1
|
Hodgins KA, Battlay P, Bock DG. The genomic secrets of invasive plants. THE NEW PHYTOLOGIST 2025. [PMID: 39748162 DOI: 10.1111/nph.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
Genomics has revolutionised the study of invasive species, allowing evolutionary biologists to dissect mechanisms of invasion in unprecedented detail. Botanical research has played an important role in these advances, driving much of what we currently know about key determinants of invasion success (e.g. hybridisation, whole-genome duplication). Despite this, a comprehensive review of plant invasion genomics has been lacking. Here, we aim to address this gap, highlighting recent discoveries that have helped progress the field. For example, by leveraging genomics in natural and experimental populations, botanical research has confirmed the importance of large-effect standing variation during adaptation in invasive species. Further, genomic investigations of plants are increasingly revealing that large structural variants, as well as genetic changes induced by whole-genome duplication such as genomic redundancy or the breakdown of dosage-sensitive reproductive barriers, can play an important role during adaptive evolution of invaders. However, numerous questions remain, including when chromosomal inversions might help or hinder invasions, whether adaptive gene reuse is common during invasions, and whether epigenetically induced mutations can underpin the adaptive evolution of plasticity in invasive populations. We conclude by highlighting these and other outstanding questions that genomic studies of invasive plants are poised to help answer.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Dan G Bock
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia
| |
Collapse
|
2
|
Kaur A, Sharma A, Kaur S, Siddiqui MH, Alamri S, Ahmad M, Kohli RK, Singh HP, Batish DR. Role of plant functional traits in the invasion success: analysis of nine species of Asteraceae. BMC PLANT BIOLOGY 2024; 24:784. [PMID: 39160457 PMCID: PMC11331814 DOI: 10.1186/s12870-024-05498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Various attributes are hypothesized to facilitate the dominance of an invasive species in non-native geographical and ecological regimes. To explore the characteristic invasive attributes of the family Asteraceae, a comparative study was conducted among nine species of this family, co-occurring in the western Himalayan region. Based on their nativity and invasion status, the species were categorized as "Invasive", "Naturalized", and "Native". Fifteen plant functional traits, strongly linked with invasion, were examined in the test species. The analyses revealed a strong dissimilarity between all the plant functional traits (except leaf carbon [Leaf C]) represented by "Invasive" and "Native" categories and most of the traits (except leaf area [LA], leaf nitrogen [Leaf N], Leaf C, and leaf carbon-nitrogen ratio [C: N]) represented by the "Naturalized" and "Native" categories. Similarly, "Invasive" and "Naturalized" categories also varied significantly for most of the traits (except Leaf N, Leaf C, capitula per m² population [Cm²], seeds per capitula [Scapitula], and seed mass). Invasive species are characterized by high LA, specific leaf area [SLA] and germination, and low C:N and leaf construction costs [LCC]. Most of the traits represented by native species justify their non-invasive behavior; whereas the naturalized species, despite having better size metrics (plant height), resource investment strategy (aboveground non-reproductive biomass [BNR], and aboveground reproductive biomass [BR]), and reproductive output (capitula per individual plant [Cplant], and seeds per individual plant [Splant]) failed to invade, which implies that the role of these functional aspects in imparting invasion potential to a species is not consistent in all the ecosystems and/or phylogenetic groups. Results of PCA revealed that trait divergence plays a more imperative role in invasion success than naturalization in the species of the family Asteraceae. The present study is intended to refine the pre-generalized invasion concepts associated with family Asteraceae to ensure more accurate identification of the potential invaders and better management of the existing ones.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Aditi Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
- Department of Botany, Government College Dhaliara, Dhaliara, 177103, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | | | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
3
|
White OW, Reyes-Betancort A, Carine MA, Chapman MA. Comparative transcriptomics and gene expression divergence associated with homoploid hybrid speciation in Argyranthemum. G3 (BETHESDA, MD.) 2023; 13:jkad158. [PMID: 37477910 PMCID: PMC10542503 DOI: 10.1093/g3journal/jkad158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/21/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
Ecological isolation is increasingly thought to play an important role in speciation, especially for the origin and reproductive isolation of homoploid hybrid species. However, the extent to which divergent and/or transgressive gene expression changes are involved in speciation is not well studied. In this study, we employ comparative transcriptomics to investigate gene expression changes associated with the origin and evolution of two homoploid hybrid plant species, Argyranthemum sundingii and A. lemsii (Asteraceae). As there is no standard methodology for comparative transcriptomics, we examined five different pipelines for data assembly and analysing gene expression across the four species (two hybrid and two parental). We note biases and problems with all pipelines, and the approach used affected the biological interpretation of the data. Using the approach that we found to be optimal, we identify transcripts showing DE between the parental taxa and between the homoploid hybrid species and their parents; in several cases, putative functions of these DE transcripts have a plausible role in ecological adaptation and could be the cause or consequence of ecological speciation. Although independently derived, the homoploid hybrid species have converged on similar expression phenotypes, likely due to adaptation to similar habitats.
