1
|
Bartolić P, Morgan EJ, Padilla-García N, Kolář F. Ploidy as a leaky reproductive barrier: mechanisms, rates and evolutionary significance of interploidy gene flow. ANNALS OF BOTANY 2024; 134:537-550. [PMID: 38868992 PMCID: PMC11523636 DOI: 10.1093/aob/mcae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species. SCOPE Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented. CONCLUSIONS The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.
Collapse
Affiliation(s)
- Paolo Bartolić
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Emma J Morgan
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, 37007 Salamanca, Spain
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
2
|
Long KM, Rivera-Colón AG, Bennett KFP, Catchen JM, Braun MJ, Brawn JD. Ongoing introgression of a secondary sexual plumage trait in a stable avian hybrid zone. Evolution 2024; 78:1539-1553. [PMID: 38753474 DOI: 10.1093/evolut/qpae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Hybrid zones are dynamic systems where natural selection, sexual selection, and other evolutionary forces can act on reshuffled combinations of distinct genomes. The movement of hybrid zones, individual traits, or both are of particular interest for understanding the interplay between selective processes. In a hybrid zone involving two lek-breeding birds, secondary sexual plumage traits of Manacus vitellinus, including bright yellow collar and olive belly color, have introgressed ~50 km asymmetrically across the genomic center of the zone into populations more genetically similar to Manacus candei. Males with yellow collars are preferred by females and are more aggressive than parental M. candei, suggesting that sexual selection was responsible for the introgression of male traits. We assessed the spatial and temporal dynamics of this hybrid zone using historical (1989-1994) and contemporary (2017-2020) transect samples to survey both morphological and genetic variation. Genome-wide single nucleotide polymorphism data and several male phenotypic traits show that the genomic center of the zone has remained spatially stable, whereas the olive belly color of male M. vitellinus has continued to introgress over this time period. Our data suggest that sexual selection can continue to shape phenotypes dynamically, independent of a stable genomic transition between species.
Collapse
Affiliation(s)
- Kira M Long
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, United States
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Jeffrey D Brawn
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M. Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Syst Biol 2024; 73:392-418. [PMID: 38613229 PMCID: PMC11282369 DOI: 10.1093/sysbio/syae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Eva Hodková
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jennifer James
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
4
|
Wróbel A, Klichowska E, Nobis M. Hybrids as mirrors of the past: genomic footprints reveal spatio-temporal dynamics and extinction risk of alpine extremophytes in the mountains of Central Asia. FRONTIERS IN PLANT SCIENCE 2024; 15:1369732. [PMID: 38693932 PMCID: PMC11061500 DOI: 10.3389/fpls.2024.1369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Hybridization is one of the key processes shaping lineage diversification, particularly in regions that experienced strong climate oscillations. The alpine biome with its rich history of glacial-interglacial cycles and complex patterns of species distribution shifts offers an excellent system to investigate the impact of gene flow on population dynamics and speciation, important issues for evolutionary biology and biodiversity conservation. In this study, we combined genomic data (DArTseq), chloroplast markers, and morphology to examine phylogenetic relationships and the permeability of species boundaries and their evolutionary outcomes among the alpine extremophilic species of Puccinellia (Poaceae) in the Pamir Mountains, a part of the Mountains of Central Asia biodiversity hotspot. We determined the occurrence of interspecific hybrids between P. himalaica and P. pamirica, which demonstrated almost symmetric ancestry from their parental species and did not show signals of introgression. According to our integrative revision, the natural hybrids between P. himalaica and P. pamirica should be classified as Puccinellia ×vachanica (pro species). Using approximate Bayesian computation for population history inference, we uncovered that P. himalaica hybridized with P. pamirica independently in multiple localities over the Holocene. Hybrids inherited the fine-scale genetic structure from their parental species, which developed these patterns earlier, during the Late Pleistocene. Hybridization had different consequences for the involved parental lineages, likely playing an important role in a continuing decline of P. himalaica in the Pamir Mountains over the Holocene. Our results show that P. himalaica should be considered a critically endangered species in the Pamir Mountains and could also be retreating across its entire range of distribution in High Mountain Asia. Using a comparative phylogeographic framework, we revealed the risk of extinction of a cold-adapted alpine species in a global biodiversity hotspot. This study highlights that genomics could unravel diversity trends under climate change and provides valuable evidence for conservation management.
Collapse
Affiliation(s)
- Anna Wróbel
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
5
|
Touchette L, Godbout J, Lamothe M, Porth I, Isabel N. A cryptic syngameon within Betula shrubs revealed: Implications for conservation in changing subarctic environments. Evol Appl 2024; 17:e13689. [PMID: 38633131 PMCID: PMC11022622 DOI: 10.1111/eva.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Arctic and subarctic ecosystems are rapidly transforming due to global warming, emphasizing the need to understand the genetic diversity and adaptive strategies of northern plant species for effective conservation. This study focuses on Betula glandulosa, a native North American tundra shrub known as dwarf birch, which demonstrates an apparent capacity to adapt to changing climate conditions. To address the taxonomic challenges associated with shrub birches and logistical complexities of sampling in the northernmost areas where species' ranges overlap, we adopted a multicriteria approach. Incorporating molecular data, ploidy level assessment and leaf morphology, we aimed to distinguish B. glandulosa individuals from other shrub birch species sampled. Our results revealed three distinct species and their hybrids within the 537 collected samples, suggesting the existence of a shrub birch syngameon, a reproductive network of interconnected species. Additionally, we identified two discrete genetic clusters within the core species, B. glandulosa, that likely correspond to two different glacial lineages. A comparison between the nuclear and chloroplast SNP data emphasizes a long history of gene exchange between different birch species and genetic clusters. Furthermore, our results highlight the significance of incorporating interfertile congeneric species in conservation strategies and underscores the need for a holistic approach to conservation in the context of climate change, considering the complex dynamics of species interactions. While further research will be needed to describe this shrub birches syngameon and its constituents, this study is a first step in recognizing its existence and disseminating awareness among ecologists and conservation practitioners. This biological phenomenon, which offers evolutionary flexibility and resilience beyond what its constituent species can achieve individually, may have significant ecological implications.
Collapse
Affiliation(s)
- Lyne Touchette
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Julie Godbout
- Ministère des Ressources naturelles et des Forêts, Direction de la recherche forestièreQuébecQuébecCanada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
| | - Ilga Porth
- Department of Wood and Forest SciencesUniversité LavalQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreQuebecQuebecCanada
- Centre for Forest ResearchUniversité LavalQuebecQuebecCanada
| |
Collapse
|
6
|
Brown MR, Abbott RJ, Twyford AD. The emerging importance of cross-ploidy hybridisation and introgression. Mol Ecol 2024; 33:e17315. [PMID: 38501394 DOI: 10.1111/mec.17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Natural hybridisation is now recognised as pervasive in its occurrence across the Tree of Life. Resurgent interest in natural hybridisation fuelled by developments in genomics has led to an improved understanding of the genetic factors that promote or prevent species cross-mating. Despite this body of work overturning many widely held assumptions about the genetic barriers to hybridisation, it is still widely thought that ploidy differences between species will be an absolute barrier to hybridisation and introgression. Here, we revisit this assumption, reviewing findings from surveys of polyploidy and hybridisation in the wild. In a case study in the British flora, 203 hybrids representing 35% of hybrids with suitable data have formed via cross-ploidy matings, while a wider literature search revealed 59 studies (56 in plants and 3 in animals) in which cross-ploidy hybridisation has been confirmed with genetic data. These results show cross-ploidy hybridisation is readily overlooked, and potentially common in some groups. General findings from these studies include strong directionality of hybridisation, with introgression usually towards the higher ploidy parent, and cross-ploidy hybridisation being more likely to involve allopolyploids than autopolyploids. Evidence for adaptive introgression across a ploidy barrier and cases of cross-ploidy hybrid speciation shows the potential for important evolutionary outcomes.
