1
|
Pontarp M, Lundberg P, Ripa J. The succession of ecological divergence and reproductive isolation in adaptive radiations. J Theor Biol 2024; 587:111819. [PMID: 38589008 DOI: 10.1016/j.jtbi.2024.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Adaptive radiation is a major source of biodiversity but the way in which known components of ecological opportunity, ecological differentiation, and reproductive isolation underpin such biodiversity patterns remains elusive. Much is known about the evolution of ecological differentiation and reproductive isolation during single speciation events, but exactly how those processes scale up to complete adaptive radiations is less understood. Do we expect complete reproductive barriers between newly formed species before the ecological differentiation continues, or does proper species formation occur much later, long after the ecological diversification? Our goal is to improve our mechanistic understanding of adaptive radiations by analyzing an individual-based model that includes a suite of mechanisms that are known to contribute to biodiversity. The model includes variable biogeographic settings, ecological opportunities, and types of mate choice, which makes several different scenarios of an adaptive radiation possible. We find that evolving clades tend to exploit ecological opportunities early whereas reproductive barriers evolve later, demonstrating a decoupling of ecological differentiation and species formation. In many cases, we also find a long-term trend where assortative mating associated with ecological traits is replaced by sexual selection of neutral display traits as the primary mechanism for reproductive isolation. Our results propose that reticulate phylogenies are likely common and stem from initially low reproductive barriers, rather than the previously suggested idea of repeated hybridization events between well-separated species.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden.
| | - Per Lundberg
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Jörgen Ripa
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| |
Collapse
|
2
|
Musher LJ, Del-Rio G, Marcondes RS, Brumfield RT, Bravo GA, Thom G. Geogenomic Predictors of Genetree Heterogeneity Explain Phylogeographic and Introgression History: A Case Study in an Amazonian Bird (Thamnophilus aethiops). Syst Biol 2024; 73:36-52. [PMID: 37804132 DOI: 10.1093/sysbio/syad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Can knowledge about genome architecture inform biogeographic and phylogenetic inference? Selection, drift, recombination, and gene flow interact to produce a genomic landscape of divergence wherein patterns of differentiation and genealogy vary nonrandomly across the genomes of diverging populations. For instance, genealogical patterns that arise due to gene flow should be more likely to occur on smaller chromosomes, which experience high recombination, whereas those tracking histories of geographic isolation (reduced gene flow caused by a barrier) and divergence should be more likely to occur on larger and sex chromosomes. In Amazonia, populations of many bird species diverge and introgress across rivers, resulting in reticulated genomic signals. Herein, we used reduced representation genomic data to disentangle the evolutionary history of 4 populations of an Amazonian antbird, Thamnophilus aethiops, whose biogeographic history was associated with the dynamic evolution of the Madeira River Basin. Specifically, we evaluate whether a large river capture event ca. 200 Ka, gave rise to reticulated genealogies in the genome by making spatially explicit predictions about isolation and gene flow based on knowledge about genomic processes. We first estimated chromosome-level phylogenies and recovered 2 primary topologies across the genome. The first topology (T1) was most consistent with predictions about population divergence and was recovered for the Z-chromosome. The second (T2), was consistent with predictions about gene flow upon secondary contact. To evaluate support for these topologies, we trained a convolutional neural network to classify our data into alternative diversification models and estimate demographic parameters. The best-fit model was concordant with T1 and included gene flow between non-sister taxa. Finally, we modeled levels of divergence and introgression as functions of chromosome length and found that smaller chromosomes experienced higher gene flow. Given that (1) genetrees supporting T2 were more likely to occur on smaller chromosomes and (2) we found lower levels of introgression on larger chromosomes (and especially the Z-chromosome), we argue that T1 represents the history of population divergence across rivers and T2 the history of secondary contact due to barrier loss. Our results suggest that a significant portion of genomic heterogeneity arises due to extrinsic biogeographic processes such as river capture interacting with intrinsic processes associated with genome architecture. Future phylogeographic studies would benefit from accounting for genomic processes, as different parts of the genome reveal contrasting, albeit complementary histories, all of which are relevant for disentangling the intricate geogenomic mechanisms of biotic diversification. [Amazonia; biogeography; demographic modeling; gene flow; gene tree; genome architecture; geogenomics; introgression; linked selection; neural network; phylogenomic; phylogeography; reproductive isolation; speciation; species tree.].
Collapse
Affiliation(s)
- Lukas J Musher
- Department of Ornithology, The Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Glaucia Del-Rio
- Cornell Laboratory of Ornithology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Rafael S Marcondes
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Robb T Brumfield
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gustavo A Bravo
- Sección de Ornitología, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva, Boyacá 111311, Colombia
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory Thom
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
4
|
An H, Pires JC, Conant GC. Gene expression bias between the subgenomes of allopolyploid hybrids is an emergent property of the kinetics of expression. PLoS Comput Biol 2024; 20:e1011803. [PMID: 38227592 PMCID: PMC10817154 DOI: 10.1371/journal.pcbi.1011803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
Hybridization coupled to polyploidy, or allopolyploidy, has dramatically shaped the evolution of flowering plants, teleost fishes, and other lineages. Studies of recently formed allopolyploid plants have shown that the two subgenomes that merged to form that new allopolyploid do not generally express their genes equally. Instead, one of the two subgenomes expresses its paralogs more highly on average. Meanwhile, older allopolyploidy events tend to show biases in duplicate losses, with one of the two subgenomes retaining more genes than the other. Since reduced expression is a pathway to duplicate loss, understanding the origins of expression biases may help explain the origins of biased losses. Because we expect gene expression levels to experience stabilizing selection, our conceptual frameworks for how allopolyploid organisms form tend to assume that the new allopolyploid will show balanced expression between its subgenomes. It is then necessary to invoke phenomena such as differences in the suppression of repetitive elements to explain the observed expression imbalances. Here we show that, even for phenotypically identical diploid progenitors, the inherent kinetics of gene expression give rise to biases between the expression levels of the progenitor genes in the hybrid. Some of these biases are expected to be gene-specific and not give rise to global differences in progenitor gene expression. However, particularly in the case of allopolyploids formed from progenitors with different genome sizes, global expression biases favoring one subgenome are expected immediately on formation. Hence, expression biases are arguably the expectation upon allopolyploid formation rather than a phenomenon needing explanation. In the future, a deeper understanding of the kinetics of allopolyploidy may allow us to better understand both biases in duplicate losses and hybrid vigor.
Collapse
Affiliation(s)
- Hong An
- MU Bioinformatics and Analytics Core, University of Missouri, Columbia, Missouri, United States of America
| | - J. Chris Pires
- Department of Soil and Crop Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gavin C. Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
5
|
Kim J, Harris KD, Kim IK, Shemesh S, Messer PW, Greenbaum G. Incorporating ecology into gene drive modelling. Ecol Lett 2023; 26 Suppl 1:S62-S80. [PMID: 37840022 DOI: 10.1111/ele.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 10/17/2023]
Abstract
Gene drive technology, in which fast-spreading engineered drive alleles are introduced into wild populations, represents a promising new tool in the fight against vector-borne diseases, agricultural pests and invasive species. Due to the risks involved, gene drives have so far only been tested in laboratory settings while their population-level behaviour is mainly studied using mathematical and computational models. The spread of a gene drive is a rapid evolutionary process that occurs over timescales similar to many ecological processes. This can potentially generate strong eco-evolutionary feedback that could profoundly affect the dynamics and outcome of a gene drive release. We, therefore, argue for the importance of incorporating ecological features into gene drive models. We describe the key ecological features that could affect gene drive behaviour, such as population structure, life-history, environmental variation and mode of selection. We review previous gene drive modelling efforts and identify areas where further research is needed. As gene drive technology approaches the level of field experimentation, it is crucial to evaluate gene drive dynamics, potential outcomes, and risks realistically by including ecological processes.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Keith D Harris
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabel K Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Shahar Shemesh
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Gili Greenbaum
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Huang J, Thawornwattana Y, Flouri T, Mallet J, Yang Z. Inference of Gene Flow between Species under Misspecified Models. Mol Biol Evol 2022; 39:6783212. [PMID: 36317198 PMCID: PMC9729068 DOI: 10.1093/molbev/msac237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Genomic sequence data provide a rich source of information about the history of species divergence and interspecific hybridization or introgression. Despite recent advances in genomics and statistical methods, it remains challenging to infer gene flow, and as a result, one may have to estimate introgression rates and times under misspecified models. Here we use mathematical analysis and computer simulation to examine estimation bias and issues of interpretation when the model of gene flow is misspecified in analysis of genomic datasets, for example, if introgression is assigned to the wrong lineages. In the case of two species, we establish a correspondence between the migration rate in the continuous migration model and the introgression probability in the introgression model. When gene flow occurs continuously through time but in the analysis is assumed to occur at a fixed time point, common evolutionary parameters such as species divergence times are surprisingly well estimated. However, the time of introgression tends to be estimated towards the recent end of the period of continuous gene flow. When introgression events are assigned incorrectly to the parental or daughter lineages, introgression times tend to collapse onto species divergence times, with introgression probabilities underestimated. Overall, our analyses suggest that the simple introgression model is useful for extracting information concerning between-specific gene flow and divergence even when the model may be misspecified. However, for reliable inference of gene flow it is important to include multiple samples per species, in particular, from hybridizing species.