Collapse
Affiliation(s)
- Oliver W White
- Algae, Fungi and Plants Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Mark A Carine
- Algae, Fungi and Plants Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
4
|
Yang F, Crossley MS, Schrader L, Dubovskiy IM, Wei SJ, Zhang R. Polygenic adaptation contributes to the invasive success of the Colorado potato beetle. Mol Ecol 2022; 31:5568-5580. [PMID: 35984732 DOI: 10.1111/mec.16666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 07/03/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
How invasive species cope with novel selective pressures with limited genetic variation is a fundamental question in molecular ecology. Several mechanisms have been proposed, but they can lack generality. Here, we addressed an alternative solution, polygenic adaptation, wherein traits that arise from multiple combinations of loci may be less sensitive to loss of variation during invasion. We tested the polygenic signal of environmental adaptation of Colorado potato beetle (CPB) introduced in Eurasia. Population genomic analyses showed declining genetic diversity in the eastward expansion of Eurasian populations, and weak population genetic structure (except for the invasion fronts in Asia). Demographic history showed that all populations shared a strong bottleneck about 100 years ago when CPB was introduced to Europe. Genome scans revealed a suite of genes involved in activity regulation functions that are plausibly related to cold stress, including some well-founded functions (e.g., the activity of phosphodiesterase, the G-protein regulator) and discrete functions. Such polygenic architecture supports the hypothesis that polygenic adaptation and potentially genetic redundancy can fuel the adaptation of CPB despite strong genetic depletion, thus representing a promising general mechanism for resolving the genetic paradox of invasion. More broadly, most complex traits based on polygenes may be less sensitive to invasive bottlenecks, thus ensuring the evolutionary success of invasive species in novel environments.
Collapse
Affiliation(s)
- Fangyuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant and Environmental Protection, Beijing, China
| | - Michael S Crossley
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware, USA
| | - Lukas Schrader
- Institute for Evolution & Biodiversity, University of Münster, Münster, Germany
| | - Ivan M Dubovskiy
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, Russia
| | - Shu-Jun Wei
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant and Environmental Protection, Beijing, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Dar TUH, Akhter N, Dar SA. Editorial: Epigenomic polymorphisms: The drivers of diversity and heterogeneity. Front Genet 2022; 13:1008178. [PMID: 36324502 PMCID: PMC9619041 DOI: 10.3389/fgene.2022.1008178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tanvir-Ul-Hassan Dar
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jizan, Saudi Arabia
- *Correspondence: Sajad Ahmad Dar, ,
| |
Collapse
|
6
|
Lu GH, Xu JL, Zhong MX, Li DL, Chen M, Li KT, Wang YQ. Cytochemical and comparative transcriptome analyses elucidate the formation and ecological adaptation of three types of pollen coat in Zingiberaceae. BMC PLANT BIOLOGY 2022; 22:407. [PMID: 35987603 PMCID: PMC9392269 DOI: 10.1186/s12870-022-03796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The pollen ornate surface of flowering plants has long fascinated and puzzled evolutionary biologists for their variety. Each pollen grain is contained within a pollen wall consisting of intine and exine, over which the lipoid pollen coat lies. The cytology and molecular biology of the development of the intine and exine components of the pollen wall are relatively well characterised. However, little is known about the pollen coat, which confers species specificity. We demonstrate three types of pollen coat in Zingiberaceae, a mucilage-like pollen coat and a gum-like pollen coat, along with a pollen coat more typical of angiosperms. The morphological differences between the three types of pollen coat and the related molecular mechanisms of their formation were studied using an integrative approach of cytology, RNA-seq and positive selection analysis. RESULTS Contrary to the 'typical' pollen coat, in ginger species with a mucilage-like (Caulokaempferia coenobialis, Cco) or gum-like (Hornstedtia hainanensis, Hhn) pollen coat, anther locular fluid was still present at the bicellular pollen (BCP) stage of development. Nevertheless, there were marked differences between these species: there were much lower levels of anther locular fluid in Hhn at the BCP stage and it contained less polysaccharide, but more lipid, than the locular fluid of Cco. The set of specific highly-expressed (SHE) genes in Cco was enriched in the 'polysaccharide metabolic process' annotation term, while 'fatty acid degradation' and 'metabolism of terpenoids and polyketides' were significantly enriched in SHE-Hhn. CONCLUSIONS Our cytological and comparative transcriptome analysis showed that different types of pollen coat depend on the residual amount and composition of anther locular fluid at the BCP stage. The genes involved in 'polysaccharide metabolism' and 'transport' in the development of a mucilage-like pollen coat and in 'lipid metabolism' and 'transport' in the development of a gum-like pollen coat probably evolved under positive selection in both cases. We suggest that the shift from a typical pollen coat to a gum-like or mucilage-like pollen coat in flowering plants is an adaptation to habitats with high humidity and scarcity of pollinators.
