1
|
Ye H, Wang Y, Liu H, Lei D, Li H, Gao Z, Feng X, Han M, Qie Q, Zhou H. The Phylogeography of Deciduous Tree Ulmus macrocarpa (Ulmaceae) in Northern China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1334. [PMID: 38794406 PMCID: PMC11125379 DOI: 10.3390/plants13101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Disentangling how climate oscillations and geographical events significantly influence plants' genetic architecture and demographic history is a central topic in phytogeography. The deciduous ancient tree species Ulmus macrocarpa is primarily distributed throughout Northern China and has timber and horticultural value. In the current study, we studied the phylogenic architecture and demographical history of U. macrocarpa using chloroplast DNA with ecological niche modeling. The results indicated that the populations' genetic differentiation coefficient (NST) value was significantly greater than the haplotype frequency (GST) (p < 0.05), suggesting that U. macrocarpa had a clear phylogeographical structure. Phylogenetic inference showed that the putative chloroplast haplotypes could be divided into three groups, in which the group Ⅰ was considered to be ancestral. Despite significant genetic differentiation among these groups, gene flow was detected. The common ancestor of all haplotypes was inferred to originate in the middle-late Miocene, followed by the haplotype overwhelming diversification that occurred in the Quaternary. Combined with demography pattern and ecological niche modeling, we speculated that the surrounding areas of Shanxi and Inner Mongolia were potential refugia for U. macrocarpa during the glacial period in Northern China. Our results illuminated the demography pattern of U. macrocarpa and provided clues and references for further population genetics investigations of precious tree species distributed in Northern China.
Collapse
Affiliation(s)
- Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yiling Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Dingfan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Haochen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhimei Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaolong Feng
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Mian Han
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Qiyang Qie
- School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, China
| |
Collapse
|
2
|
Chen X, Avia K, Forler A, Remoué C, Venon A, Rousselet A, Lucas G, Kwarteng AO, Rover R, Le Guilloux M, Belcram H, Combes V, Corti H, Olverà-Vazquez S, Falque M, Alins G, Kirisits T, Ursu TM, Roman A, Volk GM, Bazot S, Cornille A. Ecological and evolutionary drivers of phenotypic and genetic variation in the European crabapple [Malus sylvestris (L.) Mill.], a wild relative of the cultivated apple. ANNALS OF BOTANY 2023; 131:1025-1037. [PMID: 37148364 PMCID: PMC10332392 DOI: 10.1093/aob/mcad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Studying the relationship between phenotypic and genetic variation in populations distributed across environmental gradients can help us to understand the ecological and evolutionary processes involved in population divergence. We investigated the patterns of genetic and phenotypic diversity in the European crabapple, Malus sylvestris, a wild relative of the cultivated apple (Malus domestica) that occurs naturally across Europe in areas subjected to different climatic conditions, to test for divergence among populations. METHODS Growth rates and traits related to carbon uptake in seedlings collected across Europe were measured in controlled conditions and associated with the genetic status of the seedlings, which was assessed using 13 microsatellite loci and the Bayesian clustering method. Isolation-by-distance, isolation-by-climate and isolation-by-adaptation patterns, which can explain genetic and phenotypic differentiation among M. sylvestris populations, were also tested. KEY RESULTS A total of 11.6 % of seedlings were introgressed by M. domestica, indicating that crop-wild gene flow is ongoing in Europe. The remaining seedlings (88.4 %) belonged to seven M. sylvestris populations. Significant phenotypic trait variation among M. sylvestris populations was observed. We did not observe significant isolation by adaptation; however, the significant association between genetic variation and the climate during the Last Glacial Maximum suggests that there has been local adaptation of M. sylvestris to past climates. CONCLUSIONS This study provides insight into the phenotypic and genetic differentiation among populations of a wild relative of the cultivated apple. This might help us to make better use of its diversity and provide options for mitigating the impact of climate change on the cultivated apple through breeding.
Collapse
Affiliation(s)
- X Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - K Avia
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - A Forler
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - C Remoué
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Venon
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Rousselet
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Lucas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - A O Kwarteng
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - R Rover
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Le Guilloux
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Belcram
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - V Combes
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Corti
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - S Olverà-Vazquez
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Falque
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Alins
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA-Fruit Production, PCiTAL, Parc 21 de Gardeny, edifici Fruitcentre, 25003 Lleida, Spain
| | - T Kirisits
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82 (Franz Schwackhöfer-Haus), A-1190 Vienna, Austria
| | - T M Ursu
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - A Roman
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - G M Volk
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA
| | - S Bazot
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris‐Saclay, Orsay, France
| | - A Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Armbruster GF, Lucek K, Willi Y. Cryptic population structure at the northern range margin of the service tree Sorbus domestica. PeerJ 2022; 10:e14397. [PMID: 36523464 PMCID: PMC9745788 DOI: 10.7717/peerj.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Climate change has aroused interest in planting warm- and drought-adapted trees in managed forests and urban areas. An option is to focus on tree species that occur naturally, but have centers of distribution in warmer and drier areas. However, in order to protect the species pool of genetic diversity, efforts of planting and promotion should be informed by knowledge on the local genetic diversity. Here, we studied the macro- and micro-scale population genetic structure of the rare European fruit tree Sorbus domestica at its northern range margin, in western Switzerland. New microsatellite data were combined with published data from across the European distribution of the species. Analyses revealed the presence of mainly one of two species-wide ancestral clusters, i.e., the western European cluster, with evidence that it consists of two cryptic sub-clusters. Average pairwise F ST of 0.118 was low across the range, and only allelic richness was reduced in the northern margin compared to more southern and southeastern areas of Europe. Based on our finding of considerable genetic diversity of the species in western and northern Switzerland, we suggest that a national propagation program should focus on collecting seeds from natural, high-density tree stands and propagate locally. More generally, our study shows that rare tree species in marginal areas of their distributions do not necessarily have low genetic diversity or heightened levels of inbreeding, and in those cases probably need no assisted migration in efforts to propagate them.
Collapse
Affiliation(s)
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, Basel, BS, Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, BS, Switzerland
| |
Collapse
|
4
|
Lu Z, Liu X, Wang T, Zhang P, Wang Z, Zhang Y, Kriticos DJ, Zalucki MP. Malice at the Gates of Eden: current and future distribution of Agrilus mali threatening wild and domestic apples. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:745-757. [PMID: 35414375 DOI: 10.1017/s000748532200013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The apple buprestid, Agrilus mali Matsumura, that was widespread in north-eastern China, was accidently introduced to the wild apple forest ecosystem in mountainous areas of Xinjiang, China. This invasive beetle feeds on domesticated apples and many species of Malus and presents a serious threat to ancestral apple germplasm sources and apple production worldwide. Estimating the potential area at risk of colonization by A. mali is crucial for instigating appropriate preventative management strategies, especially under global warming. We developed a CLIMEX model of A. mali to project this pest's potential distribution under current and future climatic scenarios in 2100 using CSIRO-Mk 3.0 GCM running the SRES A1B emissions scenario. Under current climate, A. mali could potentially invade neighbouring central Asia and eventually the mid-latitude temperate zone, and some subtropical areas and Pampas Steppe in the Southern Hemisphere. This potential distribution encompasses wild apples species, the ancestral germplasm for domesticated apples. With global warming, the potential distribution shifts to higher latitudes, with the potential range expanding slightly, though the overall suitability could decline in both hemispheres. In 2100, the length of the growing season of this pest in the mid-latitude temperature zone could increase by 1-2 weeks, with higher growth rates in most sites compared with current climate in mid-latitudes, at least in China. Our work highlights the need for strategies to prevent the spread of this pest, managing the threats to wild apples in Tian Shan Mountain forests in Central Asia, and commercial apple production globally. We discuss practical management tactics to reduce the spread of this pest and mitigate its impacts.
