1
|
Lenhart A, Ahsan A, McHaty M, Bergland AO. Improvement of starvation resistance via periodic fasting is genetically variable in Drosophila melanogaster. PHYSIOLOGICAL ENTOMOLOGY 2024; 49:270-278. [PMID: 39130127 PMCID: PMC11315414 DOI: 10.1111/phen.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024]
Abstract
Organisms subjected to periodic nutrient limitation early in life exhibit improvements in aspects of survival, including resistance to some environmental stressors. Recent findings indicate that forms of periodic fasting such as intermittent fasting and time restricted feeding can improve starvation resistance. However, it remains unclear to what extent this survival improvement persists across different genetic backgrounds. In this study, we examine fasting-induced starvation resistance across a broad survey of wild-derived lineages and document genetic variation within this trait. We adopt a standard dietary intervention and show improvement to starvation resistance within a common laboratory lineage, replicating previous results. Next, we examine fasting-induced starvation resistance across isofemale lines collected across latitudes and in different seasons, and among inbred lines derived from flies collected on different continents. We discover genetic variation of fasting-induced starvation resistance, and show that fasting improved starvation resistance as often as it worsened starvation resistance. Fasted flies generally showed reduced fat concentration, and their starvation survival varied with sex, season of collection, and geographic origin. While specific lineages common to the laboratory can show a specific fasting-induced phenotype, we show that this result is not consistent across genetic backgrounds, reinforcing the idea that phenotypes observed in historic laboratory strains may not be conserved across a species.
Collapse
Affiliation(s)
- Adam Lenhart
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| | - Ayesha Ahsan
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| | - Margaret McHaty
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22554
| |
Collapse
|
2
|
Roy PR, Castillo DM. The neurodevelopmental genes alan shepard and Neuroglian contribute to female mate preference in African Drosophila melanogaster. J Evol Biol 2024; 37:877-890. [PMID: 38900077 PMCID: PMC11292574 DOI: 10.1093/jeb/voae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Mate choice is a key trait that determines fitness for most sexually reproducing organisms, with females often being the choosy sex. Female preference often results in strong selection on male traits that can drive rapid divergence of traits and preferences between lineages, leading to reproductive isolation. Despite this fundamental property of female mate choice, very few loci have been identified that contribute to mate choice and reproductive isolation. We used a combination of population genetics, quantitative complementation tests, and behavioural assays to demonstrate that alan shepard and Neuroglian contribute to female mate choice, and could contribute to partial reproductive isolation between populations of Drosophila melanogaster. Our study is among the first to identify genes that contribute to female mate preference in this historically important system, where female preference is an active premating barrier to reproduction. The identification of loci that are primarily known for their roles in neurodevelopment provides intriguing questions of how female mate preference evolves in populations via changes in sensory system and higher learning brain centres.
Collapse
Affiliation(s)
- Paula R Roy
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Dean M Castillo
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Miranda VH, Amaral RV, Cogni R. Clinal variation in natural populations of Drosophila melanogaster: An old debate about natural selection and neutral processes. Genet Mol Biol 2024; 47Suppl 1:e20230348. [PMID: 39037374 PMCID: PMC11262002 DOI: 10.1590/1678-4685-gmb-2023-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 07/23/2024] Open
Abstract
Distinguishing between environmental adaptations and neutral processes poses a challenge in population genetics and evolutionary studies, particularly when phenomena can be explained by both processes. Clines are genotypic or phenotypic characters correlated with environmental variables, because of that correlation, they are used as examples of spatially varying selection. At the same time, many genotypic clines can be explained by demographic history, like isolation by distance or secondary contact zones. Clines have been extensively studied in Drosophila melanogaster, especially in North America and Australia, where they are attributed to both differential selection and various demographic processes. This review explores existing literature supporting this conclusion and suggests new approaches to better understand the influence of these processes on clines. These innovative approaches aim to shed light on the longstanding debate regarding the importance of natural selection versus neutral processes in maintaining variation in natural populations.
Collapse
Affiliation(s)
- Vitória H. Miranda
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| | - Rafael Viana Amaral
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| | - Rodrigo Cogni
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Chen J, Liu C, Li W, Zhang W, Wang Y, Clark AG, Lu J. From sub-Saharan Africa to China: Evolutionary history and adaptation of Drosophila melanogaster revealed by population genomics. SCIENCE ADVANCES 2024; 10:eadh3425. [PMID: 38630810 PMCID: PMC11023512 DOI: 10.1126/sciadv.adh3425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Drosophila melanogaster is a widely used model organism for studying environmental adaptation. However, the genetic diversity of populations in Asia is poorly understood, leaving a notable gap in our knowledge of the global evolution and adaptation of this species. We sequenced genomes of 292 D. melanogaster strains from various ecological settings in China and analyzed them along with previously published genome sequences. We have identified six global genetic ancestry groups, despite the presence of widespread genetic admixture. The strains from China represent a unique ancestry group, although detectable differentiation exists among populations within China. We deciphered the global migration and demography of D. melanogaster, and identified widespread signals of adaptation, including genetic changes in response to insecticides. We validated the effects of insecticide resistance variants using population cage trials and deep sequencing. This work highlights the importance of population genomics in understanding the genetic underpinnings of adaptation, an effort that is particularly relevant given the deterioration of ecosystems.
Collapse
Affiliation(s)
- Junhao Chen
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chenlu Liu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Weixuan Li
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenxia Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- College of Biology, Hunan University, Changsha 410082, China
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Padilla Perez DJ. Geographic and seasonal variation of the for gene reveal signatures of local adaptation in Drosophila melanogaster. J Evol Biol 2024; 37:201-211. [PMID: 38301664 DOI: 10.1093/jeb/voad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/18/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
In the early 1980s, the observation that Drosophila melanogaster larvae differed in their foraging behaviour laid the foundation for the work that would later lead to the discovery of the foraging gene (for) and its associated foraging phenotypes, rover and sitter. Since then, the molecular characterization of the for gene and our understanding of the mechanisms that maintain its phenotypic variants in the laboratory have progressed enormously. However, the significance and dynamics of such variation are yet to be investigated in nature. With the advent of next-generation sequencing, it is now possible to identify loci underlying the adaptation of populations in response to environmental variation. Here, I present the results of a genotype-environment association analysis that quantifies variation at the for gene among samples of D. melanogaster structured across space and time. These samples consist of published genomes of adult flies collected worldwide, and at least twice per site of collection (during spring and fall). Both an analysis of genetic differentiation based on Fst values and an analysis of population structure revealed an east-west gradient in allele frequency. This gradient may be the result of spatially varying selection driven by the seasonality of precipitation. These results support the hypothesis that different patterns of gene flow as expected under models of isolation by distance and potentially isolation by environment are driving genetic differentiation among populations. Overall, this study is essential for understanding the mechanisms underlying the evolution of foraging behaviour in D. melanogaster.
Collapse
|
6
|
Zheng L, Wang H, Lin J, Zhou Y, Xiao J, Li K. Population genomics provides insights into the genetic diversity and adaptation of the Pieris rapae in China. PLoS One 2023; 18:e0294521. [PMID: 37972203 PMCID: PMC10653512 DOI: 10.1371/journal.pone.0294521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The cabbage white butterfly (Pieris rapae), a major agricultural pest, has become one of the most abundant and destructive butterflies in the world. It is widely distributed in a large variety of climates and terrains of China due to its strong adaptability. To gain insight into the population genetic characteristics of P. rapae in China, we resequenced the genome of 51 individuals from 19 areas throughout China. Using population genomics approaches, a dense variant map of P. rapae was observed, indicating a high level of polymorphism that could result in adaptation to a changing environment. The feature of the genetic structure suggested considerable genetic admixture in different geographical groups. Additionally, our analyses suggest that physical barriers may have played a more important role than geographic distance in driving genetic differentiation. Population history showed the effective population size of P. rapae was greatly affected by global temperature changes, with mild periods (i.e., temperatures warmer than those during glaciation but not excessively hot) leading to an increase in population size. Furthermore, by comparing populations from south and north China, we have identified selected genes related to sensing temperature, growth, neuromodulation and immune response, which may reveal the genetic basis of adaptation to different environments. Our study is the first to illustrate the genetic signatures of P. rapae in China at the population genomic level, providing fundamental knowledge of the genetic diversity and adaptation of P. rapae.