Collapse
Affiliation(s)
- Guo-Hui Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jia-Ling Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Man-Xiang Zhong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Dong-Li Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ke-Ting Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ying-Qiang Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Mounger JM, van Riemsdijk I, Boquete MT, Wagemaker CAM, Fatma S, Robertson MH, Voors SA, Oberstaller J, Gawehns F, Hanley TC, Grosse I, Verhoeven KJF, Sotka EE, Gehring CA, Hughes AR, Lewis DB, Schmid MW, Richards CL. Genetic and Epigenetic Differentiation Across Intertidal Gradients in the Foundation Plant Spartina alterniflora. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.868826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological genomics approaches have informed us about the structure of genetic diversity in natural populations that might underlie patterns in trait variation. However, we still know surprisingly little about the mechanisms that permit organisms to adapt to variable environmental conditions. The salt marsh foundation plant Spartina alterniflora exhibits a dramatic range in phenotype that is associated with a pronounced intertidal environmental gradient across a narrow spatial scale. Both genetic and non-genetic molecular mechanisms might underlie this phenotypic variation. To investigate both, we used epigenotyping-by-sequencing (epiGBS) to evaluate the make-up of natural populations across the intertidal environmental gradient. Based on recent findings, we expected that both DNA sequence and DNA methylation diversity would be explained by source population and habitat within populations. However, we predicted that epigenetic variation might be more strongly associated with habitat since similar epigenetic modifications could be rapidly elicited across different genetic backgrounds by similar environmental conditions. Overall, with PERMANOVA we found that population of origin explained a significant amount of the genetic (8.6%) and epigenetic (3.2%) variance. In addition, we found that a small but significant amount of genetic and epigenetic variance (<1%) was explained by habitat within populations. The interaction of population and habitat explained an additional 2.9% of the genetic variance and 1.4% of the epigenetic variance. By examining genetic and epigenetic variation within the same fragments (variation in close-cis), we found that population explained epigenetic variation in 9.2% of 8,960 tested loci, even after accounting for differences in the DNA sequence of the fragment. Habitat alone explained very little (<0.1%) of the variation in these close-cis comparisons, but the interaction of population and habitat explained 2.1% of the epigenetic variation in these loci. Using multiple matrix regression with randomization (MMRR) we found that phenotypic differences in natural populations were correlated with epigenetic and environmental differences even when accounting for genetic differences. Our results support the contention that sequence variation explains most of the variation in DNA methylation, but we have provided evidence that DNA methylation distinctly contributes to plant responses in natural populations.
Collapse
|
8
|
Sandell L, Sharp NP. Fitness Effects of Mutations: An Assessment of PROVEAN Predictions Using Mutation Accumulation Data. Genome Biol Evol 2022; 14:evac004. [PMID: 35038732 PMCID: PMC8790079 DOI: 10.1093/gbe/evac004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/14/2022] Open
Abstract
Predicting fitness in natural populations is a major challenge in biology. It may be possible to leverage fast-accumulating genomic data sets to infer the fitness effects of mutant alleles, allowing evolutionary questions to be addressed in any organism. In this paper, we investigate the utility of one such tool, called PROVEAN. This program compares a query sequence with existing data to provide an alignment-based score for any protein variant, with scores categorized as neutral or deleterious based on a pre-set threshold. PROVEAN has been used widely in evolutionary studies, for example, to estimate mutation load in natural populations, but has not been formally tested as a predictor of aggregate mutational effects on fitness. Using three large published data sets on the genome sequences of laboratory mutation accumulation lines, we assessed how well PROVEAN predicted the actual fitness patterns observed, relative to other metrics. In most cases, we find that a simple count of the total number of mutant proteins is a better predictor of fitness than the number of proteins with variants scored as deleterious by PROVEAN. We also find that the sum of all mutant protein scores explains variation in fitness better than the number of mutant proteins in one of the data sets. We discuss the implications of these results for studies of populations in the wild.
Collapse
Affiliation(s)
- Linnea Sandell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Systematic Biology, Department of Organismal Biology, Uppsala University, Sweden
| | | |
Collapse
|
9
|
Neinavaie F, Ibrahim-Hashim A, Kramer AM, Brown JS, Richards CL. The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems. Invasion biology provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level. Although the field of invasion genetics was established in ecology and evolution more than 50 years ago, there is still a limited understanding of how genomic level processes translate into invasive phenotypes across different taxa in response to complex environmental conditions. This is largely because the study of most invasive species is limited by information about complex genome level processes. We lack good reference genomes for most species. Rigorous studies to examine genomic processes are generally too costly. On the contrary, cancer studies are fortified with extensive resources for studying genome level dynamics and the interactions among genetic and non-genetic mechanisms. Extensive analysis of primary tumors and metastatic samples have revealed the importance of several genomic mechanisms including higher mutation rates, specific types of mutations, aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can be directly compared to primary tumor cell counterparts. At the same time, clonal dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer research community has been unable to identify any common events that provide a universal predictor of “metastatic potential” which parallels findings in evolutionary ecology. Instead, invasion in cancer studies depends strongly on context, including order of events and clonal composition. The detailed studies of the behavior of a variety of human cancers promises to inform our understanding of genome level dynamics in the diversity of invasive species and provide novel insights for management.
