gamma band, especially when comparing blunt and nonliteral statements in the audio-only condition. The time-frequency results corroborate the prominent role of the alpha and theta bands in language processing and offer new insights into the neural correlates of communicative appropriateness and social aspects of speech perception.
Collapse
Affiliation(s)
- Kathrin Rothermich
- Department of Communication Sciences & Disorders, East Carolina University, Greenville, USA.,School of Communication Sciences & Disorders, McGill University, Montréal, Canada
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, USA
| | | | - Marc D Pell
- School of Communication Sciences & Disorders, McGill University, Montréal, Canada
| |
Collapse
|
31
|
Momsen JP, Abel AD. Neural oscillations reflect meaning identification for novel words in context. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:132-148. [PMID: 36340747 PMCID: PMC9632687 DOI: 10.1162/nol_a_00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/27/2021] [Indexed: 05/21/2023]
Abstract
During language processing, people make rapid use of contextual information to promote comprehension of upcoming words. When new words are learned implicitly, information contained in the surrounding context can provide constraints on their possible meaning. In the current study, EEG was recorded as participants listened to a series of three sentences, each containing an identical target pseudoword, with the aim of using contextual information in the surrounding language to identify a meaning representation for the novel word. In half of trials, sentences were semantically coherent so that participants could develop a single representation for the novel word that fit all contexts. Other trials contained unrelated sentence contexts so that meaning associations were not possible. We observed greater theta band enhancement over the left-hemisphere across central and posterior electrodes in response to pseudowords processed across semantically related compared to unrelated contexts. Additionally, relative alpha and beta band suppression was increased prior to pseudoword onset in trials where contextual information more readily promoted pseudoword-meaning associations. Under the hypothesis that theta enhancement indexes processing demands during lexical access, the current study provides evidence for selective online memory retrieval to novel words learned implicitly in a spoken context.
Collapse
Affiliation(s)
- Jacob Pohaku Momsen
- Joint Doctoral Program in Language and Communicative Disorders, San Diego State University and UC San Diego, San Diego, CA, USA
- * Corresponding Author:
| | - Alyson D. Abel
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
32
|
Segaert K, Poulisse C, Markiewicz R, Wheeldon L, Marchment D, Adler Z, Howett D, Chan D, Mazaheri A. Detecting impaired language processing in patients with mild cognitive impairment using around-the-ear cEEgrid electrodes. Psychophysiology 2021; 59:e13964. [PMID: 34791701 DOI: 10.1111/psyp.13964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Mild cognitive impairment (MCI) is the term used to identify those individuals with subjective and objective cognitive decline but with preserved activities of daily living and an absence of dementia. Although MCI can impact functioning in different cognitive domains, most notably episodic memory, relatively little is known about the comprehension of language in MCI. In this study, we used around-the-ear electrodes (cEEGrids) to identify impairments during language comprehension in patients with MCI. In a group of 23 patients with MCI and 23 age-matched controls, language comprehension was tested in a two-word phrase paradigm. We examined the oscillatory changes following word onset as a function of lexico-semantic single-word retrieval (e.g., swrfeq vs. swift) and multiword binding processes (e.g., horse preceded by swift vs. preceded by swrfeq). Electrophysiological signatures (as measured by the cEEGrids) were significantly different between patients with MCI and controls. In controls, lexical retrieval was associated with a rebound in the alpha/beta range, and binding was associated with a post-word alpha/beta suppression. In contrast, both the single-word retrieval and multiword binding signatures were absent in the MCI group. The signatures observed using cEEGrids in controls were comparable with those signatures obtained with a full-cap EEG setup. Importantly, our findings suggest that patients with MCI have impaired electrophysiological signatures for comprehending single words and multiword phrases. Moreover, cEEGrid setups provide a noninvasive and sensitive clinical tool for detecting early impairments in language comprehension in MCI.