Collapse
Affiliation(s)
| | | | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
7
|
Markin A, Wagle S, Anderson TK, Eulenstein O. RF-Net 2: fast inference of virus reassortment and hybridization networks. Bioinformatics 2022; 38:2144-2152. [PMID: 35150239 PMCID: PMC9004648 DOI: 10.1093/bioinformatics/btac075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION A phylogenetic network is a powerful model to represent entangled evolutionary histories with both divergent (speciation) and convergent (e.g. hybridization, reassortment, recombination) evolution. The standard approach to inference of hybridization networks is to (i) reconstruct rooted gene trees and (ii) leverage gene tree discordance for network inference. Recently, we introduced a method called RF-Net for accurate inference of virus reassortment and hybridization networks from input gene trees in the presence of errors commonly found in phylogenetic trees. While RF-Net demonstrated the ability to accurately infer networks with up to four reticulations from erroneous input gene trees, its application was limited by the number of reticulations it could handle in a reasonable amount of time. This limitation is particularly restrictive in the inference of the evolutionary history of segmented RNA viruses such as influenza A virus (IAV), where reassortment is one of the major mechanisms shaping the evolution of these pathogens. RESULTS Here, we expand the functionality of RF-Net that makes it significantly more applicable in practice. Crucially, we introduce a fast extension to RF-Net, called Fast-RF-Net, that can handle large numbers of reticulations without sacrificing accuracy. In addition, we develop automatic stopping criteria to select the appropriate number of reticulations heuristically and implement a feature for RF-Net to output error-corrected input gene trees. We then conduct a comprehensive study of the original method and its novel extensions and confirm their efficacy in practice using extensive simulation and empirical IAV evolutionary analyses. AVAILABILITY AND IMPLEMENTATION RF-Net 2 is available at https://github.com/flu-crew/rf-net-2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexey Markin
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - Sanket Wagle
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - Oliver Eulenstein
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
|
9
|
Wallin R, van Iersel L, Kelk S, Stougie L. Applicability of several rooted phylogenetic network algorithms for representing the evolutionary history of SARS-CoV-2. BMC Ecol Evol 2021; 21:220. [PMID: 34876022 PMCID: PMC8649988 DOI: 10.1186/s12862-021-01946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background Rooted phylogenetic networks are used to display complex evolutionary history involving so-called reticulation events, such as genetic recombination. Various methods have been developed to construct such networks, using for example a multiple sequence alignment or multiple phylogenetic trees as input data. Coronaviruses are known to recombine frequently, but rooted phylogenetic networks have not yet been used extensively to describe their evolutionary history. Here, we created a workflow to compare the evolutionary history of SARS-CoV-2 with other SARS-like viruses using several rooted phylogenetic network inference algorithms. This workflow includes filtering noise from sets of phylogenetic trees by contracting edges based on branch length and bootstrap support, followed by resolution of multifurcations. We explored the running times of the network inference algorithms, the impact of filtering on the properties of the produced networks, and attempted to derive biological insights regarding the evolution of SARS-CoV-2 from them. Results The network inference algorithms are capable of constructing rooted phylogenetic networks for coronavirus data, although running-time limitations require restricting such datasets to a relatively small number of taxa. Filtering generally reduces the number of reticulations in the produced networks and increases their temporal consistency. Taxon bat-SL-CoVZC45 emerges as a major and structural source of discordance in the dataset. The tested algorithms often indicate that SARS-CoV-2/RaTG13 is a tree-like clade, with possibly some reticulate activity further back in their history. A smaller number of constructed networks posit SARS-CoV-2 as a possible recombinant, although this might be a methodological artefact arising from the interaction of bat-SL-CoVZC45 discordance and the optimization criteria used. Conclusion Our results demonstrate that as part of a wider workflow and with careful attention paid to running time, rooted phylogenetic network algorithms are capable of producing plausible networks from coronavirus data. These networks partly corroborate existing theories about SARS-CoV-2, and partly produce new avenues for exploration regarding the location and significance of reticulate activity within the wider group of SARS-like viruses. Our workflow may serve as a model for pipelines in which phylogenetic network algorithms can be used to analyse different datasets and test different hypotheses.
Collapse
Affiliation(s)
- Rosanne Wallin
- Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, The Netherlands
| | - Leo van Iersel
- Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Steven Kelk
- Department of Data Science and Knowledge Engineering (DKE), Maastricht University, Maastricht, The Netherlands
| | - Leen Stougie
- Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, The Netherlands. .,School of Business and Economics, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Ortego J, Knowles LL. Geographical isolation versus dispersal: Relictual alpine grasshoppers support a model of interglacial diversification with limited hybridization. Mol Ecol 2021; 31:296-312. [PMID: 34651368 DOI: 10.1111/mec.16225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023]
Abstract
Alpine biotas are paradigmatic of the countervailing roles of geographical isolation and dispersal during diversification. In temperate regions, repeated distributional shifts driven by Pleistocene climatic oscillations produced both recurrent pulses of population fragmentation and opportunities for gene flow during range expansions. Here, we test whether a model of divergence in isolation vs. with gene flow is more likely in the diversification of flightless alpine grasshoppers of the genus Podisma from the Iberian Peninsula. The answer to this question can also provide key insights about the pace of evolution. Specifically, if the data fit a divergence in isolation model, this suggests rapid evolution of reproductive isolation. Genomic data confirm a Pleistocene origin of the species complex, and multiple analytical approaches revealed limited asymmetric historical hybridization between two taxa. Genomic-based demographic reconstructions, spatial patterns of genetic structure and range shifts inferred from palaeodistribution modelling suggest severe range contraction accompanied by declines in effective population sizes during interglacials (i.e., contemporary populations confined to sky islands are relicts) and expansions during the coldest stages of the Pleistocene in each taxon. Although limited hybridization during secondary contact leads to phylogenetic uncertainty if gene flow is not accommodated when estimating evolutionary relationships, all species exhibit strong genetic cohesiveness. Our study lends support to the notion that the accumulation of incipient differences during periods of isolation were sufficient to lead to lineage persistence, but also that the demographic changes, dispersal constraints and spatial distribution of the sky islands themselves mediated species diversification in temperate alpine biotas.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Unmack PJ, Adams M, Hammer MP, Johnson JB, Gruber B, Gilles A, Young M, Georges A. Plotting for change: an analytical framework to aid decisions on which lineages are candidate species in phylogenomic species discovery. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
A recent study argued that coalescent-based models of species delimitation mostly delineate population structure, not species, and called for the validation of candidate species using biological information additional to the genetic information, such as phenotypic or ecological data. Here, we introduce a framework to interrogate genomic datasets and coalescent-based species trees for the presence of candidate species in situations where additional biological data are unavailable, unobtainable or uninformative. For de novo genomic studies of species boundaries, we propose six steps: (1) visualize genetic affinities among individuals to identify both discrete and admixed genetic groups from first principles and to hold aside individuals involved in contemporary admixture for independent consideration; (2) apply phylogenetic techniques to identify lineages; (3) assess diagnosability of those lineages as potential candidate species; (4) interpret the diagnosable lineages in a geographical context (sympatry, parapatry, allopatry); (5) assess significance of difference or trends in the context of sampling intensity; and (6) adopt a holistic approach to available evidence to inform decisions on species status in the difficult cases of allopatry. We adopt this approach to distinguish candidate species from within-species lineages for a widespread species complex of Australian freshwater fishes (Retropinna spp.). Our framework addresses two cornerstone issues in systematics that are often not discussed explicitly in genomic species discovery: diagnosability and how to determine it, and what criteria should be used to decide whether diagnosable lineages are conspecific or represent different species.