Collapse
Affiliation(s)
- Zhaozhi Lu
- College of Plant Health and Medicine of Qingdao Agriculture University, Qingdao 266109, China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoxian Liu
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Ecology and Environment of Central Asia, CAS, Urumqi 830011, China
| | - Ting Wang
- College of Plant Health and Medicine of Qingdao Agriculture University, Qingdao 266109, China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Ping Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Ecology and Environment of Central Asia, CAS, Urumqi 830011, China
| | - Zhenlin Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Ecology and Environment of Central Asia, CAS, Urumqi 830011, China
| | - Yanlong Zhang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Darren J Kriticos
- CSIRO Health & Biosecurity, Canberra ACT, Australia 2601
- School of Biological Sciences, The University of Queensland, Brisbane, Australia 4072
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane, Australia 4072
| |
Collapse
|
5
|
Bina H, Yousefzadeh H, Venon A, Remoué C, Rousselet A, Falque M, Faramarzi S, Chen X, Samanchina J, Gill D, Kabaeva A, Giraud T, Hosseinpour B, Abdollahi H, Gabrielyan I, Nersesyan A, Cornille A. Evidence of an additional centre of apple domestication in Iran, with contributions from the Caucasian crab apple Malus orientalis Uglitzk. to the cultivated apple gene pool. Mol Ecol 2022; 31:5581-5601. [PMID: 35984725 DOI: 10.1111/mec.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Divergence processes in crop-wild fruit tree complexes in pivotal regions for plant domestication such as the Caucasus and Iran remain little studied. We investigated anthropogenic and natural divergence processes in apples in these regions using 26 microsatellite markers amplified in 550 wild and cultivated samples. We found two genetically distinct cultivated populations in Iran that are differentiated from Malus domestica, the standard cultivated apple worldwide. Coalescent-based inferences showed that these two cultivated populations originated from specific domestication events of Malus orientalis in Iran. We found evidence of substantial wild-crop and crop-crop gene flow in the Caucasus and Iran, as has been described in apple in Europe. In addition, we identified seven genetically differentiated populations of wild apple (M. orientalis), not introgressed by the cultivated apple. Niche modelling combined with genetic diversity estimates indicated that these wild populations likely resulted from range changes during past glaciations. This study identifies Iran as a key region in the domestication of apple and M. orientalis as an additional contributor to the cultivated apple gene pool. Domestication of the apple tree therefore involved multiple origins of domestication in different geographic locations and substantial crop-wild hybridization, as found in other fruit trees. This study also highlights the impact of climate change on the natural divergence of a wild fruit tree and provides a starting point for apple conservation and breeding programmes in the Caucasus and Iran.
Collapse
Affiliation(s)
- Hamid Bina
- Department of Forestry, Tarbiat Modares University, Noor, Iran
| | - Hamed Yousefzadeh
- Department of Environmental Science, Biodiversity Branch, Natural Resources Faculty, Tarbiat Modares University, Noor, Iran
| | - Anthony Venon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Carine Remoué
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Agnès Rousselet
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Matthieu Falque
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Shadab Faramarzi
- Department of Plant Production and Genetics, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Xilong Chen
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | | | - David Gill
- Fauna & Flora International, Cambridge, UK
| | | | - Tatiana Giraud
- Ecologie Systematique Evolution, Universite Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Batool Hosseinpour
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Institute of Agriculture, Tehran, Iran
| | - Hamid Abdollahi
- Temperate Fruits Research Centre, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ivan Gabrielyan
- Department of Palaeobotany, A. Takhtajyan Institute of Botany, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Anush Nersesyan
- Department of Conservation of Genetic Resources of Armenian Flora, A. Takhtajyan Institute of Botany, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Volk GM, Peace CP, Henk AD, Howard NP. DNA profiling with the 20K apple SNP array reveals Malus domestica hybridization and admixture in M. sieversii, M. orientalis, and M. sylvestris genebank accessions. FRONTIERS IN PLANT SCIENCE 2022; 13:1015658. [PMID: 36311081 PMCID: PMC9606829 DOI: 10.3389/fpls.2022.1015658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The USDA-ARS National Plant Germplasm System (NPGS) apple collection in Geneva, NY, USA maintains accessions of the primary Malus domestica (Suckow) Borkh. progenitor species M. sieversii (Ledeb.) M. Roem., M. orientalis Uglitzk., and M. sylvestris (L.) Mill. Many of these accessions originated from seeds that were collected from wild populations in the species' centers of diversity. Some of these accessions have fruit phenotypes that suggest recent M. domestica hybridization, which if true would represent crop contamination of wild species populations and mislabeled species status of NPGS accessions. Pedigree connections and admixture between M. domestica and its progenitor species can be readily identified with apple SNP array data, despite such arrays not being designed for these purposes. To investigate species purity, most (463 accessions) of the NPGS accessions labeled as these three progenitor species were genotyped using the 20K apple SNP array. DNA profiles obtained were compared with a dataset of more than 5000 unique M. domestica apple cultivars. Only 212 accessions (151 M. sieversii, 26 M. orientalis, and 35 M. sylvestris) were identified as "pure" species representatives because their DNA profiles did not exhibit genotypic signatures of recent hybridization with M. domestica. Twenty-one accessions (17 M. sieversii, 1 M. orientalis, and 3 M. sylvestris) previously labeled as wild species were instead fully M. domestica. Previously unrealized hybridization and admixture between wild species and M. domestica was identified in 230 accessions (215 M. sieversii, 9 M. orientalis, and 6 M. sylvestris). Among these species-mislabeled accessions, 'Alexander', 'Gold Reinette', 'Charlamoff', 'Rosmarina Bianca', and 'King of the Pippins' were the most frequently detected M. domestica parents or grandparents. These results have implications for collection management, including germplasm distribution, and might affect conclusions of previous research focused on these three progenitor species in the NPGS apple collection. Specifically, accessions received from the NPGS for breeding and genomics, genetics, and evolutionary biology research might not be truly representative of their previously assigned species.
Collapse
Affiliation(s)
- Gayle M. Volk
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| | - Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Adam D. Henk
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| | | |
Collapse
|
7
|
Tumpa K, Šatović Z, Liber Z, Vidaković A, Idžojtić M, Ježić M, Ćurković-Perica M, Poljak I. Gene flow between wild trees and cultivated varieties shapes the genetic structure of sweet chestnut (Castanea sativa Mill.) populations. Sci Rep 2022; 12:15007. [PMID: 36056053 PMCID: PMC9440197 DOI: 10.1038/s41598-022-17635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Gene flow between cultivated and wild gene pools is common in the contact zone between agricultural lands and natural habitats and can be used to study the development of adaptations and selection of novel varieties. This is likely the case in the northern Adriatic region, where centuries-old cultivated orchards of sweet chestnut (Castanea sativa Mill.) are planted within the natural distribution area of the species. Thus, we investigated the population structure of several orchards of sweet chestnuts. Furthermore, the genetic background of three toponymous clonal varieties was explored. Six genomic simple sequence repeat (gSSR) and nine EST-derived SSR (EST-SSR) loci were utilized in this research, and both grafted and non-grafted individuals were included in this study. Five closely related clones were identified, which represent a singular, polyclonal marron variety, found in all three cultivation areas. Furthermore, many hybrids, a result of breeding between cultivated and wild chestnuts, have been found. Analyzed semi-wild orchards defined by a diverse genetic structure, represent a hotspot for further selection and could result in creation of locally adapted, high-yielding varieties.
Collapse
Affiliation(s)
- Katarina Tumpa
- Department of Forestry, Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, 10000, Zagreb, Croatia
| | - Zlatko Šatović
- Department for Seed Science and Technology, Faculty of Agriculture, University of Zagreb, 10000, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, 10000, Zagreb, Croatia
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, 10000, Zagreb, Croatia
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Antonio Vidaković
- Department of Forestry, Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, 10000, Zagreb, Croatia
| | - Marilena Idžojtić
- Department of Forestry, Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, 10000, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Igor Poljak
- Department of Forestry, Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
8
|
Vidaković A, Šatović Z, Tumpa K, Idžojtić M, Liber Z, Pintar V, Radunić M, Runjić TN, Runjić M, Rošin J, Gaunt D, Poljak I. Phenotypic Variation in European Wild Pear (Pyrus pyraster (L.) Burgsd.) Populations in the North-Western Part of the Balkan Peninsula. PLANTS 2022; 11:plants11030335. [PMID: 35161316 PMCID: PMC8837925 DOI: 10.3390/plants11030335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022]
Abstract
Leaves play a central role in plant fitness, allowing efficient light capture, gas exchange and thermoregulation, ensuring optimal growing conditions for the plant. Phenotypic variability in leaf shape and size has been linked to environmental heterogeneity and habitat characteristics. Therefore, the study of foliar morphology in plant populations can help us to identify the environmental factors that may have influenced the process of species diversification. In this study, we used European wild pear (Pyrus pyraster (L.) Burgsd., Rosaceae) as a model species to investigate the phenotypic variability of leaves under different environmental conditions. Using leaf morphometric data from 19 natural populations from the north-western part of the Balkan Peninsula, a high level of variability among and within populations were found. Leaf traits related to leaf size were more variable compared to leaf shape traits, with both influenced by geographic and environmental factors. Consequently, patterns of isolation by environment (IBE) and distance (IBD) were identified, with IBE showing a stronger influence on leaf variability. Multivariate statistical analysis revealed that European wild pear populations from the north-western part of the Balkan Peninsula can be divided into two morphological clusters, consistent with their geographical distance and environmental conditions. Our results confirm a high level of phenotypic variability in European wild pear populations, providing additional data on this poorly studied species, emphasizing phenotypic plasticity as a major driver in the adaptation of this noble hardwood species to rapid climate change.