Collapse
|
10
|
Turner KG, Ostevik KL, Grassa CJ, Rieseberg LH. Genomic Analyses of Phenotypic Differences Between Native and Invasive Populations of Diffuse Knapweed (Centaurea diffusa). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.577635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive species represent excellent opportunities to study the evolutionary potential of traits important to success in novel environments. Although some ecologically important traits have been identified in invasive species, little is typically known about the genetic mechanisms that underlie invasion success in non-model species. Here, we use a genome-wide association (GWAS) approach to identify the genetic basis of trait variation in the non-model, invasive, diffuse knapweed [Centaurea diffusa Lam. (Asteraceae)]. To assist with this analysis, we have assembled the first draft genome reference and fully annotated plastome assembly for this species, and one of the first from this large, weedy, genus, which is of major ecological and economic importance. We collected phenotype data from 372 individuals from four native and four invasive populations of C. diffusa grown in a common environment. Using these individuals, we produced reduced-representation genotype-by-sequencing (GBS) libraries and identified 7,058 SNPs. We identify two SNPs associated with leaf width in these populations, a trait which significantly varies between native and invasive populations. In this rosette forming species, increased leaf width is a major component of increased biomass, a common trait in invasive plants correlated with increased fitness. Finally, we use annotations from Arabidopsis thaliana to identify 98 candidate genes that are near the associated SNPs and highlight several good candidates for leaf width variation.
Collapse
|
11
|
Do Habitats Show a Different Invasibility Pattern by Alien Plant Species? A Test on a Wetland Protected Area. DIVERSITY 2020. [DOI: 10.3390/d12070267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biological invasions are deemed to be the second most important global driver of biodiversity loss, right behind habitat destruction and fragmentation. In this study, we aimed at testing if community invasibility, defined as the vulnerability to invasion of a community, could be associated with the characteristics of a given habitat, as described by the composition and structure of its native species. Based on a probabilistic sampling of the alien flora occurring in the temperate wetland Lake Doberdò (Friuli Venezia Giulia region, NE Italy) and using a null-model-based approach, the observed occurrence of Invasive Alien Species (IAS) within sampling units was randomized within habitats. While testing the degree of invasibility for each habitat within the wetland, our null hypothesis postulated that habitats are equally invaded by IAS, as IAS can spread homogeneously in the environment thanks to their plasticity in functional traits that makes them able to cope with different ecological conditions. The obtained results comparing observed IAS frequencies, abundance and richness to those obtained by the null model randomizations show that, for all habitats, invasion was selective. Specifically, a marked preference for habitats with an intermediate disturbance level, a high nutrients level and a medium-high light availability was observed, while an avoidance was detected for habitats characterized by lower levels of nutrients and light availability or extreme conditions caused by prolonged submersion. This method allows us to provide useful information using a simple-to-run simulation for the management of the IAS threat within protected areas. Moreover, the method allows us to infer important ecological characteristics leading to habitat invasion without sampling the environmental characteristic of the habitats, which is an expensive operation in terms of time and money.