Collapse
Affiliation(s)
- K Segaert
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - C Poulisse
- School of Psychology, University of Birmingham, Birmingham, UK
| | - R Markiewicz
- School of Psychology, University of Birmingham, Birmingham, UK
| | - L Wheeldon
- Department of Foreign Languages and Translation, University of Agder, Kristiansand, Norway
| | - D Marchment
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Z Adler
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - D Howett
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - D Chan
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - A Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
33
|
Markiewicz R, Segaert K, Mazaheri A. How the healthy ageing brain supports semantic binding during language comprehension. Eur J Neurosci 2021; 54:7899-7917. [PMID: 34779069 DOI: 10.1111/ejn.15525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/02/2023]
Abstract
Semantic binding refers to constructing complex meaning based on elementary building blocks. Using electroencephalography (EEG), we investigated the age-related changes in modulations of oscillatory brain activity supporting lexical retrieval and semantic binding. Young and older adult participants were visually presented two-word phrases, which for the first word revealed a lexical retrieval signature (e.g., swift vs. swrfeq) and for the second word revealed a semantic binding signature (e.g., horse in a semantic binding "swift horse" vs. no binding "swrfeq horse" context). The oscillatory brain activity associated with lexical retrieval as well as semantic binding significantly differed between healthy older and young adults. Specifically for lexical retrieval, we found that different age groups exhibited opposite patterns of theta and alpha modulation, which as a combined picture suggest that lexical retrieval is associated with different and delayed signatures in older compared with young adults. For semantic binding, in young adults, we found a signature in the low-beta range centred around the target word onset (i.e., a smaller low-beta increase for binding relative to no binding), whereas in healthy older adults, we found an opposite binding signature about ~500 ms later in the low- and high-beta range (i.e., a smaller low- and high-beta decrease for binding relative to no binding). The novel finding of a different and delayed oscillatory signature for semantic binding in healthy older adults reflects that the integration of word meaning into the semantic context takes longer and relies on different mechanisms in healthy older compared with young adults.
Collapse
Affiliation(s)
- Roksana Markiewicz
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Katrien Segaert
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Centre for Developmental Science, University of Birmingham, Birmingham, UK
| | - Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK.,Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
34
|
Hollenstein N, Renggli C, Glaus B, Barrett M, Troendle M, Langer N, Zhang C. Decoding EEG Brain Activity for Multi-Modal Natural Language Processing. Front Hum Neurosci 2021; 15:659410. [PMID: 34326723 PMCID: PMC8314009 DOI: 10.3389/fnhum.2021.659410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Until recently, human behavioral data from reading has mainly been of interest to researchers to understand human cognition. However, these human language processing signals can also be beneficial in machine learning-based natural language processing tasks. Using EEG brain activity for this purpose is largely unexplored as of yet. In this paper, we present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks, with a special focus on which features of the signal are most beneficial. We present a multi-modal machine learning architecture that learns jointly from textual input as well as from EEG features. We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal. Moreover, for a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines. For more complex tasks such as relation detection, only the contextualized BERT embeddings outperform the baselines in our experiments, which raises the need for further research. Finally, EEG data shows to be particularly promising when limited training data is available.
Collapse
Affiliation(s)
- Nora Hollenstein
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark
| | - Cedric Renggli
- Department of Computer Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Benjamin Glaus
- Department of Computer Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Maria Barrett
- Department of Computer Science, IT University of Copenhagen, Copenhagen, Denmark
| | - Marius Troendle
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Nicolas Langer
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Ce Zhang
- Department of Computer Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Li Y, Xing H, Zhang L, Shu H, Zhang Y. How Visual Word Decoding and Context-Driven Auditory Semantic Integration Contribute to Reading Comprehension: A Test of Additive vs. Multiplicative Models. Brain Sci 2021; 11:brainsci11070830. [PMID: 34201695 PMCID: PMC8301993 DOI: 10.3390/brainsci11070830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Theories of reading comprehension emphasize decoding and listening comprehension as two essential components. The current study aimed to investigate how Chinese character decoding and context-driven auditory semantic integration contribute to reading comprehension in Chinese middle school students. Seventy-five middle school students were tested. Context-driven auditory semantic integration was assessed with speech-in-noise tests in which the fundamental frequency (F0) contours of spoken sentences were either kept natural or acoustically flattened, with the latter requiring a higher degree of contextual information. Statistical modeling with hierarchical regression was conducted to examine the contributions of Chinese character decoding and context-driven auditory semantic integration to reading comprehension. Performance in Chinese character decoding and auditory semantic integration scores with the flattened (but not natural) F0 sentences significantly predicted reading comprehension. Furthermore, the contributions of these two factors to reading comprehension were better fitted with an additive model instead of a multiplicative model. These findings indicate that reading comprehension in middle schoolers is associated with not only character decoding but also the listening ability to make better use of the sentential context for semantic integration in a severely degraded speech-in-noise condition. The results add to our better understanding of the multi-faceted reading comprehension in children. Future research could further address the age-dependent development and maturation of reading skills by examining and controlling other important cognitive variables, and apply neuroimaging techniques such as functional magmatic resonance imaging and electrophysiology to reveal the neural substrates and neural oscillatory patterns for the contribution of auditory semantic integration and the observed additive model to reading comprehension.
