1
|
Irimia RE, Montesinos D, Chaturvedi A, Sanders I, Hierro JL, Sotes G, Cavieres LA, Eren Ö, Lortie CJ, French K, Brennan AC. Trait evolution during a rapid global weed invasion despite little genetic differentiation. Evol Appl 2023; 16:997-1011. [PMID: 37216028 PMCID: PMC10197227 DOI: 10.1111/eva.13548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Invasive species often possess a great capacity to adapt to novel environments in the form of spatial trait variation, as a result of varying selection regimes, genetic drift, or plasticity. We explored the geographic differentiation in several phenotypic traits related to plant growth, reproduction, and defense in the highly invasive Centaurea solstitialis by measuring neutral genetic differentiation (F ST), and comparing it with phenotypic differentiation (P ST), in a common garden experiment in individuals originating from regions representing the species distribution across five continents. Native plants were more fecund than non-native plants, but the latter displayed considerably larger seed mass. We found indication of divergent selection for these two reproductive traits but little overall genetic differentiation between native and non-native ranges. The native versus invasive P ST-F ST comparisons demonstrated that, in several invasive regions, seed mass had increased proportionally more than the genetic differentiation. Traits displayed different associations with climate variables in different regions. Both capitula numbers and seed mass were associated with winter temperature and precipitation and summer aridity in some regions. Overall, our study suggests that rapid evolution has accompanied invasive success of C. solstitialis and provides new insights into traits and their genetic bases that can contribute to fitness advantages in non-native populations.
Collapse
Affiliation(s)
- Ramona E. Irimia
- Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
- Plant Evolutionary Ecology, Institute of Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Daniel Montesinos
- Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
- Australian Tropical HerbariumJames Cook UniversityQueenslandCairnsAustralia
| | - Anurag Chaturvedi
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Environmental Genomics Group, School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Ian Sanders
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - José L. Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de La Pampa (UNLPam)Santa RosaArgentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNLPamSanta RosaArgentina
| | - Gastón Sotes
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de La Pampa (UNLPam)Santa RosaArgentina
| | - Lohengrin A. Cavieres
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
| | - Özkan Eren
- Aydın Adnan Menderes Üniversitesi, Biyoloji Bölümü, Fen‐Edebiyat FakültesiAydınTurkey
| | - Christopher J. Lortie
- Department of BiologyYork UniversityOntarioTorontoCanada
- The National Center for Ecological Analysis and Synthesis (NCEAS), UCSBCaliforniaUSA
| | - Kristine French
- School of Earth, Atmospheric and Life SciencesUniversity of WollongongNew South WalesWollongongAustralia
| | | |
Collapse
|
2
|
Zimmer EA, Berg JA, Dudash MR. Genetic diversity and population structure among native, naturalized, and invasive populations of the common yellow monkeyflower, Mimulus guttatus (Phrymaceae). Ecol Evol 2023; 13:e9596. [PMID: 37038527 PMCID: PMC10082173 DOI: 10.1002/ece3.9596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 04/12/2023] Open
Abstract
An ongoing controversy in invasion biology is the prevalence of colonizing plant populations that are able to establish and spread, while maintaining limited amounts of genetic variation. Invasive populations can be established through several routes including from a single source or from multiple introductions. The aim of this study was to examine genetic diversity in populations of Mimulus guttatus in the United Kingdom, where the species is considered invasive, and compare this diversity to that in native populations on the west coast of North America. Additionally, we looked at diversity in non-native populations that have not yet become invasive (naturalized populations) in eastern North America. We investigated population structure among populations in these three regions and attempted to uncover the sources for populations that have established in the naturalized and invasive regions. We found that genetic diversity was, on average, relatively high in populations from the invasive UK region and comparable to native populations. Contrastingly, two naturalized M. guttatus populations were low in both genetic and genotypic diversity, indicating a history of asexual reproduction and self-fertilization. A third naturalized population was found to be a polyploid Mimulus hybrid of unknown origin. Our results demonstrate that M. guttatus has likely achieved colonization success outside of its native western North America distribution by a variety of establishment pathways, including those with genetic and demographic benefits resulting from multiple introductions in the UK, reproductive assurance through selfing, and asexual reproduction in eastern North America, and possible polyploidization in one Canadian population.
Collapse
Affiliation(s)
- Elizabeth A. Zimmer
- Department of Botany and Laboratories of Analytical Biology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Jason A. Berg
- Department of Biological SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Michele R. Dudash
- Department of Biological SciencesUniversity of MarylandCollege ParkMarylandUSA
- Department of Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
3
|
Genomic data is missing for many highly invasive species, restricting our preparedness for escalating incursion rates. Sci Rep 2022; 12:13987. [PMID: 35977991 PMCID: PMC9385848 DOI: 10.1038/s41598-022-17937-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 11/14/2022] Open
Abstract
Biological invasions drive environmental change, potentially threatening native biodiversity, human health, and global economies. Population genomics is an increasingly popular tool in invasion biology, improving accuracy and providing new insights into the genetic factors that underpin invasion success compared to research based on a small number of genetic loci. We examine the extent to which population genomic resources, including reference genomes, have been used or are available for invasive species research. We find that 82% of species on the International Union for Conservation of Nature “100 Worst Invasive Alien Species” list have been studied using some form of population genetic data, but just 32% of these species have been studied using population genomic data. Further, 55% of the list’s species lack a reference genome. With incursion rates escalating globally, understanding how genome-driven processes facilitate invasion is critical, but despite a promising trend of increasing uptake, “invasion genomics” is still in its infancy. We discuss how population genomic data can enhance our understanding of biological invasion and inform proactive detection and management of invasive species, and we call for more research that specifically targets this area.
Collapse
|
4
|
Querns A, Wooliver R, Vallejo‐Marín M, Sheth SN. The evolution of thermal performance in native and invasive populations of
Mimulus guttatus. Evol Lett 2022; 6:136-148. [PMID: 35386831 PMCID: PMC8967274 DOI: 10.1002/evl3.275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/22/2021] [Accepted: 01/18/2022] [Indexed: 11/11/2022] Open
Abstract
The rise of globalization has spread organisms beyond their natural range, allowing further opportunity for species to adapt to novel environments and potentially become invaders. Yet, the role of thermal niche evolution in promoting the success of invasive species remains poorly understood. Here, we use thermal performance curves (TPCs) to test hypotheses about thermal adaptation during the invasion process. First, we tested the hypothesis that if species largely conserve their thermal niche in the introduced range, invasive populations may not evolve distinct TPCs relative to native populations, against the alternative hypothesis that thermal niche and therefore TPC evolution has occurred in the invasive range. Second, we tested the hypothesis that clines of TPC parameters are shallower or absent in the invasive range, against the alternative hypothesis that with sufficient time, standing genetic variation, and temperature‐mediated selection, invasive populations would re‐establish clines found in the native range in response to temperature gradients. To test these hypotheses, we built TPCs for 18 native (United States) and 13 invasive (United Kingdom) populations of the yellow monkeyflower, Mimulus guttatus. We grew clones of multiple genotypes per population at six temperature regimes in growth chambers. We found that invasive populations have not evolved different thermal optima or performance breadths, providing evidence for evolutionary stasis of thermal performance between the native and invasive ranges after over 200 years post introduction. Thermal optimum increased with mean annual temperature in the native range, indicating some adaptive differentiation among native populations that was absent in the invasive range. Further, native and invasive populations did not exhibit adaptive clines in thermal performance breadth with latitude or temperature seasonality. These findings suggest that TPCs remained unaltered post invasion, and that invasion may proceed via broad thermal tolerance and establishment in already climatically suitable areas rather than rapid evolution upon introduction.