Collapse
Affiliation(s)
- Antonio Vidaković
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Zlatko Šatović
- Department for Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
| | - Katarina Tumpa
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Marilena Idžojtić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia
| | - Valentino Pintar
- Ministry of Economy and Sustainable Development, Institute for Environment and Nature, Nature Sector, Radnička cesta 80, HR-10000 Zagreb, Croatia;
| | - Mira Radunić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Tonka Ninčević Runjić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Marko Runjić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Jakša Rošin
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Daniel Gaunt
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Igor Poljak
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
- Correspondence: ; Tel.: +385-1-2352547
| |
Collapse
|
9
|
Chen P, Li Z, Zhang D, Shen W, Xie Y, Zhang J, Jiang L, Li X, Shen X, Geng D, Wang L, Niu C, Bao C, Yan M, Li H, Li C, Yan Y, Zou Y, Micheletti D, Koot E, Ma F, Guan Q. Insights into the effect of human civilization on Malus evolution and domestication. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2206-2220. [PMID: 34161653 PMCID: PMC8541786 DOI: 10.1111/pbi.13648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 05/09/2023]
Abstract
The evolutionary history of the Malus genus has not been well studied. In the current study, we presented genetic evidence on the origin of the Malus genus based on genome sequencing of 297 Malus accessions, revealing the genetic relationship between wild species and cultivated apples. Our results demonstrated that North American and East Asian wild species are closer to the outgroup (pear) than Central Asian species, and hybrid species including natural (separated before the Pleistocene, about 2.5 Mya) and artificial hybrids (including ornamental trees and rootstocks) are between East and Central Asian wild species. Introgressions from M. sylvestris in cultivated apples appeared to be more extensive than those from M. sieversii, whose genetic background flowed westward across Eurasia and eastward to wild species including M. prunifolia, M. × asiatica, M. × micromalus, and M. × robust. Our results suggested that the loss of ancestral gene flow from M. sieversii in cultivated apples accompanied the movement of European traders around the world since the Age of Discovery. Natural SNP variations showed that cultivated apples had higher nucleotide diversity than wild species and more unique SNPs than other apple groups. An apple ERECTA-like gene that underwent selection during domestication on 15th chromosome was identified as a likely major determinant of fruit length and diameter, and an NB-ARC domain-containing gene was found to strongly affect anthocyanin accumulation using a genome-wide association approach. Our results provide new insights into the origin and domestication of apples and will be useful in new breeding programmes and efforts to increase fruit crop productivity.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jing Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Liping Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Haiyan Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yan Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | | | - Emily Koot
- The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
10
|
Genetic structure of Malus sylvestris and potential link with preference/performance by the rosy apple aphid pest Dysaphis plantaginea. Sci Rep 2021; 11:5732. [PMID: 33707470 PMCID: PMC7970975 DOI: 10.1038/s41598-021-85014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
The European crabapple Malus sylvestris, a crop wild relative of Malus domestica, is a major contributor to the cultivated apple genome and represents a potential source of interesting alleles or genes, particularly pest resistance traits. An original approach was used to explore the trophic interaction between M. sylvestris populations and its pest, the rosy apple aphid (Dysaphis plantaginea). Using 13 microsatellite markers, population genetic structure and level of crop-to-wild introgressions were inferred between M. sylvestris seedlings from three sites in Europe (Denmark, France, Romania), and M. domestica seedlings. Genetically characterized plants were also used to analyze aphid feeding behavior and fitness parameters. First, aphids submitted to two genetically close M. sylvestris populations (the Danish and French) exhibited similar behavioral parameters, suggesting similar patterns of resistance in these host plants. Second, the Romanian M. sylvestris population was most closely genetically related to M. domestica. Although the two plant genetic backgrounds were significantly differentiated, they showed comparable levels of sensitivity to D. plantaginea infestation. Third, aphid fitness parameters were not significantly impacted by the host plant's genetic background. Finally, crop-to-wild introgression seemed to significantly drive resistance to D. plantaginea independent of host plant population genetic structure, with hybrids being less suitable hosts.
Collapse
|
11
|
Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet 2020; 52:1423-1432. [PMID: 33139952 PMCID: PMC7728601 DOI: 10.1038/s41588-020-00723-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Domestication of the apple was mainly driven by interspecific hybridization. In the present study, we report the haplotype-resolved genomes of the cultivated apple (Malus domestica cv. Gala) and its two major wild progenitors, M. sieversii and M. sylvestris. Substantial variations are identified between the two haplotypes of each genome. Inference of genome ancestry identifies ~23% of the Gala genome as of hybrid origin. Deep sequencing of 91 accessions identifies selective sweeps in cultivated apples that originated from either of the two progenitors and are associated with important domestication traits. Construction and analyses of apple pan-genomes uncover thousands of new genes, with hundreds of them being selected from one of the progenitors and largely fixed in cultivated apples, revealing that introgression of new genes/alleles is a hallmark of apple domestication through hybridization. Finally, transcriptome profiles of Gala fruits at 13 developmental stages unravel ~19% of genes displaying allele-specific expression, including many associated with fruit quality. Phased diploid genomes of the cultivated apple Malus domestica cv. Gala and its two major wild progenitors M. sieversii and M. sylvestris, as well as pan-genome analyses, provide insights into the genetic history of apple domestication.
Collapse
|
12
|
Differential Allelic Richness between Malus sylvestris L. and Malus × domestica Borkh. from Finland as a Measure of Genetic Loss. SUSTAINABILITY 2019. [DOI: 10.3390/su11246949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
European wild apple (Malus sylvestris L.) is the only Malus wild species native to Europe which is a relative of cultivated apples (Malus × domestica Borkh.). It grows on forests’ edges, farmland hedges, and marginal sites; by living in those scattered meta-populations, it is exposed to genetic erosion in relation to hybridization and habitat degradation. In Finland, it grows at the northern edge of its distribution in Europe and is considered as a near-threatened taxon requiring urgent conservation. In order to evaluate the molecular genetic diversity of M. sylvestris, five populations including 43 trees were analyzed using 15 microsatellite markers. Additionally, a similar number of samples from cultivated apples, which are common to the same region, was included in order to estimate gene diversity gaps and give an insight into putative hybridization. European wild apple in Finland proved to be populationally structured, and seems not to be threatened by introgression events from its cultivated relative. They were all separated into different clusters, except for one individual. However, urgent conservation is indeed needed, especially due to the very low total number of trees (four) in some of the analyzed populations. These populations should be restored in order to enable permanent access to the wild relatives’ diversity, as they might be a critical source of gene variants for future needs.
Collapse
|
13
|
Mertens A, Brys R, Schouppe D, Jacquemyn H. The impact of floral morphology on genetic differentiation in two closely related biennial plant species. AOB PLANTS 2018; 10:ply051. [PMID: 30323915 PMCID: PMC6178171 DOI: 10.1093/aobpla/ply051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
The genetic diversity and structure of plant populations are determined by the interaction of three distinct processes: gene flow, genetic drift and natural selection. These processes are to some extent dependent on the mating system of plants, which in turn is largely determined by floral morphology and the level of herkogamy in particular. In this study, we used molecular markers to investigate the impact of floral morphology on genetic differentiation and structure in two closely related Centaurium species that display large variation in floral morphology across two distinct geographic regions in Europe (mainland Europe and the UK). Our results showed that genetic differences between regions and populations within regions were similar for both species, but that patterns of genetic structure largely depended on the observed variation in floral morphology. Populations of Centaurium erythraea showed higher genetic differentiation and clear isolation by distance (IBD) in mainland Europe, but limited IBD in the UK. Opposite patterns were found in Centaurium littorale, with higher genetic differentiation and significant IBD in populations sampled in the UK and lower genetic differentiation in Continental populations with no pattern of IBD. Overall, these results indicate that variation in floral morphology has a profound impact on structuring of genetic diversity, with populations displaying low levels of herkogamy showing the strongest patterns of genetic structuring and the reverse pattern in populations showing high levels of herkogamy.