Collapse
Affiliation(s)
- Peter J Unmack
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Mark Adams
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Department of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael P Hammer
- Museum & Art Gallery of the Northern Territory, Darwin, NT, Australia
| | - Jerald B Johnson
- Department of Biology, Brigham Young University, Provo, UT, USA
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, USA
| | - Bernd Gruber
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - André Gilles
- UMR 1467 RECOVER, Aix Marseille Univ, INRAE, Centre St Charles, 3 place Victor Hugo, Marseille, France
| | - Matthew Young
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
12
|
Zhang D, Rheindt FE, She H, Cheng Y, Song G, Jia C, Qu Y, Alström P, Lei F. Most Genomic Loci Misrepresent the Phylogeny of an Avian Radiation Because of Ancient Gene Flow. Syst Biol 2021; 70:961-975. [PMID: 33787929 PMCID: PMC8357342 DOI: 10.1093/sysbio/syab024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Phylogenetic trees based on genome-wide sequence data may not always represent the true evolutionary history for a variety of reasons. One process that can lead to incorrect reconstruction of species phylogenies is gene flow, especially if interspecific gene flow has affected large parts of the genome. We investigated phylogenetic relationships within a clade comprising eight species of passerine birds (Phylloscopidae, Phylloscopus, leaf warblers) using one de novo genome assembly and 78 resequenced genomes. On the basis of hypothesis-exclusion trials based on D-statistics, phylogenetic network analysis, and demographic inference analysis, we identified ancient gene flow affecting large parts of the genome between one species and the ancestral lineage of a sister species pair. This ancient gene flow consistently caused erroneous reconstruction of the phylogeny when using large amounts of genome-wide sequence data. In contrast, the true relationships were captured when smaller parts of the genome were analyzed, showing that the "winner-takes-all democratic majority tree" is not necessarily the true species tree. Under this condition, smaller amounts of data may sometimes avoid the effects of gene flow due to stochastic sampling, as hidden reticulation histories are more likely to emerge from the use of larger data sets, especially whole-genome data sets. In addition, we also found that genomic regions affected by ancient gene flow generally exhibited higher genomic differentiation but a lower recombination rate and nucleotide diversity. Our study highlights the importance of considering reticulation in phylogenetic reconstructions in the genomic era.[Bifurcation; introgression; recombination; reticulation; Phylloscopus.].
Collapse
Affiliation(s)
- Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala, Sweden
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
13
|
Grant PR, Grant BR. Morphological ghosts of introgression in Darwin's finch populations. Proc Natl Acad Sci U S A 2021; 118:e2107434118. [PMID: 34330836 PMCID: PMC8346875 DOI: 10.1073/pnas.2107434118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many species of plants, animals, and microorganisms exchange genes well after the point of evolutionary divergence at which taxonomists recognize them as species. Genomes contain signatures of past gene exchange and, in some cases, they reveal a legacy of lineages that no longer exist. But genomic data are not available for many organisms, and particularly problematic for reconstructing and interpreting evolutionary history are communities that have been depleted by extinctions. For these, morphology may substitute for genes, as exemplified by the history of Darwin's finches on the Galápagos islands of Floreana and San Cristóbal. Darwin and companions collected seven specimens of a uniquely large form of Geospiza magnirostris in 1835. The populations became extinct in the next few decades, partly due to destruction of Opuntia cactus by introduced goats, whereas Geospiza fortis has persisted to the present. We used measurements of large samples of G. fortis collected for museums in the period 1891 to 1906 to test for unusually large variances and skewed distributions of beak and body size resulting from introgression. We found strong evidence of hybridization on Floreana but not on San Cristóbal. The skew is in the direction of the absent G. magnirostris We estimate introgression influenced 6% of the frequency distribution that was eroded by selection after G. magnirostris became extinct on these islands. The genetic residuum of an extinct species in an extant one has implications for its future evolution, as well as for a conservation program of reintroductions in extinction-depleted communities.
Collapse
Affiliation(s)
- Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
14
|
Wang Y, Cao Z, Ogilvie HA, Nakhleh L. Phylogenomic assessment of the role of hybridization and introgression in trait evolution. PLoS Genet 2021; 17:e1009701. [PMID: 34407067 PMCID: PMC8405015 DOI: 10.1371/journal.pgen.1009701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/30/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022] Open
Abstract
Trait evolution among a set of species-a central theme in evolutionary biology-has long been understood and analyzed with respect to a species tree. However, the field of phylogenomics, which has been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree incongruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states are incongruent with the branching patterns in the species tree, the same state could have arisen independently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better revealed by phylogenomic studies is gene flow between different species. In this work, we present a phylogenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate the interplay between the parameters of the evolutionary history and the role of introgression in a binary trait's evolution (which we call xenoplasy). Very importantly, we demonstrate, including on a biological data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow could lead to misleading hypotheses about trait evolution.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Zhen Cao
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Huw A. Ogilvie
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, Texas, United States of America
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
15
|
Feuda R, Goulty M, Zadra N, Gasparetti T, Rosato E, Pisani D, Rizzoli A, Segata N, Ometto L, Stabelli OR. Phylogenomics of Opsin Genes in Diptera Reveals Lineage-Specific Events and Contrasting Evolutionary Dynamics in Anopheles and Drosophila. Genome Biol Evol 2021; 13:6322995. [PMID: 34270718 PMCID: PMC8369074 DOI: 10.1093/gbe/evab170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Diptera is one of the biggest insect orders and displays a large diversity of visual adaptations. Similarly to other animals, the dipteran visual process is mediated by opsin genes. Although the diversity and function of these genes are well studied in key model species, a comprehensive comparative genomic study across the dipteran phylogeny is missing. Here we mined the genomes of 61 dipteran species, reconstructed the evolutionary affinities of 528 opsin genes, and determined the selective pressure acting in different species. We found that opsins underwent several lineage-specific events, including an independent expansion of Long Wave Sensitive opsins in flies and mosquitoes, and numerous family-specific duplications and losses. Both the Drosophila and the Anopheles complement are derived in comparison with the ancestral dipteran state. Molecular evolutionary studies suggest that gene turnover rate, overall mutation rate, and site-specific selective pressure are higher in Anopheles than in Drosophila. Overall, our findings indicate an extremely variable pattern of opsin evolution in dipterans, showcasing how two similarly aged radiations, Anopheles and Drosophila, are characterized by contrasting dynamics in the evolution of this gene family. These results provide a foundation for future studies on the dipteran visual system.
Collapse
Affiliation(s)
- Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, UK.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Matthew Goulty
- Department of Genetics and Genome Biology, University of Leicester, UK
| | - Nicola Zadra
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.,Department CIBIO, University of Trento, Italy
| | | | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, UK
| | | | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | | | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia, Italy
| | - Omar Rota Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, Italy
| |
Collapse
|
16
|
Esquerré D, Keogh JS, Demangel D, Morando M, Avila LJ, Sites JW, Ferri-Yáñez F, Leaché AD. Rapid radiation and rampant reticulation: Phylogenomics of South American Liolaemus lizards. Syst Biol 2021; 71:286-300. [PMID: 34259868 DOI: 10.1093/sysbio/syab058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/09/2023] Open
Abstract
Understanding the factors that cause heterogeneity among gene trees can increase the accuracy of species trees. Discordant signals across the genome are commonly produced by incomplete lineage sorting (ILS) and introgression, which in turn can result in reticulate evolution. Species tree inference using the multispecies coalescent is designed to deal with ILS and is robust to low levels of introgression, but extensive introgression violates the fundamental assumption that relationships are strictly bifurcating. In this study, we explore the phylogenomics of the iconic Liolaemus subgenus of South American lizards, a group of over 100 species mostly distributed in and around the Andes mountains. Using mitochondrial DNA (mtDNA) and genome-wide restriction-site associated DNA sequencing (RADseq; nDNA hereafter), we inferred a time-calibrated mtDNA gene tree, nDNA species trees, and phylogenetic networks. We found high levels of discordance between mtDNA and nDNA, which we attribute in part to extensive ILS resulting from rapid diversification. These data also reveal extensive and deep introgression, which combined with rapid diversification, explain the high level of phylogenetic discordance. We discuss these findings in the context of Andean orogeny and glacial cycles that fragmented, expanded, and contracted species distributions. Finally, we use the new phylogeny to resolve long-standing taxonomic issues in one of the most studied lizard groups in the New World.