Collapse
Affiliation(s)
- Linlin Zheng
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| | - Huan Wang
- Department of Plant Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai, China
| | - Junjie Lin
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| | - Yuxun Zhou
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| | - Junhua Xiao
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| | - Kai Li
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| |
Collapse
|
7
|
Cridland JM, Contino CE, Begun DJ. Selection and geography shape male reproductive tract transcriptomes in Drosophila melanogaster. Genetics 2023; 224:iyad034. [PMID: 36869688 PMCID: PMC10474930 DOI: 10.1093/genetics/iyad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Transcriptome analysis of several animal clades suggests that male reproductive tract gene expression evolves quickly. However, the factors influencing the abundance and distribution of within-species variation, the ultimate source of interspecific divergence, are poorly known. Drosophila melanogaster, an ancestrally African species that has recently spread throughout the world and colonized the Americas in the last roughly 100 years, exhibits phenotypic and genetic latitudinal clines on multiple continents, consistent with a role for spatially varying selection in shaping its biology. Nevertheless, geographic expression variation in the Americas is poorly described, as is its relationship to African expression variation. Here, we investigate these issues through the analysis of two male reproductive tissue transcriptomes [testis and accessory gland (AG)] in samples from Maine (USA), Panama, and Zambia. We find dramatic differences between these tissues in differential expression between Maine and Panama, with the accessory glands exhibiting abundant expression differentiation and the testis exhibiting very little. Latitudinal expression differentiation appears to be influenced by the selection of Panama expression phenotypes. While the testis shows little latitudinal expression differentiation, it exhibits much greater differentiation than the accessory gland in Zambia vs American population comparisons. Expression differentiation for both tissues is non-randomly distributed across the genome on a chromosome arm scale. Interspecific expression divergence between D. melanogaster and D. simulans is discordant with rates of differentiation between D. melanogaster populations. Strongly heterogeneous expression differentiation across tissues and timescales suggests a complex evolutionary process involving major temporal changes in the way selection influences expression evolution in these organs.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - Colin E Contino
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Coughlan JM, Dagilis AJ, Serrato-Capuchina A, Elias H, Peede D, Isbell K, Castillo DM, Cooper BS, Matute DR. Patterns of Population Structure and Introgression Among Recently Differentiated Drosophila melanogaster Populations. Mol Biol Evol 2022; 39:msac223. [PMID: 36251862 PMCID: PMC9641974 DOI: 10.1093/molbev/msac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa. We identify nine major ancestries, six that primarily occur in Africa and one that has not been previously described. We find evidence for both contemporary and historical admixture between ancestries, with admixture rates varying both within and between continents. For example, while previous work has highlighted an admixture zone between broadly defined African and European ancestries in the Caribbean and southeastern USA, we identify West African ancestry as the most likely African contributor. Moreover, loci showing the strongest signal of introgression between West Africa and the Caribbean/southeastern USA include several genes relating to neurological development and male courtship behavior, in line with previous work showing shared mating behaviors between these regions. Finally, while we hypothesized that potential incompatibility loci may contribute to population genetic structure across the range of D. melanogaster; these loci are, on average, not highly differentiated between ancestries. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the partitioning of diversity across its range.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | | | - Hope Elias
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - David Peede
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Dean M Castillo
- Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Duranton M, Pool JE. Interactions between natural selection and recombination shape the genomic landscape of introgression. Mol Biol Evol 2022; 39:6603329. [PMID: 35666817 PMCID: PMC9317171 DOI: 10.1093/molbev/msac122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hybridization between lineages that have not reached complete reproductive isolation appears more and more like a common phenomenon. Indeed, speciation genomics studies have now extensively shown that many species' genomes have hybrid ancestry. However, genomic patterns of introgression are often heterogeneous across the genome. In many organisms, a positive correlation between introgression levels and recombination rate has been observed. It is usually explained by the purging of deleterious introgressed material due to incompatibilities. However, the opposite relationship was observed in a North American population of Drosophila melanogaster with admixed European and African ancestry. In order to explore how directional and epistatic selection can impact the relationship between introgression and recombination, we performed forward simulations of whole D. melanogaster genomes reflecting the North American population's history. Our results revealed that the simplest models of positive selection often yield negative correlations between introgression and recombination such as the one observed in D. melanogaster. We also confirmed that incompatibilities tend to produce positive introgression-recombination correlations. And yet, we identify parameter space under each model where the predicted correlation is reversed. These findings deepen our understanding of the evolutionary forces that may shape patterns of ancestry across genomes, and they strengthen the foundation for future studies aimed at estimating genome-wide parameters of selection in admixed populations.
Collapse
Affiliation(s)
- Maud Duranton
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Lange JD, Bastide H, Lack JB, Pool JE. A Population Genomic Assessment of Three Decades of Evolution in a Natural Drosophila Population. Mol Biol Evol 2021; 39:6491261. [PMID: 34971382 PMCID: PMC8826484 DOI: 10.1093/molbev/msab368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Population genetics seeks to illuminate the forces shaping genetic variation, often based on a single snapshot of genomic variation. However, utilizing multiple sampling times to study changes in allele frequencies can help clarify the relative roles of neutral and non-neutral forces on short time scales. This study compares whole-genome sequence variation of recently collected natural population samples of Drosophila melanogaster against a collection made approximately 35 years prior from the same locality—encompassing roughly 500 generations of evolution. The allele frequency changes between these time points would suggest a relatively small local effective population size on the order of 10,000, significantly smaller than the global effective population size of the species. Some loci display stronger allele frequency changes than would be expected anywhere in the genome under neutrality—most notably the tandem paralogs Cyp6a17 and Cyp6a23, which are impacted by structural variation associated with resistance to pyrethroid insecticides. We find a genome-wide excess of outliers for high genetic differentiation between old and new samples, but a larger number of adaptation targets may have affected SNP-level differentiation versus window differentiation. We also find evidence for strengthening latitudinal allele frequency clines: northern-associated alleles have increased in frequency by an average of nearly 2.5% at SNPs previously identified as clinal outliers, but no such pattern is observed at random SNPs. This project underscores the scientific potential of using multiple sampling time points to investigate how evolution operates in natural populations, by quantifying how genetic variation has changed over ecologically relevant timescales.
Collapse
Affiliation(s)
- Jeremy D Lange
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Héloïse Bastide
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
11
|
Kapun M, Nunez JCB, Bogaerts-Márquez M, Murga-Moreno J, Paris M, Outten J, Coronado-Zamora M, Tern C, Rota-Stabelli O, Guerreiro MPG, Casillas S, Orengo DJ, Puerma E, Kankare M, Ometto L, Loeschcke V, Onder BS, Abbott JK, Schaeffer SW, Rajpurohit S, Behrman EL, Schou MF, Merritt TJS, Lazzaro BP, Glaser-Schmitt A, Argyridou E, Staubach F, Wang Y, Tauber E, Serga SV, Fabian DK, Dyer KA, Wheat CW, Parsch J, Grath S, Veselinovic MS, Stamenkovic-Radak M, Jelic M, Buendía-Ruíz AJ, Gómez-Julián MJ, Espinosa-Jimenez ML, Gallardo-Jiménez FD, Patenkovic A, Eric K, Tanaskovic M, Ullastres A, Guio L, Merenciano M, Guirao-Rico S, Horváth V, Obbard DJ, Pasyukova E, Alatortsev VE, Vieira CP, Vieira J, Torres JR, Kozeretska I, Maistrenko OM, Montchamp-Moreau C, Mukha DV, Machado HE, Lamb K, Paulo T, Yusuf L, Barbadilla A, Petrov D, Schmidt P, Gonzalez J, Flatt T, Bergland AO. Drosophila Evolution over Space and Time (DEST): A New Population Genomics Resource. Mol Biol Evol 2021; 38:5782-5805. [PMID: 34469576 PMCID: PMC8662648 DOI: 10.1093/molbev/msab259] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Evolutionary Biology and Environmental Studies, University of
Zürich, Switzerland
- Department of Cell & Developmental Biology, Center of Anatomy and Cell
Biology, Medical University of Vienna, Vienna, Austria
| | - Joaquin C B Nunez
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | | | - Jesús Murga-Moreno
- Department of Genetics and Microbiology, Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Margot Paris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joseph Outten
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | | | - Courtney Tern
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment, University of Trento, San Michele all'
Adige, Italy
| | | | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia,
Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de
Barcelona, Barcelona, Spain
| | - Eva Puerma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia,
Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de
Barcelona, Barcelona, Spain
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of
Jyväskylä, Jyväskylä, Finland
| | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia,
Pavia, Italy
| | | | - Banu S Onder
- Department of Biology, Hacettepe University, Ankara, Turkey
| | | | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University,
University Park, PA, USA
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia,
PA, USA
- Division of Biological and Life Sciences, School of Arts and Sciences,
Ahmedabad University, Ahmedabad, India
| | - Emily L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia,
PA, USA
- Janelia Research Campus, Ashburn, VA, USA
| | - Mads F Schou
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Biology, Lund University, Lund, Sweden
| | - Thomas J S Merritt
- Department of Chemistry & Biochemistry, Laurentian
University, Sudbury, ON, Canada
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY,
USA
| | - Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Eliza Argyridou
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Fabian Staubach
- Department of Evolution and Ecology, University of Freiburg,
Freiburg, Germany
| | - Yun Wang
- Department of Evolution and Ecology, University of Freiburg,
Freiburg, Germany
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution,
University of Haifa, Haifa, Israel
| | - Svitlana V Serga
- Department of General and Medical Genetics, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center, Ministry of Education
and Science of Ukraine, Kyiv, Ukraine
| | - Daniel K Fabian
- Department of Genetics, University of Cambridge, Cambridge,
United Kingdom
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA,