Collapse
|
12
|
Popovic I, Riginos C. Comparative genomics reveals divergent thermal selection in warm‐ and cold‐tolerant marine mussels. Mol Ecol 2020; 29:519-535. [DOI: 10.1111/mec.15339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Iva Popovic
- School of Biological Sciences University of Queensland St Lucia Qld Australia
| | - Cynthia Riginos
- School of Biological Sciences University of Queensland St Lucia Qld Australia
| |
Collapse
|
13
|
Schneider K, Adams CE, Elmer KR. Parallel selection on ecologically relevant gene functions in the transcriptomes of highly diversifying salmonids. BMC Genomics 2019; 20:1010. [PMID: 31870285 PMCID: PMC6929470 DOI: 10.1186/s12864-019-6361-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background Salmonid fishes are characterised by a very high level of variation in trophic, ecological, physiological, and life history adaptations. Some salmonid taxa show exceptional potential for fast, within-lake diversification into morphologically and ecologically distinct variants, often in parallel; these are the lake-resident charr and whitefish (several species in the genera Salvelinus and Coregonus). To identify selection on genes and gene categories associated with such predictable diversifications, we analysed 2702 orthogroups (4.82 Mbp total; average 4.77 genes/orthogroup; average 1783 bp/orthogroup). We did so in two charr and two whitefish species and compared to five other salmonid lineages, which do not evolve in such ecologically predictable ways, and one non-salmonid outgroup. Results All selection analyses are based on Coregonus and Salvelinus compared to non-diversifying taxa. We found more orthogroups were affected by relaxed selection than intensified selection. Of those, 122 were under significant relaxed selection, with trends of an overrepresentation of serine family amino acid metabolism and transcriptional regulation, and significant enrichment of behaviour-associated gene functions. Seventy-eight orthogroups were under significant intensified selection and were enriched for signalling process and transcriptional regulation gene ontology terms and actin filament and lipid metabolism gene sets. Ninety-two orthogroups were under diversifying/positive selection. These were enriched for signal transduction, transmembrane transport, and pyruvate metabolism gene ontology terms and often contained genes involved in transcriptional regulation and development. Several orthogroups showed signs of multiple types of selection. For example, orthogroups under relaxed and diversifying selection contained genes such as ap1m2, involved in immunity and development, and slc6a8, playing an important role in muscle and brain creatine uptake. Orthogroups under intensified and diversifying selection were also found, such as genes syn3, with a role in neural processes, and ctsk, involved in bone remodelling. Conclusions Our approach pinpointed relevant genomic targets by distinguishing among different kinds of selection. We found that relaxed, intensified, and diversifying selection affect orthogroups and gene functions of ecological relevance in salmonids. Because they were found consistently and robustly across charr and whitefish and not other salmonid lineages, we propose these genes have a potential role in the replicated ecological diversifications.
Collapse
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin E Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.,Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, G63 0AW, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
14
|
Liu M, Liao H, Peng S. Salt-tolerant native plants have greater responses to other environments when compared to salt-tolerant invasive plants. Ecol Evol 2019; 9:7808-7818. [PMID: 31346442 PMCID: PMC6635938 DOI: 10.1002/ece3.5368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/24/2019] [Indexed: 11/09/2022] Open
Abstract
The strong expansion potential of invasive plants is often attributed to fast adaptive responses to stress. However, the evolution of tolerance to one stressor may affect the responses to other stressors. Currently, it remains unclear what effect the evolution to one stressor might have on the responses to other single or combined stressors. Moreover, it is unknown how this might differ between invasive and native species.Invasive plants (Mikania micrantha and Bidens pilosa) and native plants (Merremia hederacea and Sida acuta) from low- and high-salinity habitats were grown under control and stressful conditions [salt stress, water stress (drought/waterlogging), and their combinations]. We explored the effects of evolved salt tolerance on the responses to water stress/combined stresses and the underlying trait mechanisms.The high-salinity populations of all species exhibited stronger salt tolerance than the low-salinity populations. As to the tolerance to other stressors, the high-salinity and low-salinity populations of the invasive species were similar, whereas the high-salinity populations of the native species exhibited stronger tolerance than the low-salinity populations under most stress treatments. However, the enhanced salt tolerance in native species was accompanied by reduced total biomass under control condition. The stress tolerance of native species correlated with leaf production rate and allocation to root, while the performance of native species under control condition correlated with leaf morphology and carbon assimilation rate. This suggests a trade-off between salt tolerance and performance in the native but not the invasive species, probably resulting from altered phenotypic/physiological traits. SYNTHESIS Our work suggests that the evolution of tolerance to one stressor may have stronger effects on the tolerance to other stressors of the native compared with the invasive species. This may be a new paradigm to explain the greater advantage of invasive vs. native species in highly stressful habitats.
Collapse
Affiliation(s)
- Muxin Liu
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Huixuan Liao
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Shaolin Peng
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| |
Collapse
|
15
|
Xu C, Ge Y, Wang J. Molecular basis underlying the successful invasion of hexaploid cytotypes of Solidago canadensis L.: Insights from integrated gene and miRNA expression profiling. Ecol Evol 2019; 9:4820-4852. [PMID: 31031947 PMCID: PMC6476842 DOI: 10.1002/ece3.5084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/04/2022] Open
Abstract
Dissecting complex connections between cytogenetic traits (ploidy levels) and plant invasiveness has emerged as a popular research subject in the field of invasion biology. Although recent work suggests that polyploids are more likely to be invasive than their corresponding diploids, the molecular basis underlying the successful invasion of polyploids remains largely unexplored. To this end, we adopted an RNA-seq and sRNA-seq approach to describe how polyploids mediate invasiveness differences in two contrasting cytotypes of Solidago canadensis L., a widespread wild hexaploid invader with localized cultivated diploid populations. Our analysis of the leaf transcriptome revealed 116,801 unigenes, of which 12,897 unigenes displayed significant differences in expression levels. A substantial number of these differentially expressed unigenes (DEUs) were significantly associated with the biosynthesis of secondary metabolites, carbohydrate metabolism, lipid metabolism, and environmental adaptation pathways. Gene Ontology term enrichment-based categorization of DEU-functions was consistent with this observation, as terms related to single-organism, cellular, and metabolic processes including catalytic, binding, transporter, and enzyme regulator activity were over-represented. Concomitantly, 186 miRNAs belonging to 44 miRNA families were identified in the same leaf tissues, with 59 miRNAs being differentially expressed. Furthermore, we discovered 83 miRNA-target interacting pairs that were oppositely regulated, and a meticulous study of these targets depicted that several unigenes encoding transcription factors, DNA methyltransferase, and leucine-rich repeat receptor-like kinases involved in the stress response were greatly influenced. Collectively, these transcriptional and epigenetic data provide new insights into miRNA-mediated gene expression regulatory mechanisms that may operate in hexaploid cytotypes to favor successful invasion.