Collapse
Affiliation(s)
- Damien Esquerré
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC- CONICET), Puerto Madryn, Chubut, Argentina
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC- CONICET), Puerto Madryn, Chubut, Argentina
| | - Jack W Sites
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, Provo, Utah, USA
| | - Francisco Ferri-Yáñez
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC & Laboratorio Internacional en Cambio Global CSIC-PUC (LINCGlobal), Calle José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Gene flow in phylogenomics: Sequence capture resolves species limits and biogeography of Afromontane forest endemic frogs from the Cameroon Highlands. Mol Phylogenet Evol 2021; 163:107258. [PMID: 34252546 DOI: 10.1016/j.ympev.2021.107258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Puddle frogs of the Phrynobatrachus steindachneri species complex are a useful group for investigating speciation and phylogeography in Afromontane forests of the Cameroon Volcanic Line, western Central Africa. The species complex is represented by six morphologically relatively cryptic mitochondrial DNA lineages, only two of which are distinguished at the species level - southern P. jimzimkusi and Lake Oku endemic P. njiomock, leaving the remaining four lineages identified as 'P. steindachneri'. In this study, the six mtDNA lineages are subjected to genomic sequence capture analyses and morphological examination to delimit species and to study biogeography. The nuclear DNA data (387 loci; 571,936 aligned base pairs) distinguished all six mtDNA lineages, but the topological pattern and divergence depths supported only four main clades: P. jimzimkusi, P. njiomock, and only two divergent evolutionary lineages within the four 'P. steindachneri' mtDNA lineages. One of the two lineages is herein described as a new species, P. amieti sp. nov. Reticulate evolution (hybridization) was detected within the species complex with morphologically intermediate hybrid individuals placed between the parental species in phylogenomic analyses, forming a ladder-like phylogenetic pattern. The presence of hybrids is undesirable in standard phylogenetic analyses but is essential and beneficial in the network multispecies coalescent. This latter approach provided insight into the reticulate evolutionary history of these endemic frogs. Introgressions likely occurred during the Middle and Late Pleistocene climatic oscillations, due to the cyclic connections (likely dominating during cold glacials) and separations (during warm interglacials) of montane forests. The genomic phylogeographic pattern supports the separation of the southern (Mt. Manengouba to Mt. Oku) and northern mountains at the onset of the Pleistocene. Further subdivisions occurred in the Early Pleistocene, separating populations from the northernmost (Tchabal Mbabo, Gotel Mts.) and middle mountains (Mt. Mbam, Mt. Oku, Mambilla Plateau), as well as the microendemic lineage restricted to Lake Oku (Mt. Oku). This unique model system is highly threatened as all the species within the complex have exhibited severe population declines in the past decade, placing them on the brink of extinction. In addition, Mount Oku is identified to be of particular conservation importance because it harbors three species of this complex. We, therefore, urge for conservation actions in the Cameroon Highlands to preserve their diversity before it is too late.
Collapse
|
18
|
Ferreira MS, Jones MR, Callahan CM, Farelo L, Tolesa Z, Suchentrunk F, Boursot P, Mills LS, Alves PC, Good JM, Melo-Ferreira J. The Legacy of Recurrent Introgression during the Radiation of Hares. Syst Biol 2021; 70:593-607. [PMID: 33263746 PMCID: PMC8048390 DOI: 10.1093/sysbio/syaa088] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
Hybridization may often be an important source of adaptive variation, but the extent and long-term impacts of introgression have seldom been evaluated in the phylogenetic context of a radiation. Hares (Lepus) represent a widespread mammalian radiation of 32 extant species characterized by striking ecological adaptations and recurrent admixture. To understand the relevance of introgressive hybridization during the diversification of Lepus, we analyzed whole exome sequences (61.7 Mb) from 15 species of hares (1-4 individuals per species), spanning the global distribution of the genus, and two outgroups. We used a coalescent framework to infer species relationships and divergence times, despite extensive genealogical discordance. We found high levels of allele sharing among species and show that this reflects extensive incomplete lineage sorting and temporally layered hybridization. Our results revealed recurrent introgression at all stages along the Lepus radiation, including recent gene flow between extant species since the last glacial maximum but also pervasive ancient introgression occurring since near the origin of the hare lineages. We show that ancient hybridization between northern hemisphere species has resulted in shared variation of potential adaptive relevance to highly seasonal environments, including genes involved in circadian rhythm regulation, pigmentation, and thermoregulation. Our results illustrate how the genetic legacy of ancestral hybridization may persist across a radiation, leaving a long-lasting signature of shared genetic variation that may contribute to adaptation. [Adaptation; ancient introgression; hybridization; Lepus; phylogenomics.].
Collapse
Affiliation(s)
- Mafalda S Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Zelalem Tolesa
- Department of Biology, Hawassa University, Hawassa, Ethiopia
| | - Franz Suchentrunk
- Department for Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pierre Boursot
- Institut des Sciences de l’Évolution Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, France
| | - L Scott Mills
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
- Office of Research and Creative Scholarship, University of Montana, Missoula, Montana, United States of America; Jeffrey M. Good and José Melo-Ferreira shared the senior authorship
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Bougie TC, Brelsford A, Hedin M. Evolutionary impacts of introgressive hybridization in a rapidly evolving group of jumping spiders (F. Salticidae, Habronattus americanus group). Mol Phylogenet Evol 2021; 161:107165. [PMID: 33798670 DOI: 10.1016/j.ympev.2021.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Introgressive hybridization can be a powerful force impacting patterns of evolution at multiple taxonomic levels. We aimed to understand how introgression has affected speciation and diversification within a species complex of jumping spiders. The Habronattus americanus subgroup is a recently radiating group of jumping spiders, with species now in contact after hypothesized periods of isolation during glaciation cycles of the Pleistocene. Effects of introgression on genomes and morphology were investigated using phylogenomic and clustering methods using RADseq, ultraconserved elements (UCEs), and morphological data. We characterized 14 unique species/morphs using non-metric multidimensional scaling of morphological data, a majority of which were not recovered as monophyletic in our phylogenomic analyses. Morphological clusters and genetic lineages are highly incongruent, such that geographic region was a greater predictor of phylogenetic relatedness and genomic similarity than species or morph identity. STRUCTURE analyses support this pattern, revealing clusters corresponding to larger geographic regions. A history of rapid radiation in combination with frequent introgression seems to have mostly homogenized the genomes of species in this system, while selective forces maintain distinct male morphologies. GEMMA analyses support this idea by identifying SNPs correlated with distinct male morphologies. Overall, we have uncovered a system at odds with a typical bifurcating evolutionary model, instead supporting one where closely related species evolve together connected through multiple introgression events, creating a reticulate evolutionary history.
Collapse
Affiliation(s)
- T C Bougie
- Dept. of Biology, San Diego State University, San Diego, CA 92182, United States; Evolution, Ecology, and Organismal Biology Department, University of California Riverside, Riverside, CA 92521, United States.
| | - A Brelsford
- Evolution, Ecology, and Organismal Biology Department, University of California Riverside, Riverside, CA 92521, United States
| | - M Hedin
- Dept. of Biology, San Diego State University, San Diego, CA 92182, United States
| |
Collapse
|
20
|
Koch H, DeGiorgio M. Maximum Likelihood Estimation of Species Trees from Gene Trees in the Presence of Ancestral Population Structure. Genome Biol Evol 2020; 12:3977-3995. [PMID: 32022857 PMCID: PMC7061232 DOI: 10.1093/gbe/evaa022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 11/12/2022] Open
Abstract
Though large multilocus genomic data sets have led to overall improvements in phylogenetic inference, they have posed the new challenge of addressing conflicting signals across the genome. In particular, ancestral population structure, which has been uncovered in a number of diverse species, can skew gene tree frequencies, thereby hindering the performance of species tree estimators. Here we develop a novel maximum likelihood method, termed TASTI (Taxa with Ancestral structure Species Tree Inference), that can infer phylogenies under such scenarios, and find that it has increasing accuracy with increasing numbers of input gene trees, contrasting with the relatively poor performances of methods not tailored for ancestral structure. Moreover, we propose a supertree approach that allows TASTI to scale computationally with increasing numbers of input taxa. We use genetic simulations to assess TASTI's performance in the three- and four-taxon settings and demonstrate the application of TASTI on a six-species Afrotropical mosquito data set. Finally, we have implemented TASTI in an open-source software package for ease of use by the scientific community.
Collapse
Affiliation(s)
- Hillary Koch
- Department of Statistics, Pennsylvania State University
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University
| |
Collapse
|
21
|
Forsythe ES, Nelson ADL, Beilstein MA. Biased Gene Retention in the Face of Introgression Obscures Species Relationships. Genome Biol Evol 2020; 12:1646-1663. [PMID: 33011798 PMCID: PMC7533067 DOI: 10.1093/gbe/evaa149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Phylogenomic analyses are recovering previously hidden histories of hybridization, revealing the genomic consequences of these events on the architecture of extant genomes. We applied phylogenomic techniques and several complementary statistical tests to show that introgressive hybridization appears to have occurred between close relatives of Arabidopsis, resulting in cytonuclear discordance and impacting our understanding of species relationships in the group. The composition of introgressed and retained genes indicates that selection against incompatible cytonuclear and nuclear-nuclear interactions likely acted during introgression, whereas linkage also contributed to genome composition through the retention of ancient haplotype blocks. We also applied divergence-based tests to determine the species branching order and distinguish donor from recipient lineages. Surprisingly, these analyses suggest that cytonuclear discordance arose via extensive nuclear, rather than cytoplasmic, introgression. If true, this would mean that most of the nuclear genome was displaced during introgression whereas only a small proportion of native alleles were retained.