USA
| | | | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | - Mihailo Jelic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | - Aleksandra Patenkovic
- Institute for Biological Research “Siniša Stanković”, National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Eric
- Institute for Biological Research “Siniša Stanković”, National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Tanaskovic
- Institute for Biological Research “Siniša Stanković”, National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anna Ullastres
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Lain Guio
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Sara Guirao-Rico
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Vivien Horváth
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh,
Edinburgh, United Kingdom
| | - Elena Pasyukova
- Institute of Molecular Genetics of the National Research Centre “Kurchatov
Institute”, Moscow, Russia
| | - Vladimir E Alatortsev
- Institute of Molecular Genetics of the National Research Centre “Kurchatov
Institute”, Moscow, Russia
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do
Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do
Porto, Porto, Portugal
| | | | - Iryna Kozeretska
- Department of General and Medical Genetics, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center, Ministry of Education
and Science of Ukraine, Kyiv, Ukraine
| | - Oleksandr M Maistrenko
- Department of General and Medical Genetics, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine
- Structural and Computational Biology Unit, European Molecular Biology
Laboratory, Heidelberg, Germany
| | | | - Dmitry V Mukha
- Vavilov Institute of General Genetics, Russian Academy of
Sciences, Moscow, Russia
| | - Heather E Machado
- Department of Biology, Stanford University, Stanford, CA,
USA
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Keric Lamb
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | - Tânia Paulo
- Departamento de Biologia Animal, Instituto Gulbenkian de Ciência,
Oeiras, Portugal
| | - Leeban Yusuf
- Center for Biological Diversity, University of St. Andrews, St
Andrews, United Kingdom
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA,
USA
| | - Paul Schmidt
- Department of Biology, The Pennsylvania State University,
University Park, PA, USA
| | - Josefa Gonzalez
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alan O Bergland
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| |
Collapse
|
12
|
McBroome J, Liang D, Corbett-Detig R. Fine-Scale Position Effects Shape the Distribution of Inversion Breakpoints in Drosophila melanogaster. Genome Biol Evol 2021; 12:1378-1391. [PMID: 32437518 PMCID: PMC7487137 DOI: 10.1093/gbe/evaa103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Chromosomal inversions are among the primary drivers of genome structure evolution in a wide range of natural populations. Although there is an impressive array of theory and empirical analyses that have identified conditions under which inversions can be positively selected, comparatively little data are available on the fitness impacts of these genome structural rearrangements themselves. Because inversion breakpoints can disrupt functional elements and alter chromatin domains, the precise positioning of an inversion’s breakpoints can strongly affect its fitness. Here, we compared the fine-scale distribution of low-frequency inversion breakpoints with those of high-frequency inversions and inversions that have gone to fixation between Drosophila species. We identified a number of differences among frequency classes that may influence inversion fitness. In particular, breakpoints that are proximal to insulator elements, generate large tandem duplications, and minimize impacts on gene coding spans which are more prevalent in high-frequency and fixed inversions than in rare inversions. The data suggest that natural selection acts to preserve both genes and larger cis-regulatory networks in the occurrence and spread of rearrangements. These factors may act to limit the availability of high-fitness arrangements when suppressed recombination is favorable.
Collapse
Affiliation(s)
- Jakob McBroome
- Department of Biomolecular Engineering, University of California Santa Cruz
| | - David Liang
- Department of Biomolecular Engineering, University of California Santa Cruz
| | | |
Collapse
|
13
|
Rodrigues MF, Vibranovski MD, Cogni R. Clinal and seasonal changes are correlated in Drosophila melanogaster natural populations. Evolution 2021; 75:2042-2054. [PMID: 34184262 DOI: 10.1111/evo.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022]
Abstract
Spatial and seasonal variations in the environment are ubiquitous. Environmental heterogeneity can affect natural populations and lead to covariation between environment and allele frequencies. Drosophila melanogaster is known to harbor polymorphisms that change both with latitude and seasons. Identifying the role of selection in driving these changes is not trivial, because nonadaptive processes can cause similar patterns. Given the environment changes in similar ways across seasons and along the latitudinal gradient, one promising approach may be to look for parallelism between clinal and seasonal changes. Here, we test whether there is a genome-wide correlation between clinal and seasonal changes, and whether the pattern is consistent with selection. Allele frequency estimates were obtained from pooled samples from seven different locations along the east coast of the United States, and across seasons within Pennsylvania. We show that there is a genome-wide correlation between clinal and seasonal variations, which cannot be explained by linked selection alone. This pattern is stronger in genomic regions with higher functional content, consistent with natural selection. We derive a way to biologically interpret these correlations and show that around 3.7% of the common, autosomal variants could be under parallel seasonal and spatial selection. Our results highlight the contribution of natural selection in driving fluctuations in allele frequencies in natural fly populations and point to a shared genomic basis to climate adaptation that happens over space and time in D. melanogaster.
Collapse
Affiliation(s)
- Murillo F Rodrigues
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil.,Current Address: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403
| | - Maria D Vibranovski
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| |
Collapse
|
14
|
Machado HE, Bergland AO, Taylor R, Tilk S, Behrman E, Dyer K, Fabian DK, Flatt T, González J, Karasov TL, Kim B, Kozeretska I, Lazzaro BP, Merritt TJS, Pool JE, O'Brien K, Rajpurohit S, Roy PR, Schaeffer SW, Serga S, Schmidt P, Petrov DA. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. eLife 2021; 10:e67577. [PMID: 34155971 PMCID: PMC8248982 DOI: 10.7554/elife.67577] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions, and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.
Collapse
Affiliation(s)
- Heather E Machado
- Department of Biology, Stanford UniversityStanfordUnited States
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Alan O Bergland
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Ryan Taylor
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Susanne Tilk
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Emily Behrman
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Kelly Dyer
- Department of Genetics, University of GeorgiaAthensUnited States
| | - Daniel K Fabian
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Centre for Pathogen Evolution, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Thomas Flatt
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Josefa González
- Institute of Evolutionary Biology, CSIC- Universitat Pompeu FabraBarcelonaSpain
| | - Talia L Karasov
- Department of Biology, University of UtahSalt Lake CityUnited States
| | - Bernard Kim
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Iryna Kozeretska
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Brian P Lazzaro
- Department of Entomology, Cornell UniversityIthacaUnited States
| | - Thomas JS Merritt
- Department of Chemistry & Biochemistry, Laurentian UniversitySudburyCanada
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-MadisonMadisonUnited States
| | - Katherine O'Brien
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Subhash Rajpurohit
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Paula R Roy
- Department of Ecology and Evolutionary Biology, University of KansasLawrenceUnited States
| | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Svitlana Serga
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Paul Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
15
|
Betancourt NJ, Rajpurohit S, Durmaz E, Fabian DK, Kapun M, Flatt T, Schmidt P. Allelic polymorphism at foxo contributes to local adaptation in Drosophila melanogaster. Mol Ecol 2021; 30:2817-2830. [PMID: 33914989 PMCID: PMC8693798 DOI: 10.1111/mec.15939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
The insulin/insulin-like growth factor signalling pathway has been hypothesized as a major determinant of life-history profiles that vary adaptively in natural populations. In Drosophila melanogaster, multiple components of this pathway vary predictably with latitude; this includes foxo, a conserved gene that regulates insulin signalling and has pleiotropic effects on a variety of fitness-associated traits. We hypothesized that allelic variation at foxo contributes to genetic variance for size-related traits that vary adaptively with latitude. We first examined patterns of variation among natural populations along a latitudinal transect in the eastern United States and show that thorax length, wing area, wing loading, and starvation tolerance exhibit significant latitudinal clines for both males and females but that development time does not vary predictably with latitude. We then generated recombinant outbred populations and show that naturally occurring allelic variation at foxo, which exhibits stronger clinality than expected, is associated with the same traits that vary with latitude in the natural populations. Our results suggest that allelic variation at foxo contributes to adaptive patterns of life-history variation in natural populations of this genetic model.
Collapse
Affiliation(s)
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, India
| | - Esra Durmaz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniel K. Fabian
- Department of Genetics, University of Cambridge, Cambridge, UK
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Yue L, Cao LJ, Chen JC, Gong YJ, Lin YH, Hoffmann AA, Wei SJ. Low levels of genetic differentiation with isolation by geography and environment in populations of Drosophila melanogaster from across China. Heredity (Edinb) 2021; 126:942-954. [PMID: 33686193 PMCID: PMC8178374 DOI: 10.1038/s41437-021-00419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
The fruit fly, Drosophila melanogaster, is a model species in evolutionary studies. However, population processes of this species in East Asia are poorly studied. Here we examined the population genetic structure of D. melanogaster across China. There were 14 mitochondrial haplotypes with 10 unique ones out of 23 known from around the globe. Pairwise FST values estimated from 15 novel microsatellites ranged from 0 to 0.11, with geographically isolated populations showing the highest level of genetic uniqueness. STRUCTURE analysis identified high levels of admixture at both the individual and population levels. Mantel tests indicated a strong association between genetic distance and geographical distance as well as environmental distance. Full redundancy analysis (RDA) showed that independent effects of environmental conditions and geography accounted for 62.10% and 31.58% of the total explained genetic variance, respectively. When geographic variables were constrained in a partial RDA analysis, the environmental variables bio2 (mean diurnal air temperature range), bio13 (precipitation of the wettest month), and bio15 (precipitation seasonality) were correlated with genetic distance. Our study suggests that demographic history, geographical isolation, and environmental factors have together shaped the population genetic structure of D. melanogaster after its introduction into China.