Collapse
Affiliation(s)
- Max R Brown
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Alex D Twyford
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- Royal Botanical Garden Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Suetsugu K, Hirota SK, Shitara T, Ishida K, Nakato N, Hayakawa H, Suyama Y. The absence of bumblebees on an oceanic island blurs the species boundary of two closely related orchids. THE NEW PHYTOLOGIST 2024; 241:1321-1333. [PMID: 37847353 DOI: 10.1111/nph.19325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Oceanic islands offer valuable natural laboratories for studying evolution. The Izu Islands, with their recent geological origin, provide an exceptional opportunity to explore the initial evolution on oceanic islands. Another noteworthy aspect is the absence of bumblebee species on most Izu Islands. We used ecological, morphological, and molecular data to investigate the impact of bumblebee absence on the evolution of two closely related orchid species, Goodyera henryi and Goodyera similis, focusing on Kozu Island, the Izu Islands. Our investigation revealed that while G. henryi exclusively relies on a bumblebee species for pollination on the mainland, G. similis is pollinated by scoliid wasps on both the mainland and the island. Intriguingly, all specimens initially categorized as G. henryi on Kozu Island are hybrids of G. henryi and G. similis, leading to the absence of pure G. henryi distribution on the island. These hybrids are pollinated by the scoliid wasp species that also pollinates G. similis on the island. The absence of bumblebees might result in sporadic and inefficient pollination of G. henryi by scoliid wasps, consequently promoting hybrid proliferation on the island. Our findings suggest that the absence of bumblebees can blur plant species boundaries.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
- Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
- Botanical Gardens, Osaka Metropolitan University, 2000 Kisaichi, Katano City, Osaka, 576-0004, Japan
| | - Takuto Shitara
- Tama Forest Science Garden, Forestry and Forest Products Research Institute, 1833-81 Todori-machi, Hachioji, Tokyo, 193-0843, Japan
| | | | - Narumi Nakato
- Narahashi 1-363, Higashiyamato-shi, Tokyo, 207-0031, Japan
| | - Hiroshi Hayakawa
- Museum of Natural and Environmental History, Shizuoka, 5762 Oya, Suruga, Shizuoka, Shizuoka, 422-8017, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| |
Collapse
|
8
|
Wang T, van Dijk ADJ, Bucher J, Liang J, Wu J, Bonnema G, Wang X. Interploidy Introgression Shaped Adaptation during the Origin and Domestication History of Brassica napus. Mol Biol Evol 2023; 40:msad199. [PMID: 37707440 PMCID: PMC10504873 DOI: 10.1093/molbev/msad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Polyploidy is recurrent across the tree of life and known as an evolutionary driving force in plant diversification and crop domestication. How polyploid plants adapt to various habitats has been a fundamental question that remained largely unanswered. Brassica napus is a major crop cultivated worldwide, resulting from allopolyploidy between unknown accessions of diploid B. rapa and B. oleracea. Here, we used whole-genome resequencing data of accessions representing the majority of morphotypes and ecotypes from the species B. rapa, B. oleracea, and B. napus to investigate the role of polyploidy during domestication. To do so, we first reconstructed the phylogenetic history of B. napus, which supported the hypothesis that the emergence of B. napus derived from the hybridization of European turnip of B. rapa and wild B. oleracea. These analyses also showed that morphotypes of swede and Siberian kale (used as vegetable and fodder) were domesticated before rapeseed (oil crop). We next observed that frequent interploidy introgressions from sympatric diploids were prominent throughout the domestication history of B. napus. Introgressed genomic regions were shown to increase the overall genetic diversity and tend to be localized in regions of high recombination. We detected numerous candidate adaptive introgressed regions and found evidence that some of the genes in these regions contributed to phenotypic diversification and adaptation of different morphotypes. Overall, our results shed light on the origin and domestication of B. napus and demonstrate interploidy introgression as an important mechanism that fuels rapid diversification in polyploid species.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Zhang H, Ding J, Holstein N, Wang N. Betula mcallisteri sp. nov. (sect. Acuminatae, Betulaceae), a new diploid species overlooked in the wild and in cultivation, and its relation to the widespread B. luminifera. FRONTIERS IN PLANT SCIENCE 2023; 14:1113274. [PMID: 37324661 PMCID: PMC10268003 DOI: 10.3389/fpls.2023.1113274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/19/2023] [Indexed: 06/17/2023]
Abstract
Taxa are traditionally identified using morphological proxies for groups of evolutionarily isolated populations. These proxies are common characters deemed by taxonomists as significant. However, there is no general rule on which character or sets of characters are appropriate to circumscribe taxa, leading to discussions and uncertainty. Birch species are notoriously hard to identify due to strong morphological variability and factors such as hybridization and the existence of several ploidy levels. Here, we present evidence for an evolutionarily isolated line of birches from China that are not distinguishable by traditionally assumed taxon recognition proxies, such as fruit or leaf characters. We have discovered that some wild material in China and some cultivated in the Royal Botanic Gardens Edinburgh, formerly recognized as Betula luminifera, differ from other individuals by having a peeling bark and a lack of cambial fragrance. We use restriction site-associated DNA sequencing and flow cytometry to study the evolutionary status of the unidentified Betula samples to assess the extent of hybridization between the unidentified Betula samples and typical B. luminifera in natural populations. Molecular analyses show the unidentified Betula samples as a distinct lineage and reveal very little genetic admixture between the unidentified samples and B. luminifera. This may also be facilitated by the finding that B. luminifera is tetraploid, while the unidentified samples turned out to be diploid. We therefore conclude that the samples represent a yet unrecognized species, which is here described as Betula mcallisteri.
Collapse
Affiliation(s)
- Huayu Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of The Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Junyi Ding
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of The Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Norbert Holstein
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Nian Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of The Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
10
|
Schneider DJ, Levin RA, Miller JS. Reproductive isolation between diploid and tetraploid individuals in mixed-cytotype populations of Lycium australe. AMERICAN JOURNAL OF BOTANY 2023; 110:e16133. [PMID: 36706341 DOI: 10.1002/ajb2.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
PREMISE Whole-genome duplication is considered a major mechanism of sympatric speciation due to the creation of strong and instantaneous reproductive barriers. Although postzygotic reproductive isolation between diploids and polyploids is often expected, the extent of reproductive incompatibility must be empirically determined and compared to patterns of genetic isolation to fully characterize the reproductive dynamics between cytotypes. METHODS We investigated reproductive compatibility between diploid and tetraploid Lycium australe in two mixed-cytotype populations using (1) controlled crossing experiments to evaluate fruit and seed production and (2) germination trials to test seed viability following homoploid and heteroploid crosses. We contrast these experiments with a single-nucleotide polymorphism (SNP) data set to measure genetic isolation between cytotypes and explore whether cytotype or population origin better explains patterns of genetic variation. Finally, we explore mating patterns using the observed germination rates of naturally produced seeds in each population. RESULTS Although homoploid and heteroploid crosses resulted in similar fruit and seed production, reproductive isolation between co-occurring diploids and tetraploids was nearly complete, due to low seed viability following heteroploid crosses. Of 191,182 total SNPs, 21,679 were present in ≥90% of individuals and replicate runs using unlinked SNPs revealed strong clustering by cytotype and differentiation of tetraploids based on population origin. CONCLUSIONS As often reported, diploid and tetraploid L. australe experience strong postzygotic isolation via hybrid seed inviability. Consistent with this result, cytotype explained a greater amount of variation in the SNP data set than population origin, despite some evidence of historical introgression.
Collapse
Affiliation(s)
- Derek J Schneider
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| | - Rachel A Levin
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| | - Jill S Miller
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002, USA
| |
Collapse
|
11
|
Pálsson S, Wasowicz P, Heiðmarsson S, Magnússon KP. Population structure and genetic variation of fragmented mountain birch forests in Iceland. J Hered 2022; 114:165-174. [PMID: 36331896 PMCID: PMC10078168 DOI: 10.1093/jhered/esac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Betula pubescens Ehrh. (mountain birch) is the only forest-forming tree in Iceland. Since human settlement (874 AD), the continuous 25,000-30,000 km 2 forest has shrunk to 1.200 km 2 of fragmented patches, making it a good object to study population genetic consequences of habitat fragmentation and disturbance. Further, genetic studies have also shown that hybridization between the tetraploid (2n=56) B. pubescens and the diploid (2n=28) Betula nana L. (dwarf birch) occurs among Iceland's natural populations. This study assessed the genetic variation within and among eleven birch forests remaining across Iceland. Genotype-by-sequencing methodology (GBS) provided a total of 24,585 SNPs, with a minor allele frequency > 5% for genetic analyses. The analysis showed similar diversity within forests, suggesting that fragmentation and hybridization have had a limited effect on the genetic variation within sites. A clear genetic divergence is found among forests from the different regions of Iceland that may reflect historical isolation; the differentiation between forests increased with geographic distances reflecting isolation by distance. Information on the distribution of genetic variation of birch in Iceland is essential for its conservation and to establish genotype-phenotype associations to predict responses to new environmental conditions imposed by climate change and novel biotic/abiotic stressors.