Collapse
Affiliation(s)
- Aleah Querns
- Department of Plant and Microbial Biology North Carolina State University Raleigh North Carolina 27695
- Division of Biology Kansas State University Manhattan Kansas 66506
| | - Rachel Wooliver
- Department of Plant and Microbial Biology North Carolina State University Raleigh North Carolina 27695
- Department of Biosystems Engineering and Soil Science University of Tennessee Knoxville Knoxville Tennessee 37996
| | - Mario Vallejo‐Marín
- Biological and Environmental Sciences University of Stirling Stirling FK9 4LA United Kingdom
| | - Seema Nayan Sheth
- Department of Plant and Microbial Biology North Carolina State University Raleigh North Carolina 27695
| |
Collapse
|
5
|
Chen Y, Hou G, Jing M, Teng H, Liu Q, Yang X, Wang Y, Qu J, Shi C, Lu L, Zhang J, Zhang Y. Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Mol Ecol 2021; 30:6596-6610. [PMID: 34564921 DOI: 10.1111/mec.16194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The Asian house rat (AHR), Rattus tanezumi, has recently invaded the northern half of China. The AHR is a highly adaptive rat species that has also successfully conquered the Qinghai-Tibet Plateau (QTP) and replaced the brown rat (BR), R. norvegicus, at the edge of the QTP. Here, we assembled a draft genome of the AHR and explored the mechanisms of its northward invasion and the genetic basis underlying plateau adaptation in this species. Population genomic analyses revealed that the northwardly invasive AHRs consisted of two independent and genetically distinct populations which might result from multiple independent primary invasion events. One invasive population exhibited reduced genetic diversity and distinct population structure compared with its source population, while the other displayed preserved genetic polymorphisms and little genetic differentiation from its source population. Genes involved in G-protein coupled receptors and carbohydrate metabolism may contribute to the local adaptation of northern AHRs. In particular, RTN4 was identified as a key gene for AHRs in the QTP that favours adaptation to high-altitude hypoxia. Coincidently, the physiological performance and transcriptome profiles of hypoxia-exposed rats both showed better hypoxia adaptation in AHRs than in BRs that failed to colonize the heart of the QTP, which may have facilitated the replacement of the BR population by the invading AHRs at the edge of the QTP. This study provides profound insights into the multiple origins of the northwardly invasive AHR and the great tolerance to hypoxia in this species.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guanmei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Meidong Jing
- School of Life Sciences, Nantong University, Nantong, China
| | - Huajing Teng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xingen Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yong Wang
- Dongting Lake Station for Wetland Ecosystem Research, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
| | - Chengmin Shi
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Errbii M, Keilwagen J, Hoff KJ, Steffen R, Altmüller J, Oettler J, Schrader L. Transposable elements and introgression introduce genetic variation in the invasive ant Cardiocondyla obscurior. Mol Ecol 2021; 30:6211-6228. [PMID: 34324751 DOI: 10.1111/mec.16099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Introduced populations of invasive organisms have to cope with novel environmental challenges, while having reduced genetic variation caused by founder effects. The mechanisms associated with this "genetic paradox of invasive species" has received considerable attention, yet few studies have examined the genomic architecture of invasive species. Populations of the heart node ant Cardiocondyla obscurior belong to two distinct lineages, a New World lineage so far only found in Latin America and a more globally distributed Old World lineage. In the present study, we use population genomic approaches to compare populations of the two lineages with apparent divergent invasive potential. We find that the strong genetic differentiation of the two lineages began at least 40,000 generations ago and that activity of transposable elements (TEs) has contributed significantly to the divergence of both lineages, possibly linked to the very unusual genomic distribution of TEs in this species. Furthermore, we show that introgression from the Old World lineage is a dominant source of genetic diversity in the New World lineage, despite the lineages' strong genetic differentiation. Our study uncovers mechanisms underlying novel genetic variation in introduced populations of C. obscurior that could contribute to the species' adaptive potential.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany.,Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Raphael Steffen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Institute of Human Genetics, University of Cologne, Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, Regensburg, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
7
|
North HL, McGaughran A, Jiggins CD. Insights into invasive species from whole-genome resequencing. Mol Ecol 2021; 30:6289-6308. [PMID: 34041794 DOI: 10.1111/mec.15999] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Studies of invasive species can simultaneously inform management strategies and quantify rapid evolution in the wild. The role of genomics in invasion science is increasingly recognised, and the growing availability of reference genomes for invasive species is paving the way for whole-genome resequencing studies in a wide range of systems. Here, we survey the literature to assess the application of whole-genome resequencing data in invasion biology. For some applications, such as the reconstruction of invasion routes in time and space, sequencing the whole genome of many individuals can increase the accuracy of existing methods. In other cases, population genomic approaches such as haplotype analysis can permit entirely new questions to be addressed and new technologies applied. To date whole-genome resequencing has only been used in a handful of invasive systems, but these studies have confirmed the importance of processes such as balancing selection and hybridization in allowing invasive species to reuse existing adaptations and rapidly overcome the challenges of a foreign ecosystem. The use of genomic data does not constitute a paradigm shift per se, but by leveraging new theory, tools, and technologies, population genomics can provide unprecedented insight into basic and applied aspects of invasion science.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Simón-Porcar VI, Silva JL, Vallejo-Marín M. Rapid local adaptation in both sexual and asexual invasive populations of monkeyflowers (Mimulus spp.). ANNALS OF BOTANY 2021; 127:655-668. [PMID: 33604608 PMCID: PMC8052927 DOI: 10.1093/aob/mcab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Traditionally, local adaptation has been seen as the outcome of a long evolutionary history, particularly with regard to sexual lineages. By contrast, phenotypic plasticity has been thought to be most important during the initial stages of population establishment and in asexual species. We evaluated the roles of adaptive evolution and phenotypic plasticity in the invasive success of two closely related species of invasive monkeyflowers (Mimulus) in the UK that have contrasting reproductive strategies: M. guttatus combines sexual (seeds) and asexual (clonal growth) reproduction while M. × robertsii is entirely asexual. METHODS We compared the clonality (number of stolons), floral and vegetative phenotype, and phenotypic plasticity of native (M. guttatus) and invasive (M. guttatus and M. × robertsii) populations grown in controlled environment chambers under the environmental conditions at each latitudinal extreme of the UK. The goal was to discern the roles of temperature and photoperiod on the expression of phenotypic traits. Next, we tested the existence of local adaptation in the two species within the invasive range with a reciprocal transplant experiment at two field sites in the latitudinal extremes of the UK, and analysed which phenotypic traits underlie potential local fitness advantages in each species. KEY RESULTS Populations of M. guttatus in the UK showed local adaptation through sexual function (fruit production), while M. × robertsii showed local adaptation via asexual function (stolon production). Phenotypic selection analyses revealed that different traits are associated with fitness in each species. Invasive and native populations of M. guttatus had similar phenotypic plasticity and clonality. M. × robertsii presents greater plasticity and clonality than native M. guttatus, but most populations have restricted clonality under the warm conditions of the south of the UK. CONCLUSIONS This study provides experimental evidence of local adaptation in a strictly asexual invasive species with high clonality and phenotypic plasticity. This indicates that even asexual taxa can rapidly (<200 years) adapt to novel environmental conditions in which alternative strategies may not ensure the persistence of populations.