Collapse
Affiliation(s)
- Lei Yue
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yan-Hao Lin
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China ,International Department of Beijing No. 80 High School, Beijing, China
| | - Ary Anthony Hoffmann
- grid.1008.90000 0001 2179 088XBio21 Institute, School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Shu-Jun Wei
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
17
|
Abstract
Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size, Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research in Drosophila and then focus on recent advances during the genomic era. After describing different types and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further provide a brief introduction to background selection, selection of noncoding DNA and codon usage and focus on the role of structural variants, such as transposable elements and chromosomal inversions, during the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolutionary mechanisms that shape genetic and phenotypic variation in natural populations along environmental gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and provides an introduction to the system and an overview to data sources, important population genetic concepts and recent advances in the field.
Collapse
|
18
|
Wallace MA, Coffman KA, Gilbert C, Ravindran S, Albery GF, Abbott J, Argyridou E, Bellosta P, Betancourt AJ, Colinet H, Eric K, Glaser-Schmitt A, Grath S, Jelic M, Kankare M, Kozeretska I, Loeschcke V, Montchamp-Moreau C, Ometto L, Onder BS, Orengo DJ, Parsch J, Pascual M, Patenkovic A, Puerma E, Ritchie MG, Rota-Stabelli O, Schou MF, Serga SV, Stamenkovic-Radak M, Tanaskovic M, Veselinovic MS, Vieira J, Vieira CP, Kapun M, Flatt T, González J, Staubach F, Obbard DJ. The discovery, distribution, and diversity of DNA viruses associated with Drosophila melanogaster in Europe. Virus Evol 2021; 7:veab031. [PMID: 34408913 PMCID: PMC8363768 DOI: 10.1093/ve/veab031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.
Collapse
Affiliation(s)
- Megan A Wallace
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Kelsey A Coffman
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Clément Gilbert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sanjana Ravindran
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Paola Bellosta
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy
- Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Hervé Colinet
- The European Drosophila Population Genomics Consortium (DrosEU)
- UMR CNRS 6553 ECOBIO, Université de Rennes1, Rennes, France
| | - Katarina Eric
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Amanda Glaser-Schmitt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Mihailo Jelic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Aarhus C DK-8000, Denmark
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Lino Ometto
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Aleksandra Patenkovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, St Andrews University, St Andrews HY15 4SS, UK
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Center, Fondazione E. Mach, San Michele all’Adige (TN) 38010, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN) 38010, Italy
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Svitlana V Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska str, Kyiv 01601, Ukraine
| | - Marina Stamenkovic-Radak
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Marija Tanaskovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Savic Veselinovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution and Ecology, University of Freiburg, Freiburg 79104, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
19
|
Kapopoulou A, Kapun M, Pieper B, Pavlidis P, Wilches R, Duchen P, Stephan W, Laurent S. Demographic analyses of a new sample of haploid genomes from a Swedish population of Drosophila melanogaster. Sci Rep 2020; 10:22415. [PMID: 33376238 PMCID: PMC7772335 DOI: 10.1038/s41598-020-79720-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 01/27/2023] Open
Abstract
European and African natural populations of Drosophila melanogaster have been the focus of several studies aiming at inferring demographic and adaptive processes based on genetic variation data. However, in these analyses little attention has been given to gene flow between African and European samples. Here we present a dataset consisting of 14 fully sequenced haploid genomes sampled from a natural population from the northern species range (Umeå, Sweden). We co-analyzed this new data with an African population to compare the likelihood of several competing demographic scenarios for European and African populations and show that gene flow improves the fit of demographic models to data.
Collapse
Affiliation(s)
- Adamandia Kapopoulou
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, 8057, Zurich, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, 1090, Vienna, Austria
- Département de Biologie, Université de Fribourg, 1700, Fribourg, Switzerland
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Ricardo Wilches
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152, Planegg, Germany
| | - Pablo Duchen
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - Wolfgang Stephan
- Leibniz Institute for Evolution and Biodiversity Science, Natural History Museum, 10115, Berlin, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany.
| |
Collapse
|
20
|
Erickson PA, Weller CA, Song DY, Bangerter AS, Schmidt P, Bergland AO. Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLoS Genet 2020; 16:e1009110. [PMID: 33216740 PMCID: PMC7717581 DOI: 10.1371/journal.pgen.1009110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.
Collapse
Affiliation(s)
- Priscilla A. Erickson
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cory A. Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Y. Song
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alyssa S. Bangerter
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
21
|
Kapun M, Barrón MG, Staubach F, Obbard DJ, Wiberg RAW, Vieira J, Goubert C, Rota-Stabelli O, Kankare M, Bogaerts-Márquez M, Haudry A, Waidele L, Kozeretska I, Pasyukova EG, Loeschcke V, Pascual M, Vieira CP, Serga S, Montchamp-Moreau C, Abbott J, Gibert P, Porcelli D, Posnien N, Sánchez-Gracia A, Grath S, Sucena É, Bergland AO, Guerreiro MPG, Onder BS, Argyridou E, Guio L, Schou MF, Deplancke B, Vieira C, Ritchie MG, Zwaan BJ, Tauber E, Orengo DJ, Puerma E, Aguadé M, Schmidt P, Parsch J, Betancourt AJ, Flatt T, González J. Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Mol Biol Evol 2020; 37:2661-2678. [PMID: 32413142 PMCID: PMC7475034 DOI: 10.1093/molbev/msaa120] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.
Collapse
Affiliation(s)
- Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Maite G Barrón
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - R Axel W Wiberg
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Clément Goubert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’ Adige, Italy
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - María Bogaerts-Márquez
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Annabelle Haudry
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Lena Waidele
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center of Ministry of Education and Science of Ukraine, Kyiv, Ukraine
| | - Elena G Pasyukova
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genome Variation, Institute of Molecular Genetics of RAS, Moscow, Russia
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Svitlana Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Patricia Gibert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Damiano Porcelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Animal and Plant Sciences, Sheffield, United Kingdom
| | - Nico Posnien
- The European Drosophila Population Genomics Consortium (DrosEU)
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Universität Göttingen, Göttingen, Germany
| | - Alejandro Sánchez-Gracia
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Élio Sucena
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Alan O Bergland
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Maria Pilar Garcia Guerreiro
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Lain Guio
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Bart Deplancke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Bio-engineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Cristina Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
| | - Bas J Zwaan
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Eran Tauber
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Aguadé
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Paul Schmidt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution, Ecology, and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
22
|
Stone HM, Erickson PA, Bergland AO. Phenotypic plasticity, but not adaptive tracking, underlies seasonal variation in post-cold hardening freeze tolerance of Drosophila melanogaster. Ecol Evol 2020; 10:217-231. [PMID: 31988724 PMCID: PMC6972814 DOI: 10.1002/ece3.5887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/27/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
In temperate regions, an organism's ability to rapidly adapt to seasonally varying environments is essential for its survival. In response to seasonal changes in selection pressure caused by variation in temperature, humidity, and food availability, some organisms exhibit plastic changes in phenotype. In other cases, seasonal variation in selection pressure can rapidly increase the frequency of genotypes that offer survival or reproductive advantages under the current conditions. Little is known about the relative influences of plastic and genetic changes in short-lived organisms experiencing seasonal environmental fluctuations. Cold hardening is a seasonally relevant plastic response in which exposure to cool, but nonlethal, temperatures significantly increases the organism's ability to later survive at freezing temperatures. In the present study, we demonstrate seasonal variation in cold hardening in Drosophila melanogaster and test the extent to which plasticity and adaptive tracking underlie that seasonal variation. We measured the post-cold hardening freeze tolerance of flies from outdoor mesocosms over the summer, fall, and winter. We bred outdoor mesocosm-caught flies for two generations in the laboratory and matched each outdoor cohort to an indoor control cohort of similar genetic background. We cold hardened all flies under controlled laboratory conditions and then measured their post-cold hardening freeze tolerance. Comparing indoor and field-caught flies and their laboratory-reared G1 and G2 progeny allowed us to determine the roles of seasonal environmental plasticity, parental effects, and genetic changes on cold hardening. We also tested the relationship between cold hardening and other factors, including age, developmental density, food substrate, presence of antimicrobials, and supplementation with live yeast. We found strong plastic responses to a variety of field- and laboratory-based environmental effects, but no evidence of seasonally varying parental or genetic effects on cold hardening. We therefore conclude that seasonal variation in post-cold hardening freeze tolerance results from environmental influences and not genetic changes.