Collapse
Affiliation(s)
- Snæbjörn Pálsson
- Faculty of Life and Environmental Sciences, University of Iceland, Askja - Sturlugata 7, 102 Reykjavík, Iceland
| | - Pawel Wasowicz
- Icelandic Institute of Natural History, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| | - Kristinn Pétur Magnússon
- Icelandic Institute of Natural History, Borgir v. Norðurslóð, 600 Akureyri, Iceland
- Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Norðurslóð, 600 Akureyri, Iceland
| |
Collapse
|
12
|
Christita M, Sipilä TP, Auzane A, Overmyer K. Distinct Taphrina strains from the phyllosphere of birch exhibiting a range of witches' broom disease symptoms. Environ Microbiol 2022; 24:3549-3564. [PMID: 35579036 PMCID: PMC9545635 DOI: 10.1111/1462-2920.16037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/26/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The phyllosphere is an important microbial habitat and reservoir of organisms that modify plant health. Taphrina betulina is the causal agent of birch witches' broom disease. Taphrina species are dimorphic, infecting hosts in the filamentous form and residing in the host phyllosphere as non-infectious yeast. As such, they are expected to be found as resident yeasts on their hosts, even on healthy tissues; however, there is little experimental data supporting this supposition. With the aim of exploring the local infection ecology of T. betulina, we isolated yeasts from the phyllosphere of birch leaves, using three sample classes; infected leaves inside symptom-bearing branches, healthy leaves from symptom-free branches on symptom-bearing trees and leaves from symptom-free branches on symptom-free trees. Isolations yielded 224 yeast strains, representing 11 taxa, including T. betulina, which was the most common isolate and was found in all sample classes, including symptom-free samples. Genotyping revealed genetic diversity among these T. betulina isolates, with seven distinct genotypes differentiated by the markers used. Twenty-two representative T. betulina strains were selected for further study, revealing further phenotypic differences. These findings support that T. betulina is ubiquitous on birch and that individual trees host a diversity of T. betulina strains.
Collapse
Affiliation(s)
- Margaretta Christita
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
- Environment and Forestry Research and Development Institute of Manado, Jalan Adipura, MapangetManadoNorth SulawesiIndonesia
| | - Timo P. Sipilä
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Agate Auzane
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
13
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
14
|
Wang L, Ding J, Borrell JS, Cheek M, McAllister HA, Wang F, Liu L, Zhang H, Zhang Q, Wang Y, Wang N. Molecular and morphological analyses clarify species delimitation in section Costatae and reveal Betula buggsii sp. nov. (sect. Costatae, Betulaceae) in China. ANNALS OF BOTANY 2022; 129:415-428. [PMID: 35018419 PMCID: PMC8944703 DOI: 10.1093/aob/mcac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Delineating closely related and morphologically similar species is difficult. Here, we integrate morphology, genetics, ploidy and geography to resolve species and subspecies boundaries in four trees of section Costatae (genus Betula): Betula ashburneri, B. costata, B. ermanii and B. utilis, as well as multiple subspecies and polyploid races. METHODS We genotyped 371 individuals (20-133 per species) from 51 populations at 15 microsatellite markers, as well as a subset of individuals, using restriction-site associated DNA sequencing and nuclear internal transcribed spacers. We determined the ploidy level of eight individuals using flow cytometry and characterized leaf variation for a subset of 109 individuals by morphometric analysis. KEY RESULTS Integration of multiple lines of evidence suggested a series of revisions to the taxonomy of section Costatae. Betula costata and B. ermanii were found to be valid. Molecular and leaf morphology analyses revealed little differentiation between diploid B. albosinensis and some samples of B. utilis ssp. utilis. By contrast, other B. utilis ssp. utilis samples and ssp. albosinensis formed a morphological continuum but differed based on genetics. Specifically, B. utilis ssp. albosinensis was divided into two groups with group I genetically similar to B. utilis ssp. utilis and group II, a distinct cluster, proposed as the new diploid species Betula buggsii sp. nov. Phylogenomic analysis based on 2285 620 single nucleotide polymorphisms identified a well-supported monophyletic clade of B. buggsii. Morphologically, B. buggsii is characterized by elongated lenticels and a distinct pattern of bark peeling and may be geographically restricted to the Qinling-Daba Mountains. CONCLUSIONS Our integrated approach identifies six taxa within section Costatae: B. ashburneri, B. buggsii, B. costata, B. utilis ssp. utilis, B. utilis ssp. albosinensis and B. ermanii. Our research demonstrates the value of an integrative approach using morphological, geographical, genetic and ploidy-level data for species delineation.
Collapse
Affiliation(s)
| | | | | | | | - Hugh A McAllister
- School of Life Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool, UK
| | - Feifei Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Lu Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Huayu Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Qiufeng Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yiming Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an, China
| | | |
Collapse
|
15
|
Li Y, Zhang X, Wang L, Sork VL, Mao L, Fang Y. Influence of Pliocene and Pleistocene climates on hybridization patterns between two closely related oak species in China. ANNALS OF BOTANY 2022; 129:231-245. [PMID: 34893791 PMCID: PMC8796672 DOI: 10.1093/aob/mcab140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/31/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Contemporary patterns of genetic admixture reflect imprints of both ancient and recent gene flow, which can provide us with valuable information on hybridization history in response to palaeoclimate change. Here, we examine the relationships between present admixture patterns and past climatic niche suitability of two East Asian Cerris oaks (Quercus acutissima and Q. chenii) to test the hypothesis that the mid-Pliocene warm climate promoted while the Pleistocene cool climate limited hybridization among local closely related taxa. METHODS We analyse genetic variation at seven nuclear microsatellites (1111 individuals) and three chloroplast intergenic spacers (576 individuals) to determine the present admixture pattern and ancient hybridization history. We apply an information-theoretic model selection approach to explore the associations of genetic admixture degree with past climatic niche suitability at multiple spatial scales. KEY RESULTS More than 70 % of the hybrids determined by Bayesian clustering analysis and more than 90 % of the individuals with locally shared chloroplast haplotypes are concentrated within a mid-Pliocene contact zone between ~30°N and 35°N. Climatic niche suitabilities for Q. chenii during the mid-Pliocene Warm Period [mPWP, ~3.264-3.025 million years ago (mya)] and during the Last Glacial Maximum (LGM, ~0.022 mya) best explain the admixture patterns across all Q. acutissima populations and across those within the ancient contact zone, respectively. CONCLUSIONS Our results highlight that palaeoclimate change shapes present admixture patterns by influencing the extent of historical range overlap. Specifically, the mid-Pliocene warm climate promoted ancient contact, allowing widespread hybridization throughout central China. In contrast, the Pleistocene cool climate caused the local extinction of Q. chenii, reducing the probability of interspecific gene flow in most areas except those sites having a high level of ecological stability.