Collapse
Affiliation(s)
- Chanchan Xu
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Yimeng Ge
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
16
|
Testone G, Mele G, di Giacomo E, Tenore GC, Gonnella M, Nicolodi C, Frugis G, Iannelli MA, Arnesi G, Schiappa A, Biancari T, Giannino D. Transcriptome driven characterization of curly- and smooth-leafed endives reveals molecular differences in the sesquiterpenoid pathway. HORTICULTURE RESEARCH 2019; 6:1. [PMID: 30603088 PMCID: PMC6312536 DOI: 10.1038/s41438-018-0066-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 05/03/2023]
Abstract
Endives (Cichorium endivia L.) are popular vegetables, diversified into curly/frisée- and smooth/broad-leafed (escaroles) cultivar types (cultigroups), and consumed as fresh and bagged salads. They are rich in sesquiterpene lactones (STL) that exert proven function on bitter taste and human health. The assembly of a reference transcriptome of 77,022 unigenes and RNA-sequencing experiments were carried out to characterize the differences between endives and escaroles at the gene structural and expression levels. A set of 3177 SNPs distinguished smooth from curly cultivars, and an SNP-supported phylogenetic tree separated the cultigroups into two distinct clades, consistently with the botanical varieties of origin (crispum and latifolium, respectively). A pool of 699 genes maintained differential expression pattern (core-DEGs) in pairwise comparisons between curly vs smooth cultivars grown in the same environment. Accurate annotation allowed the identification of 26 genes in the sesquiterpenoid biosynthesis pathway, which included several g ermacrene A s ynthase, g ermacrene A o xidase and co stunolide s ynthase members (GAS/GAO/COS module), required for the synthesis of costunolide, a key precursor of lactucopicrin- and lactucin-like sesquiterpene lactones. The core-DEGs contained a GAS gene (contig83192) that was positively correlated with STL levels and recurrently more expressed in curly than smooth endives, suggesting a cultigroup-specific behavior. The significant positive correlation of GAS/GAO/COS transcription and STL abundance (2.4-fold higher in frisée endives) suggested that sesquiterpenoid pathway control occurs at the transcriptional level. Based on correlation analyses, five transcription factors (MYB, MYB-related and WRKY) were inferred to act on contig83192/GAS and specific STL, suggesting the occurrence of two distinct routes in STL biosynthesis.
Collapse
Affiliation(s)
- Giulio Testone
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Giovanni Mele
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Elisabetta di Giacomo
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Napoli, NA Italy
| | - Maria Gonnella
- Institute of Sciences of Food Production, CNR, Bari, Italy
| | - Chiara Nicolodi
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Giovanna Frugis
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Maria Adelaide Iannelli
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | | | | | | | - Donato Giannino
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
17
|
Evolution of invasiveness by genetic accommodation. Nat Ecol Evol 2018; 2:991-999. [DOI: 10.1038/s41559-018-0553-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022]
|
18
|
|
19
|
Range Expansion Compromises Adaptive Evolution in an Outcrossing Plant. Curr Biol 2017; 27:2544-2551.e4. [DOI: 10.1016/j.cub.2017.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/22/2017] [Accepted: 07/04/2017] [Indexed: 01/04/2023]
|
20
|
Yang M, He Z, Huang Y, Lu L, Yan Y, Hong L, Shen H, Liu Y, Guo Q, Jiang L, Zhang Y, Greenberg AJ, Zhou R, Ge X, Wu CI, Shi S. The emergence of the hyperinvasive vine, Mikania micrantha (Asteraceae), via admixture and founder events inferred from population transcriptomics. Mol Ecol 2017; 26:3405-3423. [PMID: 28370790 DOI: 10.1111/mec.14124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/14/2023]
Abstract
Biological invasions that involve well-documented rapid adaptations to new environments provide unequalled opportunities for testing evolutionary hypotheses. Mikania micrantha Kunth (Asteraceae), a perennial herbaceous vine native to tropical Central and South America, successfully invaded tropical Asia in the early 20th century. It is regarded as one of the most aggressive weeds in the world. To elucidate the molecular and evolutionary processes underlying this invasion, we extensively sampled this weed throughout its invaded range in South-East and South Asia and surveyed its genetic structure using variants detected from population transcriptomics. Clustering results suggest that more than one source population contributed to this invasion. Computer simulations using genomewide genetic variation support a scenario of admixture and founder events during invasion. The genes differentially expressed between native and invasive populations were found to be involved in oxidative and high light intensity stress responses, pointing to a possible ecological mechanism of adaptation. Our results provide a foundation for further detailed mechanistic and population studies of this ecologically and economically important invasion. This line of research promises to provide new mitigation strategies for invasive species as well as insights into mechanisms of adaptation.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Lu Lu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Yubin Yan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Lan Hong
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hao Shen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Qiang Guo
- Shenzhen Wildlife Protection Administration, Shenzhen, China
| | - Lu Jiang
- Shenzhen Wildlife Protection Administration, Shenzhen, China
| | - Yanwu Zhang
- Shenzhen Wildlife Protection Administration, Shenzhen, China
| | | | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| | - Xuejun Ge