Collapse
|
22
|
Mallet J. Alternative views of biological species: reproductively isolated units or genotypic clusters? Natl Sci Rev 2020; 7:1401-1407. [PMID: 34692169 PMCID: PMC8288880 DOI: 10.1093/nsr/nwaa116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, USA
| |
Collapse
|
23
|
Morales-Briones DF, Kadereit G, Tefarikis DT, Moore MJ, Smith SA, Brockington SF, Timoneda A, Yim WC, Cushman JC, Yang Y. Disentangling Sources of Gene Tree Discordance in Phylogenomic Data Sets: Testing Ancient Hybridizations in Amaranthaceae s.l. Syst Biol 2020; 70:219-235. [PMID: 32785686 PMCID: PMC7875436 DOI: 10.1093/sysbio/syaa066] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/01/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Gene tree discordance in large genomic data sets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The data set included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations. [Amaranthaceae; gene tree discordance; hybridization; incomplete lineage sorting; phylogenomics; species network; species tree; transcriptomics.]
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| | - Gudrun Kadereit
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Delphine T Tefarikis
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Michael J Moore
- Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin, OH 44074-1097, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge CB2 3EA, UK
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
24
|
Zhang J, Cong Q, Shen J, Brockmann E, Grishin NV. Genomes reveal drastic and recurrent phenotypic divergence in firetip skipper butterflies (Hesperiidae: Pyrrhopyginae). Proc Biol Sci 2020; 286:20190609. [PMID: 31113329 DOI: 10.1098/rspb.2019.0609] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biologists marvel at the powers of adaptive convergence, when distantly related animals look alike. While mimetic wing patterns of butterflies have fooled predators for millennia, entomologists inferred that mimics were distant relatives despite similar appearance. However, the obverse question has not been frequently asked. Who are the close relatives of mimetic butterflies and what are their features? As opposed to close convergence, divergence from a non-mimetic relative would also be extreme. When closely related animals look unalike, it is challenging to pair them. Genomic analysis promises to elucidate evolutionary relationships and shed light on molecular mechanisms of divergence. We chose the firetip skipper butterfly as a model due to its phenotypic diversity and abundance of mimicry. We sequenced and analysed whole genomes of nearly 120 representative species. Genomes partitioned this subfamily Pyrrhopyginae into five tribes (1 new), 23 genera and, additionally, 22 subgenera (10 new). The largest tribe Pyrrhopygini is divided into four subtribes (three new). Surprisingly, we found five cases where a uniquely patterned butterfly was formerly placed in a genus of its own and separately from its close relatives. In several cases, extreme and rapid phenotypic divergence involved not only wing patterns but also the structure of the male genitalia. The visually striking wing pattern difference between close relatives frequently involves disappearance or suffusion of spots and colour exchange between orange and blue. These differences (in particular, a transition between unspotted black and striped wings) happen recurrently on a short evolutionary time scale, and are therefore probably achieved by a small number of mutations.
Collapse
Affiliation(s)
- Jing Zhang
- 2 Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center , 5323 Harry Hines Blvd, Dallas, TX 75390-9050 , USA
| | - Qian Cong
- 2 Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center , 5323 Harry Hines Blvd, Dallas, TX 75390-9050 , USA
| | - Jinhui Shen
- 2 Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center , 5323 Harry Hines Blvd, Dallas, TX 75390-9050 , USA
| | | | - Nick V Grishin
- 1 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center , 5323 Harry Hines Blvd, Dallas, TX 75390-9050 , USA.,2 Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center , 5323 Harry Hines Blvd, Dallas, TX 75390-9050 , USA
| |
Collapse
|
25
|
Tidwell H, Nakhleh L. Integrated likelihood for phylogenomics under a no-common-mechanism model. BMC Genomics 2020; 21:219. [PMID: 32299348 PMCID: PMC7161099 DOI: 10.1186/s12864-020-6608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Multi-locus species phylogeny inference is based on models of sequence evolution on gene trees as well as models of gene tree evolution within the branches of species phylogenies. Almost all statistical methods for this inference task assume a common mechanism across all loci as captured by a single value of each branch length of the species phylogeny. Results In this paper, we pursue a “no common mechanism" (NCM) model, where every gene tree evolves according to its own parameters of the species phylogeny. Based on this model, we derive an analytically integrated likelihood of both species trees and networks given the gene trees of multiple loci under an NCM model. We demonstrate the performance of inference under this integrated likelihood on both simulated and biological data. Conclusions The model presented here will afford opportunities for exploring connections among various criteria for estimating species phylogenies from multiple, independent loci. Furthermore, further development of this model could potentially result in more efficient methods for searching the space of species phylogenies by focusing solely on the topology of the phylogeny.
Collapse
|
26
|
Zehady AK, Fordham BG, Ogg JG. Integrated species-phenon trees: visualizing infraspecific diversity within lineages. Sci Rep 2019; 9:18968. [PMID: 31831804 PMCID: PMC6908663 DOI: 10.1038/s41598-019-55435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/25/2019] [Indexed: 12/03/2022] Open
Abstract
The unprecedented detail with which contemporary molecular phylogenetics are visualizing infraspecific relationships within living species and species complexes cannot as yet be reliably extended into deep time. Yet paleontological systematics has routinely dealt in (mainly) morphotaxa envisaged in various ways to have been components of past species lineages. Bridging these perspectives can only enrich both. We present a visualization tool that digitally depicts infraspecific diversity within species through deep time. Our integrated species-phenon tree merges ancestor-descendant trees for fossil morphotaxa (phena) into reconstructed phylogenies of lineages (species) by expanding the latter into "species boxes" and placing the phenon trees inside. A key programming strategy to overcome the lack of a simple overall parent-child hierarchy in the integrated tree has been the progressive population of a species-phenon relationship map which then provides the graphical footprint for the overarching species boxes. Our initial case has been limited to planktonic foraminfera via Aze & others' important macroevolutionary dataset. The tool could potentially be appropriated for other organisms, to detail other kinds of infraspecific granularity within lineages, or more generally to visualize two nested but loosely coupled trees.
Collapse
Affiliation(s)
- Abdullah Khan Zehady
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Barry G Fordham
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia.
| | - James G Ogg
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Du Y, Wu S, Edwards SV, Liu L. The effect of alignment uncertainty, substitution models and priors in building and dating the mammal tree of life. BMC Evol Biol 2019; 19:203. [PMID: 31694538 PMCID: PMC6833305 DOI: 10.1186/s12862-019-1534-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The flood of genomic data to help build and date the tree of life requires automation at several critical junctures, most importantly during sequence assembly and alignment. It is widely appreciated that automated alignment protocols can yield inaccuracies, but the relative impact of various sources error on phylogenomic analysis is not yet known. This study employs an updated mammal data set of 5162 coding loci sampled from 90 species to evaluate the effects of alignment uncertainty, substitution models, and fossil priors on gene tree, species tree, and divergence time estimation. Additionally, a novel coalescent likelihood ratio test is introduced for comparing competing species trees against a given set of gene trees. RESULTS The aligned DNA sequences of 5162 loci from 90 species were trimmed and filtered using trimAL and two filtering protocols. The final dataset contains 4 sets of alignments - before trimming, after trimming, filtered by a recently proposed pipeline, and further filtered by comparing ML gene trees for each locus with the concatenation tree. Our analyses suggest that the average discordance among the coalescent trees is significantly smaller than that among the concatenation trees estimated from the 4 sets of alignments or with different substitution models. There is no significant difference among the divergence times estimated with different substitution models. However, the divergence dates estimated from the alignments after trimming are more recent than those estimated from the alignments before trimming. CONCLUSIONS Our results highlight that alignment uncertainty of the updated mammal data set and the choice of substitution models have little impact on tree topologies yielded by coalescent methods for species tree estimation, whereas they are more influential on the trees made by concatenation. Given the choice of calibration scheme and clock models, divergence time estimates are robust to the choice of substitution models, but removing alignments deemed problematic by trimming algorithms can lead to more recent dates. Although the fossil prior is important in divergence time estimation, Bayesian estimates of divergence times in this data set are driven primarily by the sequence data.
Collapse
Affiliation(s)
- Yan Du
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30606 USA
| | - Shaoyuan Wu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116 People’s Republic of China
| | - Scott V. Edwards
- Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - Liang Liu
- Liang Liu, Department of Statistics and Institute of Bioinformatics, University of Georgia, 310 Herty Drive, Athens, GA 30606 USA
| |
Collapse
|
28
|
Hybridization increases population variation during adaptive radiation. Proc Natl Acad Sci U S A 2019; 116:23216-23224. [PMID: 31659024 DOI: 10.1073/pnas.1913534116] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adaptive radiations are prominent components of the world's biodiversity. They comprise many species derived from one or a small number of ancestral species in a geologically short time that have diversified into a variety of ecological niches. Several authors have proposed that introgressive hybridization has been important in the generation of new morphologies and even new species, but how that happens throughout evolutionary history is not known. Interspecific gene exchange is expected to have greatest impact on variation if it occurs after species have diverged genetically and phenotypically but before genetic incompatibilities arise. We use a dated phylogeny to infer that populations of Darwin's finches in the Galápagos became more variable in morphological traits through time, consistent with the hybridization hypothesis, and then declined in variation after reaching a peak. Some species vary substantially more than others. Phylogenetic inferences of hybridization are supported by field observations of contemporary hybridization. Morphological effects of hybridization have been investigated on the small island of Daphne Major by documenting changes in hybridizing populations of Geospiza fortis and Geospiza scandens over a 30-y period. G. scandens showed more evidence of admixture than G. fortis Beaks of G. scandens became progressively blunter, and while variation in length increased, variation in depth decreased. These changes imply independent effects of introgression on 2, genetically correlated, beak dimensions. Our study shows how introgressive hybridization can alter ecologically important traits, increase morphological variation as a radiation proceeds, and enhance the potential for future evolution in changing environments.