Collapse
Affiliation(s)
- Violeta I Simón-Porcar
- Departmento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain
| | - Jose L Silva
- Pyrenean Institute of Ecology (CSIC), Avenida Montañana 1005, 50059 Zaragoza, Spain
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland FK9 4LA, UK
| |
Collapse
|
9
|
Olazcuaga L, Loiseau A, Parrinello H, Paris M, Fraimout A, Guedot C, Diepenbrock LM, Kenis M, Zhang J, Chen X, Borowiec N, Facon B, Vogt H, Price DK, Vogel H, Prud'homme B, Estoup A, Gautier M. A Whole-Genome Scan for Association with Invasion Success in the Fruit Fly Drosophila suzukii Using Contrasts of Allele Frequencies Corrected for Population Structure. Mol Biol Evol 2021; 37:2369-2385. [PMID: 32302396 PMCID: PMC7403613 DOI: 10.1093/molbev/msaa098] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Evidence is accumulating that evolutionary changes are not only common during biological invasions but may also contribute directly to invasion success. The genomic basis of such changes is still largely unexplored. Yet, understanding the genomic response to invasion may help to predict the conditions under which invasiveness can be enhanced or suppressed. Here, we characterized the genome response of the spotted wing drosophila Drosophila suzukii during the worldwide invasion of this pest insect species, by conducting a genome-wide association study to identify genes involved in adaptive processes during invasion. Genomic data from 22 population samples were analyzed to detect genetic variants associated with the status (invasive versus native) of the sampled populations based on a newly developed statistic, we called C2, that contrasts allele frequencies corrected for population structure. We evaluated this new statistical framework using simulated data sets and implemented it in an upgraded version of the program BayPass. We identified a relatively small set of single-nucleotide polymorphisms that show a highly significant association with the invasive status of D. suzukii populations. In particular, two genes, RhoGEF64C and cpo, contained single-nucleotide polymorphisms significantly associated with the invasive status in the two separate main invasion routes of D. suzukii. Our methodological approaches can be applied to any other invasive species, and more generally to any evolutionary model for species characterized by nonequilibrium demographic conditions for which binary covariables of interest can be defined at the population level.
Collapse
Affiliation(s)
- Laure Olazcuaga
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Anne Loiseau
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Hugues Parrinello
- MGX, Biocampus Montpellier, CNRS, INSERM, Universite de Montpellier, Montpellier, France
| | | | - Antoine Fraimout
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | | | | | | | - Jinping Zhang
- MoA-CABI Joint Laboratory for Bio-Safety, Chinese Academy of Agricultural Sciences, BeiXiaGuan, Haidian Qu, China
| | - Xiao Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Nicolas Borowiec
- UMR INRAE-CNRS-Université Côte d'Azur Sophia Agrobiotech Institute, Sophia Antipolis, France
| | - Benoit Facon
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, INRAE, Saint-Pierre, La Réunion, France
| | - Heidrun Vogt
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Dossenheim, Germany
| | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Arnaud Estoup
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Mathieu Gautier
- INRAE, UMR CBGP (INRAE-IRD-Cirad - Montpellier SupAgro), Montferrier-sur-Lez, France
| |
Collapse
|
10
|
Population genomic and historical analysis suggests a global invasion by bridgehead processes in Mimulus guttatus. Commun Biol 2021; 4:327. [PMID: 33712659 PMCID: PMC7954805 DOI: 10.1038/s42003-021-01795-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/05/2021] [Indexed: 01/24/2023] Open
Abstract
Imperfect historical records and complex demographic histories present challenges for reconstructing the history of biological invasions. Here, we combine historical records, extensive worldwide and genome-wide sampling, and demographic analyses to investigate the global invasion of Mimulus guttatus from North America to Europe and the Southwest Pacific. By sampling 521 plants from 158 native and introduced populations genotyped at >44,000 loci, we determined that invasive M. guttatus was first likely introduced to the British Isles from the Aleutian Islands (Alaska), followed by admixture from multiple parts of the native range. We hypothesise that populations in the British Isles then served as a bridgehead for vanguard invasions worldwide. Our results emphasise the highly admixed nature of introduced M. guttatus and demonstrate the potential of introduced populations to serve as sources of secondary admixture, producing novel hybrids. Unravelling the history of biological invasions provides a starting point to understand how invasive populations adapt to novel environments. Vallejo-Marín et al. combine historical records, extensive worldwide and genome-wide sampling, and demographic analyses to investigate the global invasion of Mimulus guttatus from North America to Europe and the Southwest Pacific. They found that M. guttatus was first likely introduced to the British Isles from the Aleutian Islands (Alaska), followed by admixture from multiple parts of the native range, and hypothesise that populations in the British Isles then served as a bridgehead for vanguard invasions worldwide.
Collapse
|
11
|
Graf L, Shin Y, Yang JH, Choi JW, Hwang IK, Nelson W, Bhattacharya D, Viard F, Yoon HS. A genome-wide investigation of the effect of farming and human-mediated introduction on the ubiquitous seaweed Undaria pinnatifida. Nat Ecol Evol 2021; 5:360-368. [PMID: 33495590 PMCID: PMC7929912 DOI: 10.1038/s41559-020-01378-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Human activity is an important driver of ecological and evolutionary change on our planet. In particular, domestication and biological introductions have important and long-lasting effects on species' genomic architecture and diversity. However, genome-wide analysis of independent domestication and introduction events within a single species has not previously been performed. The Pacific kelp Undaria pinnatifida provides such an opportunity because it has been cultivated in its native range in Northeast Asia but also introduced to four other continents in the past 50 years. Here we present the results of a genome-wide analysis of natural, cultivated and introduced populations of U. pinnatifida to elucidate human-driven evolutionary change. We demonstrate that these three categories of origin can be distinguished at the genome level, reflecting the combined influence of neutral (demography and migration) and non-neutral (selection) processes.
Collapse
Affiliation(s)
- Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Younhee Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Il Ki Hwang
- Aquaculture Management Division, National Institute of Fisheries Science, Busan, South Korea
| | - Wendy Nelson
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Frédérique Viard
- Sorbonne Université, CNRS, AD2M, Station Biologique de Roscoff, Roscoff, France
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
12
|
Chen Y, Zhao L, Teng H, Shi C, Liu Q, Zhang J, Zhang Y. Population genomics reveal rapid genetic differentiation in a recently invasive population of Rattus norvegicus. Front Zool 2021; 18:6. [PMID: 33499890 PMCID: PMC7836188 DOI: 10.1186/s12983-021-00387-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Invasive species bring a serious effect on local biodiversity, ecosystems, and even human health and safety. Although the genetic signatures of historical range expansions have been explored in an array of species, the genetic consequences of contemporary range expansions have received little attention, especially in mammal species. In this study, we used whole-genome sequencing to explore the rapid genetic change and introduction history of a newly invasive brown rat (Rattus norvegicus) population which invaded Xinjiang Province, China in the late 1970s. Results Bayesian clustering analysis, principal components analysis, and phylogenetic analysis all showed clear genetic differentiation between newly introduced and native rat populations. Reduced genetic diversity and high linkage disequilibrium suggested a severe population bottleneck in this colonization event. Results of TreeMix analyses revealed that the introduced rats were derived from an adjacent population in geographic region (Northwest China). Demographic analysis indicated that a severe bottleneck occurred in XJ population after the split off from the source population, and the divergence of XJ population might have started before the invasion of XJ. Moreover, we detected 42 protein-coding genes with allele frequency shifts throughout the genome for XJ rats and they were mainly associated with lipid metabolism and immunity, which could be seen as a prelude to future selection analyses in the novel environment of XJ. Conclusions This study presents the first genomic evidence on genetic differentiation which developed rapidly, and deepens the understanding of invasion history and evolutionary processes of this newly introduced rat population. This would add to our understanding of how invasive species become established and aid strategies aimed at the management of this notorious pest that have spread around the world with humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00387-z.