Collapse
Affiliation(s)
- Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Laboratory of Biodiversity and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xingwang Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Lu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-7239, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095-1496, USA
| | - Lingfeng Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Laboratory of Biodiversity and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
16
|
Ahmad M, Leroy T, Krigas N, Temsch EM, Weiss-Schneeweiss H, Lexer C, Sehr EM, Paun O. Spatial and Ecological Drivers of Genetic Structure in Greek Populations of Alkanna tinctoria (Boraginaceae), a Polyploid Medicinal Herb. FRONTIERS IN PLANT SCIENCE 2021; 12:706574. [PMID: 34335669 PMCID: PMC8317432 DOI: 10.3389/fpls.2021.706574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 06/08/2023]
Abstract
Background and Aims: Quantifying genetic variation is fundamental to understand a species' demographic trajectory and its ability to adapt to future changes. In comparison with diploids, however, genetic variation and factors fostering genetic divergence remain poorly studied in polyploids due to analytical challenges. Here, by employing a ploidy-aware framework, we investigated the genetic structure and its determinants in polyploid Alkanna tinctoria (Boraginaceae), an ancient medicinal herb that is the source of bioactive compounds known as alkannin and shikonin (A/S). From a practical perspective, such investigation can inform biodiversity management strategies. Methods: We collected 14 populations of A. tinctoria within its main distribution range in Greece and genotyped them using restriction site-associated DNA sequencing. In addition, we included two populations of A. sieberi. By using a ploidy-aware genotype calling based on likelihoods, we generated a dataset of 16,107 high-quality SNPs. Classical and model-based analysis was done to characterize the genetic structure within and between the sampled populations, complemented by genome size measurements and chromosomal counts. Finally, to reveal the drivers of genetic structure, we searched for associations between allele frequencies and spatial and climatic variables. Key Results: We found support for a marked regional structure in A. tinctoria along a latitudinal gradient in line with phytogeographic divisions. Several analyses identified interspecific admixture affecting both mainland and island populations. Modeling of spatial and climatic variables further demonstrated a larger contribution of neutral processes and a lesser albeit significant role of selection in shaping the observed genetic structure in A. tinctoria. Conclusion: Current findings provide evidence of strong genetic structure in A. tinctoria mainly driven by neutral processes. The revealed natural genomic variation in Greek Alkanna can be used to further predict variation in A/S production, whereas our bioinformatics approach should prove useful for the study of other non-model polyploid species.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Eva M. Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Eva Maria Sehr
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Wang J, Dong S, Yang L, Harris A, Schneider H, Kang M. Allopolyploid Speciation Accompanied by Gene Flow in a Tree Fern. Mol Biol Evol 2021; 37:2487-2502. [PMID: 32302390 DOI: 10.1093/molbev/msaa097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hybridization in plants may result in hybrid speciation or introgression and, thus, is now widely understood to be an important mechanism of species diversity on an evolutionary timescale. Hybridization is particularly common in ferns, as is polyploidy, which often results from hybrid crosses. Nevertheless, hybrid speciation as an evolutionary process in fern lineages remains poorly understood. Here, we employ flow cytometry, phylogeny, genomewide single nucleotide polymorphism data sets, and admixture and coalescent modeling to show that the scaly tree fern, Gymnosphaera metteniana is a naturally occurring allotetraploid species derived from hybridization between the diploids, G. denticulata and G. gigantea. Moreover, we detected ongoing gene flow between the hybrid species and its progenitors, and we found that G. gigantea and G. metteniana inhabit distinct niches, whereas climatic niches of G. denticulata and G. metteniana largely overlap. Taken together, these results suggest that either some degree of intrinsic genetic isolation between the hybrid species and its parental progenitors or ecological isolation over short distances may be playing an important role in the evolution of reproductive barriers. Historical climate change may have facilitated the origin of G. metteniana, with the timing of hybridization coinciding with a period of intensification of the East Asian monsoon during the Pliocene and Pleistocene periods in southern China. Our study of allotetraploid G. metteniana represents the first genomic-level documentation of hybrid speciation in scaly tree ferns and, thus, provides a new perspective on evolution in the lineage.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Shiyong Dong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Aj Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Department of Biology, Oberlin College, Oberlin, OH
| | - Harald Schneider
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Tarieiev AS, Gailing O, Krutovsky KV. ITS secondary structure reconstruction to resolve taxonomy and phylogeny of the Betula L. genus. PeerJ 2021; 9:e10889. [PMID: 33828907 PMCID: PMC7996101 DOI: 10.7717/peerj.10889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 01/31/2023] Open
Abstract
The taxonomy and phylogeny of the Betula L. genus remain unresolved and are very difficult to assess due to several factors, especially because of frequent hybridization among different species. In the current study, we used nucleotide sequences of two internal transcribed spacer regions (ITS1 and ITS2), which are commonly used as phylogenetic markers. In addition to their nucleotide variation we reconstructed their secondary structure and used it to resolve phylogenetic relationships of some birch species. We explored whether consideration of secondary structure in phylogenetic analyses based on neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods would help us obtain more solid support of the reconstructed phylogenetic trees. The results were not unambiguous. There were only a few clades with higher support when secondary structure was included into analysis. The phylogenetic trees generated using different methods were mostly in agreement with each other. However, the resolving power of these markers is still insufficient to reliably discriminate some closely related species. To achieve this aim more reliably there is a need for application of modern genomic approaches in combination with traditional ones.
Collapse
Affiliation(s)
- Andrii S. Tarieiev
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, Göttingen, Germany
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
19
|
Moore AJ, Messick JA, Kadereit JW. Range and niche expansion through multiple interspecific hybridization: a genotyping by sequencing analysis of Cherleria (Caryophyllaceae). BMC Ecol Evol 2021; 21:40. [PMID: 33691632 PMCID: PMC7945309 DOI: 10.1186/s12862-020-01721-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cherleria (Caryophyllaceae) is a circumboreal genus that also occurs in the high mountains of the northern hemisphere. In this study, we focus on a clade that diversified in the European High Mountains, which was identified using nuclear ribosomal (nrDNA) sequence data in a previous study. With the nrDNA data, all but one species was monophyletic, with little sequence variation within most species. Here, we use genotyping by sequencing (GBS) data to determine whether the nrDNA data showed the full picture of the evolution in the genomes of these species. RESULTS The overall relationships found with the GBS data were congruent with those from the nrDNA study. Most of the species were still monophyletic and many of the same subclades were recovered, including a clade of three narrow endemic species from Greece and a clade of largely calcifuge species. The GBS data provided additional resolution within the two species with the best sampling, C. langii and C. laricifolia, with structure that was congruent with geography. In addition, the GBS data showed significant hybridization between several species, including species whose ranges did not currently overlap. CONCLUSIONS The hybridization led us to hypothesize that lineages came in contact on the Balkan Peninsula after they diverged, even when those lineages are no longer present on the Balkan Peninsula. Hybridization may also have helped lineages expand their niches to colonize new substrates and different areas. Not only do genome-wide data provide increased phylogenetic resolution of difficult nodes, they also give evidence for a more complex evolutionary history than what can be depicted by a simple, branching phylogeny.
Collapse
Affiliation(s)
- Abigail J. Moore
- Department of Microbiology and Plant Biology and Oklahoma Biological Survey, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019 USA
| | - Jennifer A. Messick
- Department of Biology, University of Central Oklahoma, Howell Hall, Room 220, Edmond, OK 73034 USA
| | - Joachim W. Kadereit
- Fachbereich Biologie, Institut Für Organismische Und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Anselm-Franz-von-Bentzel-Weg 9a, 55099 Mainz, Germany
| |
Collapse
|
20
|
Meucci S, Schulte L, Zimmermann HH, Stoof‐Leichsenring KR, Epp L, Bronken Eidesen P, Herzschuh U. Holocene chloroplast genetic variation of shrubs ( Alnus alnobetula, Betula nana, Salix sp.) at the siberian tundra-taiga ecotone inferred from modern chloroplast genome assembly and sedimentary ancient DNA analyses. Ecol Evol 2021; 11:2173-2193. [PMID: 33717447 PMCID: PMC7920767 DOI: 10.1002/ece3.7183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Climate warming alters plant composition and population dynamics of arctic ecosystems. In particular, an increase in relative abundance and cover of deciduous shrub species (shrubification) has been recorded. We inferred genetic variation of common shrub species (Alnus alnobetula, Betula nana, Salix sp.) through time. Chloroplast genomes were assembled from modern plants (n = 15) from the Siberian forest-tundra ecotone. Sedimentary ancient DNA (sedaDNA; n = 4) was retrieved from a lake on the southern Taymyr Peninsula and analyzed by metagenomics shotgun sequencing and a hybridization capture approach. For A. alnobetula, analyses of modern DNA showed low intraspecies genetic variability and a clear geographical structure in haplotype distribution. In contrast, B. nana showed high intraspecies genetic diversity and weak geographical structure. Analyses of sedaDNA revealed a decreasing relative abundance of Alnus since 5,400 cal yr BP, whereas Betula and Salix increased. A comparison between genetic variations identified in modern DNA and sedaDNA showed that Alnus variants were maintained over the last 6,700 years in the Taymyr region. In accordance with modern individuals, the variants retrieved from Betula and Salix sedaDNA showed higher genetic diversity. The success of the hybridization capture in retrieving diverged sequences demonstrates the high potential for future studies of plant biodiversity as well as specific genetic variation on ancient DNA from lake sediments. Overall, our results suggest that shrubification has species-specific trajectories. The low genetic diversity in A. alnobetula suggests a local population recruitment and growth response of the already present communities, whereas the higher genetic variability and lack of geographical structure in B. nana may indicate a recruitment from different populations due to more efficient seed dispersal, increasing the genetic connectivity over long distances.