Collapse
|
29
|
Scholz GE, Popescu AA, Taylor MI, Moulton V, Huber KT. OSF-Builder: A New Tool for Constructing and Representing Evolutionary Histories Involving Introgression. Syst Biol 2019; 68:717-729. [PMID: 30668824 DOI: 10.1093/sysbio/syz004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
Introgression is an evolutionary process which provides an important source of innovation for evolution. Although various methods have been used to detect introgression, very few methods are currently available for constructing evolutionary histories involving introgression. In this article, we propose a new method for constructing such evolutionary histories whose starting point is a species forest (consisting of a collection of lineage trees, usually arising as a collection of clades or monophyletic groups in a species tree), and a gene tree for a specific allele of interest, or allele tree for short. Our method is based on representing introgression in terms of a certain "overlay" of the allele tree over the lineage trees, called an overlaid species forest (OSF). OSFs are similar to phylogenetic networks although a key difference is that they typically have multiple roots because each monophyletic group in the species tree has a different point of origin. Employing a new model for introgression, we derive an efficient algorithm for building OSFs called OSF-Builder that is guaranteed to return an optimal OSF in the sense that the number of potential introgression events is minimized. As well as using simulations to assess the performance of OSF-Builder, we illustrate its use on a butterfly data set in which introgression has been previously inferred. The OSF-Builder software is available for download from https://www.uea.ac.uk/computing/software/OSF-Builder.
Collapse
Affiliation(s)
| | | | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
30
|
Zhu J, Nakhleh L. Inference of species phylogenies from bi-allelic markers using pseudo-likelihood. Bioinformatics 2019; 34:i376-i385. [PMID: 29950004 PMCID: PMC6022577 DOI: 10.1093/bioinformatics/bty295] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Motivation Phylogenetic networks represent reticulate evolutionary histories. Statistical methods for their inference under the multispecies coalescent have recently been developed. A particularly powerful approach uses data that consist of bi-allelic markers (e.g. single nucleotide polymorphism data) and allows for exact likelihood computations of phylogenetic networks while numerically integrating over all possible gene trees per marker. While the approach has good accuracy in terms of estimating the network and its parameters, likelihood computations remain a major computational bottleneck and limit the method’s applicability. Results In this article, we first demonstrate why likelihood computations of networks take orders of magnitude more time when compared to trees. We then propose an approach for inference of phylogenetic networks based on pseudo-likelihood using bi-allelic markers. We demonstrate the scalability and accuracy of phylogenetic network inference via pseudo-likelihood computations on simulated data. Furthermore, we demonstrate aspects of robustness of the method to violations in the underlying assumptions of the employed statistical model. Finally, we demonstrate the application of the method to biological data. The proposed method allows for analyzing larger datasets in terms of the numbers of taxa and reticulation events. While pseudo-likelihood had been proposed before for data consisting of gene trees, the work here uses sequence data directly, offering several advantages as we discuss. Availability and implementation The methods have been implemented in PhyloNet (http://bioinfocs.rice.edu/phylonet).
Collapse
Affiliation(s)
- Jiafan Zhu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA.,Department of BioSciences, Rice University, Houston, TX, USA
| |
Collapse
|
31
|
Thawornwattana Y, Dalquen D, Yang Z. Coalescent Analysis of Phylogenomic Data Confidently Resolves the Species Relationships in the Anopheles gambiae Species Complex. Mol Biol Evol 2019; 35:2512-2527. [PMID: 30102363 PMCID: PMC6188554 DOI: 10.1093/molbev/msy158] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deep coalescence and introgression make it challenging to infer phylogenetic relationships among closely related species that arose through radiative speciation events. Despite numerous phylogenetic analyses and the availability of whole genomes, the phylogeny in the Anopheles gambiae species complex has not been confidently resolved. Here we extract over 80, 000 coding and noncoding short segments (called loci) from the genomes of six members of the species complex and use a Bayesian method under the multispecies coalescent model to infer the species tree, which takes into account genealogical heterogeneity across the genome and uncertainty in the gene trees. We obtained a robust estimate of the species tree from the distal region of the X chromosome: (A. merus, ((A. melas, (A. arabiensis, A. quadriannulatus)), (A. gambiae, A. coluzzii))), with A. merus to be the earliest branching species. This species tree agrees with the chromosome inversion phylogeny and provides a parsimonious interpretation of inversion and introgression events. Simulation informed by the real data suggest that the coalescent approach is reliable while the sliding-window analysis used in a previous phylogenomic study generates artifactual species trees. Likelihood ratio test of gene flow revealed strong evidence of autosomal introgression from A. arabiensis into A. gambiae (at the average rate of ∼0.2 migrants per generation), but not in the opposite direction, and introgression of the 3 L chromosomal region from A. merus into A. quadriannulatus. Our results highlight the importance of accommodating incomplete lineage sorting and introgression in phylogenomic analyses of species that arose through recent radiative speciation events.
Collapse
Affiliation(s)
- Yuttapong Thawornwattana
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Daniel Dalquen
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, MA
| |
Collapse
|
32
|
Bell KL, Nice CC, Hulsey D. Population Genomic Evidence Reveals Subtle Patterns of Differentiation in the Trophically Polymorphic Cuatro Ciénegas Cichlid, Herichthys minckleyi. J Hered 2019; 110:361-369. [PMID: 30657932 DOI: 10.1093/jhered/esz004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/16/2019] [Indexed: 11/12/2022] Open
Abstract
In recent decades, an increased understanding of molecular ecology has led to a reinterpretation of the role of gene flow during the evolution of reproductive isolation and biological novelty. For example, even in the face of ongoing gene flow strong selection may maintain divergent polymorphisms, or gene flow may introduce novel biological diversity via hybridization and introgression from a divergent species. Herein, we elucidate the evolutionary history and genomic basis of a trophically polymorphic trait in a species of cichlid fish, Herichthys minckleyi. We explored genetic variation at 3 hierarchical levels; between H. minckleyi (n = 69) and a closely related species Herichthys cyanoguttatus (n = 10), between H. minckleyi individuals from 2 geographic locations, and finally between individuals with alternate morphotypes at both a genome-wide and locus-specific scale. We found limited support for the hypothesis that the H. minckleyi polymorphism is the result of ongoing hybridization between the 2 species. Within H. minckleyi we found evidence of geographic genetic structure, and using traditional population genetic analyses found that individuals of alternate morphotypes within a pool appear to be panmictic. However, when we used a locus-specific approach to examine the relationship between multi-locus genotype, tooth size, and geographic sampling, we found the first evidence for molecular genetic differences between the H. minckleyi morphotypes.
Collapse
Affiliation(s)
- Katherine L Bell
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, TX
| | - Chris C Nice
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, TX
| | - Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
33
|
MacGuigan DJ, Near TJ. Phylogenomic Signatures of Ancient Introgression in a Rogue Lineage of Darters (Teleostei: Percidae). Syst Biol 2019; 68:329-346. [PMID: 30395332 DOI: 10.1093/sysbio/syy074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Evolutionary history is typically portrayed as a branching phylogenetic tree, yet not all evolution proceeds in a purely bifurcating manner. Introgressive hybridization is one process that results in reticulate evolution. Most known examples of genome-wide introgression occur among closely related species with relatively recent common ancestry; however, we present evidence for ancient hybridization and genome-wide introgression between major stem lineages of darters, a species-rich clade of North American freshwater fishes. Previous attempts to resolve the relationships of darters have been confounded by the uncertain phylogenetic resolution of the lineage Allohistium. In this study, we investigate the phylogenomics of darters, specifically the relationships of Allohistium, through analyses of approximately 30,000 RADseq loci sampled from 112 species. Our phylogenetic inferences are based on traditional approaches in combination with strategies that accommodate reticulate evolution. These analyses result in a novel phylogenetic hypothesis for darters that includes ancient introgression between Allohistium and other two major darter lineages, minimally occurring 20 million years ago. Darters offer a compelling case for the necessity of incorporating phylogenetic networks in reconstructing the evolutionary history of diversification in species-rich lineages. We anticipate that the growing wealth of genomic data for clades of non-model organisms will reveal more examples of ancient hybridization, eventually requiring a re-evaluation of how evolutionary history is visualized and utilized in macroevolutonary investigations.