Collapse
Affiliation(s)
- Yi Chen
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Chengmin Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianxu Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Yaohua Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Peterson ML, Angert AL, Kay KM. Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol Evol 2020; 10:612-625. [PMID: 32015830 PMCID: PMC6988539 DOI: 10.1002/ece3.5710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/10/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022] Open
Abstract
One of the strongest biological impacts of climate change has been the movement of species poleward and upward in elevation. Yet, what is not clear is the extent to which the spatial distribution of locally adapted lineages and ecologically important traits may also shift with continued climate change. Here, we take advantage of a transplant experiment mimicking up-slope seed dispersal for a suite of ecologically diverse populations of yellow monkeyflower (Mimulus guttatus sensu lato) into a high-elevation common garden during an extreme drought period in the Sierra Nevada mountains, California, USA. We use a demographic approach to quantify fitness and test for selection on life history traits in local versus lower-elevation populations and in normal versus drought years to test the potential for up-slope migration and phenotypic selection to alter the distribution of key life history traits in montane environments. We find that lower-elevation populations tend to outperform local populations, confirming the potential for up-slope migration. Although selection generally favored some local montane traits, including larger flowers and larger stem size at flowering, drought conditions tended to select for earlier flowering typical of lower-elevation genotypes. Taken together, this suggests that monkeyflower lineages moving upward in elevation could experience selection for novel trait combinations, particularly under warmer and drier conditions that are predicted to occur with continued climate change.
Collapse
Affiliation(s)
- Megan L. Peterson
- Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCalifornia
| | - Amy L. Angert
- Department of Botany and ZoologyUniversity of British ColumbiaVancouverBCCanada
| | - Kathleen M. Kay
- Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCalifornia
| |
Collapse
|
14
|
Martinez KA, Fridley JD, Oguchi R, Aiba M, Hikosaka K. Functional shifts in leaves of woody invaders of deciduous forests between their home and away ranges. TREE PHYSIOLOGY 2019; 39:1551-1560. [PMID: 31209471 DOI: 10.1093/treephys/tpz065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/25/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Temperate forests are widely invaded by shade-tolerant shrubs and trees, including those of Eastern North America (ENA). However, it remains unknown whether these invaders are 'preadapted' for success in their new ranges due to unique aspects of their evolutionary history or whether selection due to enemy release or other postintroduction processes have driven rapid evolution in the invaded range. We sampled leaf traits of populations of woody understory invaders across light gradients in their native range in Japan and in their invaded ENA range to examine potential phenotypic shifts related to carbon gain and nitrogen use between ranges. We also measured leaf traits in three co-occurring ENA native shrub species. In their invaded range, invaders invested significantly less in leaf chlorophyll content (both per unit leaf mass and area) compared with native range populations of the same species, yet maintained similar rates of photosynthesis in low light. In addition, compared with ENA natives, ENA invaders displayed greater trait variation in response to increasing light availability (forest edges, gaps), giving them a potential advantage over ENA natives in a variety of light conditions. We conclude that, for this group of species, newly evolved phenotypes in the invaded range are more important than preadaptation for their success as shade-tolerant forest invaders.
Collapse
Affiliation(s)
| | - Jason D Fridley
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Riichi Oguchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Aiba
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
|
16
|
Liu D, Horvath D, Li P, Liu W. RNA Sequencing Characterizes Transcriptomes Differences in Cold Response Between Northern and Southern Alternanthera philoxeroides and Highlight Adaptations Associated With Northward Expansion. FRONTIERS IN PLANT SCIENCE 2019; 10:24. [PMID: 30761169 PMCID: PMC6364329 DOI: 10.3389/fpls.2019.00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Alternanthera philoxeroides recently expanded its range northwards in China. It is unknown if the range expansion has a genetic and/or epigenetic basis, or merely an environmental basis due to a warming climate. To test these possibilities, we used an RNAseq approach with a common greenhouse design to examine gene expression in individuals from the northern edge and central portion of alligator weed range from China to determine if there were differences in their responses to cold temperatures. We hypothesized that if the recent range expansion was primarily environmental, we would observe few differences or only differences unrelated to low-temperature adaptations. We assembled over 75,000 genes of which over 65,000 had long open reading frames with similarity to sequences from arabidopsis. Differences in expression between northern and southern populations that were both exposed to low temperatures showed similar expression among genes in the C-REPEAT/DRE BINDING FACTOR (CBF) regulon. However, gene set and sub-network enrichment analysis indicated differences in the response of photosynthetic processes and oxidative stress responses were different between the two populations and we relate these differences to cold adaptation. The transcriptome differences in response to cold between the individuals from the two populations is consistent with adaptations potentiating or resulting from selection after expansion into colder environments and may indicate that genetic changes have accompanied the recent northward expansion of A. philoxeroides in China. However, we cannot rule out the possibility of epigenetic changes may have a role in this expansion.
Collapse
Affiliation(s)
- Dasheng Liu
- Shandong Institute of Environmental Science, Jinan, China
| | - David Horvath
- USDA-ARS, Sunflower and Plant Biology Research Unit, Fargo, ND, United States
| | - Peng Li
- Shandong Institute of Environmental Science, Jinan, China
| | - Wenmin Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
17
|
Mable BK. Conservation of adaptive potential and functional diversity: integrating old and new approaches. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1129-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Pantoja PO, Paine CET, Vallejo-Marín M. Natural selection and outbreeding depression suggest adaptive differentiation in the invasive range of a clonal plant. Proc Biol Sci 2018; 285:20181091. [PMID: 30051824 PMCID: PMC6053932 DOI: 10.1098/rspb.2018.1091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/14/2018] [Indexed: 11/12/2022] Open
Abstract
Analyses of phenotypic selection and demography in field populations are powerful ways to establishing the potential role of natural selection in shaping evolution during biological invasions. Here we use experimental F2 crosses between native and introduced populations of Mimulus guttatus to estimate the pattern of natural selection in part of its introduced range, and to seek evidence of outbreeding depression of colonists. The F2s combined the genome of an introduced population with the genome of either native or introduced populations. We found that the introduced × introduced cross had the fastest population growth rate owing to increased winter survival, clonality and seed production. Our analysis also revealed that selection through sexual fitness favoured large floral displays, large vegetative and flower size, lateral spread and early flowering. Our results indicate a source-of-origin effect, consistent with outbreeding depression exposed by mating between introduced and native populations. Our findings suggest that well-established non-native populations may pay a high fitness cost during subsequent bouts of admixture with native populations, and reveal that processes such as local adaptation in the invasive range can mediate the fitness consequences of admixture.