Collapse
Affiliation(s)
- Yu Li
- Division of Science and Technology, BNU-HKBU United International College, Zhuhai 519087, China;
| | - Hongbing Xing
- Institute on Education Policy and Evaluation of International Students, Beijing Language and Culture University, Beijing 100083, China;
| | - Linjun Zhang
- Beijing Advanced Innovation Center for Language Resources and College of Advanced Chinese Training, Beijing Language and Culture University, Beijing 100083, China
- Correspondence: (L.Z.); (Y.Z.)
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China;
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences and Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.Z.); (Y.Z.)
| |
Collapse
|
36
|
Wang P, Knösche TR, Chen L, Brauer J, Friederici AD, Maess B. Functional brain plasticity during L1 training on complex sentences: Changes in gamma-band oscillatory activity. Hum Brain Mapp 2021; 42:3858-3870. [PMID: 33942956 PMCID: PMC8288093 DOI: 10.1002/hbm.25470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The adult human brain remains plastic even after puberty. However, whether first language (L1) training in adults can alter the language network is yet largely unknown. Thus, we conducted a longitudinal training experiment on syntactically complex German sentence comprehension. Sentence complexity was varied by the depth of the center embedded relative clauses (i.e., single or double embedded). Comprehension was tested after each sentence with a question on the thematic role assignment. Thirty adult, native German speakers were recruited for 4 days of training. Magnetoencephalography (MEG) data were recorded and subjected to spectral power analysis covering the classical frequency bands (i.e., theta, alpha, beta, low gamma, and gamma). Normalized spectral power, time‐locked to the final closure of the relative clause, was subjected to a two‐factor analysis (“sentence complexity” and “training days”). Results showed that for the more complex sentences, the interaction of sentence complexity and training days was observed in Brodmann area 44 (BA 44) as a decrease of gamma power with training. Moreover, in the gamma band (55–95 Hz) functional connectivity between BA 44 and other brain regions such as the inferior frontal sulcus and the inferior parietal cortex were correlated with behavioral performance increase due to training. These results show that even for native speakers, complex L1 sentence training improves language performance and alters neural activities of the left hemispheric language network. Training strengthens the use of the dorsal processing stream with working‐memory‐related brain regions for syntactically complex sentences, thereby demonstrating the brain's functional plasticity for L1 training.
Collapse
Affiliation(s)
- Peng Wang
- Max Planck Institute for Human Cognitive and Brain SciencesBrain Networks GroupLeipzigGermany
| | - Thomas R. Knösche
- Max Planck Institute for Human Cognitive and Brain SciencesBrain Networks GroupLeipzigGermany
| | - Luyao Chen
- Beijing Normal UniversityCollege of Chinese Language and CultureBeijing
- Max Planck Institute for Human Cognitive and Brain SciencesDepartment of NeuropsychologyLeipzigGermany
| | - Jens Brauer
- Max Planck Institute for Human Cognitive and Brain SciencesDepartment of NeuropsychologyLeipzigGermany
- Friedrich Schiller UniversityOffice of the Vice‐President for Young ResearchersJenaGermany
| | - Angela D. Friederici
- Max Planck Institute for Human Cognitive and Brain SciencesDepartment of NeuropsychologyLeipzigGermany
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain SciencesBrain Networks GroupLeipzigGermany
| |
Collapse
|
37
|
Xie Y, Li Y, Duan H, Xu X, Zhang W, Fang P. Theta Oscillations and Source Connectivity During Complex Audiovisual Object Encoding in Working Memory. Front Hum Neurosci 2021; 15:614950. [PMID: 33762914 PMCID: PMC7982740 DOI: 10.3389/fnhum.2021.614950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/28/2021] [Indexed: 12/02/2022] Open
Abstract
Working memory is a limited capacity memory system that involves the short-term storage and processing of information. Neuroscientific studies of working memory have mostly focused on the essential roles of neural oscillations during item encoding from single sensory modalities (e.g., visual and auditory). However, the characteristics of neural oscillations during multisensory encoding in working memory are rarely studied. Our study investigated the oscillation characteristics of neural signals in scalp electrodes and mapped functional brain connectivity while participants encoded complex audiovisual objects in a working memory task. Experimental results showed that theta oscillations (4–8 Hz) were prominent and topographically distributed across multiple cortical regions, including prefrontal (e.g., superior frontal gyrus), parietal (e.g., precuneus), temporal (e.g., inferior temporal gyrus), and occipital (e.g., cuneus) cortices. Furthermore, neural connectivity at the theta oscillation frequency was significant in these cortical regions during audiovisual object encoding compared with single modality object encoding. These results suggest that local oscillations and interregional connectivity via theta activity play an important role during audiovisual object encoding and may contribute to the formation of working memory traces from multisensory items.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xin Yang College, Xinyang, China.,Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanyan Li
- School of Education, Xin Yang College, Xinyang, China
| | - Haidan Duan
- School of Education, Xin Yang College, Xinyang, China
| | - Xiliang Xu
- School of Education, Xin Yang College, Xinyang, China
| | - Wenmo Zhang