Collapse
Affiliation(s)
- Arne Mertens
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Rein Brys
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Dorien Schouppe
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Feng X, Zhou H, Zulfiqar S, Luo X, Hu Y, Feng L, Malvolti ME, Woeste K, Zhao P. The Phytogeographic History of Common Walnut in China. FRONTIERS IN PLANT SCIENCE 2018; 9:1399. [PMID: 30298084 PMCID: PMC6160591 DOI: 10.3389/fpls.2018.01399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/03/2018] [Indexed: 05/16/2023]
Abstract
Common walnut (Juglans regia L.) is an economically important hardwood tree species cultivated worldwide for its high quality wood and edible nuts. It is generally accepted that after the last glaciation J. regia survived and grew in almost completely isolated stands in Asia, and that ancient humans dispersed walnuts across Asia and into new habitats via trade and cultural expansion. The history of common walnut in China is a matter of debate, however. We estimated the genetic diversity and spatial genetic structure of 31 walnut populations sampled across its Chinese range using 22 microsatellite markers (13 neutral and 9 non-neutral). Using historical data and population genetic analysis, including approximate Bayesian analysis (ABC), we reconstructed the demographic history of J. regia in China. The genetic data indicated the likely presence of J. regia in glacial refugia in the Xinjiang province (Northwest China), Northeastern China (Beijing, Shandong, and Changbai Mountains), Central China (Qinling and Baishan Mountains and Xi'an), and Southwestern China (Tibet, Yunnan, Guizhou, and Sichuan provinces). Based on DIY-ABC analysis, we identified three ancient lineages of J. regia in China. Two lineages (subpopulation A and subpopulation B+C) diverged about 2.79 Mya, while Southwestern China, and Qinling and Baishan Mountains lineages diverged during the Quaternary glaciations (about 1.13 Mya). Remnants of these once-distinct genetic clusters of J. regia may warrant ecological management if they are to be retained as in situ resources. A population size expansion in Northeastern China was detected in the last five centuries. The present distribution of walnut in China resulted from the combined effects of expansion/contraction from multiple refugia after the Last Glacial Maximum and later human exploitation.
Collapse
Affiliation(s)
- Xiaojia Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Huijuan Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Saman Zulfiqar
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiang Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yiheng Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Li Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Maria E. Malvolti
- Institute of Agro-environmental and Forest Biology, Consiglio Nazionale delle Ricerche, Terni, Italy
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
15
|
Noguerales V, Cordero PJ, Ortego J. Inferring the demographic history of an oligophagous grasshopper: Effects of climatic niche stability and host-plant distribution. Mol Phylogenet Evol 2017; 118:343-356. [PMID: 29080673 DOI: 10.1016/j.ympev.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/09/2017] [Accepted: 10/22/2017] [Indexed: 11/19/2022]
Abstract
Understanding the consequences of past environmental changes on the abiotic and biotic components of the landscape and deciphering their impacts on the demographic trajectories of species is a major issue in evolutionary biogeography. In this study, we combine nuclear and mitochondrial genetic data to study the phylogeographical structure and lineage-specific demographic histories of the scrub-legume grasshopper (Chorthippus binotatus binotatus), a montane taxon distributed in the Iberian Peninsula and France that exclusively feeds on certain scrub-legume species. Genetic data and paleo-distribution modelling indicate the presence of four main lineages that seem to have diverged in allopatry and long-term persisted in Iberian and French refugia since the Mid Pleistocene. Comparisons of different demographic hypotheses in an Approximate Bayesian Computation (ABC) framework supported a population bottleneck in the northwestern French clade and paleo-distribution modelling indicate that the populations of this lineage have experienced more severe environmental fluctuations during the last 21 000 years than those from the Iberian Peninsula. Accordingly, we found that nuclear genetic diversity of the populations of scrub-legume grasshopper is positively associated with local stability of suitable habitats defined by both Pleistocene climate changes and historical distributional shifts of host-plant species. Overall, our study highlights the importance of integrating the potential effects of abiotic (i.e. climate and geography) and biotic components (i.e. inter-specific interactions) into the study of the evolutionary and demographic history of specialist taxa with narrow ecological requirements.
Collapse
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, E-13071 Ciudad Real, Spain.
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, E-13071 Ciudad Real, Spain
| | - Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, E-41092 Seville, Spain
| |
Collapse
|
16
|
Faucher L, Hénocq L, Vanappelghem C, Rondel S, Quevillart R, Gallina S, Godé C, Jaquiéry J, Arnaud JF. When new human-modified habitats favour the expansion of an amphibian pioneer species: Evolutionary history of the natterjack toad (Bufo calamita) in a coal basin. Mol Ecol 2017; 26:4434-4451. [PMID: 28667796 DOI: 10.1111/mec.14229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/17/2017] [Accepted: 06/05/2017] [Indexed: 11/29/2022]
Abstract
Human activities affect microevolutionary dynamics by inducing environmental changes. In particular, land cover conversion and loss of native habitats decrease genetic diversity and jeopardize the adaptive ability of populations. Nonetheless, new anthropogenic habitats can also promote the successful establishment of emblematic pioneer species. We investigated this issue by examining the population genetic features and evolutionary history of the natterjack toad (Bufo [Epidalea] calamita) in northern France, where populations can be found in native coastal habitats and coalfield habitats shaped by European industrial history, along with an additional set of European populations located outside this focal area. We predicted contrasting patterns of genetic structure, with newly settled coalfield populations departing from migration-drift equilibrium. As expected, coalfield populations showed a mosaic of genetically divergent populations with short-range patterns of gene flow, and native coastal populations indicated an equilibrium state with an isolation-by-distance pattern suggestive of postglacial range expansion. However, coalfield populations exhibited (i) high levels of genetic diversity, (ii) no evidence of local inbreeding or reduced effective population size and (iii) multiple maternal mitochondrial lineages, a genetic footprint depicting independent colonization events. Furthermore, approximate Bayesian computations suggested several evolutionary trajectories from ancient isolation in glacial refugia during the Pleistocene, with biogeographical signatures of recent expansion probably confounded by human-mediated mixing of different lineages. From an evolutionary and conservation perspective, this study highlights the ecological value of industrial areas, provided that ongoing regional gene flow is ensured within the existing lineage boundaries.
Collapse
Affiliation(s)
- Leslie Faucher
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Laura Hénocq
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Cédric Vanappelghem
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France.,Conservatoire d'espaces naturels du Nord et du Pas de Calais, Lillers, France
| | - Stéphanie Rondel
- Centre Permanent d'Initiatives pour l'Environnement - Chaîne des Terrils, Loos-en-Gohelle, France
| | - Robin Quevillart
- Groupe ornithologique et naturaliste du Nord - Pas-de-Calais, Lille, France
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Julie Jaquiéry
- UMR CNRS 6553 - ECOBIO, Université de Rennes 1, Rennes Cedex, France
| | | |
Collapse
|
17
|
Identification, genealogical structure and population genetics of S-alleles in Malus sieversii, the wild ancestor of domesticated apple. Heredity (Edinb) 2017. [PMID: 28635965 DOI: 10.1038/hdy.2017.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The self-incompatibility (SI) gene that is specifically expressed in pistils encodes the SI-associated ribonuclease (S-RNase), functioning as the female-specificity determinant of a gametophytic SI system. Despite extensive surveys in Malus domestica, the S-alleles have not been fully investigated for Malus sieversii, the primary wild ancestor of the domesticated apple. Here we screened the M. sieversii S-alleles via PCR amplification and sequencing, and identified 14 distinct alleles in this species. By contrast, nearly 40 are present in its close wild relative, Malus sylvestris. We further sequenced 8 nuclear genes to provide a neutral reference, and investigated the evolution of S-alleles via genealogical and population genetic analyses. Both shared ancestral polymorphism and an excess of non-synonymous substitution were detected in the S-RNases of the tribe Maleae in Rosaceae, indicating the action of long-term balancing selection. Approximate Bayesian Computations based on the reference neutral loci revealed a severe bottleneck in four of the six studied M. sieversii populations, suggesting that the low number of S-alleles found in this species is mainly the result of diversity loss due to a drastic population contraction. Such a bottleneck may lead to ambiguous footprints of ongoing balancing selection detected at the S-locus. This study not only elucidates the constituents and number of S-alleles in M. sieversii but also illustrates the potential utility of S-allele number shifts in demographic inference for self-incompatible plant species.
Collapse
|
18
|
Genetic Structure in the Northern Range Margins of Common Ash, Fraxinus excelsior L. PLoS One 2016; 11:e0167104. [PMID: 27907032 PMCID: PMC5132317 DOI: 10.1371/journal.pone.0167104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/07/2016] [Indexed: 12/29/2022] Open
Abstract
During post glacial colonization, loss of genetic diversity due to leading edge effects may be attenuated in forest trees because of their prolonged juvenile phase, allowing many migrants to reach the colonizing front before populations become reproductive. The northern range margins of temperate tree taxa in Europe are particularly suitable to study the genetic processes that follow colonization because they have been little affected by northern refugia. Here we examined how post glacial range dynamics have shaped the genetic structure of common ash (Fraxinus excelsior L.) in its northern range compared to its central range in Europe. We used four chloroplast and six nuclear microsatellites to screen 42 populations (1099 trees), half of which corresponded to newly sampled populations in the northern range and half of which represented reference populations from the central range obtained from previously studies. We found that northern range populations of common ash have the same chloroplast haplotypes as south-eastern European populations, suggesting that colonization of the northern range took place along a single migration route, a result confirmed by the structure at the nuclear microsatellites. Along this route, diversity strongly decreased only in the northern range, concomitantly with increasing population differentiation and complex population substructures, a pattern consistent with a leading edge colonization model. Our study highlights that while diversity is maintained in the central range of common ash due to broad colonizing fronts and high levels of gene flow, it profoundly decreases in the northern range, where colonization was unidirectional and probably involved repeated founder events and population fluctuations. Currently, common ash is threatened by ash dieback, and our results on northern populations will be valuable for developing gene conservation strategies.