Collapse
|
23
|
Kapopoulou A, Pfeifer SP, Jensen JD, Laurent S. The Demographic History of African Drosophila melanogaster. Genome Biol Evol 2019; 10:2338-2342. [PMID: 30169784 PMCID: PMC6363051 DOI: 10.1093/gbe/evy185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 11/14/2022] Open
Abstract
As one of the most commonly utilized organisms in the study of local adaptation, an accurate characterization of the demographic history of Drosophila melanogaster remains as an important research question. This owes both to the inherent interest in characterizing the population history of this model organism, as well as to the well-established importance of an accurate null demographic model for increasing power and decreasing false positive rates in genomic scans for positive selection. Although considerable attention has been afforded to this issue in non-African populations, less is known about the demographic history of African populations, including from the ancestral range of the species. While qualitative predictions and hypotheses have previously been forwarded, we here present a quantitative model fitting of the population history characterizing both the ancestral Zambian population range as well as the subsequently colonized west African populations, which themselves served as the source of multiple non-African colonization events. We here report the split time of the West African population at 72 kya, a date corresponding to human migration into this region as well as a period of climatic changes in the African continent. Furthermore, we have estimated population sizes at this split time. These parameter estimates thus represent an important null model for future investigations in to African and non-African D. melanogaster populations alike.
Collapse
Affiliation(s)
- Adamandia Kapopoulou
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Susanne P Pfeifer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Jeffrey D Jensen
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Stefan Laurent
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
24
|
Durmaz E, Rajpurohit S, Betancourt N, Fabian DK, Kapun M, Schmidt P, Flatt T. A clinal polymorphism in the insulin signaling transcription factor foxo contributes to life-history adaptation in Drosophila. Evolution 2019; 73:1774-1792. [PMID: 31111462 PMCID: PMC6771989 DOI: 10.1111/evo.13759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
A fundamental aim of adaptation genomics is to identify polymorphisms that underpin variation in fitness traits. In Drosophila melanogaster, latitudinal life-history clines exist on multiple continents and make an excellent system for dissecting the genetics of adaptation. We have previously identified numerous clinal single-nucleotide polymorphism in insulin/insulin-like growth factor signaling (IIS), a pathway known from mutant studies to affect life history. However, the effects of natural variants in this pathway remain poorly understood. Here we investigate how two clinal alternative alleles at foxo, a transcriptional effector of IIS, affect fitness components (viability, size, starvation resistance, fat content). We assessed this polymorphism from the North American cline by reconstituting outbred populations, fixed for either the low- or high-latitude allele, from inbred DGRP lines. Because diet and temperature modulate IIS, we phenotyped alleles across two temperatures (18°C, 25°C) and two diets differing in sugar source and content. Consistent with clinal expectations, the high-latitude allele conferred larger body size and reduced wing loading. Alleles also differed in starvation resistance and expression of insulin-like receptor, a transcriptional target of FOXO. Allelic reaction norms were mostly parallel, with few GxE interactions. Together, our results suggest that variation in IIS makes a major contribution to clinal life-history adaptation.
Collapse
Affiliation(s)
- Esra Durmaz
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Subhash Rajpurohit
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
- Division of Biological and Life SciencesAhmedabad UniversityAhmedabadIndia
| | - Nicolas Betancourt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Daniel K. Fabian
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome Campus, HinxtonCambridgeUnited Kingdom
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population, GeneticsViennaAustria
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Paul Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
25
|
Arguello JR, Laurent S, Clark AG. Demographic History of the Human Commensal Drosophila melanogaster. Genome Biol Evol 2019; 11:844-854. [PMID: 30715331 PMCID: PMC6430986 DOI: 10.1093/gbe/evz022] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
The cohabitation of Drosophila melanogaster with humans is nearly ubiquitous. Though it has been well established that this fly species originated in sub-Saharan Africa, and only recently has spread globally, many details of its swift expansion remain unclear. Elucidating the demographic history of D. melanogaster provides a unique opportunity to investigate how human movement might have impacted patterns of genetic diversity in a commensal species, as well as providing neutral null models for studies aimed at identifying genomic signatures of local adaptation. Here, we use whole-genome data from five populations (Africa, North America, Europe, Central Asia, and the South Pacific) to carry out demographic inferences, with particular attention to the inclusion of migration and admixture. We demonstrate the importance of these parameters for model fitting and show that how previous estimates of divergence times are likely to be significantly underestimated as a result of not including them. Finally, we discuss how human movement along early shipping routes might have shaped the present-day population structure of D. melanogaster.
Collapse
Affiliation(s)
- J Roman Arguello
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Stefan Laurent
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University
- Department of Biological Statistics and Computational Biology, Cornell University
| |
Collapse
|
26
|
Guirao-Rico S, González J. Evolutionary insights from large scale resequencing datasets in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2019; 31:70-76. [PMID: 31109676 DOI: 10.1016/j.cois.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Drosophila melanogaster has long been used as an evolutionary model system. Its small genome size, well-annotated genome, and ease of sampling, also makes it a choice species for genome resequencing studies. Hundreds of genomic samples from populations worldwide are available and are currently being used to tackle a wide range of evolutionary questions. In this review, we focused on three insights that have increased our understanding of the evolutionary history of this species, and that have implications for the study of evolutionary processes in other species as well. Because of technical limitations, most of the studies so far have focused on SNP variants. However, long-read sequencing techniques should allow us in the near future to include other type of genomic variants that also influence genome evolution.
Collapse
Affiliation(s)
- Sara Guirao-Rico
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|
27
|
Adrion JR, Begun DJ, Hahn MW. Patterns of transposable element variation and clinality in
Drosophila. Mol Ecol 2019; 28:1523-1536. [DOI: 10.1111/mec.14961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jeffrey R. Adrion
- Department of Biology University of Oregon Eugene Oregon
- Department of Biology Indiana University Bloomington Indiana
| | - David J. Begun
- Department of Evolution and Ecology University of California Davis, Davis California
| | - Matthew W. Hahn
- Department of Biology Indiana University Bloomington Indiana
- Department of Computer Science Indiana University Bloomington Indiana
| |
Collapse
|
28
|
Mateo L, Rech GE, González J. Genome-wide patterns of local adaptation in Western European Drosophila melanogaster natural populations. Sci Rep 2018; 8:16143. [PMID: 30385770 PMCID: PMC6212444 DOI: 10.1038/s41598-018-34267-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Signatures of spatially varying selection have been investigated both at the genomic and transcriptomic level in several organisms. In Drosophila melanogaster, the majority of these studies have analyzed North American and Australian populations, leading to the identification of several loci and traits under selection. However, several studies based mainly in North American populations showed evidence of admixture that likely contributed to the observed population differentiation patterns. Thus, disentangling demography from selection might be challenging when analyzing these populations. European populations could help identify loci under spatially varying selection provided that no recent admixture from African populations would have occurred. In this work, we individually sequence the genome of 42 European strains collected in populations from contrasting environments: Stockholm (Sweden) and Castellana Grotte (Southern Italy). We found low levels of population structure and no evidence of recent African admixture in these two populations. We thus look for patterns of spatially varying selection affecting individual genes and gene sets. Besides single nucleotide polymorphisms, we also investigated the role of transposable elements in local adaptation. We concluded that European populations are a good dataset to identify candidate loci under spatially varying selection. The analysis of the two populations sequenced in this work in the context of all the available D. melanogaster data allowed us to pinpoint genes and biological processes likely to be relevant for local adaptation. Identifying and analyzing populations with low levels of population structure and admixture should help to disentangle selective from non-selective forces underlying patterns of population differentiation in other species as well.
Collapse
Affiliation(s)
- Lidia Mateo
- Institute of Evolutionary Biology. CSIC-Universitat Pompeu Fabra. Passeig Maritim de la Barceloneta, 37-49. 08003, Barcelona, Spain
| | - Gabriel E Rech
- Institute of Evolutionary Biology. CSIC-Universitat Pompeu Fabra. Passeig Maritim de la Barceloneta, 37-49. 08003, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology. CSIC-Universitat Pompeu Fabra. Passeig Maritim de la Barceloneta, 37-49. 08003, Barcelona, Spain.
| |
Collapse
|
29
|
Medina P, Thornlow B, Nielsen R, Corbett-Detig R. Estimating the Timing of Multiple Admixture Pulses During Local Ancestry Inference. Genetics 2018; 210:1089-1107. [PMID: 30206187 PMCID: PMC6218234 DOI: 10.1534/genetics.118.301411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 11/18/2022] Open
Abstract
Admixture, the mixing of genetically distinct populations, is increasingly recognized as a fundamental biological process. One major goal of admixture analyses is to estimate the timing of admixture events. Whereas most methods today can only detect the most recent admixture event, here, we present coalescent theory and associated software that can be used to estimate the timing of multiple admixture events in an admixed population. We extensively validate this approach and evaluate the conditions under which it can successfully distinguish one- from two-pulse admixture models. We apply our approach to real and simulated data of Drosophila melanogaster We find evidence of a single very recent pulse of cosmopolitan ancestry contributing to African populations, as well as evidence for more ancient admixture among genetically differentiated populations in sub-Saharan Africa. These results suggest our method can quantify complex admixture histories involving genetic material introduced by multiple discrete admixture pulses. The new method facilitates the exploration of admixture and its contribution to adaptation, ecological divergence, and speciation.