Collapse
Affiliation(s)
- Stefano Meucci
- Polar Terrestrial Environmental Systems Research GroupAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Luise Schulte
- Polar Terrestrial Environmental Systems Research GroupAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Heike H. Zimmermann
- Polar Terrestrial Environmental Systems Research GroupAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
| | - Kathleen R. Stoof‐Leichsenring
- Polar Terrestrial Environmental Systems Research GroupAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
| | - Laura Epp
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems Research GroupAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchPotsdamGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Institute of Environmental Sciences and GeographyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
21
|
Wang N, Kelly LJ, McAllister HA, Zohren J, Buggs RJA. Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch trees. Mol Phylogenet Evol 2021; 160:107126. [PMID: 33647400 DOI: 10.1016/j.ympev.2021.107126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Numerous plant genera have a history including frequent hybridisation and polyploidisation (allopolyploidisation), which means that their phylogeny is a network of reticulate evolution that cannot be accurately depicted as a bifurcating tree with a single tip per species. The genus Betula, which contains many ecologically important tree species, is a case in point. We generated genome-wide sequence reads for 27 diploid and 36 polyploid Betula species or subspecies using restriction site associated DNA (RAD) sequences. These reads were assembled into contigs with a mean length of 675 bp. We reconstructed the evolutionary relationships among diploid Betula species using both supermatrix (concatenation) and species tree methods. We identified the closest diploid relatives of the polyploids according to the relative rates at which reads from polyploids mapped to contigs from different diploid species within a concatenated reference sequence. By mapping reads from allopolyploids to their different putative diploid relatives we assembled contigs from the putative sub-genomes of allopolyploid taxa. We used these to build new phylogenies that included allopolyploid sub-genomes as separate tips. This approach yielded a highly evidenced phylogenetic hypothesis for the genus Betula, including the complex reticulate origins of the majority of its polyploid taxa. Our phylogeny divides the genus into two well supported clades, which, interestingly, differ in their seed-wing morphology. We therefore propose to split Betula into two subgenera.
Collapse
Affiliation(s)
- Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK
| | - Hugh A McAllister
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Jasmin Zohren
- Sex Chromosome Biology Lab, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AB, UK.
| |
Collapse
|
22
|
Buono D, Khan G, von Hagen KB, Kosachev PA, Mayland-Quellhorst E, Mosyakin SL, Albach DC. Comparative Phylogeography of Veronica spicata and V. longifolia (Plantaginaceae) Across Europe: Integrating Hybridization and Polyploidy in Phylogeography. FRONTIERS IN PLANT SCIENCE 2021; 11:588354. [PMID: 33603760 PMCID: PMC7884905 DOI: 10.3389/fpls.2020.588354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 05/23/2023]
Abstract
Climatic fluctuations in the Pleistocene caused glacial expansion-contraction cycles in Eurasia and other parts of the world. Consequences of these cycles, such as population expansion and subsequent subdivision, have been studied in many taxa at intraspecific population level across much of the Northern Hemisphere. However, the consequences for the potential of hybridization and polyploidization are poorly understood. Here, we investigated the phylogeographic structure of two widespread, closely related species, Veronica spicata and Veronica longifolia, across their European distribution ranges. We assessed the extent and the geographic pattern of polyploidization in both species and hybridization between them. We used genome-scale SNP data to clarify phylogenetic relationships and detect possible hybridization/introgression events. In addition, crossing experiments were performed in different combination between V. spicata and V. longifolia individuals of two ploidy levels and of different geographic origins. Finally, we employed ecological niche modeling to infer macroclimatic differences between both species and both ploidy levels. We found a clear genetic structure reflecting the geographical distribution patterns in both species, with V. spicata showing higher genetic differentiation than V. longifolia. We retrieved significant signals of hybridization and introgression in natural populations from the genetic data and corroborated this with crossing experiments. However, there were no clear phylogeographic patterns and unequivocal macroclimatic niche differences between diploid and tetraploid lineages. This favors the hypothesis, that autopolyploidization has happened frequently and in different regions. The crossing experiments produced viable hybrids when the crosses were made between plants of the same ploidy levels but not in the interploidy crosses. The results suggest that hybridization occurs across the overlapping areas of natural distribution ranges of both species, with apparently directional introgression from V. spicata to V. longifolia. Nevertheless, the two species maintain their species-level separation due to their adaptation to different habitats and spatial isolation rather than reproductive isolation.
Collapse
Affiliation(s)
- Daniele Buono
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Gulzar Khan
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Klaus Bernhard von Hagen
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | | | - Eike Mayland-Quellhorst
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sergei L. Mosyakin
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dirk C. Albach
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
23
|
López‐Delgado J, van Riemsdijk I, Arntzen JW. Tracing species replacement in Iberian marbled newts. Ecol Evol 2021; 11:402-414. [PMID: 33437438 PMCID: PMC7790658 DOI: 10.1002/ece3.7060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Secondary contact between closely related species can lead to the formation of hybrid zones, allowing for interspecific gene flow. Hybrid zone movement can take place if one of the species possesses a competitive advantage over the other, ultimately resulting in species replacement. Such hybrid zone displacement is predicted to leave a genomic footprint across the landscape in the form of asymmetric gene flow (or introgression) of selectively neutral alleles from the displaced to the advancing species. Hybrid zone movement has been suggested for marbled newts in the Iberian Peninsula, supported by asymmetric gene flow and a distribution relict (i.e., an enclave) of Triturus marmoratus in the range of T. pygmaeus. We developed a panel of nuclear and mitochondrial SNP markers to test for the presence of a T. marmoratus genomic footprint in the Lisbon peninsula, south of the enclave. We found no additional populations of T. marmoratus. Analysis with the software Structure showed no genetic traces of T. marmoratus in T. pygmaeus. A principal component analysis showed some variation within the local T. pygmaeus, but it is unclear if this represents introgression from T. marmoratus. The results may be explained by (a) species replacement without introgressive hybridization and (b) displacement with hybridization followed by the near-complete erosion of the footprint by purifying selection. We predict that testing for a genomic footprint north of the reported enclave would confirm that species replacement in these marbled newts occurred with hybridization.
Collapse
Affiliation(s)
- Julia López‐Delgado
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute for BiologyLeiden UniversityLeidenThe Netherlands
- Present address:
University of LeedsLeedsUnited Kingdom
| | - Isolde van Riemsdijk
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Present address:
Institute for Evolution and Ecology, Tübingen UniversityLeedsGermany
| | | |
Collapse
|
24
|
Leal BSS, Brandão MM, Palma-Silva C, Pinheiro F. Differential gene expression reveals mechanisms related to habitat divergence between hybridizing orchids from the Neotropical coastal plains. BMC PLANT BIOLOGY 2020; 20:554. [PMID: 33302865 PMCID: PMC7731501 DOI: 10.1186/s12870-020-02757-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/25/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Closely related hybridizing species are ideal systems for identifying genomic regions underlying adaptive divergence. Although gene expression plays a central role in determining ecologically-based phenotypic differences, few studies have inferred the role of gene expression for adaptive divergence in Neotropical systems. In this study, we conduct genome-wide expression analysis alongside soil elemental analysis in sympatric and allopatric populations of Epidendrum fulgens and E. puniceoluteum (Orchidaceae), which occur in contrasting adjacent habitats in the Neotropical coastal plains. RESULTS These species were highly differentiated by their gene expression profiles, as determined by 18-21% of transcripts. Gene ontology (GO) terms associated with reproductive processes were enriched according to comparisons between species in both allopatric and sympatric populations. Species showed differential expression in genes linked to salt and waterlogging tolerance according to comparisons between species in sympatry, and biological processes related to environmental stimulus appeared as representative among those transcripts associated with edaphic characteristics in each sympatric zone. Hybrids, in their turn, were well differentiated from E. fulgens, but exhibited a similar gene expression profile to flooding-tolerant E. puniceolutem. When compared with parental species, hybrids showed no transcripts with additive pattern of expression and increased expression for almost all transgressive transcripts. CONCLUSIONS This study sheds light on general mechanisms promoting ecological differentiation and assortative mating, and suggests candidate genes, such as those encoding catalase and calcium-dependent protein kinase, underling adaptation to harsh edaphic conditions in the Neotropical coastal plains. Moreover, it demonstrates that differential gene expression plays a central role in determining ecologically-based phenotypic differences among co-occurring species and their hybrids.