Collapse
Affiliation(s)
- Pauline O Pantoja
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - C E Timothy Paine
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
19
|
Gomez‐Uchida D, Cañas‐Rojas D, Riva‐Rossi CM, Ciancio JE, Pascual MA, Ernst B, Aedo E, Musleh SS, Valenzuela‐Aguayo F, Quinn TP, Seeb JE, Seeb LW. Genetic signals of artificial and natural dispersal linked to colonization of South America by non-native Chinook salmon ( Oncorhynchus tshawytscha). Ecol Evol 2018; 8:6192-6209. [PMID: 29988411 PMCID: PMC6024130 DOI: 10.1002/ece3.4036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/31/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Genetics data have provided unprecedented insights into evolutionary aspects of colonization by non-native populations. Yet, our understanding of how artificial (human-mediated) and natural dispersal pathways of non-native individuals influence genetic metrics, evolution of genetic structure, and admixture remains elusive. We capitalize on the widespread colonization of Chinook salmon Oncorhynchus tshawytscha in South America, mediated by both dispersal pathways, to address these issues using data from a panel of polymorphic SNPs. First, genetic diversity and the number of effective breeders (Nb) were higher among artificial than natural populations. Contemporary gene flow was common between adjacent artificial and natural and adjacent natural populations, but uncommon between geographically distant populations. Second, genetic structure revealed four distinct clusters throughout the Chinook salmon distributional range with varying levels of genetic connectivity. Isolation by distance resulted from weak differentiation between adjacent artificial and natural and between natural populations, with strong differentiation between distant Pacific Ocean and Atlantic Ocean populations, which experienced strong genetic drift. Third, genetic mixture analyses revealed the presence of at least six donor geographic regions from North America, some of which likely hybridized as a result of multiple introductions. Relative propagule pressure or the proportion of Chinook salmon propagules introduced from various geographic regions according to government records significantly influenced genetic mixtures for two of three artificial populations. Our findings support a model of colonization in which high-diversity artificial populations established first; some of these populations exhibited significant admixture resulting from propagule pressure. Low-diversity natural populations were likely subsequently founded from a reduced number of individuals.
Collapse
Affiliation(s)
- Daniel Gomez‐Uchida
- Genomics in Ecology, Evolution and Conservation Lab (GEECLAB)Department of ZoologyFacultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Núcleo Milenio INVASALConcepciónChile
| | - Diego Cañas‐Rojas
- Genomics in Ecology, Evolution and Conservation Lab (GEECLAB)Department of ZoologyFacultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Núcleo Milenio INVASALConcepciónChile
| | - Carla M. Riva‐Rossi
- Instituto de Diversidad y Evolución AustralIDEAUS‐CONICETCentro Nacional PatagónicoPuerto MadrynArgentina
| | - Javier E. Ciancio
- Centro para el estudio de Sistemas MarinosCESIMAR‐CONICETCentro Nacional PatagónicoPuerto MadrynArgentina
| | - Miguel A. Pascual
- Instituto Patagónico para el estudio de Ecosistemas ContinentalesIPEEC‐CONICETCentro Nacional PatagónicoPuerto MadrynArgentina
| | - Billy Ernst
- Núcleo Milenio INVASALConcepciónChile
- Department of OceanographyUniversidad de ConcepciónConcepciónChile
- Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| | - Eduardo Aedo
- Centro TrapanandaUniversidad Austral de ChileCoyhaiqueChile
| | - Selim S. Musleh
- Genomics in Ecology, Evolution and Conservation Lab (GEECLAB)Department of ZoologyFacultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Núcleo Milenio INVASALConcepciónChile
| | - Francisca Valenzuela‐Aguayo
- Genomics in Ecology, Evolution and Conservation Lab (GEECLAB)Department of ZoologyFacultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Present address:
Department of Aquatic SystemsFaculty of Environmental Sciences and EULA‐CentreUniversidad de ConcepciónConcepciónChile
| | - Thomas P. Quinn
- Núcleo Milenio INVASALConcepciónChile
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - James E. Seeb
- Núcleo Milenio INVASALConcepciónChile
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Lisa W. Seeb
- Núcleo Milenio INVASALConcepciónChile
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
20
|
Bourne SD, Hudson J, Holman LE, Rius M. Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Leydet KP, Grupstra CGB, Coma R, Ribes M, Hellberg ME. Host-targeted RAD-Seq reveals genetic changes in the coralOculina patagonicaassociated with range expansion along the Spanish Mediterranean coast. Mol Ecol 2018; 27:2529-2543. [DOI: 10.1111/mec.14702] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Karine Posbic Leydet
- Department of Biological Sciences; Louisiana State University; Baton Rouge Louisiana
| | - Carsten G. B. Grupstra
- Institute for Biodiversity and Ecosystem Dynamics; University of Amsterdam; Amsterdam The Netherlands
- Institut de Ciències del mar; Barcelona Spain
| | - Rafel Coma
- Centre d'Estudis Avançats de Blanes; Blanes Girona Spain
| | - Marta Ribes
- Institut de Ciències del mar; Barcelona Spain
| | - Michael E. Hellberg
- Department of Biological Sciences; Louisiana State University; Baton Rouge Louisiana
| |
Collapse
|
22
|
Lu-Irving P, Marx HE, Dlugosch KM. Leveraging contemporary species introductions to test phylogenetic hypotheses of trait evolution. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:95-102. [PMID: 29754025 DOI: 10.1016/j.pbi.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Plant trait evolution is a topic of interest across disciplines and scales. Phylogenetic studies are powerful for generating hypotheses about the mechanisms that have shaped plant traits and their evolution. Introduced plants are a rich source of data on contemporary trait evolution. Introductions could provide especially useful tests of a variety of evolutionary hypotheses because the environments selecting on evolving traits are still present. We review phylogenetic and contemporary studies of trait evolution and identify areas of overlap and areas for further integration. Emerging tools which can promote integration include broadly focused repositories of trait data, and comparative models of trait evolution that consider both intra and interspecific variation.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA.
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| |
Collapse
|
23
|
|
24
|
Porter SS, Faber-Hammond JJ, Friesen ML. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes. FEMS Microbiol Ecol 2017; 94:4705886. [DOI: 10.1093/femsec/fix168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Joshua J Faber-Hammond
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
- Department of Plant Pathology, Washington State University, P.O. Box 646430 Pullman, WA 99164, USA
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420 Pullman, WA 99164, USA
| |
Collapse
|
25
|
Hudson J, Viard F, Roby C, Rius M. Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biol Lett 2017; 12:rsbl.2016.0620. [PMID: 27729485 DOI: 10.1098/rsbl.2016.0620] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 11/12/2022] Open
Abstract
Human activities are responsible for the translocation of vast amounts of organisms, altering natural patterns of dispersal and gene flow. Most research to date has focused on the consequences of anthropogenic transportation of non-indigenous species within introduced ranges, with little research focusing on native species. Here, we compared genetic patterns of the sessile marine invertebrate, Ciona intestinalis, which has highly restricted dispersal capabilities. We collected individuals in a region of the species' native range where human activities that are known to facilitate the artificial spread of species are prevalent. Using microsatellite markers, we revealed highly dissimilar outcomes. First, we found low levels of genetic differentiation among sites separated by both short and large geographical distances, indicating the presence of anthropogenic transport of genotypes, and little influence of natural geographical barriers. Second, we found significant genetic differentiation in pairwise comparisons among certain sites, suggesting that other factors besides artificial transport (e.g. natural dispersal, premodern population structure) may be shaping genetic patterns. Taken together, we found dissimilar patterns of population structure in a highly urbanized region that could not be predicted by artificial transport alone. We conclude that anthropogenic activities alter genetic composition of native ranges, with unknown consequences for species' evolutionary trajectories.