Collapse
|
19
|
Mandák B, Havrdová A, Krak K, Hadincová V, Vít P, Zákravský P, Douda J. Recent similarity in distribution ranges does not mean a similar postglacial history: a phylogeographical study of the boreal tree species Alnus incana based on microsatellite and chloroplast DNA variation. THE NEW PHYTOLOGIST 2016; 210:1395-1407. [PMID: 26831816 DOI: 10.1111/nph.13848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
We reconstructed the historical pattern of postglacial biogeographic range expansion of the boreal tree species Alnus incana in Europe. To assess population genetic structure and diversity, we performed a combined analysis of nuclear microsatellite loci and chloroplast DNA sequences (65 populations, 1004 individuals). Analysis of haplotype and microsatellite diversity revealed that southeastern refugial populations situated in the Carpathians and the Balkan Peninsula did not spread north and cannot be considered as important source populations for postglacial recolonization of Europe; populations in Eastern Europe did not establish Fennoscandian populations; populations in Fennoscandia and Eastern Europe have no unique genetic cluster, but represent a mix with a predominant cluster typical for Central Europe; and that colonization of Fennoscandia and Eastern Europe took place from Central Europe. Our findings highlight the importance of an effective refugium in Central Europe located outside classical southern refugia confirming the existence of northern refugia for boreal trees in Europe. The postglacial range expansion of A. incana did not follow the model established for Picea abies. Fennoscandian populations are not derived from Eastern European ones, but from Central European ones.
Collapse
Affiliation(s)
- Bohumil Mandák
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| | - Alena Havrdová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| | - Karol Krak
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| | - Věroslava Hadincová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Petr Vít
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| | - Petr Zákravský
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jan Douda
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| |
Collapse
|
20
|
Computational analysis of atpB gene promoter from different Pakistani apple varieties. Comput Biol Chem 2016; 64:1-8. [PMID: 27213556 DOI: 10.1016/j.compbiolchem.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 11/20/2022]
Abstract
Apple is the fourth most important fruit crop grown in temperate areas of the world belongs to the family Rosaceae. In the present study, the promoter (∼1000bp) region of atpB gene was used to evaluate the genetic diversity and phylogeny of six local apple varieties. atpB gene is one of the large chloroplastic region which encodes β-subunit of ATP synthase and previously it had been used largely in phylogenetic studies. During the present study, atpB promoter was amplified, sequenced and analyzed using various bioinformatics tools including Place Signal Scan, MEGA6 and BLASTn. During the phylogenetic analysis, obtained phylogram divided the studied varieties into two clusters revealing the monophyletic origin of studied apple varieties. Pairwise distance revealed moderate genetic diversity that ranges from 0.047-0.170 with an average of 0.101. While identifying different cis-acting elements present in the atpB promoter region, results exhibited the occurrence of 56 common and 20 unique cis-regulatory elements among studied varieties. The identified cis-acting regulatory elements were mapped as well. It was observed that Kala Kulu has the highest unique features with reference to the availability of cis-acting elements. Moreover, the possible functions of all regulatory elements present on the promoter sequence of atpB gene were predicted based on already reported information regarding their in vivo role.
Collapse
|
21
|
Lemaire C, De Gracia M, Leroy T, Michalecka M, Lindhard-Pedersen H, Guerin F, Gladieux P, Le Cam B. Emergence of new virulent populations of apple scab from nonagricultural disease reservoirs. THE NEW PHYTOLOGIST 2016; 209:1220-9. [PMID: 26428268 DOI: 10.1111/nph.13658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/15/2015] [Indexed: 05/11/2023]
Abstract
Plant pathogens adapt readily to new crop varieties in agrosystems, and it is crucial to understand the factors underlying the epidemic spread of new virulent strains if we are to develop more efficient strategies to control them. In this study we used multilocus microsatellite typing, molecular epidemiology tools and a large collection of isolates from cultivated, wild and ornamental apples to investigate the origin of new virulent populations of Venturia inaequalis, an ascomycete fungus causing apple scab on varieties carrying the Rvi6 resistance gene. We demonstrated a common origin at the European scale of populations infecting apples (Malus × domestica) carrying the Rvi6 resistance and Malus floribunda, the progenitor of the Rvi6 resistance. Demographic modeling indicated that the Rvi6-virulent lineage separated several thousands of years ago from populations infecting non-Rvi6 hosts, without detectable gene flow between the two lineages. These findings show that 'breakdowns' of plant resistance genes can be caused by the selection and migration of virulent genotypes from standing genetic variation maintained in environmental disease reservoirs, here ornamental crabapples. This work stresses the need to take better account of pathogen diversity in resistance screenings of breeding lines and in resistance deployment strategies, in order to enhance sustainable disease management.
Collapse
Affiliation(s)
- Christophe Lemaire
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), SFR4207 QUASAV, PRES L'UNAM, Angers, 49075, France
| | - Marie De Gracia
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), Beaucouzé, 49071, France
| | - Thibault Leroy
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), SFR4207 QUASAV, PRES L'UNAM, Angers, 49075, France
- INRA, UMR 1202 BIOGECO, Cestas, 33612, France
| | - Monika Michalecka
- Department of Plant Pathology, Institute of Horticulture, Skierniewice, 96-100, Poland
| | | | - Fabien Guerin
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), Beaucouzé, 49071, France
- Université de la Réunion, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), Saint Pierre, 97715, La Réunion, France
| | - Pierre Gladieux
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), Beaucouzé, 49071, France
- INRA, UMR BGPI, Montpellier, 34398, France
- CIRAD, UMR BGPI, Montpellier, 34398, France
| | - Bruno Le Cam
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), Beaucouzé, 49071, France
| |
Collapse
|
22
|
Yao JL, Xu J, Cornille A, Tomes S, Karunairetnam S, Luo Z, Bassett H, Whitworth C, Rees-George J, Ranatunga C, Snirc A, Crowhurst R, de Silva N, Warren B, Deng C, Kumar S, Chagné D, Bus VGM, Volz RK, Rikkerink EHA, Gardiner SE, Giraud T, MacDiarmid R, Gleave AP. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:417-27. [PMID: 26358530 DOI: 10.1111/tpj.13021] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 05/20/2023]
Abstract
The molecular genetic mechanisms underlying fruit size remain poorly understood in perennial crops, despite size being an important agronomic trait. Here we show that the expression level of a microRNA gene (miRNA172) influences fruit size in apple. A transposon insertional allele of miRNA172 showing reduced expression associates with large fruit in an apple breeding population, whereas over-expression of miRNA172 in transgenic apple significantly reduces fruit size. The transposon insertional allele was found to be co-located with a major fruit size quantitative trait locus, fixed in cultivated apples and their wild progenitor species with relatively large fruit. This finding supports the view that the selection for large size in apple fruit was initiated prior to apple domestication, likely by large mammals, before being subsequently strengthened by humans, and also helps to explain why signatures of genetic bottlenecks and selective sweeps are normally weaker in perennial crops than in annual crops.