Collapse
Affiliation(s)
- Paloma Medina
- Department of Biomolecular Engineering, Genomics Institute, UC Santa Cruz, California 95064
| | - Bryan Thornlow
- Department of Biomolecular Engineering, Genomics Institute, UC Santa Cruz, California 95064
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics and Museum of Natural History, University of Copenhagen, 2100 Denmark
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, Genomics Institute, UC Santa Cruz, California 95064
| |
Collapse
|
30
|
Kim BY, Huber CD, Lohmueller KE. Deleterious variation shapes the genomic landscape of introgression. PLoS Genet 2018; 14:e1007741. [PMID: 30346959 PMCID: PMC6233928 DOI: 10.1371/journal.pgen.1007741] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/13/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022] Open
Abstract
While it is appreciated that population size changes can impact patterns of deleterious variation in natural populations, less attention has been paid to how gene flow affects and is affected by the dynamics of deleterious variation. Here we use population genetic simulations to examine how gene flow impacts deleterious variation under a variety of demographic scenarios, mating systems, dominance coefficients, and recombination rates. Our results show that admixture between populations can temporarily reduce the genetic load of smaller populations and cause increases in the frequency of introgressed ancestry, especially if deleterious mutations are recessive. Additionally, when fitness effects of new mutations are recessive, between-population differences in the sites at which deleterious variants exist creates heterosis in hybrid individuals. Together, these factors lead to an increase in introgressed ancestry, particularly when recombination rates are low. Under certain scenarios, introgressed ancestry can increase from an initial frequency of 5% to 30–75% and fix at many loci, even in the absence of beneficial mutations. Further, deleterious variation and admixture can generate correlations between the frequency of introgressed ancestry and recombination rate or exon density, even in the absence of other types of selection. The direction of these correlations is determined by the specific demography and whether mutations are additive or recessive. Therefore, it is essential that null models of admixture include both demography and deleterious variation before invoking other mechanisms to explain unusual patterns of genetic variation. Individuals from distinct populations sometimes will produce fertile offspring and will exchange genetic material in a process called hybridization. Genomes of hybrid individuals often show non-random patterns of hybrid ancestry across the genome, where some regions have a high frequency of ancestry from the second population and other regions have less. Typically, this pattern has been attributed to adaptive introgression, where beneficial genetic variants are passed from one population to the other, or to genomic incompatibilities between these distinct species. However, other mechanisms could lead to these heterogeneous patterns of ancestry in hybrids. Here we use simulations to investigate whether deleterious mutations affect the patterns of introgressed ancestry across genomes. We show that when ancestry from a larger population is added to a smaller population, the ancestry from the larger population dramatically increases in frequency because it carries fewer deleterious mutations. This occurs even in the absence of beneficial mutations in either population. Additionally, we show that differences in sex chromosome evolution relative to autosomes, or differences in mating system, can affect patterns of introgression in similar ways. Our study argues that deleterious mutations should be included in population genetic models used to identify unusual regions of the genome that appear to be under selection in hybrids.
Collapse
Affiliation(s)
- Bernard Y. Kim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - Christian D. Huber
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies.
Collapse
|
32
|
Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila. Genetics 2018; 207:825-842. [PMID: 29097397 DOI: 10.1534/genetics.116.187120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster, will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved.
Collapse
|
33
|
Rajpurohit S, Zhao X, Schmidt PS. A resource on latitudinal and altitudinal clines of ecologically relevant phenotypes of the Indian Drosophila. Sci Data 2017; 4:170066. [PMID: 28509912 PMCID: PMC5433391 DOI: 10.1038/sdata.2017.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 04/07/2017] [Indexed: 01/26/2023] Open
Abstract
The unique geography of the Indian subcontinent has provided diverse natural environments for a variety of organisms. In this region, many ecological indices such as temperature and humidity vary predictably as a function of both latitude and altitude; these environmental parameters significantly affect fundamental dynamics of natural populations. Indian drosophilids are diverse in their geographic distribution and climate tolerance, possibly as a result of climatic adaptation. These associations with environmental parameters are further reflected in a large number of clines that have been reported for various fitness traits along these geographical ranges. This unique amalgamation of environmental variability and genetic diversity make the subcontinent an ecological laboratory for studying evolution in action. We assembled data collected over the last 20 years on the geographical clines for various phenotypic traits in several species of drosophilids and present a web-resource on Indian-Drosophila ( http://www.indian-drosophila.org/). The clinal data on ecologically relevant phenotypes of Indian drosophilids will be useful in addressing questions related to future challenges in biodiversity and ecosystems in this region.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, Pennsylvania 19104, USA
| | - Xiaqing Zhao
- Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | - Paul S. Schmidt
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
34
|
Abstract
Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data.
Collapse
|
35
|
Pegoraro M, Zonato V, Tyler ER, Fedele G, Kyriacou CP, Tauber E. Geographical analysis of diapause inducibility in European Drosophila melanogaster populations. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:238-244. [PMID: 28131702 DOI: 10.1016/j.jinsphys.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Seasonal overwintering in insects represents an adaptation to stressful environments and in European Drosophila melanogaster females, low temperatures and short photoperiods can induce an ovarian diapause. Diapause may represent a recent (<15Ky) adaptation to the colonisation of temperate Europe by D. melanogaster from tropical sub-Saharan Africa, because African D. melanogaster and the sibling species D. simulans, have been reported to fail to undergo diapause. Over the past few centuries, D. melanogaster have also invaded North America and Australia, and eastern populations on both continents show a predictable latitudinal cline in diapause induction. In Europe however, a new diapause-enhancing timeless allele, ls-tim, is observed at high levels in southern Italy (∼80%), where it appears to have arisen and has spread throughout the continent with a frequency of ∼20% in Scandinavia. Given the phenotype of ls-tim and its geographical distribution, we might predict that it would work against any latitudinal cline in diapause induction within Europe. Indeed we reveal that any latitudinal cline for diapause in Europe is very weak, as predicted by ls-tim frequencies. In contrast, we determine ls-tim frequencies in North America and observe that they would be expected to strengthen the latitudinal pattern of diapause. Our results reveal how a newly arisen mutation, can, via the stochastic nature of where it initially arose, blur an otherwise adaptive geographical pattern.
Collapse
Affiliation(s)
- Mirko Pegoraro
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Valeria Zonato
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Elizabeth R Tyler
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Giorgio Fedele
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | | - Eran Tauber
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; Department of Evolutionary & Environmental Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
36
|
Morgan K, McGaughran A, Rödelsperger C, Sommer RJ. Variation in rates of spontaneous male production within the nematode species Pristionchus pacificus supports an adaptive role for males and outcrossing. BMC Evol Biol 2017; 17:57. [PMID: 28228092 PMCID: PMC5322664 DOI: 10.1186/s12862-017-0873-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022] Open
Abstract
Background The nematode species Pristionchus pacificus has an androdioecious mating system in which populations consist of self-fertilizing hermaphrodites and relatively few males. The prevalence of males in such a system is likely to depend on the relative pros and cons of outcrossing. While outcrossing generates novel allelic combinations and can therefore increase adaptive potential, it may also disrupt the potentially beneficial consequences of repeated generations of selfing. These include purging of deleterious alleles, inheritance of co-adapted allele complexes, improved hermaphrodite fitness and increased population growth. Here we use experimental and population genetic approaches to test hypotheses relating to male production and outcrossing in laboratory and natural populations of P. pacificus sampled from the volcanic island of La Réunion. Results We find a significant interaction between sampling locality and temperature treatment influencing rates of spontaneous male production in the laboratory. While strains isolated at higher altitude, cooler localities produce a higher proportion of male offspring at 25 °C relative to 20 or 15 °C, the reverse pattern is seen in strains isolated from warmer, low altitude localities. Linkage disequilibrium extends across long physical distances, but fails to approach levels reported for the partially selfing nematode species Caenorhabditis elegans. Finally, we find evidence for admixture between divergent genetic lineages. Conclusions Elevated rates of laboratory male generation appear to occur under environmental conditions which differ from those experienced by populations in nature. Such elevated male generation may result in higher outcrossing rates, hence driving increased effective recombination and the creation of potentially adaptive novel allelic combinations. Patterns of linkage disequilibrium decay support selfing as the predominant reproductive strategy in P. pacificus. Finally, despite the potential for outcrossing depression, our results suggest admixture has occurred between distinct genetic lineages since their independent colonization of the island, suggesting outcrossing depression may not be uniform in this species. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0873-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katy Morgan
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany. .,Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA70148, USA.
| | - Angela McGaughran
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany.,CSIRO Land & Water, Black Mountain Laboratories, Clunies Ross Street, Canberra, ACT 2601, Australia.,University of Melbourne, School of BioSciences, 30 Flemington Road, Melbourne, VIC, 3010, Australia
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| |
Collapse
|
37
|
Cogni R, Kuczynski K, Koury S, Lavington E, Behrman EL, O’Brien KR, Schmidt PS, Eanes WF. On the Long-term Stability of Clines in Some Metabolic Genes in Drosophila melanogaster. Sci Rep 2017; 7:42766. [PMID: 28220806 PMCID: PMC5318857 DOI: 10.1038/srep42766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/13/2017] [Indexed: 11/16/2022] Open
Abstract
Very little information exists for long-term changes in genetic variation in natural populations. Here we take the unique opportunity to compare a set of data for SNPs in 15 metabolic genes from eastern US collections of Drosophila melanogaster that span a large latitudinal range and represent two collections separated by 12 to 13 years. We also expand this to a 22-year interval for the Adh gene and approximately 30 years for the G6pd and Pgd genes. During these intervals, five genes showed a statistically significant change in average SNP allele frequency corrected for latitude. While much remains unchanged, we see five genes where latitudinal clines have been lost or gained and two where the slope significantly changes. The long-term frequency shift towards a southern favored Adh S allele reported in Australia populations is not observed in the eastern US over a period of 21 years. There is no general pattern of southern-favored or northern-favored alleles increasing in frequency across the genes. This observation points to the fluid nature of some allelic variation over this time period and the action of selective responses or migration that may be more regional than uniformly imposed across the cline.