Collapse
Affiliation(s)
- Jamie Hudson
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Frédérique Viard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Department 'Adaptation and Diversity in Marine Environment', Team Div&Co, Station Biologique de Roscoff, 29682 Roscoff, France
| | - Charlotte Roby
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Department 'Adaptation and Diversity in Marine Environment', Team Div&Co, Station Biologique de Roscoff, 29682 Roscoff, France
| | - Marc Rius
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
26
|
Mimura M, Yahara T, Faith DP, Vázquez‐Domínguez E, Colautti RI, Araki H, Javadi F, Núñez‐Farfán J, Mori AS, Zhou S, Hollingsworth PM, Neaves LE, Fukano Y, Smith GF, Sato Y, Tachida H, Hendry AP. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol Appl 2017; 10:121-139. [PMID: 28127389 PMCID: PMC5253428 DOI: 10.1111/eva.12436] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation. We argue for the need for local, regional, and global programs to monitor intraspecific genetic variation. We suggest that such monitoring should include two main strategies: (i) intensive monitoring of multiple types of genetic variation in selected species and (ii) broad-brush modeling for representative species for predicting changes in variation as a function of changes in population size and range extent. Overall, we call for collaborative efforts to initiate the urgently needed monitoring of intraspecific variation.
Collapse
Affiliation(s)
- Makiko Mimura
- Department of Bioenvironmental SystemsTamagawa UniversityTokyoJapan
| | - Tetsukazu Yahara
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Daniel P. Faith
- The Australian Museum Research InstituteThe Australian MuseumSydneyNSWAustralia
| | | | | | - Hitoshi Araki
- Research Faculty of AgricultureHokkaido UniversitySapporoHokkaidoJapan
| | - Firouzeh Javadi
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Juan Núñez‐Farfán
- Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
| | - Akira S. Mori
- Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | | | - Linda E. Neaves
- Royal Botanic Garden EdinburghEdinburghUK
- Australian Centre for Wildlife Genomics, Australian Museum Research InstituteAustralian MuseumSydneyNSWAustralia
| | - Yuya Fukano
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Gideon F. Smith
- Department of BotanyNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
- Departamento de Ciências da VidaCentre for Functional EcologyUniversidade de CoimbraCoimbraPortugal
| | | | - Hidenori Tachida
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
27
|
Puzey JR, Willis JH, Kelly JK. Population structure and local selection yield high genomic variation in Mimulus guttatus. Mol Ecol 2017; 26:519-535. [PMID: 27859786 PMCID: PMC5274581 DOI: 10.1111/mec.13922] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022]
Abstract
Across western North America, Mimulus guttatus exists as many local populations adapted to site-specific environmental challenges. Gene flow between locally adapted populations will affect genetic diversity both within demes and across the larger metapopulation. Here, we analyse 34 whole-genome sequences from the intensively studied Iron Mountain population (IM) in conjunction with sequences from 22 Mimulus individuals sampled from across western North America. Three striking features of these data address hypotheses about migration and selection in a locally adapted population. First, we find very high levels of intrapopulation polymorphism (synonymous π = 0.033). Variation outside of genes is likely even higher but difficult to estimate because excessive divergence reduces the efficiency of read mapping. Second, IM exhibits a significantly positive genomewide average for Tajima's D. This indicates allele frequencies are typically more intermediate than expected from neutrality, opposite the pattern observed in many other species. Third, IM exhibits a distinctive haplotype structure with a genomewide excess of positive associations between rarer alleles at linked loci. This suggests an important effect of gene flow from other Mimulus populations, although a residual effect of population founding might also contribute. The combination of multiple analyses, including a novel tree-based analytic method, illustrates how the balance of local selection, limited dispersal and metapopulation dynamics manifests across the genome. The overall genomic pattern of sequence diversity suggests successful gene flow of divergent immigrant genotypes into IM. However, many loci show patterns indicative of local adaptation, particularly at SNPs associated with chromosomal inversions.
Collapse
Affiliation(s)
- Joshua R. Puzey
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23187
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - John H. Willis
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - John K. Kelly
- Department of Ecology and Evolution, University of Kansas, Lawrence, Kansas, 27708
| |
Collapse
|
28
|
Hendrick MF, Finseth FR, Mathiasson ME, Palmer KA, Broder EM, Breigenzer P, Fishman L. The genetics of extreme microgeographic adaptation: an integrated approach identifies a major gene underlying leaf trichome divergence in Yellowstone Mimulus guttatus. Mol Ecol 2016; 25:5647-5662. [PMID: 27393073 DOI: 10.1111/mec.13753] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
Microgeographic adaptation provides a particularly interesting context for understanding the genetic basis of phenotypic divergence and may also present unique empirical challenges. In particular, plant adaptation to extreme soil mosaics may generate barriers to gene flow or shifts in mating system that confound simple genomic scans for adaptive loci. Here, we combine three approaches - quantitative trait locus (QTL) mapping of candidate intervals in controlled crosses, population resequencing (PoolSeq) and analyses of wild recombinant individuals - to investigate one trait associated with Mimulus guttatus (yellow monkeyflower) adaptation to geothermal soils in Yellowstone National Park. We mapped a major QTL causing dense leaf trichomes in thermally adapted plants to a <50-kb region of linkage Group 14 (Tr14) previously implicated in trichome divergence between independent M. guttatus populations. A PoolSeq scan of Tr14 region revealed a cluster of six genes, coincident with the inferred QTL peak, with high allele frequency differences sufficient to explain observed phenotypic differentiation. One of these, the R2R3 MYB transcription factor Migut.N02661, is a plausible functional candidate and was also strongly associated (r2 = 0.27) with trichome phenotype in analyses of wild-collected admixed individuals. Although functional analyses will be necessary to definitively link molecular variants in Tr14 with trichome divergence, our analyses are a major step in that direction. They point to a simple, and parallel, genetic basis for one axis of Mimulus guttatus adaptation to an extreme habitat, suggest a broadly conserved genetic basis for trichome variation across flowering plants and pave the way for further investigations of this challenging case of microgeographic incipient speciation.