Collapse
Affiliation(s)
- Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Juan Xu
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Amandine Cornille
- Ecologie, Systématique et Evolution, Université Paris-Sud, Bâtiment 360, F-91405, Orsay, France
- CNRS, F-91405, Orsay, France
| | - Sumathi Tomes
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Sakuntala Karunairetnam
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Heather Bassett
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, 4442, New Zealand
| | - Claire Whitworth
- The New Zealand Institute for Plant & Food Research Limited, Havelock North, 4157, New Zealand
| | - Jonathan Rees-George
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Chandra Ranatunga
- The New Zealand Institute for Plant & Food Research Limited, Havelock North, 4157, New Zealand
| | - Alodie Snirc
- Ecologie, Systématique et Evolution, Université Paris-Sud, Bâtiment 360, F-91405, Orsay, France
- CNRS, F-91405, Orsay, France
| | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Nihal de Silva
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Ben Warren
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Satish Kumar
- The New Zealand Institute for Plant & Food Research Limited, Havelock North, 4157, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, 4442, New Zealand
| | - Vincent G M Bus
- The New Zealand Institute for Plant & Food Research Limited, Havelock North, 4157, New Zealand
| | - Richard K Volz
- The New Zealand Institute for Plant & Food Research Limited, Havelock North, 4157, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Susan E Gardiner
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, 4442, New Zealand
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Université Paris-Sud, Bâtiment 360, F-91405, Orsay, France
- CNRS, F-91405, Orsay, France
| | - Robin MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew P Gleave
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
23
|
Knäbel M, Friend AP, Palmer JW, Diack R, Wiedow C, Alspach P, Deng C, Gardiner SE, Tustin DS, Schaffer R, Foster T, Chagné D. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC PLANT BIOLOGY 2015; 15:230. [PMID: 26394845 PMCID: PMC4580296 DOI: 10.1186/s12870-015-0620-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/16/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND The vigour and precocity of trees highly influences their efficiency in commercial production. In apple, dwarfing rootstocks allow high-density plantings while their precocious flowering enables earlier fruit production. Currently, there is a lack of pear (Pyrus communis L.) rootstocks that are equivalent to the high yielding apple rootstock 'M9'. For the efficient breeding of new Pyrus rootstocks it is crucial to understand the genetic determinants of vigour control and precocity. In this study we used quantitative trait loci (QTLs) analysis to identify genetic loci associated with the desired traits, using a segregating population of 405 F1 P. communis seedlings from a cross between 'Old Home' and 'Louise Bonne de Jersey' (OHxLBJ). The seedlings were grafted as rootstocks with 'Doyenne du Comice' scions and comprehensively phenotyped over four growing seasons for traits related to tree architecture and flowering, in order to describe the growth of the scions. RESULTS A high density single nucleotide polymorphism (SNP)-based genetic map comprising 597 polymorphic pear and 113 apple markers enabled the detection of QTLs influencing expression of scion vigour and precocity located on linkage groups (LG)5 and LG6 of 'Old Home'. The LG5 QTL maps to a position that is syntenic to the apple 'Malling 9' ('M9') Dw1 locus at the upper end of LG5. An allele of a simple sequence repeat (SSR) associated with apple Dw1 segregated with dwarfing and precocity in pear and was identified in other pear germplasm accessions. The orthology of the vigour-controlling LG5 QTL between apple and pear raises the possibility that the dwarfing locus Dw1 arose before the divergence of apple and pear, and might therefore be present in other Rosaceae species. CONCLUSION We report the first QTLs associated with vigour control and flowering traits in pear rootstocks. Orthologous loci were found to control scion growth and precocity in apple and pear rootstocks. The application of our results may assist in the breeding process of a pear rootstock that confers both vigour control and precocity to the grafted scion cultivar.
Collapse
Affiliation(s)
- Mareike Knäbel
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Fitzherbert Science Centre, Batchelar Road, Palmerston North, 4474, New Zealand.
- School of Biological Sciences, University of Auckland, Thomas Building 110, 3a Symonds Street, Auckland Central, 1010, New Zealand.
| | - Adam P Friend
- Plant & Food Research, Motueka Research Centre, 55 Old Mill Road, RD3, Motueka, 7198, New Zealand.
| | - John W Palmer
- Plant & Food Research, Motueka Research Centre, 55 Old Mill Road, RD3, Motueka, 7198, New Zealand.
| | - Robert Diack
- Plant & Food Research, Motueka Research Centre, 55 Old Mill Road, RD3, Motueka, 7198, New Zealand.
| | - Claudia Wiedow
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Fitzherbert Science Centre, Batchelar Road, Palmerston North, 4474, New Zealand.
| | - Peter Alspach
- Plant & Food Research, Motueka Research Centre, 55 Old Mill Road, RD3, Motueka, 7198, New Zealand.
| | - Cecilia Deng
- Plant & Food Research, Mount Albert Research Centre, 120 Mt Albert Road, Sandringham, Auckland, 1025, New Zealand.
| | - Susan E Gardiner
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Fitzherbert Science Centre, Batchelar Road, Palmerston North, 4474, New Zealand.
| | - D Stuart Tustin
- Plant & Food Research, Hawke's Bay Research Centre, Cnr Crosses and St George's Roads, Havelock North, 4130, New Zealand.
| | - Robert Schaffer
- School of Biological Sciences, University of Auckland, Thomas Building 110, 3a Symonds Street, Auckland Central, 1010, New Zealand.
- Plant & Food Research, Mount Albert Research Centre, 120 Mt Albert Road, Sandringham, Auckland, 1025, New Zealand.
| | - Toshi Foster
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Fitzherbert Science Centre, Batchelar Road, Palmerston North, 4474, New Zealand.
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Fitzherbert Science Centre, Batchelar Road, Palmerston North, 4474, New Zealand.
| |
Collapse
|
24
|
Havrdová A, Douda J, Krak K, Vít P, Hadincová V, Zákravský P, Mandák B. Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture. Mol Ecol 2015; 24:4759-77. [PMID: 26290117 DOI: 10.1111/mec.13348] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/03/2015] [Accepted: 08/16/2015] [Indexed: 02/05/2023]
Abstract
Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent-wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear-edge populations in the Mediterranean region more vulnerable to extinction due to climate change.
Collapse
Affiliation(s)
- Alena Havrdová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic
| | - Jan Douda
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic
| | - Karol Krak
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic
| | - Petr Vít
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic
| | - Věroslava Hadincová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Petr Zákravský
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Bohumil Mandák
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic
| |
Collapse
|
25
|
De Gracia M, Cascales M, Expert P, Bellanger MN, Le Cam B, Lemaire C. How Did Host Domestication Modify Life History Traits of Its Pathogens? PLoS One 2015; 10:e0122909. [PMID: 26091067 PMCID: PMC4475019 DOI: 10.1371/journal.pone.0122909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/16/2015] [Indexed: 01/08/2023] Open
Abstract
Understanding evolutionary dynamics of pathogens during domestication of their hosts and rise of agro-ecosystems is essential for durable disease management. Here, we investigated changes in life-history traits of the fungal pathogen Venturia inaequalis during domestication of the apple. Life traits linked to fungal dispersal were compared between 60 strains that were sampled in domestic and wild habitats in Kazakhstan, the center of origin of both host and pathogen. Our two main findings are that transition from wild to agro-ecosystems was associated with an increase of both spore size and sporulation capacity; and that distribution of quantitative traits of the domestic population mostly overlapped with those of the wild population. Our results suggest that apple domestication had a considerable impact on fungal characters linked to its dispersal through selection from standing phenotypic diversity. We showed that pestification of V. inaequalis in orchards led to an enhanced allocation in colonization ability from standing variation in the wild area. This study emphasizes the potential threat that pathogenic fungal populations living in wild environments represent for durability of resistance in agro-ecosystems.
Collapse
Affiliation(s)
- Marie De Gracia
- INRA, IRHS, SFR QUASAV, Beaucouzé, 49071, France
- Université d’Angers, IRHS, PRES UNAM, SFR QUASAV, Angers, 49045, France
- Agrocampus Ouest, IRHS, SFR QUASAV, Angers, 49045, France
| | - Mathilde Cascales
- INRA, IRHS, SFR QUASAV, Beaucouzé, 49071, France
- Université d’Angers, IRHS, PRES UNAM, SFR QUASAV, Angers, 49045, France
- Agrocampus Ouest, IRHS, SFR QUASAV, Angers, 49045, France
| | - Pascale Expert
- INRA, IRHS, SFR QUASAV, Beaucouzé, 49071, France
- Université d’Angers, IRHS, PRES UNAM, SFR QUASAV, Angers, 49045, France
- Agrocampus Ouest, IRHS, SFR QUASAV, Angers, 49045, France
| | - Marie-Noelle Bellanger
- INRA, IRHS, SFR QUASAV, Beaucouzé, 49071, France
- Université d’Angers, IRHS, PRES UNAM, SFR QUASAV, Angers, 49045, France
- Agrocampus Ouest, IRHS, SFR QUASAV, Angers, 49045, France
| | - Bruno Le Cam
- INRA, IRHS, SFR QUASAV, Beaucouzé, 49071, France
- Université d’Angers, IRHS, PRES UNAM, SFR QUASAV, Angers, 49045, France
- Agrocampus Ouest, IRHS, SFR QUASAV, Angers, 49045, France
| | - Christophe Lemaire
- INRA, IRHS, SFR QUASAV, Beaucouzé, 49071, France
- Université d’Angers, IRHS, PRES UNAM, SFR QUASAV, Angers, 49045, France
- Agrocampus Ouest, IRHS, SFR QUASAV, Angers, 49045, France
| |
Collapse
|
26
|
George JP, Konrad H, Collin E, Thevenet J, Ballian D, Idzojtic M, Kamm U, Zhelev P, Geburek T. High molecular diversity in the true service tree (Sorbus domestica) despite rareness: data from Europe with special reference to the Austrian occurrence. ANNALS OF BOTANY 2015; 115:1105-1115. [PMID: 25878141 PMCID: PMC4648458 DOI: 10.1093/aob/mcv047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/04/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND AIMS Sorbus domestica (Rosaceae) is one of the rarest deciduous tree species in Europe and is characterized by a scattered distribution. To date, no large-scale geographic studies on population genetics have been carried out. Therefore, the aims of this study were to infer levels of molecular diversity across the major part of the European distribution of S. domestica and to determine its population differentiation and structure. In addition, spatial genetic structure was examined together with the patterns of historic and recent gene flow between two adjacent populations. METHODS Leaf or cambium samples were collected from 17 populations covering major parts of the European native range from north-west France to south-east Bulgaria. Seven nuclear microsatellites and one chloroplast minisatellite were examined and analysed using a variety of methods. KEY RESULTS Allelic richness was unexpectedly high for both markers within populations (mean per locus: 3·868 for nSSR and 1·647 for chloroplast minisatellite). Moreover, there was no evidence of inbreeding (mean Fis = -0·047). The Italian Peninsula was characterized as a geographic region with comparatively high genetic diversity for both genomes. Overall population differentiation was moderate (FST = 0·138) and it was clear that populations formed three groups in Europe, namely France, Mediterranean/Balkan and Austria. Historic gene flow between two local Austrian populations was high and asymmetric, while recent gene flow seemed to be disrupted. CONCLUSIONS It is concluded that molecular mechanisms such as self-incompatibility and high gene flow distances are responsible for the observed level of allelic richness as well as for population differentiation. However, human influence could have contributed to the present genetic pattern, especially in the Mediterranean region. Comparison of historic and recent gene flow may mirror the progress of habitat fragmentation in eastern Austria.