Collapse
Affiliation(s)
- Rodrigo Cogni
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| | - Kate Kuczynski
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| | - Spencer Koury
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| | - Erik Lavington
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| | - Emily L. Behrman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Paul S. Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter F. Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794 USA
| |
Collapse
|
38
|
Abstract
Drosophila melanogaster originated in tropical Africa before expanding into strikingly different temperate climates in Eurasia and beyond. Here, we find elevated cold tolerance in three distinct geographic regions: beyond the well-studied non-African case, we show that populations from the highlands of Ethiopia and South Africa have significantly increased cold tolerance as well. We observe greater cold tolerance in outbred versus inbred flies, but only in populations with higher inversion frequencies. Each cold-adapted population shows lower inversion frequencies than a closely-related warm-adapted population, suggesting that inversion frequencies may decrease with altitude in addition to latitude. Using the FST-based "Population Branch Excess" statistic (PBE), we found only limited evidence for parallel genetic differentiation at the scale of ∼4 kb windows, specifically between Ethiopian and South African cold-adapted populations. And yet, when we looked for single nucleotide polymorphisms (SNPs) with codirectional frequency change in two or three cold-adapted populations, strong genomic enrichments were observed from all comparisons. These findings could reflect an important role for selection on standing genetic variation leading to "soft sweeps". One SNP showed sufficient codirectional frequency change in all cold-adapted populations to achieve experiment-wide significance: an intronic variant in the synaptic gene Prosap. Another codirectional outlier SNP, at senseless-2, had a strong association with our cold trait measurements, but in the opposite direction as predicted. More generally, proteins involved in neurotransmission were enriched as potential targets of parallel adaptation. The ability to study cold tolerance evolution in a parallel framework will enhance this classic study system for climate adaptation.
Collapse
Affiliation(s)
- John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | | | - Justin B. Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
39
|
Mathur V, Schmidt PS. Adaptive patterns of phenotypic plasticity in laboratory and field environments in Drosophila melanogaster. Evolution 2016; 71:465-474. [PMID: 27925178 DOI: 10.1111/evo.13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 01/19/2023]
Abstract
Identifying mechanisms of adaptation to variable environments is essential in developing a comprehensive understanding of evolutionary dynamics in natural populations. Phenotypic plasticity allows for phenotypic change in response to changes in the environment, and as such may play a major role in adaptation to environmental heterogeneity. Here, the plasticity of stress response in Drosophila melanogaster originating from two distinct geographic regions and ecological habitats was examined. Adults were given a short-term, 5-day exposure to combinations of temperature and photoperiod to elicit a plastic response for three fundamental aspects of stress tolerance that vary adaptively with geography. This was replicated both in the laboratory and in outdoor enclosures in the field. In the laboratory, geographic origin was the primary determinant of the stress response. Temperature and the interaction between temperature and photoperiod also significantly affected stress resistance. In the outdoor enclosures, plasticity was distinct among traits and between geographic regions. These results demonstrate that short-term exposure of adults to ecologically relevant environmental cues results in predictable effects on multiple aspects of fitness. These patterns of plasticity vary among traits and are highly distinct between the two examined geographic regions, consistent with patterns of local adaptation to climate and associated environmental parameters.
Collapse
Affiliation(s)
- Vinayak Mathur
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, Pennsylvania, 19104.,Current Address: Department of Biology, Georgetown University, Washington, District of Columbia, 20057
| | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
40
|
Juneja P, Quinn A, Jiggins FM. Latitudinal clines in gene expression and cis-regulatory element variation in Drosophila melanogaster. BMC Genomics 2016; 17:981. [PMID: 27894253 PMCID: PMC5126864 DOI: 10.1186/s12864-016-3333-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Organisms can rapidly adapt to their environment when colonizing a new habitat, and this could occur by changing protein sequences or by altering patterns of gene expression. The importance of gene expression in driving local adaptation is increasingly being appreciated, and cis-regulatory elements (CREs), which control and modify the expression of the nearby genes, are predicted to play an important role. Here we investigate genetic variation in gene expression in immune-challenged Drosophila melanogaster from temperate and tropical or sub-tropical populations in Australia and United States. RESULTS We find parallel latitudinal changes in gene expression, with genes involved in immunity, insecticide resistance, reproduction, and the response to the environment being especially likely to differ between latitudes. By measuring allele-specific gene expression (ASE), we show that cis-regulatory variation also shows parallel latitudinal differences between the two continents and contributes to the latitudinal differences in gene expression. CONCLUSIONS Both Australia and United States were relatively recently colonized by D. melanogaster, and it was recently shown that introductions of both African and European flies occurred, with African genotypes contributing disproportionately to tropical populations. Therefore, both the demographic history of the populations and local adaptation may be causing the patterns that we see.
Collapse
Affiliation(s)
- Punita Juneja
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Andrew Quinn
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
41
|
Lack JB, Lange JD, Tang AD, Corbett-Detig RB, Pool JE. A Thousand Fly Genomes: An Expanded Drosophila Genome Nexus. Mol Biol Evol 2016; 33:3308-3313. [PMID: 27687565 PMCID: PMC5100052 DOI: 10.1093/molbev/msw195] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Drosophila Genome Nexus is a population genomic resource that provides D. melanogaster genomes from multiple sources. To facilitate comparisons across data sets, genomes are aligned using a common reference alignment pipeline which involves two rounds of mapping. Regions of residual heterozygosity, identity-by-descent, and recent population admixture are annotated to enable data filtering based on the user’s needs. Here, we present a significant expansion of the Drosophila Genome Nexus, which brings the current data object to a total of 1,121 wild-derived genomes. New additions include 305 previously unpublished genomes from inbred lines representing six population samples in Egypt, Ethiopia, France, and South Africa, along with another 193 genomes added from recently-published data sets. We also provide an aligned D. simulans genome to facilitate divergence comparisons. This improved resource will broaden the range of population genomic questions that can addressed from multi-population allele frequencies and haplotypes in this model species. The larger set of genomes will also enhance the discovery of functionally relevant natural variation that exists within and between populations.
Collapse
Affiliation(s)
- Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | - Jeremy D Lange
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | - Alison D Tang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA
| | | | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
42
|
Paradis E, Gosselin T, Goudet J, Jombart T, Schliep K. Linking genomics and population genetics with R. Mol Ecol Resour 2016; 17:54-66. [PMID: 27461508 DOI: 10.1111/1755-0998.12577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 11/29/2022]
Abstract
Population genetics and genomics have developed and been treated as independent fields of study despite having common roots. The continuous progress of sequencing technologies is contributing to (re-)connect these two disciplines. We review the challenges faced by data analysts and software developers when handling very big genetic data sets collected on many individuals. We then expose how r, as a computing language and development environment, proposes some solutions to meet these challenges. We focus on some specific issues that are often encountered in practice: handling and analysing single-nucleotide polymorphism data, handling and reading variant call format files, analysing haplotypes and linkage disequilibrium and performing multivariate analyses. We illustrate these implementations with some analyses of three recently published data sets that contain between 60 000 and 1 000 000 loci. We conclude with some perspectives on future developments of r software for population genomics.