Collapse
Affiliation(s)
- Margaret F Hendrick
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA.,Department of Earth and Environment, Boston University, 685 Commonwealth Ave., Boston, MA, 02215, USA
| | - Findley R Finseth
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Minna E Mathiasson
- School of Biology and Ecology, University of Maine, 5751 Murray Hall, Orono, ME, 04469, USA
| | - Kristen A Palmer
- Department of Biology, Wheaton College, 26 E. Main St., Norton, MA, 02766, USA
| | - Emma M Broder
- Biology Department, Wesleyan University, 45 Wyllys Ave., Middletown, CT, 06259, USA
| | - Peter Breigenzer
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| |
Collapse
|
29
|
Vallejo-Marín M, Cooley AM, Lee MY, Folmer M, McKain MR, Puzey JR. Strongly asymmetric hybridization barriers shape the origin of a new polyploid species and its hybrid ancestor. AMERICAN JOURNAL OF BOTANY 2016; 103:1272-88. [PMID: 27221281 DOI: 10.3732/ajb.1500471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Hybridization between diploids and tetraploids can lead to new allopolyploid species, often via a triploid intermediate. Viable triploids are often produced asymmetrically, with greater success observed for "maternal-excess" crosses where the mother has a higher ploidy than the father. Here we investigated the evolutionary origins of Mimulus peregrinus, an allohexaploid recently derived from the triploid M. ×robertsii, to determine whether reproductive asymmetry has shaped the formation of this new species. METHODS We used reciprocal crosses between the diploid (M. guttatus) and tetraploid (M. luteus) progenitors to determine the viability of triploid M. ×robertsii hybrids resulting from paternal- vs. maternal-excess crosses. To investigate whether experimental results predict patterns seen in the field, we performed parentage analyses comparing natural populations of M. peregrinus to its diploid, tetraploid, and triploid progenitors. Organellar sequences obtained from pre-existing genomic data, supplemented with additional genotyping was used to establish the maternal ancestry of multiple M. peregrinus and M. ×robertsii populations. KEY RESULTS We found strong evidence for asymmetric origins of M. peregrinus, but opposite to the common pattern, with paternal-excess crosses significantly more successful than maternal-excess crosses. These results successfully predicted hybrid formation in nature: 111 of 114 M. ×robertsii individuals, and 27 of 27 M. peregrinus, had an M. guttatus maternal haplotype. CONCLUSION This study, which includes the first Mimulus chloroplast genome assembly, demonstrates the utility of parentage analysis through genome skimming. We highlight the benefits of complementing genomic analyses with experimental approaches to understand asymmetry in allopolyploid speciation.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Science, School of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA UK
| | - Arielle M Cooley
- Biology Department, Whitman College, Walla Walla, Washington 99362 USA
| | - Michelle Yuequi Lee
- Biological and Environmental Science, School of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA UK
| | - Madison Folmer
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185 USA
| | - Michael R McKain
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 USA
| | - Joshua R Puzey
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185 USA
| |
Collapse
|
30
|
Garner AG, Kenney AM, Fishman L, Sweigart AL. Genetic loci with parent-of-origin effects cause hybrid seed lethality in crosses between Mimulus species. THE NEW PHYTOLOGIST 2016; 211:319-31. [PMID: 26924810 DOI: 10.1111/nph.13897] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/23/2015] [Indexed: 05/09/2023]
Abstract
In flowering plants, F1 hybrid seed lethality is a common outcome of crosses between closely related diploid species, but the genetic basis of this early-acting and potentially widespread form of postzygotic reproductive isolation is largely unknown. We intercrossed two closely related species of monkeyflower, Mimulus guttatus and Mimulus tilingii, to characterize the mechanisms and strength of postzygotic reproductive isolation. Then, using a reciprocal backcross design, we performed high-resolution genetic mapping to determine the genetic architecture of hybrid seed lethality and directly test for loci with parent-of-origin effects. We found that F1 hybrid seed lethality is an exceptionally strong isolating barrier between Mimulus species, with reciprocal crosses producing < 1% viable seeds. This form of postzygotic reproductive isolation appears to be highly polygenic, indicating that multiple incompatibility loci have accumulated rapidly between these closely related Mimulus species. It is also primarily caused by genetic loci with parent-of-origin effects, suggesting a possible role for imprinted genes in the evolution of Mimulus hybrid seed lethality. Our findings suggest that divergence in loci with parent-of-origin effects, which is probably driven by genomic coevolution within lineages, might be an important source of hybrid incompatibilities between flowering plant species.
Collapse
Affiliation(s)
- Austin G Garner
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Amanda M Kenney
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Department of Biological Sciences, St Edwards University, Austin, TX, 78704, USA
| | - Lila Fishman
- Department of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
31
|
Gargan LM, Cornette R, Yearsley JM, Montgomery WI, Paupério J, Alves PC, Butler F, Pascal M, Tresset A, Herrel A, Lusby J, Tosh DG, Searle JB, McDevitt AD. Molecular and morphological insights into the origin of the invasive greater white-toothed shrew (Crocidura russula) in Ireland. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1056-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Abstract
Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant Arabidopsis thaliana. We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature.
Collapse
Affiliation(s)
- Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria;
| |
Collapse
|
33
|
Haasl RJ, Payseur BA. Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Mol Ecol 2015. [PMID: 26224644 DOI: 10.1111/mec.13339] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomewide scans for natural selection (GWSS) have become increasingly common over the last 15 years due to increased availability of genome-scale genetic data. Here, we report a representative survey of GWSS from 1999 to present and find that (i) between 1999 and 2009, 35 of 49 (71%) GWSS focused on human, while from 2010 to present, only 38 of 83 (46%) of GWSS focused on human, indicating increased focus on nonmodel organisms; (ii) the large majority of GWSS incorporate interpopulation or interspecific comparisons using, for example F(ST), cross-population extended haplotype homozygosity or the ratio of nonsynonymous to synonymous substitutions; (iii) most GWSS focus on detection of directional selection rather than other modes such as balancing selection; and (iv) in human GWSS, there is a clear shift after 2004 from microsatellite markers to dense SNP data. A survey of GWSS meant to identify loci positively selected in response to severe hypoxic conditions support an approach to GWSS in which a list of a priori candidate genes based on potential selective pressures are used to filter the list of significant hits a posteriori. We also discuss four frequently ignored determinants of genomic heterogeneity that complicate GWSS: mutation, recombination, selection and the genetic architecture of adaptive traits. We recommend that GWSS methodology should better incorporate aspects of genomewide heterogeneity using empirical estimates of relevant parameters and/or realistic, whole-chromosome simulations to improve interpretation of GWSS results. Finally, we argue that knowledge of potential selective agents improves interpretation of GWSS results and that new methods focused on correlations between environmental variables and genetic variation can help automate this approach.