Collapse
Affiliation(s)
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| | - Clarisse Palma-Silva
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| | - Fabio Pinheiro
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
25
|
Toyama KS, Crochet P, Leblois R. Sampling schemes and drift can bias admixture proportions inferred by
structure. Mol Ecol Resour 2020; 20:1769-1785. [DOI: 10.1111/1755-0998.13234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Ken S. Toyama
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Pierre‐André Crochet
- CEFE CNRS University of Montpellier Université Paul Valéry Montpellier 3 EPHE IRD Montpellier France
| | - Raphaël Leblois
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
- Institut de Biologie Computationnelle University of Montpellier Montpellier France
| |
Collapse
|
26
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
27
|
Rowe CA, Lichvar RW, Wolf PG. How Many Tree Species of Birch Are in Alaska? Implications for Wetland Designations. FRONTIERS IN PLANT SCIENCE 2020; 11:750. [PMID: 32595670 PMCID: PMC7300271 DOI: 10.3389/fpls.2020.00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Wetland areas are critical habitats, especially in northern regions of North America. Wetland classifications are based on several factors, including the presence of certain plant species and assemblages of species, of which trees play a significant role. Here we examined wetland species of birch (Betula) in North America, with a focus on Alaska, and the use of birche tree species in wetland delineation. We sampled over 200 trees from sites, including Alaska, Alberta, Minnesota, and New Hampshire. We used genetic data from over 3000 loci detected by restriction site associated DNA analysis. We used an indirect estimate of ploidy based on allelic ratios and we also examined population genetic structure. We find that inferred ploidy is strongly associated with genetic groupings. We find two main distinct groups; one found throughout most of Alaska, extending into Alberta. This group is probably attributable to Betula kenaica, Betula neoalaskana, or both. This group has a diploid genetic pattern although this could easily be a function of allopolyploidy. The second major genetic group appears to extend from Eastern North America into parts of southeastern Alaska. This group represents Betula papyrifera, and is not diploid based on allelic ratios. Published chromosome counts indicate pentaploidy. Because B. papyrifera is the only one of the above species that is distinctly associated with wetland habitats, our findings indicate that tree species of birch found in most parts of Alaska are not reliable indicators of wetland habitats. These results help to support stronger wetland ratings assigned to the tree species of birch for delineation purposes.
Collapse
Affiliation(s)
- Carol A. Rowe
- Department of Biology, Utah State University, Logan, UT, United States
| | - Robert W. Lichvar
- United States Army Corps of Engineers, Cold Region Research and Engineering Laboratory, Hanover, NH, United States
| | - Paul G. Wolf
- Department of Biology, Utah State University, Logan, UT, United States
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
28
|
Borrell JS, Zohren J, Nichols RA, Buggs RJA. Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evol Appl 2020; 13:161-175. [PMID: 31892950 PMCID: PMC6935589 DOI: 10.1111/eva.12883] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
When populations of a rare species are small, isolated and declining under climate change, some populations may become locally maladapted. Detecting this maladaptation may allow effective rapid conservation interventions, even if based on incomplete knowledge. Population maladaptation may be estimated by finding genome-environment associations (GEA) between allele frequencies and environmental variables across a local species range, and identifying populations whose allele frequencies do not fit with these trends. We can then design assisted gene flow strategies for maladapted populations, to adjust their allele frequencies, entailing lower levels of intervention than with undirected conservation action. Here, we investigate this strategy in Scottish populations of the montane plant dwarf birch (Betula nana). In genome-wide restriction site-associated single nucleotide polymorphism (SNP) data, we found 267 significant associations between SNP loci and environmental variables. We ranked populations by maladaptation estimated using allele frequency deviation from the general trends at these loci; this gave a different prioritization for conservation action than the Shapely Index, which seeks to preserve rare neutral variation. Populations estimated to be maladapted in their allele frequencies at loci associated with annual mean temperature were found to have reduced catkin production. Using an environmental niche modelling (ENM) approach, we found annual mean temperature (35%), and mean diurnal range (15%), to be important predictors of the dwarf birch distribution. Intriguingly, there was a significant correlation between the number of loci associated with each environmental variable in the GEA and the importance of that variable in the ENM. Together, these results suggest that the same environmental variables determine both adaptive genetic variation and species range in Scottish dwarf birch. We suggest an assisted gene flow strategy that aims to maximize the local adaptation of dwarf birch populations under climate change by matching allele frequencies to current and future environments.
Collapse
Affiliation(s)
| | - Jasmin Zohren
- Sex Chromosome Biology LabThe Francis Crick InstituteLondonUK
| | - Richard A. Nichols
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Richard J. A. Buggs
- Jodrell LaboratoryRoyal Botanic Gardens, KewSurreyUK
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
29
|
Viruel J, Conejero M, Hidalgo O, Pokorny L, Powell RF, Forest F, Kantar MB, Soto Gomez M, Graham SW, Gravendeel B, Wilkin P, Leitch IJ. A Target Capture-Based Method to Estimate Ploidy From Herbarium Specimens. FRONTIERS IN PLANT SCIENCE 2019; 10:937. [PMID: 31396248 PMCID: PMC6667659 DOI: 10.3389/fpls.2019.00937] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/04/2019] [Indexed: 05/24/2023]
Abstract
Whole genome duplication (WGD) events are common in many plant lineages, but the ploidy status and possible occurrence of intraspecific ploidy variation are unknown for most species. Standard methods for ploidy determination are chromosome counting and flow cytometry approaches. While flow cytometry approaches typically use fresh tissue, an increasing number of studies have shown that recently dried specimens can be used to yield ploidy data. Recent studies have started to explore whether high-throughput sequencing (HTS) data can be used to assess ploidy levels by analyzing allelic frequencies from single copy nuclear genes. Here, we compare different approaches using a range of yam (Dioscorea) tissues of varying ages, drying methods and quality, including herbarium tissue. Our aims were to: (1) explore the limits of flow cytometry in estimating ploidy level from dried samples, including herbarium vouchers collected between 1831 and 2011, and (2) optimize a HTS-based method to estimate ploidy by considering allelic frequencies from nuclear genes obtained using a target-capture method. We show that, although flow cytometry can be used to estimate ploidy levels from herbarium specimens collected up to fifteen years ago, success rate is low (5.9%). We validated our HTS-based estimates of ploidy using 260 genes by benchmarking with dried samples of species of known ploidy (Dioscorea alata, D. communis, and D. sylvatica). Subsequently, we successfully applied the method to the 85 herbarium samples analyzed with flow cytometry, and successfully provided results for 91.7% of them, comprising species across the phylogenetic tree of Dioscorea. We also explored the limits of using this HTS-based approach for identifying high ploidy levels in herbarium material and the effects of heterozygosity and sequence coverage. Overall, we demonstrated that ploidy diversity within and between species may be ascertained from historical collections, allowing the determination of polyploidization events from samples collected up to two centuries ago. This approach has the potential to provide insights into the drivers and dynamics of ploidy level changes during plant evolution and crop domestication.
Collapse
Affiliation(s)
- Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Laboratori de Botànica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mânoa, Honolulu, HI, United States
| | - Marybel Soto Gomez
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, BC, Canada
| | - Sean W. Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, BC, Canada
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, Endless Forms, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Science and Technology Faculty, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | |
Collapse
|
30
|
Hu YN, Zhao L, Buggs RJA, Zhang XM, Li J, Wang N. Population structure of Betula albosinensis and Betula platyphylla: evidence for hybridization and a cryptic lineage. ANNALS OF BOTANY 2019; 123:1179-1189. [PMID: 30916314 PMCID: PMC6612935 DOI: 10.1093/aob/mcz024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Differences in local abundance and ploidy level are predicted to impact the direction of introgression between species. Here, we tested these hypotheses on populations of Betula albosinensis (red birch) and Betula platyphylla (white birch) which were thought to differ in ploidy level, the former being tetraploid and the latter diploid. METHODS We sampled 391 birch individuals from nine localities in China, and classified them into species based on leaf morphology. Twelve nuclear microsatellite markers were genotyped in each sample, and analysed using principal coordinates analysis and STRUCTURE software. We compared the effects of two different methods of scoring polyploid genotypes on population genetic analyses. We analysed the effect of ploidy, local species abundance and latitude on levels of introgression between the species. KEY RESULTS Leaf morphology divided our samples into red and white birch, but genetic analyses unexpectedly revealed two groups within red birch, one of which was tetraploid, as expected, but the other of which appeared to have diploid microsatellite genotypes. Five individuals were identified as early-generation hybrids or backcrosses between white birch and red birch and five were identified between red birch and 'diploid' red birch. Cline analysis showed that levels of admixture were not significantly correlated with latitude. Estimated genetic differentiation among species was not significantly different between determined tetraploid and undetermined tetraploid genotypes. CONCLUSIONS Limited hybridization and gene flow have occurred between red birch and white birch. Relative species abundance and ploidy level do not impact the direction of introgression between them, as genetic admixture is roughly symmetrical. We unexpectedly found populations of apparently diploid red birch and this taxon may be a progenitor of allotetraploid red birch populations. Incomplete lineage sorting may explain patterns of genetic admixture between apparently diploid and allotetraploid red birch.