Collapse
Affiliation(s)
- Jan-Peter George
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Heino Konrad
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Eric Collin
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Jean Thevenet
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Dalibor Ballian
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Marilena Idzojtic
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Urs Kamm
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Peter Zhelev
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| | - Thomas Geburek
- BFW, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Department of Forest Genetics, Hauptstraße 7, 1140 Vienna, Austria, IRSTEA, Institut National de Recherche en Sciences et Technologies pour l'Environnment et l'Agriculture, Domaine des Barres, 45290 Nogent sur vernisson, France, INRA, Unite experimentale Entomologie et Foret Mediterraneenne, Domaine Saint Paul-Site Agroparc, CS 40509, 84914 Avignon Cedex 9, France, Faculty of Forestry, University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina, Faculty of Forestry, University of Zagreb, Svetosimunska 25, 1000 Zagreb, Croatia, Swiss Federal Research Institute WSL, Biodiversity and Conservation, Ecological Genetics, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland and University of Forestry, 10 Kliment Ohridski blvd., 1756 Sofia, Bulgaria
| |
Collapse
|
27
|
Stojak J, McDevitt AD, Herman JS, Searle JB, Wójcik JM. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common voleMicrotus arvalis. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12535] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Joanna Stojak
- Mammal Research Institute; Polish Academy of Sciences; 17-230 Białowieża Poland
| | - Allan D. McDevitt
- Mammal Research Institute; Polish Academy of Sciences; 17-230 Białowieża Poland
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; 3000 Leuven Belgium
| | - Jeremy S. Herman
- Department of Natural Sciences; National Museums Scotland; Edinburgh EH1 1JF UK
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca NY 14853-2701 USA
| | - Jan M. Wójcik
- Mammal Research Institute; Polish Academy of Sciences; 17-230 Białowieża Poland
| |
Collapse
|
28
|
Tsuda Y, Nakao K, Ide Y, Tsumura Y. The population demography ofBetula maximowicziana, a cool-temperate tree species in Japan, in relation to the last glacial period: its admixture-like genetic structure is the result of simple population splitting not admixing. Mol Ecol 2015; 24:1403-18. [DOI: 10.1111/mec.13123] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Y. Tsuda
- Program in Plant Ecology and Evolution; Department of Ecology and Genetics; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
- Department of Forest Genetics; Forestry and Forest Products Research Institute (FFPRI); Matsunosato 1 Tsukuba Ibaraki 305-8687 Japan
| | - K. Nakao
- Department of Plant Ecology; Forestry and Forest Products Research Institute (FFPRI); Matsunosato 1 Tsukubaa Ibaraki 305-8687 Japan
| | - Y. Ide
- Laboratory of Forest Ecosystem Studies; Department of Ecosystem Studies; Graduate School of Agriculture and Life Sciences; The University of Tokyo; Yayoi 1-1-1 Bunkyo-ku Tokyo 113-8657 Japan
| | - Y. Tsumura
- Department of Forest Genetics; Forestry and Forest Products Research Institute (FFPRI); Matsunosato 1 Tsukuba Ibaraki 305-8687 Japan
| |
Collapse
|
29
|
Cornille A, Feurtey A, Gélin U, Ropars J, Misvanderbrugge K, Gladieux P, Giraud T. Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples. Evol Appl 2015; 8:373-84. [PMID: 25926882 PMCID: PMC4408148 DOI: 10.1111/eva.12250] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 02/04/2023] Open
Abstract
Gene flow is an essential component of population adaptation and species evolution. Understanding of the natural and anthropogenic factors affecting gene flow is also critical for the development of appropriate management, breeding, and conservation programs. Here, we explored the natural and anthropogenic factors impacting crop-to-wild and within wild gene flow in apples in Europe using an unprecedented dense sampling of 1889 wild apple (Malus sylvestris) from European forests and 339 apple cultivars (Malus domestica). We made use of genetic, environmental, and ecological data (microsatellite markers, apple production across landscapes and records of apple flower visitors, respectively). We provide the first evidence that both human activities, through apple production, and human disturbance, through modifications of apple flower visitor diversity, have had a significant impact on crop-to-wild interspecific introgression rates. Our analysis also revealed the impact of previous natural climate change on historical gene flow in the nonintrogressed wild apple M. sylvestris, by identifying five distinct genetic groups in Europe and a north–south gradient of genetic diversity. These findings identify human activities and climate as key drivers of gene flow in a wild temperate fruit tree and provide a practical basis for conservation, agroforestry, and breeding programs for apples in Europe.
Collapse
Affiliation(s)
- Amandine Cornille
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; CNRS Orsay, France ; Department of Plant Ecology and Evolution, Uppsala University Uppsala, Sweden
| | - Alice Feurtey
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; CNRS Orsay, France
| | - Uriel Gélin
- Département de biologie, Université de Sherbrooke Sherbrooke, QC, Canada
| | - Jeanne Ropars
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; CNRS Orsay, France
| | | | - Pierre Gladieux
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; CNRS Orsay, France
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Université Paris-Sud Orsay, France ; CNRS Orsay, France
| |
Collapse
|
30
|
Wielstra B, Babik W, Arntzen JW. The crested newtTriturus cristatusrecolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ben Wielstra
- Naturalis Biodiversity Center; P.O. Box 9517 2300 RA Leiden The Netherlands
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Wiesław Babik
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Jan W. Arntzen
- Naturalis Biodiversity Center; P.O. Box 9517 2300 RA Leiden The Netherlands
| |
Collapse
|
31
|
Schnitzler A, Arnold C, Cornille A, Bachmann O, Schnitzler C. Wild European apple (Malus sylvestris (L.) Mill.) population dynamics: insight from genetics and ecology in the Rhine Valley. Priorities for a future conservation programme. PLoS One 2014; 9:e96596. [PMID: 24827575 PMCID: PMC4020776 DOI: 10.1371/journal.pone.0096596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
The increasing fragmentation of forest habitats and the omnipresence of cultivars potentially threaten the genetic integrity of the European wild apple (Malus sylvestris (L.) Mill). However, the conservation status of this species remains unclear in Europe, other than in Belgium and the Czech Republic, where it has been declared an endangered species. The population density of M. sylvestris is higher in the forests of the upper Rhine Valley (France) than in most European forests, with an unbalanced age-structure, an overrepresentation of adults and a tendency to clump. We characterize here the ecology, age-structure and genetic diversity of wild apple populations in the Rhine Valley. We use these data to highlight links to the history of this species and to propose guidelines for future conservation strategies. In total, 255 individual wild apple trees from six forest stands (five floodplain forests and one forest growing in drier conditions) were analysed in the field, collected and genotyped on the basis of data for 15 microsatellite markers. Genetic analyses showed no escaped cultivars and few hybrids with the cultivated apple. Excluding the hybrids, the genetically “pure” populations displayed high levels of genetic diversity and a weak population structure. Age-structure and ecology studies of wild apple populations identified four categories that were not randomly distributed across the forests, reflecting the history of the Rhine forest over the last century. The Rhine wild apple populations, with their ecological strategies, high genetic diversity, and weak traces of crop-to-wild gene flow associated with the history of these floodplain forests, constitute candidate populations for inclusion in future conservation programmes for European wild apple.