Collapse
Affiliation(s)
- Emmanuel Paradis
- Institut des Sciences de l'Évolution, Université Montpellier - CNRS - IRD - EPHE, Place Eugène Bataillon - CC 065, 34095, Montpellier cédex 05, France
| | - Thierry Gosselin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jérôme Goudet
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Thibaut Jombart
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, W2 1PG, UK
| | - Klaus Schliep
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| |
Collapse
|
43
|
Flatt T. Genomics of clinal variation in Drosophila: disentangling the interactions of selection and demography. Mol Ecol 2016; 25:1023-6. [PMID: 26919307 DOI: 10.1111/mec.13534] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/09/2016] [Indexed: 12/23/2022]
Abstract
Clines in phenotypes and genotype frequencies across environmental gradients are commonly taken as evidence for spatially varying selection. Classical examples include the latitudinal clines in various species of Drosophila, which often occur in parallel fashion on multiple continents. Today, genomewide analysis of such clinal systems provides a fantastic opportunity for unravelling the genetics of adaptation, yet major challenges remain. A well-known but often neglected problem is that demographic processes can also generate clinality, independent of or coincident with selection. A closely related issue is how to identify true genic targets of clinal selection. In this issue of Molecular Ecology, three studies illustrate these challenges and how they might be met. Bergland et al. report evidence suggesting that the well-known parallel latitudinal clines in North American and Australian D. melanogaster are confounded by admixture from Africa and Europe, highlighting the importance of distinguishing demographic from adaptive clines. In a companion study, Machado et al. provide the first genomic comparison of latitudinal differentiation in D. melanogaster and its sister species D. simulans. While D. simulans is less clinal than D. melanogaster, a significant fraction of clinal genes is shared between both species, suggesting the existence of convergent adaptation to clinaly varying selection pressures. Finally, by drawing on several independent sources of evidence, Božičević et al. identify a functional network of eight clinal genes that are likely involved in cold adaptation. Together, these studies remind us that clinality does not necessarily imply selection and that separating adaptive signal from demographic noise requires great effort and care.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
44
|
Kapun M, Schmidt C, Durmaz E, Schmidt PS, Flatt T. Parallel effects of the inversion In(3R)Payne on body size across the North American and Australian clines in Drosophila melanogaster. J Evol Biol 2016; 29:1059-72. [PMID: 26881839 DOI: 10.1111/jeb.12847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 02/06/2023]
Abstract
Chromosomal inversions are thought to play a major role in climatic adaptation. In D. melanogaster, the cosmopolitan inversion In(3R)Payne exhibits latitudinal clines on multiple continents. As many fitness traits show similar clines, it is tempting to hypothesize that In(3R)P underlies observed clinal patterns for some of these traits. In support of this idea, previous work in Australian populations has demonstrated that In(3R)P affects body size but not development time or cold resistance. However, similar data from other clines of this inversion are largely lacking; finding parallel effects of In(3R)P across multiple clines would considerably strengthen the case for clinal selection. Here, we have analysed the phenotypic effects of In(3R)P in populations originating from the endpoints of the latitudinal cline along the North American east coast. We measured development time, egg-to-adult survival, several size-related traits (femur and tibia length, wing area and shape), chill coma recovery, oxidative stress resistance and triglyceride content in homokaryon lines carrying In(3R)P or the standard arrangement. Our central finding is that the effects of In(3R)P along the North American cline match those observed in Australia: standard arrangement lines were larger than inverted lines, but the inversion did not influence development time or cold resistance. Similarly, In(3R)P did not affect egg-to-adult survival, oxidative stress resistance and lipid content. In(3R)P thus seems to specifically affect size traits in populations from both continents. This parallelism strongly suggests an adaptive pattern, whereby the inversion has captured alleles associated with growth regulation and clinal selection acts on size across both continents.
Collapse
Affiliation(s)
- M Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - C Schmidt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - E Durmaz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - P S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - T Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Gasch AP, Payseur BA, Pool JE. The Power of Natural Variation for Model Organism Biology. Trends Genet 2016; 32:147-154. [PMID: 26777596 PMCID: PMC4769656 DOI: 10.1016/j.tig.2015.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022]
Abstract
Genetic background effects have long been recognized and, in some cases studied, but they are often viewed as a nuisance by molecular biologists. We suggest that genetic variation currently represents a critical frontier for molecular studies. Human genetics has seen a surge of interest in genetic variation and its contributions to disease, but insights into disease mechanisms are difficult since information about gene function is lacking. By contrast, model organism genetics has excelled at revealing molecular mechanisms of cellular processes, but often de-emphasizes genetic variation and its functional consequences. We argue that model organism biology would benefit from incorporating natural variation, both to capture how well laboratory lines exemplify the species they represent and to inform on molecular processes and their variability. Such a synthesis would also greatly expand the relevance of model systems for studies of complex trait variation, including disease.
Collapse
Affiliation(s)
- Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
46
|
Zhao X, Bergland AO, Behrman EL, Gregory BD, Petrov DA, Schmidt PS. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster. Mol Biol Evol 2016; 33:707-20. [PMID: 26568616 PMCID: PMC5009998 DOI: 10.1093/molbev/msv263] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures.
Collapse
Affiliation(s)
- Xiaqing Zhao
- Department of Biology, University of Pennsylvania
| | | | | | | | | | | |
Collapse
|
47
|
Schrider DR, Hahn MW, Begun DJ. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster. Mol Biol Evol 2016; 33:1308-16. [PMID: 26809315 DOI: 10.1093/molbev/msw014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species.
Collapse
Affiliation(s)
| | - Matthew W Hahn
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis
| |
Collapse
|
48
|
Kapun M, Fabian DK, Goudet J, Flatt T. Genomic Evidence for Adaptive Inversion Clines in Drosophila melanogaster. Mol Biol Evol 2016; 33:1317-36. [PMID: 26796550 DOI: 10.1093/molbev/msw016] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clines in chromosomal inversion polymorphisms-presumably driven by climatic gradients-are common but there is surprisingly little evidence for selection acting on them. Here we address this long-standing issue in Drosophila melanogaster by using diagnostic single nucleotide polymorphism (SNP) markers to estimate inversion frequencies from 28 whole-genome Pool-seq samples collected from 10 populations along the North American east coast. Inversions In(3L)P, In(3R)Mo, and In(3R)Payne showed clear latitudinal clines, and for In(2L)t, In(2R)NS, and In(3R)Payne the steepness of the clinal slopes changed between summer and fall. Consistent with an effect of seasonality on inversion frequencies, we detected small but stable seasonal fluctuations of In(2R)NS and In(3R)Payne in a temperate Pennsylvanian population over 4 years. In support of spatially varying selection, we observed that the cline in In(3R)Payne has remained stable for >40 years and that the frequencies of In(2L)t and In(3R)Payne are strongly correlated with climatic factors that vary latitudinally, independent of population structure. To test whether these patterns are adaptive, we compared the amount of genetic differentiation of inversions versus neutral SNPs and found that the clines in In(2L)t and In(3R)Payne are maintained nonneutrally and independent of admixture. We also identified numerous clinal inversion-associated SNPs, many of which exhibit parallel differentiation along the Australian cline and reside in genes known to affect fitness-related traits. Together, our results provide strong evidence that inversion clines are maintained by spatially-and perhaps also temporally-varying selection. We interpret our data in light of current hypotheses about how inversions are established and maintained.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel K Fabian
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Machado HE, Bergland AO, O'Brien KR, Behrman EL, Schmidt PS, Petrov DA. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster. Mol Ecol 2016; 25:723-40. [PMID: 26523848 DOI: 10.1111/mec.13446] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022]
Abstract
Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster.
Collapse
Affiliation(s)
- Heather E Machado
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, USA
| | - Alan O Bergland
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, USA
| | - Katherine R O'Brien
- School of Biological Sciences, University of Nebraska-Lincoln, 348 Manter Hall, Lincoln, NE, 68588, USA.,Department of Biology, University of Pennsylvania, 102 Leidy Laboratories, Philadelphia, PA, 19104-6313, USA
| | - Emily L Behrman
- Department of Biology, University of Pennsylvania, 102 Leidy Laboratories, Philadelphia, PA, 19104-6313, USA
| | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, 102 Leidy Laboratories, Philadelphia, PA, 19104-6313, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305-5020, USA
| |
Collapse
|
50
|
Bergland AO, Tobler R, González J, Schmidt P, Petrov D. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster. Mol Ecol 2016; 25:1157-74. [PMID: 26547394 DOI: 10.1111/mec.13455] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Populations arrayed along broad latitudinal gradients often show patterns of clinal variation in phenotype and genotype. Such population differentiation can be generated and maintained by both historical demographic events and local adaptation. These evolutionary forces are not mutually exclusive and can in some cases produce nearly identical patterns of genetic differentiation among populations. Here, we investigate the evolutionary forces that generated and maintain clinal variation genome-wide among populations of Drosophila melanogaster sampled in North America and Australia. We contrast patterns of clinal variation in these continents with patterns of differentiation among ancestral European and African populations. Using established and novel methods we derive here, we show that recently derived North America and Australia populations were likely founded by both European and African lineages and that this hybridization event likely contributed to genome-wide patterns of parallel clinal variation between continents. The pervasive effects of admixture mean that differentiation at only several hundred loci can be attributed to the operation of spatially varying selection using an FST outlier approach. Our results provide novel insight into the well-studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics.
Collapse
Affiliation(s)
- Alan O Bergland
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA
| | - Ray Tobler
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA.,Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Josefa González
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA.,Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37-49, 0800, 3 Barcelona, Spain
| | - Paul Schmidt
- Department of Biology, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA
| |
Collapse
|