Collapse
Affiliation(s)
- Daniel J MacGuigan
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
34
|
Barley AJ, Nieto-Montes de Oca A, Reeder TW, Manríquez-Morán NL, Arenas Monroy JC, Hernández-Gallegos O, Thomson RC. Complex patterns of hybridization and introgression across evolutionary timescales in Mexican whiptail lizards (Aspidoscelis). Mol Phylogenet Evol 2019; 132:284-295. [DOI: 10.1016/j.ympev.2018.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
|
35
|
Schrago CG, Seuánez HN. Large ancestral effective population size explains the difficult phylogenetic placement of owl monkeys. Am J Primatol 2019; 81:e22955. [PMID: 30779198 DOI: 10.1002/ajp.22955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/05/2018] [Accepted: 12/15/2018] [Indexed: 11/07/2022]
Abstract
The phylogenetic position of owl monkeys, grouped in the genus Aotus, has been a controversial issue for understanding Neotropical primate evolution. Explanations of the difficult phylogenetic assignment of owl monkeys have been elusive, frequently relying on insufficient data (stochastic error) or scenarios of rapid speciation (adaptive radiation) events. Using a coalescent-based approach, we explored the population-level mechanisms likely explaining these topological discrepancies. We examined the topological variance of 2,192 orthologous genes shared between representatives of the three major Cebidae lineages and the outgroup. By employing a methodological framework that allows for reticulated tree topologies, our analysis explicitly tested for non-dichotomous evolutionary processes impacting the finding of the position of owl monkeys in the cebid phylogeny. Our findings indicated that Aotus is a sister lineage of the callitrichines. Most gene trees (>50%) failed to recover the species tree topology, although the distribution of gene trees mismatching the true species topology followed the standard expectation of the multispecies coalescent without reticulation. We showed that the large effective population size of the common ancestor of Aotus and callitrichines was the most likely factor responsible for generating phylogenetic uncertainty. On the other hand, fast speciation scenarios or introgression played minor roles. We propose that the difficult phylogenetic placement of Aotus is explained by population-level processes associated with the large ancestral effective size. These results shed light on the biogeography of the early cebid diversification in the Miocene, highlighting the relevance of evaluating phylogenetic relationships employing population-aware approaches.
Collapse
Affiliation(s)
- Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hector N Seuánez
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Genetics, National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Bravo GA, Antonelli A, Bacon CD, Bartoszek K, Blom MPK, Huynh S, Jones G, Knowles LL, Lamichhaney S, Marcussen T, Morlon H, Nakhleh LK, Oxelman B, Pfeil B, Schliep A, Wahlberg N, Werneck FP, Wiedenhoeft J, Willows-Munro S, Edwards SV. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 2019; 7:e6399. [PMID: 30783571 PMCID: PMC6378093 DOI: 10.7717/peerj.6399] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alexandre Antonelli
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Botanical Garden, Göteborg, Sweden
| | - Christine D. Bacon
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stella Huynh
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Graham Jones
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Hélène Morlon
- Institut de Biologie, Ecole Normale Supérieure de Paris, Paris, France
| | - Luay K. Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bengt Oxelman
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Bernard Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Alexander Schliep
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | | | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisa da Amazônia, Manaus, AM, Brazil
| | - John Wiedenhoeft
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA
| | - Sandi Willows-Munro
- School of Life Sciences, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
37
|
The Timing and Direction of Introgression Under the Multispecies Network Coalescent. Genetics 2019; 211:1059-1073. [PMID: 30670542 DOI: 10.1534/genetics.118.301831] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Introgression is a pervasive biological process, and many statistical methods have been developed to infer its presence from genomic data. However, many of the consequences and genomic signatures of introgression remain unexplored from a methodological standpoint. Here, we develop a model for the timing and direction of introgression based on the multispecies network coalescent, and from it suggest new approaches for testing introgression hypotheses. We suggest two new statistics, D 1 and D 2, which can be used in conjunction with other information to test hypotheses relating to the timing and direction of introgression, respectively. D 1 may find use in evaluating cases of homoploid hybrid speciation (HHS), while D 2 provides a four-taxon test for polarizing introgression. Although analytical expectations for our statistics require a number of assumptions to be met, we show how simulations can be used to test hypotheses about introgression when these assumptions are violated. We apply the D 1 statistic to genomic data from the wild yeast Saccharomyces paradoxus-a proposed example of HHS-demonstrating its use as a test of this model. These methods provide new and powerful ways to address questions relating to the timing and direction of introgression.
Collapse
|
38
|
Ruzzante L, Reijnders MJ, Waterhouse RM. Of Genes and Genomes: Mosquito Evolution and Diversity. Trends Parasitol 2019; 35:32-51. [DOI: 10.1016/j.pt.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
|
39
|
Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization. BIOINFORMATICS AND PHYLOGENETICS 2019. [DOI: 10.1007/978-3-030-10837-3_13] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Hanemaaijer MJ, Collier TC, Chang A, Shott CC, Houston PD, Schmidt H, Main BJ, Cornel AJ, Lee Y, Lanzaro GC. The fate of genes that cross species boundaries after a major hybridization event in a natural mosquito population. Mol Ecol 2018; 27:4978-4990. [DOI: 10.1111/mec.14947] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Travis C. Collier
- Daniel K. Inouye US Pacific Basin Agricultural Research Center (PBARC), United States Department of Agriculture Agricultural Research Service Hilo Hawaii
| | - Allison Chang
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Chloe C. Shott
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Parker D. Houston
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Bradley J. Main
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Anthony J. Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
- Mosquito Control Research Laboratory, Department of Entomology and Nematology University of California Parlier California
- School of Health Systems & Public Health University of Pretoria Pretoria South Africa
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology UC Davis Davis California
| |
Collapse
|
41
|
Abstract
Most phylogenies are typically represented as purely bifurcating. However, as genomic data have become more common in phylogenetic studies, it is not unusual to find reticulation among terminal lineages or among internal nodes (deep time reticulation; DTR). In these situations, gene flow must have happened in the same or adjacent geographic areas for these DTRs to have occurred and therefore biogeographic reconstruction should provide similar area estimates for parental nodes, provided extinction or dispersal has not eroded these patterns. We examine the phylogeny of the widely distributed New World kingsnakes (Lampropeltis), determine if DTR is present in this group, and estimate the ancestral area for reticulation. Importantly, we develop a new method that uses coalescent simulations in a machine learning framework to show conclusively that this phylogeny is best represented as reticulating at deeper time. Using joint probabilities of ancestral area reconstructions on the bifurcating parental lineages from the reticulating node, we show that this reticulation likely occurred in northwestern Mexico/southwestern US, and subsequently, led to the diversification of the Mexican kingsnakes. This region has been previously identified as an area important for understanding speciation and secondary contact with gene flow in snakes and other squamates. This research shows that phylogenetic reticulation is common, even in well-studied groups, and that the geographic scope of ancient hybridization is recoverable.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| | - Marcelo Gehara
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| |
Collapse
|
42
|
Beckman EJ, Benham PM, Cheviron ZA, Witt C. Detecting introgression despite phylogenetic uncertainty: The case of the South American siskins. Mol Ecol 2018; 27:4350-4367. [DOI: 10.1111/mec.14795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Elizabeth J. Beckman
- Division of Biological Sciences University of Montana Missoula Montana
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico
| | - Phred M. Benham
- Division of Biological Sciences University of Montana Missoula Montana
| | | | - Christopher C. Witt
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico
| |
Collapse
|
43
|
Morales-Briones DF, Liston A, Tank DC. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). THE NEW PHYTOLOGIST 2018; 218:1668-1684. [PMID: 29604235 DOI: 10.1111/nph.15099] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/09/2018] [Indexed: 05/10/2023]
Abstract
Hybridization, incomplete lineage sorting, and phylogenetic error produce similar incongruence patterns, representing a great challenge for phylogenetic reconstruction. Here, we use sequence capture data and multiple species tree and species network approaches to resolve the backbone phylogeny of the Neotropical genus Lachemilla, while distinguishing among sources of incongruence. We used 396 nuclear loci and nearly complete plastome sequences from 27 species to clarify the relationships among the major groups of Lachemilla, and explored multiple sources of conflict between gene trees and species trees inferred with a plurality of approaches. All phylogenetic methods recovered the four major groups previously proposed for Lachemilla, but species tree methods recovered different topologies for relationships between these four clades. Species network analyses revealed that one major clade, Orbiculate, is likely of ancient hybrid origin, representing one of the main sources of incongruence among the species trees. Additionally, we found evidence for a potential whole genome duplication event shared by Lachemilla and allied genera. Lachemilla shows clear evidence of ancient and recent hybridization throughout the evolutionary history of the group. Also, we show the necessity to use phylogenetic network approaches that can simultaneously accommodate incomplete lineage sorting and gene flow when studying groups that show patterns of reticulation.