Collapse
Affiliation(s)
- Annik Schnitzler
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) - UMR 7360, CNRS, Université de Lorraine, Metz, France
- * E-mail:
| | - Claire Arnold
- Unicentre, University of Lausanne, Lausanne, Switzerland
- Laboratory Soil and Vegetation, University of Neuchâtel, Neuchâtel, Switzerland
| | - Amandine Cornille
- UMR 8079, CNRS, Orsay, France
- UMR 8079, Paris Sud University, Orsay, France
| | - Olivier Bachmann
- Laboratory of Evolutionary Botany, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
32
|
Nybom H, Weising K, Rotter B. DNA fingerprinting in botany: past, present, future. INVESTIGATIVE GENETICS 2014; 5:1. [PMID: 24386986 PMCID: PMC3880010 DOI: 10.1186/2041-2223-5-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Almost three decades ago Alec Jeffreys published his seminal Nature papers on the use of minisatellite probes for DNA fingerprinting of humans (Jeffreys and colleagues Nature 1985, 314:67-73 and Nature 1985, 316:76-79). The new technology was soon adopted for many other organisms including plants, and when Hilde Nybom, Kurt Weising and Alec Jeffreys first met at the very First International Conference on DNA Fingerprinting in Berne, Switzerland, in 1990, everybody was enthusiastic about the novel method that allowed us for the first time to discriminate between humans, animals, plants and fungi on the individual level using DNA markers. A newsletter coined "Fingerprint News" was launched, T-shirts were sold, and the proceedings of the Berne conference filled a first book on "DNA fingerprinting: approaches and applications". Four more conferences were about to follow, one on each continent, and Alec Jeffreys of course was invited to all of them. Since these early days, methodologies have undergone a rapid evolution and diversification. A multitude of techniques have been developed, optimized, and eventually abandoned when novel and more efficient and/or more reliable methods appeared. Despite some overlap between the lifetimes of the different technologies, three phases can be defined that coincide with major technological advances. Whereas the first phase of DNA fingerprinting ("the past") was dominated by restriction fragment analysis in conjunction with Southern blot hybridization, the advent of the PCR in the late 1980s gave way to the development of PCR-based single- or multi-locus profiling techniques in the second phase. Given that many routine applications of plant DNA fingerprinting still rely on PCR-based markers, we here refer to these methods as "DNA fingerprinting in the present", and include numerous examples in the present review. The beginning of the third phase actually dates back to 2005, when several novel, highly parallel DNA sequencing strategies were developed that increased the throughput over current Sanger sequencing technology 1000-fold and more. High-speed DNA sequencing was soon also exploited for DNA fingerprinting in plants, either in terms of facilitated marker development, or directly in the sense of "genotyping-by-sequencing". Whereas these novel approaches are applied at an ever increasing rate also in non-model species, they are still far from routine, and we therefore treat them here as "DNA fingerprinting in the future".
Collapse
Affiliation(s)
- Hilde Nybom
- Department of Plant Breeding–Balsgård, Swedish University for Agricultural Sciences, Fjälkestadsvägen 459, Kristianstad 29194, Sweden
| | - Kurt Weising
- Plant Molecular Systematics, Institute of Biology, University of Kassel, Kassel 34109, Germany
| | - Björn Rotter
- GenXPro GmbH, Altenhöferallee 3, Frankfurt 60438, Germany
| |
Collapse
|
33
|
The domestication and evolutionary ecology of apples. Trends Genet 2013; 30:57-65. [PMID: 24290193 DOI: 10.1016/j.tig.2013.10.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022]
Abstract
The cultivated apple is a major fruit crop in temperate zones. Its wild relatives, distributed across temperate Eurasia and growing in diverse habitats, represent potentially useful sources of diversity for apple breeding. We review here the most recent findings on the genetics and ecology of apple domestication and its impact on wild apples. Genetic analyses have revealed a Central Asian origin for cultivated apple, together with an unexpectedly large secondary contribution from the European crabapple. Wild apple species display strong population structures and high levels of introgression from domesticated apple, and this may threaten their genetic integrity. Recent research has revealed a major role of hybridization in the domestication of the cultivated apple and has highlighted the value of apple as an ideal model for unraveling adaptive diversification processes in perennial fruit crops. We discuss the implications of this knowledge for apple breeding and for the conservation of wild apples.
Collapse
|
34
|
Yuan JH, Cornille A, Giraud T, Cheng FY, Hu YH. Independent domestications of cultivated tree peonies from different wild peony species. Mol Ecol 2013; 23:82-95. [PMID: 24138195 DOI: 10.1111/mec.12567] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/30/2022]
Abstract
An understanding of plant domestication history provides insights into general mechanisms of plant adaptation and diversification and can guide breeding programmes that aim to improve cultivated species. Cultivated tree peonies (genus Paeonia L.) are among the most popular ornamental plants in the world; yet, the history of their domestication is still unresolved. Here, we explored whether the domestication in China of historically cultivated peonies, that is, the common and flare cultivated tree peonies, was a single event or whether independent domestications occurred. We used 14 nuclear microsatellite markers and a comprehensive set of 553 tree peonies collected across China, including common tree peonies, flare tree peonies and the wild species or subspecies that are potential contributors to the cultivated tree peonies, that is, Paeonia rockii ssp. rockii, P. rockii ssp. atava, P. jishanensis and P. decomposita. Assignment methods, a principal component analysis and approximate Bayesian computations provided clear evidence for independent domestications of these common tree and flare tree peonies from two distinct and allopatric wild species, P. jishanensis and P. rockii ssp. atava, respectively. This study provides the first example of independent domestications of cultivated trees from distinct species and locations. This work also yields crucial insight into the history of domestication of one of the most popular woody ornamental plants. The cultivated peonies represent an interesting case of parallel and convergent evolution. The information obtained in this study will be valuable both for improving current tree peony breeding strategies and for understanding the mechanisms of domestication, diversification and adaptation in plants.
Collapse
Affiliation(s)
- Jun-Hui Yuan
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, 3888 Chenhua Road, Shanghai, 201602, China; Landscape Architecture College, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | | | | | | | | |
Collapse
|
35
|
Nadachowska-Brzyska K, Burri R, Olason PI, Kawakami T, Smeds L, Ellegren H. Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLoS Genet 2013; 9:e1003942. [PMID: 24244198 PMCID: PMC3820794 DOI: 10.1371/journal.pgen.1003942] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/23/2013] [Indexed: 01/05/2023] Open
Abstract
Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000-80,000) and census sizes (5-50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to unravel tangled demographic histories. Moreover, it constitutes one of the first examples of the inference of divergence history from genome-wide data in non-model species.
Collapse
Affiliation(s)
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Pall I. Olason
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Cornille A, Gladieux P, Giraud T. Crop-to-wild gene flow and spatial genetic structure in the closest wild relatives of the cultivated apple. Evol Appl 2013; 6:737-748. [PMID: 29387162 PMCID: PMC5779123 DOI: 10.1111/eva.12059] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022] Open
Abstract
Crop‐to‐wild gene flow have important evolutionary and ecological consequences and require careful consideration in conservation programs for wild genetic resources of potential use in breeding programs and in assessments of the risk of transgene escape into natural ecosystems. Using 26 microsatellites and a set of 1181 trees, we investigated the extent of introgression from the cultivated apple, Malus domestica, to its three closest wild relatives, M. sylvestris in Europe, M. orientalis in the Caucasus, and M. sieversii in Central Asia. We found footprints of introgression from M. domestica to M. orientalis (3.2% of hybrids), M. sieversii (14.8%), and M. sylvestris (36.7%). Malus sieversii and M. orientalis presented weak, but significant genetic structures across their geographic range. Malus orientalis displayed genetic differentiation with three differentiated populations in Turkey, Armenia, and Russia. Malus sieversii consisted of a main population spread over Central Asia and a smaller population in the Tian Shan Mountains. The low Sp values suggest high dispersal capacities for the wild apple relatives. High potential for crop‐to‐wild gene flow in apples needs to be considered in the implementation of in situ and ex situ actions for the conservation of wild apple genetic resources potentially useful to plant breeding.
Collapse
Affiliation(s)
- Amandine Cornille
- CNRS Laboratoire Ecologie Systématique et Evolution - UMR8079 Orsay France.,University Paris Sud Orsay France
| | - Pierre Gladieux
- CNRS Laboratoire Ecologie Systématique et Evolution - UMR8079 Orsay France.,University Paris Sud Orsay France.,Department of Plant and Microbial Biology University of CaliforniaB erkeley CA 94720-3102 USA
| | - Tatiana Giraud
- CNRS Laboratoire Ecologie Systématique et Evolution - UMR8079 Orsay France.,University Paris Sud Orsay France
| |
Collapse
|