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Steane DA, Potts BM, McLean EH, Collins L, Holland BR, Prober SM, Stock WD, Vaillancourt RE, Byrne M. Genomic Scans across Three Eucalypts Suggest that Adaptation to Aridity is a Genome-Wide Phenomenon. Genome Biol Evol 2017; 9:253-265. [PMID: 28391293 PMCID: PMC5381606 DOI: 10.1093/gbe/evw290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Widespread species spanning strong environmental (e.g., climatic) gradients frequently display morphological and physiological adaptations to local conditions. Some adaptations are common to different species that occupy similar environments. However, the genomic architecture underlying such convergent traits may not be the same between species. Using genomic data from previous studies of three widespread eucalypt species that grow along rainfall gradients in southern Australia, our probabilistic approach provides evidence that adaptation to aridity is a genome-wide phenomenon, likely to involve multiple and diverse genes, gene families and regulatory regions that affect a multitude of complex genetic and biochemical processes.
Collapse
Affiliation(s)
- Dorothy A. Steane
- School of Biological Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Land and Water, Wembley, Western Australia, Australia
| | - Brad M. Potts
- School of Biological Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Elizabeth H. McLean
- CSIRO Land and Water, Wembley, Western Australia, Australia
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery Centre, Western Australia, Australia
| | - Lesley Collins
- Faculty of Health Science, Universal College of Learning, Palmerston North, New Zealand
| | - Barbara R. Holland
- School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - William D. Stock
- Centre for Ecosystem Management, School of Natural Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - René E. Vaillancourt
- School of Biological Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery Centre, Western Australia, Australia
| |
Collapse
|
22
|
Turner KG, Nurkowski KA, Rieseberg LH. Gene expression and drought response in an invasive thistle. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1308-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Barker MS, Li Z, Kidder TI, Reardon CR, Lai Z, Oliveira LO, Scascitelli M, Rieseberg LH. Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. AMERICAN JOURNAL OF BOTANY 2016; 103:1203-11. [PMID: 27313199 DOI: 10.3732/ajb.1600113] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/06/2016] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY Like many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature. METHODS We sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy. KEY RESULTS We found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia. CONCLUSIONS Our analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and that most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long-term evolutionary fates and consequences of different ploidal levels.
Collapse
Affiliation(s)
- Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Zheng Li
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Thomas I Kidder
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Chris R Reardon
- Department of Ecology & Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - Zhao Lai
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405 USA
| | - Luiz O Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa 36570-900, Viçosa, Brazil
| | - Moira Scascitelli
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Loren H Rieseberg
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405 USA Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| |
Collapse
|
24
|
Zhang KM, Shen Y, Fang YM, Liu Y. Changes in gametophyte physiology of Pteris multifida induced by the leaf leachate treatment of the invasive Bidens pilosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3578-85. [PMID: 26490937 DOI: 10.1007/s11356-015-5589-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/20/2015] [Indexed: 05/26/2023]
Abstract
In recent years, the response of fern gametophytes to environment has raised much attention. However, studies on the influence of plant invasion to fern gametophytes are scarce. Allelopathy plays an important role in biological invasion. Hence, it is necessary to study the allelopathic effects of invasive plants on fern gametophytes and elucidate the mechanisms by which invasive plants cause phytotoxicity. As one of the main invasive plants in China, Bidens pilosa exhibits allelopathic effects on spermatophyte growth. Field investigation shows that many ferns are threatened by the invasion of B. pilosa. The distribution of Pteris multifida overlaps with that of B. pilosa in China. To examine the potential involvement of allelopathic mechanisms of B. pilosa leaves, changes in the physiology in P. multifida gametophytes are analyzed. We found that cell membrane and antioxidant enzyme activities as well as photosynthesis pigment contents of the gametophytes were affected by B. pilosa leachates. Gametophytes of P. multifida exposed to B. pilosa had increased damages to cell membranes, expressed in thiobarbituric acid reacting substance (TBARS) concentrations, malondialdehyde (MDA), electrolyte leakage (membrane permeability), and degree of injury. Enzyme activities, assessed by superoxide dismutase (SOD) and catalase (CAT) as well as guaiacol peroxidase (GPX) enhanced with the increase in leachate concentration after 2-day exposure. Meanwhile, lower chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoid (Car), and the total chlorophyll were measured as leachate concentrations increased. At day 10, leaf leachates of B. pilosa exhibited the greatest inhibition. These results suggest that the observed inhibitory or stimulatory effects on the physiology studied can have an adverse effect on P. multifida and that allelopathic interference seems to have involved in this process.