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| |
Collapse
|
44
|
Anselmetti Y, Duchemin W, Tannier E, Chauve C, Bérard S. Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes. BMC Genomics 2018; 19:96. [PMID: 29764366 PMCID: PMC5954271 DOI: 10.1186/s12864-018-4466-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions. Results We present a computational method, ADseq, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADseq provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADseq to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes. Conclusions We demonstrate the method’s ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression. Electronic supplementary material The online version of this article (10.1186/s12864-018-4466-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoann Anselmetti
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex, 69622, France
| | - Wandrille Duchemin
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex, 69622, France.,INRIA Grenoble - Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin, 38330, France
| | - Eric Tannier
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex, 69622, France.,INRIA Grenoble - Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin, 38330, France
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, V5A1S6, BC, Canada
| | - Sèverine Bérard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| |
Collapse
|
45
|
Dalquen DA, Zhu T, Yang Z. Maximum Likelihood Implementation of an Isolation-with-Migration Model for Three Species. Syst Biol 2018; 66:379-398. [PMID: 27486180 DOI: 10.1093/sysbio/syw063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 07/08/2016] [Indexed: 01/03/2023] Open
Abstract
We develop a maximum likelihood (ML) method for estimating migration rates between species using genomic sequence data. A species tree is used to accommodate the phylogenetic relationships among three species, allowing for migration between the two sister species, while the third species is used as an out-group. A Markov chain characterization of the genealogical process of coalescence and migration is used to integrate out the migration histories at each locus analytically, whereas Gaussian quadrature is used to integrate over the coalescent times on each genealogical tree numerically. This is an extension of our early implementation of the symmetrical isolation-with-migration model for three species to accommodate arbitrary loci with two or three sequences per locus and to allow asymmetrical migration rates. Our implementation can accommodate tens of thousands of loci, making it feasible to analyze genome-scale data sets to test for gene flow. We calculate the posterior probabilities of gene trees at individual loci to identify genomic regions that are likely to have been transferred between species due to gene flow. We conduct a simulation study to examine the statistical properties of the likelihood ratio test for gene flow between the two in-group species and of the ML estimates of model parameters such as the migration rate. Inclusion of data from a third out-group species is found to increase dramatically the power of the test and the precision of parameter estimation. We compiled and analyzed several genomic data sets from the Drosophila fruit flies. Our analyses suggest no migration from D. melanogaster to D. simulans, and a significant amount of gene flow from D. simulans to D. melanogaster, at the rate of ~0.02 migrant individuals per generation. We discuss the utility of the multispecies coalescent model for species tree estimation, accounting for incomplete lineage sorting and migration.
Collapse
Affiliation(s)
- Daniel A Dalquen
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Tianqi Zhu
- Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.,Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
46
|
Thom G, Amaral FRD, Hickerson MJ, Aleixo A, Araujo-Silva LE, Ribas CC, Choueri E, Miyaki CY. Phenotypic and Genetic Structure Support Gene Flow Generating Gene Tree Discordances in an Amazonian Floodplain Endemic Species. Syst Biol 2018; 67:700-718. [DOI: 10.1093/sysbio/syy004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/23/2018] [Indexed: 01/25/2023] Open
Affiliation(s)
- Gregory Thom
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, São Paulo, SP 05508-090, Brazil
| | - Fabio Raposo Do Amaral
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Laboratório de Genética Evolutiva, Universidade Federal de São Paulo, Rua Professor Artur Riedel, 275, Diadema, SP 09972–270, Brazil
| | - Michael J Hickerson
- Department of Biology, Marshak Science Building, City College of New York, 160, Convent Avenue, 10031 New York, NY, USA
| | - Alexandre Aleixo
- Departamento de Ornitologia, Museu Paraense Emílio Goeldi (MPEG), Caixa Postal 399, Belém, PA 66040-170, Brazil
| | - Lucas E Araujo-Silva
- Departamento de Ornitologia, Museu Paraense Emílio Goeldi (MPEG), Caixa Postal 399, Belém, PA 66040-170, Brazil
| | - Camila C Ribas
- Coordenação de biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo 2936, Manaus, AM 69060-001, Brazil
| | - Erik Choueri
- Coordenação de biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo 2936, Manaus, AM 69060-001, Brazil
| | - Cristina Y Miyaki
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
47
|
Abbott RJ, Barton NH, Good JM. Genomics of hybridization and its evolutionary consequences. Mol Ecol 2018; 25:2325-32. [PMID: 27145128 DOI: 10.1111/mec.13685] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Richard J Abbott
- School of Biology, University of St Andrews, Mitchell Building, St Andrews, Fife, KY16 9TH, UK
| | - Nicholas H Barton
- Institute of Science and Technology (IST Austria), Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| |
Collapse
|
48
|
Zhu J, Wen D, Yu Y, Meudt HM, Nakhleh L. Bayesian inference of phylogenetic networks from bi-allelic genetic markers. PLoS Comput Biol 2018; 14:e1005932. [PMID: 29320496 PMCID: PMC5779709 DOI: 10.1371/journal.pcbi.1005932] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/23/2018] [Accepted: 12/14/2017] [Indexed: 12/04/2022] Open
Abstract
Phylogenetic networks are rooted, directed, acyclic graphs that model reticulate evolutionary histories. Recently, statistical methods were devised for inferring such networks from either gene tree estimates or the sequence alignments of multiple unlinked loci. Bi-allelic markers, most notably single nucleotide polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs), provide a powerful source of genome-wide data. In a recent paper, a method called SNAPP was introduced for statistical inference of species trees from unlinked bi-allelic markers. The generative process assumed by the method combined both a model of evolution for the bi-allelic markers, as well as the multispecies coalescent. A novel component of the method was a polynomial-time algorithm for exact computation of the likelihood of a fixed species tree via integration over all possible gene trees for a given marker. Here we report on a method for Bayesian inference of phylogenetic networks from bi-allelic markers. Our method significantly extends the algorithm for exact computation of phylogenetic network likelihood via integration over all possible gene trees. Unlike the case of species trees, the algorithm is no longer polynomial-time on all instances of phylogenetic networks. Furthermore, the method utilizes a reversible-jump MCMC technique to sample the posterior of phylogenetic networks given bi-allelic marker data. Our method has a very good performance in terms of accuracy and robustness as we demonstrate on simulated data, as well as a data set of multiple New Zealand species of the plant genus Ourisia (Plantaginaceae). We implemented the method in the publicly available, open-source PhyloNet software package. The availability of genomic data has revolutionized the study of evolutionary histories and phylogeny inference. Inferring evolutionary histories from genomic data requires, in most cases, accounting for the fact that different genomic regions could have evolutionary histories that differ from each other as well as from that of the species from which the genomes were sampled. In this paper, we introduce a method for inferring evolutionary histories while accounting for two processes that could give rise to such differences across the genomes, namely incomplete lineage sorting and hybridization. We introduce a novel algorithm for computing the likelihood of phylogenetic networks from bi-allelic genetic markers and use it in a Bayesian inference method. Analyses of synthetic and empirical data sets show a very good performance of the method in terms of the estimates it obtains.
Collapse
Affiliation(s)
- Jiafan Zhu
- Computer Science, Rice University, Houston, Texas, United States of America
| | - Dingqiao Wen
- Computer Science, Rice University, Houston, Texas, United States of America
| | - Yun Yu
- Computer Science, Rice University, Houston, Texas, United States of America
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Luay Nakhleh
- Computer Science, Rice University, Houston, Texas, United States of America
- BioSciences, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Abstract
Phylogeography, and its extensions into comparative phylogeography, have their roots in the layering of gene trees across geography, a paradigm that was greatly facilitated by the nonrecombining, fast evolution provided by animal mtDNA. As phylogeography moves into the era of next-generation sequencing, the specter of reticulation at several levels-within loci and genomes in the form of recombination and across populations and species in the form of introgression-has raised its head with a prominence even greater than glimpsed during the nuclear gene PCR era. Here we explore the theme of reticulation in comparative phylogeography, speciation analysis, and phylogenomics, and ask how the centrality of gene trees has fared in the next-generation era. To frame these issues, we first provide a snapshot of multilocus phylogeographic studies across the Carpentarian Barrier, a prominent biogeographic barrier dividing faunas spanning the monsoon tropics in northern Australia. We find that divergence across this barrier is evident in most species, but is heterogeneous in time and demographic history, often reflecting the taxonomic distinctness of lineages spanning it. We then discuss a variety of forces generating reticulate patterns in phylogeography, including introgression, contact zones, and the potential selection-driven outliers on next-generation molecular markers. We emphasize the continued need for demographic models incorporating reticulation at the level of genomes and populations, and conclude that gene trees, whether explicit or implicit, should continue to play a role in the future of phylogeography.
Collapse
|