- Department of Fundamental, Army Logistical University, Chongqing, China.,Department of Social Medicine and Health and Management, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Peng Fang
- Department of Military Medical Psychology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
38
|
Meyer L, Lakatos P, He Y. Language Dysfunction in Schizophrenia: Assessing Neural Tracking to Characterize the Underlying Disorder(s)? Front Neurosci 2021; 15:640502. [PMID: 33692672 PMCID: PMC7937925 DOI: 10.3389/fnins.2021.640502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Deficits in language production and comprehension are characteristic of schizophrenia. To date, it remains unclear whether these deficits arise from dysfunctional linguistic knowledge, or dysfunctional predictions derived from the linguistic context. Alternatively, the deficits could be a result of dysfunctional neural tracking of auditory information resulting in decreased auditory information fidelity and even distorted information. Here, we discuss possible ways for clinical neuroscientists to employ neural tracking methodology to independently characterize deficiencies on the auditory-sensory and abstract linguistic levels. This might lead to a mechanistic understanding of the deficits underlying language related disorder(s) in schizophrenia. We propose to combine naturalistic stimulation, measures of speech-brain synchronization, and computational modeling of abstract linguistic knowledge and predictions. These independent but likely interacting assessments may be exploited for an objective and differential diagnosis of schizophrenia, as well as a better understanding of the disorder on the functional level-illustrating the potential of neural tracking methodology as translational tool in a range of psychotic populations.
Collapse
Affiliation(s)
- Lars Meyer
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, Münster, Germany
| | - Peter Lakatos
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States
| | - Yifei He
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
39
|
Beier EJ, Chantavarin S, Rehrig G, Ferreira F, Miller LM. Cortical Tracking of Speech: Toward Collaboration between the Fields of Signal and Sentence Processing. J Cogn Neurosci 2021; 33:574-593. [PMID: 33475452 DOI: 10.1162/jocn_a_01676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In recent years, a growing number of studies have used cortical tracking methods to investigate auditory language processing. Although most studies that employ cortical tracking stem from the field of auditory signal processing, this approach should also be of interest to psycholinguistics-particularly the subfield of sentence processing-given its potential to provide insight into dynamic language comprehension processes. However, there has been limited collaboration between these fields, which we suggest is partly because of differences in theoretical background and methodological constraints, some mutually exclusive. In this paper, we first review the theories and methodological constraints that have historically been prioritized in each field and provide concrete examples of how some of these constraints may be reconciled. We then elaborate on how further collaboration between the two fields could be mutually beneficial. Specifically, we argue that the use of cortical tracking methods may help resolve long-standing debates in the field of sentence processing that commonly used behavioral and neural measures (e.g., ERPs) have failed to adjudicate. Similarly, signal processing researchers who use cortical tracking may be able to reduce noise in the neural data and broaden the impact of their results by controlling for linguistic features of their stimuli and by using simple comprehension tasks. Overall, we argue that a balance between the methodological constraints of the two fields will lead to an overall improved understanding of language processing as well as greater clarity on what mechanisms cortical tracking of speech reflects. Increased collaboration will help resolve debates in both fields and will lead to new and exciting avenues for research.
Collapse
|
40
|
Schneider JM, Abel AD, Momsen J, Melamed TC, Maguire MJ. Neural oscillations reveal differences in the process of word learning among school-aged children from lower socioeconomic status backgrounds. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:372-388. [PMID: 34447943 PMCID: PMC8386290 DOI: 10.1162/nol_a_00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/14/2021] [Indexed: 05/21/2023]
Abstract
Building a robust vocabulary in grade school is essential for academic success. Children from lower socioeconomic status (SES) households on average perform below their higher SES peers on word learning tasks, negatively impacting their vocabulary; however, significant variability exists within this group. Many children from low SES homes perform as well as, or better than, their higher SES peers on measures of word learning. The current study addresses what processes underlie this variability, by comparing the neural oscillations of 44 better versus worse word learners (ages 8-15 years) from lower SES households as they infer the meaning of unknown words. Better word learners demonstrated increases in theta and beta power as a word was learned, whereas worse word learners exhibited decreases in alpha power. These group differences in neural oscillatory engagement during word learning indicate there may be different strategies employed based on differences in children's skills. Notably, children with greater vocabulary knowledge are more likely to exhibit larger beta increases; a strategy which is associated with better word learning. This sheds new light on the mechanisms that support word learning in children from low SES households.