Collapse
Affiliation(s)
- Kai-Mei Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Department of Botany, Smithsonian Institution, Washington, DC, 20013, USA
| | - Yu Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Ying Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
25
|
Rieseberg L, Geraldes A. Editorial 2016. Mol Ecol 2016; 25:433-49. [DOI: 10.1111/mec.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Transcriptome sequencing of three Ranunculus species (Ranunculaceae) reveals candidate genes in adaptation from terrestrial to aquatic habitats. Sci Rep 2015; 5:10098. [PMID: 25993393 PMCID: PMC4438715 DOI: 10.1038/srep10098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/30/2015] [Indexed: 01/12/2023] Open
Abstract
Adaptation to aquatic habitats is a formidable challenge for terrestrial angiosperms that has long intrigued scientists. As part of a suite of work to explore the molecular mechanism of adaptation to aquatic habitats, we here sequenced the transcriptome of the submerged aquatic plant Ranunculus bungei, and two terrestrial relatives R. cantoniensis and R. brotherusii, followed by comparative evolutionary analyses to determine candidate genes for adaption to aquatic habitats. We obtained 126,037, 140,218 and 114,753 contigs for R. bungei, R. cantoniensis and R. brotherusii respectively. Bidirectional Best Hit method and OrthoMCL method identified 11,362 and 8,174 1:1:1 orthologous genes (one ortholog is represented in each of the three species) respectively. Non-synonymous/synonymous (dN/dS) analyses were performed with a maximum likelihood method and an approximate method for the three species-pairs. In total, 14 genes of R. bungei potentially involved in the adaptive transition from terrestrial to aquatic habitats were identified. Some of the homologs to these genes in model plants are involved in vacuole protein formation, regulating 'water transport process' and 'microtubule cytoskeleton organization'. Our study opens the door to understand the molecular mechanism of plant adaptation from terrestrial to aquatic habitats.
Collapse
|
27
|
Cristescu ME. Genetic reconstructions of invasion history. Mol Ecol 2015; 24:2212-25. [DOI: 10.1111/mec.13117] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/14/2022]
|
28
|
Perdereau E, Bagnères AG, Vargo EL, Baudouin G, Xu Y, Labadie P, Dupont S, Dedeine F. Relationship between invasion success and colony breeding structure in a subterranean termite. Mol Ecol 2015; 24:2125-42. [PMID: 25641360 DOI: 10.1111/mec.13094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 01/13/2023]
Abstract
Factors promoting the establishment and colonization success of introduced populations in new environments constitute an important issue in biological invasions. In this context, the respective role of pre-adaptation and evolutionary changes during the invasion process is a key question that requires particular attention. This study compared the colony breeding structure (i.e. number and relatedness among reproductives within colonies) in native and introduced populations of the subterranean pest termite, Reticulitermes flavipes. We generated and analysed a data set of both microsatellite and mtDNA loci on termite samples collected in three introduced populations, one in France and two in Chile, and in the putative source population of French and Chilean infestations that has recently been identified in New Orleans, LA. We also provided a synthesis combining our results with those of previous studies to obtain a global picture of the variation in breeding structure in this species. Whereas most native US populations are mainly composed of colonies headed by monogamous pairs of primary reproductives, all introduced populations exhibit a particular colony breeding structure that is characterized by hundreds of inbreeding reproductives (neotenics) and by a propensity of colonies to fuse, a pattern shared uniquely with the population of New Orleans. These characteristics are comparable to those of many invasive ants and are discussed to play an important role during the invasion process. Our finding that the New Orleans population exhibits the same breeding structure as its related introduced populations suggests that this native population is pre-adapted to invade new ranges.
Collapse
Affiliation(s)
- E Perdereau
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS - Université François-Rabelais, UFR Sciences, Parc Grandmont, Tours, 37200, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Stapley J, Santure AW, Dennis SR. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol 2015; 24:2241-52. [PMID: 25611725 DOI: 10.1111/mec.13089] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies.
Collapse
Affiliation(s)
- Jessica Stapley
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | | | | |
Collapse
|
30
|
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH. What we still don't know about invasion genetics. Mol Ecol 2015; 24:2277-97. [PMID: 25474505 DOI: 10.1111/mec.13032] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|