Collapse
Affiliation(s)
- Ya-Nan Hu
- College of Forestry, Shandong Agricultural University, Tai’an city, Shandong province, China
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Richard J A Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Xue-Min Zhang
- Mulan-Weichang National Forestry Administration, Chengde, China
| | - Jun Li
- Mulan-Weichang National Forestry Administration, Chengde, China
| | - Nian Wang
- College of Forestry, Shandong Agricultural University, Tai’an city, Shandong province, China
| |
Collapse
|
31
|
Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol 2019; 3:457-468. [DOI: 10.1038/s41559-019-0807-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
|
32
|
Blischak PD, Mabry ME, Conant GC, Pires JC. Integrating Networks, Phylogenomics, and Population Genomics for the Study of Polyploidy. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-121415-032302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Duplication events are regarded as sources of evolutionary novelty, but our understanding of general trends for the long-term trajectory of additional genomic material is still lacking. Organisms with a history of whole genome duplication (WGD) offer a unique opportunity to study potential trends in the context of gene retention and/or loss, gene and network dosage, and changes in gene expression. In this review, we discuss the prevalence of polyploidy across the tree of life, followed by an overview of studies investigating genome evolution and gene expression. We then provide an overview of methods in network biology, phylogenomics, and population genomics that are critical for advancing our understanding of evolution post-WGD, highlighting the need for models that can accommodate polyploids. Finally, we close with a brief note on the importance of random processes in the evolution of polyploids with respect to neutral versus selective forces, ancestral polymorphisms, and the formation of autopolyploids versus allopolyploids.
Collapse
Affiliation(s)
- Paul D. Blischak
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Makenzie E. Mabry
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Gavin C. Conant
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Current affiliation: Bioinformatics Research Center, Program in Genetics and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J. Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211-7310, USA
| |
Collapse
|
33
|
Borrell JS, Wang N, Nichols RA, Buggs RJA. Genetic diversity maintained among fragmented populations of a tree undergoing range contraction. Heredity (Edinb) 2018; 121:304-318. [PMID: 30111882 PMCID: PMC6134035 DOI: 10.1038/s41437-018-0132-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/09/2022] Open
Abstract
Dwarf birch (Betula nana) has a widespread boreal distribution but has declined significantly in Britain where populations are now highly fragmented. We analyzed the genetic diversity of these fragmented populations using markers that differ in mutation rate: conventional microsatellites markers (PCR-SSRs), RADseq generated transition and transversion SNPs (RAD-SNPs), and microsatellite markers mined from RADseq reads (RAD-SSRs). We estimated the current population sizes by census and indirectly, from the linkage-disequilibrium found in the genetic surveys. The two types of estimate were highly correlated. Overall, we found genetic diversity to be only slightly lower in Britain than across a comparable area in Scandinavia where populations are large and continuous. While the ensemble of British fragments maintain diversity levels close to Scandinavian populations, individually they have drifted apart and lost diversity; particularly the smaller populations. An ABC analysis, based on coalescent models, favors demographic scenarios in which Britain maintained high levels of genetic diversity through post-glacial re-colonization. This diversity has subsequently been partitioned into population fragments that have recently lost diversity at a rate corresponding to the current population-size estimates. We conclude that the British population fragments retain sufficient genetic resources to be the basis of conservation and re-planting programmes. Use of markers with different mutation rates gives us greater confidence and insight than one marker set could have alone, and we suggest that RAD-SSRs are particularly useful as high mutation-rate marker set with a well-specified ascertainment bias, which are widely available yet often neglected in existing RAD datasets.
Collapse
Affiliation(s)
- James S Borrell
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
- College of Forestry, Shandong Agricultural University, Tai'an city, 271018, Shandong Province, China
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Richard J A Buggs
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
34
|
Zhang N, Ma Y, Folk RA, Yu J, Pan Y, Gong X. Maintenance of species boundaries in three sympatric Ligularia (Senecioneae, Asteraceae) species. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:986-999. [PMID: 29877612 DOI: 10.1111/jipb.12674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
The key process in speciation concerns the formation and maintenance of reproductive isolating barriers between diverging lineages. Although species boundaries are frequently investigated between two species across many taxa, reproductive isolating barriers among multiple species (>2) that would represent the most common phenomenon in nature, remain to be clarified. Here, we use double digest restriction-site associated DNA (ddRAD) sequencing to examine patterns of hybridization at a sympatric site where three Ligularia species grow together and verify whether those patterns contribute to the maintenance of boundaries among species. The results based on the RAD SNP datasets indicated hybridization Ligularia cyathiceps × L. duciformis and L. duciformis × L. yunnanensis were both restricted to F1 s plus a few first-generation backcrosses and no gene introgression were identified, giving rise to strong reproductive isolation among hybridizing species. Moreover, hybrid swarm simulation, using HYBRIDLAB, indicated the RAD SNP datasets had sufficient discriminatory power for accurate hybrid detection. We conclude that parental species show strong reproductive isolation and they still maintain species boundaries, which may be the key mechanism to maintain species diversity of Ligularia in the eastern Qinghai-Tibetan Plateau and adjacent areas. Moreover, this study highlights the effectiveness of RAD sequencing in hybridization studies.
Collapse
Affiliation(s)
- Ningning Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongpeng Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| | - Ryan A Folk
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jiaojun Yu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| | - Yuezhi Pan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
35
|
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “Polyploid Hop”: Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00117] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Denton RD, Morales AE, Gibbs HL. Genome-specific histories of divergence and introgression between an allopolyploid unisexual salamander lineage and two ancestral sexual species. Evolution 2018; 72:1689-1700. [PMID: 29926914 DOI: 10.1111/evo.13528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Quantifying introgression between sexual species and polyploid lineages traditionally thought to be asexual is an important step in understanding what drives the longevity of putatively asexual groups. Here, we capitalize on three recent innovations-ultraconserved element (UCE) sequencing, bioinformatic techniques for identifying genome-specific variation in polyploids, and model-based methods for evaluating historical gene flow-to measure the extent and tempo of introgression over the evolutionary history of an allopolyploid lineage of all-female salamanders and two ancestral sexual species. Our analyses support a scenario in which the genomes sampled in unisexual salamanders last shared a common ancestor with genomes in their parental species ∼3.4 million years ago, followed by a period of divergence between homologous genomes. Recently, secondary introgression has occurred at different times with each sexual species during the last 500,000 years. Sustained introgression of sexual genomes into the unisexual lineage is the defining characteristic of their reproductive mode, but this study provides the first evidence that unisexual genomes have undergone long periods of divergence without introgression. Unlike other sperm-dependent taxa in which introgression is rare, the alternating periods of divergence and introgression between unisexual salamanders and their sexual relatives could explain why these salamanders are among the oldest described unisexual animals.
Collapse
Affiliation(s)
- Robert D Denton
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio 43210
- Ohio Biodiversity Conservation Partnership, Columbus, Ohio 43210
- Current Address: Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Ariadna E Morales
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio 43210
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio 43210
- Ohio Biodiversity Conservation Partnership, Columbus, Ohio 43210
| |
Collapse
|
37
|
Knaus BJ, Grünwald NJ. Inferring Variation in Copy Number Using High Throughput Sequencing Data in R. Front Genet 2018; 9:123. [PMID: 29706990 PMCID: PMC5909048 DOI: 10.3389/fgene.2018.00123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
Inference of copy number variation presents a technical challenge because variant callers typically require the copy number of a genome or genomic region to be known a priori. Here we present a method to infer copy number that uses variant call format (VCF) data as input and is implemented in the R package vcfR. This method is based on the relative frequency of each allele (in both genic and non-genic regions) sequenced at heterozygous positions throughout a genome. These heterozygous positions are summarized by using arbitrarily sized windows of heterozygous positions, binning the allele frequencies, and selecting the bin with the greatest abundance of positions. This provides a non-parametric summary of the frequency that alleles were sequenced at. The method is applicable to organisms that have reference genomes that consist of full chromosomes or sub-chromosomal contigs. In contrast to other software designed to detect copy number variation, our method does not rely on an assumption of base ploidy, but instead infers it. We validated these approaches with the model system of Saccharomyces cerevisiae and applied it to the oomycete Phytophthora infestans, both known to vary in copy number. This functionality has been incorporated into the current release of the R package vcfR to provide modular and flexible methods to investigate copy number variation in genomic projects.