Collapse
Affiliation(s)
| | | | - Jacob Momsen
- San Diego State University, San Diego, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
41
|
Schuster S, Himmelstoss NA, Hutzler F, Richlan F, Kronbichler M, Hawelka S. Cloze enough? Hemodynamic effects of predictive processing during natural reading. Neuroimage 2020; 228:117687. [PMID: 33385553 DOI: 10.1016/j.neuroimage.2020.117687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/25/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022] Open
Abstract
Evidence accrues that readers form multiple hypotheses about upcoming words. The present study investigated the hemodynamic effects of predictive processing during natural reading by means of combining fMRI and eye movement recordings. In particular, we investigated the neural and behavioral correlates of precision-weighted prediction errors, which are thought to be indicative of subsequent belief updating. Participants silently read sentences in which we manipulated the cloze probability and the semantic congruency of the final word that served as an index for precision and prediction error respectively. With respect to the neural correlates, our findings indicate an enhanced activation within the left inferior frontal and middle temporal gyrus suggesting an effect of precision on prediction update in higher (lexico-)semantic levels. Despite being evident at the neural level, we did not observe any evidence that this mechanism resulted in disproportionate reading times on participants' eye movements. The results speak against discrete predictions, but favor the notion that multiple words are activated in parallel during reading.
Collapse
Affiliation(s)
- Sarah Schuster
- Paris-Lodron-University of Salzburg, Department of Psychology, Centre for Cognitive Neuroscience, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Nicole Alexandra Himmelstoss
- Paris-Lodron-University of Salzburg, Department of Psychology, Centre for Cognitive Neuroscience, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Florian Hutzler
- Paris-Lodron-University of Salzburg, Department of Psychology, Centre for Cognitive Neuroscience, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
| | - Fabio Richlan
- Paris-Lodron-University of Salzburg, Department of Psychology, Centre for Cognitive Neuroscience, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Martin Kronbichler
- Paris-Lodron-University of Salzburg, Department of Psychology, Centre for Cognitive Neuroscience, Hellbrunnerstr. 34, 5020 Salzburg, Austria; Neuroscience Institute and Department of Neurology, Christian Doppler Clinic, Paracelsus Private Medical University, Ignaz-Harrer-Str. 79, 5020 Salzburg, Austria
| | - Stefan Hawelka
- Paris-Lodron-University of Salzburg, Department of Psychology, Centre for Cognitive Neuroscience, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| |
Collapse
|
42
|
Gastaldon S, Arcara G, Navarrete E, Peressotti F. Commonalities in alpha and beta neural desynchronizations during prediction in language comprehension and production. Cortex 2020; 133:328-345. [PMID: 33171348 DOI: 10.1016/j.cortex.2020.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023]
Abstract
The present study investigates whether predictions during language comprehension are generated by engaging the language production system. Previous studies investigating either prediction or production highlighted M/EEG desynchronization (power decrease) in the alpha (8-10 Hz) and beta (13-30 Hz) frequency bands preceding the target. However, it is unclear whether this electrophysiological modulation underlies common mechanisms. We recorded EEG from participants performing both a comprehension and a production task in two separate blocks. Participants listened to high and low constraint incomplete sentences and were asked either to name a picture to complete them (production) or to simply listen to the final word (comprehension). We found that in a silent gap before the final stimulus, predictable stimuli elicited alpha and beta desynchronization in both tasks, signaling the pre-activation of linguistic information. Source estimation highlighted the involvement of left-lateralized language areas and temporo-parietal areas in the right hemisphere. Furthermore, correlations between the desynchronizations in comprehension and production showed spatiotemporal commonalities in language-relevant areas of the left hemisphere. As proposed by prediction-by-production models, our results suggest that comprehenders engage the production system while predicting upcoming words.
Collapse
Affiliation(s)
- Simone Gastaldon
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Padova, Italy.
| | | | - Eduardo Navarrete
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Padova, Italy
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione (DPSS), University of Padova, Padova, Italy.
| |
Collapse
|