Collapse
Affiliation(s)
- Ryan J Haasl
- Department of Biology, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI, 53818, USA
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI, 53706, USA
| |
Collapse
|
34
|
Vallejo-Marín M, Buggs RJA, Cooley AM, Puzey JR. Speciation by genome duplication: Repeated origins and genomic composition of the recently formed allopolyploid species Mimulus peregrinus. Evolution 2015; 69:1487-1500. [PMID: 25929999 PMCID: PMC5033005 DOI: 10.1111/evo.12678] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/21/2015] [Indexed: 12/28/2022]
Abstract
Whole genome duplication (polyploidization) is a mechanism of “instantaneous” species formation that has played a major role in the evolutionary history of plants. Much of what we know about the early evolution of polyploids is based upon studies of a handful of recently formed species. A new polyploid hybrid (allopolyploid) species Mimulus peregrinus, formed within the last 140 years, was recently discovered on the Scottish mainland and corroborated by chromosome counts. Here, using targeted, high‐depth sequencing of 1200 genic regions, we confirm the parental origins of this new species from M. x robertsii, a sterile triploid hybrid between the two introduced species M. guttatus and M. luteus that are naturalized and widespread in the United Kingdom. We also report a new population of M. peregrinus on the Orkney Islands and demonstrate that populations on the Scottish mainland and Orkney Islands arose independently via genome duplication from local populations of M. x robertsii. Our data raise the possibility that some alleles are already being lost in the evolving M. peregrinus genomes. The recent origins of a new species of the ecological model genus Mimulus via allopolyploidization provide a powerful opportunity to explore the early stages of hybridization and genome duplication in naturally evolved lineages.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Arielle M Cooley
- Biology Department, Whitman College, Walla Walla, Washington, 99362
| | - Joshua R Puzey
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185
| |
Collapse
|
35
|
Twyford AD, Friedman J. Adaptive divergence in the monkey flower Mimulus guttatus is maintained by a chromosomal inversion. Evolution 2015; 69:1476-1486. [PMID: 25879251 PMCID: PMC5029580 DOI: 10.1111/evo.12663] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/01/2015] [Indexed: 12/15/2022]
Abstract
Organisms exhibit an incredible diversity of life history strategies as adaptive responses to environmental variation. The establishment of novel life history strategies involves multilocus polymorphisms, which will be challenging to establish in the face of gene flow and recombination. Theory predicts that adaptive allelic combinations may be maintained and spread if they occur in genomic regions of reduced recombination, such as chromosomal inversion polymorphisms, yet empirical support for this prediction is lacking. Here, we use genomic data to investigate the evolution of divergent adaptive ecotypes of the yellow monkey flower Mimulus guttatus. We show that a large chromosomal inversion polymorphism is the major region of divergence between geographically widespread annual and perennial ecotypes. In contrast, ∼40,000 single nucleotide polymorphisms in collinear regions of the genome show no signal of life history, revealing genomic patterns of diversity have been shaped by localized homogenizing gene flow and large-scale Pleistocene range expansion. Our results provide evidence for an inversion capturing and protecting loci involved in local adaptation, while also explaining how adaptive divergence can occur with gene flow.
Collapse
Affiliation(s)
- Alex D Twyford
- Ashworth Laboratories, Institute of Evolutionary Biology, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom.,Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244
| | - Jannice Friedman
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244
| |
Collapse
|
36
|
Twyford AD, Streisfeld MA, Lowry DB, Friedman J. Genomic studies on the nature of species: adaptation and speciation inMimulus. Mol Ecol 2015; 24:2601-9. [DOI: 10.1111/mec.13190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Alex D. Twyford
- Ashworth Laboratories; Institute of Evolutionary Biology; The University of Edinburgh; Charlotte Auerbach Road Edinburgh EH9 3FL UK
- Department of Biology; Syracuse University; 107 College Place Syracuse NY 13244 USA
| | | | - David B. Lowry
- Plant Biology Laboratories; Department of Plant Biology; Michigan State University; 612 Wilson Road Room 166 East Lansing MI 48824 USA
| | - Jannice Friedman
- Department of Biology; Syracuse University; 107 College Place Syracuse NY 13244 USA
| |
Collapse
|
37
|
Edelaar P, Roques S, Hobson EA, Gonçalves da Silva A, Avery ML, Russello MA, Senar JC, Wright TF, Carrete M, Tella JL. Shared genetic diversity across the global invasive range of the monk parakeet suggests a common restricted geographic origin and the possibility of convergent selection. Mol Ecol 2015; 24:2164-76. [DOI: 10.1111/mec.13157] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering; University Pablo de Olavide; Seville ES-41013 Spain
- Department of Conservation Biology; Estación Biológica de Doñana (CSIC); Avda. Américo Vespucio s/n Sevilla 41092 Spain
| | - Severine Roques
- Department of Conservation Biology; Estación Biológica de Doñana (CSIC); Avda. Américo Vespucio s/n Sevilla 41092 Spain
| | - Elizabeth A. Hobson
- Department of Biology; New Mexico State University; Las Cruces NM 88003 USA
- National Institute for Biological and Mathematical Synthesis; University of Tennessee; Knoxville TN 37996 USA
| | | | - Michael L. Avery
- U.S. Department of Agriculture, Wildlife Services; National Wildlife Research Center; Gainesville FL 32641 USA
| | - Michael A. Russello
- Department of Biology; University of British Columbia; Okanagan Campus Kelowna BC V1V 1V7 Canada
| | - Juan C. Senar
- Natural History Museum of Barcelona; Passeig Picasso s/n Barcelona 08003 Spain
| | - Timothy F. Wright
- Department of Biology; New Mexico State University; Las Cruces NM 88003 USA
| | - Martina Carrete
- Department of Molecular Biology and Biochemical Engineering; University Pablo de Olavide; Seville ES-41013 Spain
- Department of Conservation Biology; Estación Biológica de Doñana (CSIC); Avda. Américo Vespucio s/n Sevilla 41092 Spain
| | - José L. Tella
- Department of Conservation Biology; Estación Biológica de Doñana (CSIC); Avda. Américo Vespucio s/n Sevilla 41092 Spain
| |
Collapse
|
38
|
Cristescu ME. Genetic reconstructions of invasion history. Mol Ecol 2015; 24:2212-25. [DOI: 10.1111/mec.13117] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/14/2022]
|
39
|
Peterson ML, Miller TJ, Kay KM. An ultraviolet floral polymorphism associated with life history drives pollinator discrimination in Mimulus guttatus. AMERICAN JOURNAL OF BOTANY 2015; 102:396-406. [PMID: 25784473 DOI: 10.3732/ajb.1400415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Ultraviolet (UV) floral patterns are common in angiosperms and mediate pollinator attraction, efficiency, and constancy. UV patterns may vary within species, yet are cryptic to human observers. Thus, few studies have explicitly described the distribution or ecological significance of intraspecific variation in UV floral patterning. Here, we describe the geographic distribution and pattern of inheritance of a UV polymorphism in the model plant species Mimulus guttatus (Phrymaceae). We then test whether naturally occurring UV phenotypes influence pollinator interactions within M. guttatus.• METHODS We document UV patterns in 18 annual and 19 perennial populations and test whether UV pattern is associated with life history. To examine the pattern of inheritance, we conducted crosses within and between UV phenotypes. Finally, we tested whether bee pollinators discriminate among naturally occurring UV phenotypes in two settings: wild bee communities and captive Bombus impatiens.• KEY RESULTS Within M. guttatus, perennial populations exhibit a small bulls-eye pattern, whereas a bilaterally symmetric runway pattern occurs mainly in annual populations. Inheritance of UV patterning is consistent with a single-locus Mendelian model in which the runway phenotype is dominant. Bee pollinators discriminate against unfamiliar UV patterns in both natural and controlled settings.• CONCLUSIONS We describe a widespread UV polymorphism associated with life history divergence within Mimulus guttatus. UV pattern influences pollinator visitation and should be considered when estimating reproductive barriers between life history ecotypes. This work develops a new system to investigate the ecology and evolution of UV floral patterning in a species with extensive genomic resources.
Collapse
Affiliation(s)
- Megan L Peterson
- Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064 USA
| | - Timothy J Miller
- Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064 USA
| | - Kathleen M Kay
- Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064 USA
| |
Collapse
|
40
|
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH. What we still don't know about invasion genetics. Mol Ecol 2015; 24:2277-97. [PMID: 25474505 DOI: 10.1111/mec.13032] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|