Collapse
Affiliation(s)
- Brian J Knaus
- Horticultural Crops Research Unit, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR, United States
| | - Niklaus J Grünwald
- Horticultural Crops Research Unit, United States Department of Agriculture-Agricultural Research Service, Corvallis, OR, United States
| |
Collapse
|
38
|
Levin DA, Soltis DE. Factors promoting polyploid persistence and diversification and limiting diploid speciation during the K-Pg interlude. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:1-7. [PMID: 29107221 DOI: 10.1016/j.pbi.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 05/14/2023]
Abstract
The large wave of polyploidization following the Cretaceous-Paleogene (K-Pg) mass extinction has been explained by enhanced polyploid persistence arising from adaptive properties of the polyploids themselves, as well as an increase in unreduced gamete production and diploid hybridization. We propose that the demise of diploids afforded opportunities for polyploid establishment and expansion into novel habitats. Augmented polyploid gene pools from diploid and polyploid relatives, in association with their multiple and independent origins (of both autopolyploids and allopolyploids), facilitated their subsequent diversification. Their ability to recruit genetic variation from their diploid relatives or from products of recurrent origins sharing their genome(s) ostensibly contributed to polyploid persistence. Concomitantly, we propose that the number of congeneric diploid species dramatically contracted disproportionally to polyploids during the K-Pg interval (i.e. a diploid trough), resulting in a reduction in the rate of diploid speciation. Accordingly, the preponderance of neopolyploids was likely autopolyploids.
Collapse
Affiliation(s)
- Donald A Levin
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
39
|
Abbott RJ, Barton NH, Good JM. Genomics of hybridization and its evolutionary consequences. Mol Ecol 2018; 25:2325-32. [PMID: 27145128 DOI: 10.1111/mec.13685] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Richard J Abbott
- School of Biology, University of St Andrews, Mitchell Building, St Andrews, Fife, KY16 9TH, UK
| | - Nicholas H Barton
- Institute of Science and Technology (IST Austria), Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| |
Collapse
|
40
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
41
|
SNP genotyping and parameter estimation in polyploids using low-coverage sequencing data. Bioinformatics 2017; 34:407-415. [DOI: 10.1093/bioinformatics/btx587] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022] Open
|
42
|
de la Harpe M, Paris M, Karger DN, Rolland J, Kessler M, Salamin N, Lexer C. Molecular ecology studies of species radiations: current research gaps, opportunities and challenges. Mol Ecol 2017; 26:2608-2622. [PMID: 28316112 DOI: 10.1111/mec.14110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/11/2017] [Accepted: 03/06/2017] [Indexed: 12/28/2022]
Abstract
Understanding the drivers and limits of species radiations is a crucial goal of evolutionary genetics and molecular ecology, yet research on this topic has been hampered by the notorious difficulty of connecting micro- and macroevolutionary approaches to studying the drivers of diversification. To chart the current research gaps, opportunities and challenges of molecular ecology approaches to studying radiations, we examine the literature in the journal Molecular Ecology and revisit recent high-profile examples of evolutionary genomic research on radiations. We find that available studies of radiations are highly unevenly distributed among taxa, with many ecologically important and species-rich organismal groups remaining severely understudied, including arthropods, plants and fungi. Most studies employed molecular methods suitable over either short or long evolutionary time scales, such as microsatellites or restriction site-associated DNA sequencing (RAD-seq) in the former case and conventional amplicon sequencing of organellar DNA in the latter. The potential of molecular ecology studies to address and resolve patterns and processes around the species level in radiating groups of taxa is currently limited primarily by sample size and a dearth of information on radiating nuclear genomes as opposed to organellar ones. Based on our literature survey and personal experience, we suggest possible ways forward in the coming years. We touch on the potential and current limitations of whole-genome sequencing (WGS) in studies of radiations. We suggest that WGS and targeted ('capture') resequencing emerge as the methods of choice for scaling up the sampling of populations, species and genomes, including currently understudied organismal groups and the genes or regulatory elements expected to matter most to species radiations.
Collapse
Affiliation(s)
- Marylaure de la Harpe
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, A-1030, Austria
| | - Margot Paris
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland
| | - Dirk N Karger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zürich, CH-8008, Switzerland
| | - Jonathan Rolland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne, CH-1015, Switzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zürich, CH-8008, Switzerland
| | - Nicolas Salamin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne, CH-1015, Switzerland
| | - Christian Lexer
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, A-1030, Austria
| |
Collapse
|
43
|
McKinney GJ, Waples RK, Seeb LW, Seeb JE. Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Mol Ecol Resour 2016; 17:656-669. [DOI: 10.1111/1755-0998.12613] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Garrett J. McKinney
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street, Box 355020 Seattle WA 98195-5020 USA
| | - Ryan K. Waples
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street, Box 355020 Seattle WA 98195-5020 USA
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street, Box 355020 Seattle WA 98195-5020 USA
| | - James E. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street, Box 355020 Seattle WA 98195-5020 USA
| |
Collapse
|
44
|
Clark LV, Sacks EJ. TagDigger: user-friendly extraction of read counts from GBS and RAD-seq data. SOURCE CODE FOR BIOLOGY AND MEDICINE 2016; 11:11. [PMID: 27408618 PMCID: PMC4940913 DOI: 10.1186/s13029-016-0057-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 07/06/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND In genotyping-by-sequencing (GBS) and restriction site-associated DNA sequencing (RAD-seq), read depth is important for assessing the quality of genotype calls and estimating allele dosage in polyploids. However, existing pipelines for GBS and RAD-seq do not provide read counts in formats that are both accurate and easy to access. Additionally, although existing pipelines allow previously-mined SNPs to be genotyped on new samples, they do not allow the user to manually specify a subset of loci to examine. Pipelines that do not use a reference genome assign arbitrary names to SNPs, making meta-analysis across projects difficult. RESULTS We created the software TagDigger, which includes three programs for analyzing GBS and RAD-seq data. The first script, tagdigger_interactive.py, rapidly extracts read counts and genotypes from FASTQ files using user-supplied sets of barcodes and tags. Input and output is in CSV format so that it can be opened by spreadsheet software. Tag sequences can also be imported from the Stacks, TASSEL-GBSv2, TASSEL-UNEAK, or pyRAD pipelines, and a separate file can be imported listing the names of markers to retain. A second script, tag_manager.py, consolidates marker names and sequences across multiple projects. A third script, barcode_splitter.py, assists with preparing FASTQ data for deposit in a public archive by splitting FASTQ files by barcode and generating MD5 checksums for the resulting files. CONCLUSIONS TagDigger is open-source and freely available software written in Python 3. It uses a scalable, rapid search algorithm that can process over 100 million FASTQ reads per hour. TagDigger will run on a laptop with any operating system, does not consume hard drive space with intermediate files, and does not require programming skill to use.
Collapse
Affiliation(s)
- Lindsay V Clark
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL 61802 USA
| | - Erik J Sacks
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL 61802 USA
| |
Collapse
|
45
|
Zohren J, Wang N, Kardailsky I, Borrell JS, Joecker A, Nichols RA, Buggs RJA. Unidirectional diploid-tetraploid introgression among British birch trees with shifting ranges shown by restriction site-associated markers. Mol Ecol 2016; 25:2413-26. [PMID: 27065091 PMCID: PMC4999052 DOI: 10.1111/mec.13644] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 01/02/2023]
Abstract
Hybridization may lead to introgression of genes among species. Introgression may be bidirectional or unidirectional, depending on factors such as the demography of the hybridizing species, or the nature of reproductive barriers between them. Previous microsatellite studies suggested bidirectional introgression between diploid Betula nana (dwarf birch) and tetraploid B. pubescens (downy birch) and also between B. pubescens and diploid B. pendula (silver birch) in Britain. Here, we analyse introgression among these species using 51 237 variants in restriction site‐associated (RAD) markers in 194 individuals, called with allele dosages in the tetraploids. In contrast to the microsatellite study, we found unidirectional introgression into B. pubescens from both of the diploid species. This pattern fits better with the expected nature of the reproductive barrier between diploids and tetraploids. As in the microsatellite study, introgression into B. pubescens showed clear clines with increasing introgression from B. nana in the north and from B. pendula in the south. Unlike B. pendula alleles, introgression of B. nana alleles was found far from the current area of sympatry or allopatry between B. nana and B. pubescens. This pattern fits a shifting zone of hybridization due to Holocene reduction in the range of B. nana and expansion in the range of B. pubescens.
Collapse
Affiliation(s)
- Jasmin Zohren
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Igor Kardailsky
- QIAGEN Aarhus A/S, Silkeborgvej 2, Prismet, Aarhus C, 8000, Denmark
| | - James S Borrell
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Anika Joecker
- QIAGEN Aarhus A/S, Silkeborgvej 2, Prismet, Aarhus C, 8000, Denmark
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|