1
|
Varasteh T, Tschoeke D, Silva-Lima AW, Thompson C, Thompson F. Transcriptome of the coral Mussismilia braziliensis symbiont Sargassococcus simulans. Mar Genomics 2021; 61:100912. [PMID: 34710723 DOI: 10.1016/j.margen.2021.100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
A transcriptomic profile of Sargassococcus simulans 103B3, isolated from the coral Mussismilia braziliensis in Abrolhos, Brazil, is presented. A total of 631.3 Mbp transcriptomic sequences were obtained. The transcriptomic analysis disclosed transcripts coding for enzymes relevant for holobiont health including genes involved in I. Light harvesting complex (LHC), II. Organic matter utilization and III. Oxidative stress and microbial defense (Oxidoreductases) enzymes. The isolate exhibited transcripts for uptake and utilization of a variety of carbon sources, such as sugars, oligopeptides, and amino acids by ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) type transporters. Collectively, these enzymes indicate a mixotrophic metabolism in S. simulans with metabolic capabilities for the degradation of an array of organic carbon compounds in the coral Mussismilia and light harvesting within the low-light environments of Abrolhos.
Collapse
Affiliation(s)
- Tooba Varasteh
- Institute of Biology and Sage-Coppe, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Diogo Tschoeke
- Institute of Biology and Sage-Coppe, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Arthur W Silva-Lima
- Institute of Biology and Sage-Coppe, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Institute of Biology and Sage-Coppe, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Institute of Biology and Sage-Coppe, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Silva-Lima AW, Froes AM, Garcia GD, Tonon LAC, Swings J, Cosenza CAN, Medina M, Penn K, Thompson JR, Thompson CC, Thompson FL. Mussismilia braziliensis White Plague Disease Is Characterized by an Affected Coral Immune System and Dysbiosis. MICROBIAL ECOLOGY 2021; 81:795-806. [PMID: 33000311 DOI: 10.1007/s00248-020-01588-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Infectious diseases are one of the major drivers of coral reef decline worldwide. White plague-like disease (WPL) is a widespread disease with a complex etiology that infects several coral species, including the Brazilian endemic species Mussismilia braziliensis. Gene expression profiles of healthy and WPL-affected M. braziliensis were analyzed in winter and summer seasons. The de novo assembly of the M. braziliensis transcriptome from healthy and white plague samples produced a reference transcriptome containing 119,088 transcripts. WPL-diseased samples were characterized by repression of immune system and cellular defense processes. Autophagy and cellular adhesion transcripts were also repressed in WPL samples, suggesting exhaustion of the coral host defenses. Seasonal variation leads to plasticity in transcription with upregulation of intracellular signal transduction, apoptosis regulation, and oocyte development in the summer. Analysis of the active bacterial rRNA indicated that Pantoea bacteria were more abundant in WPL corals, while Tistlia, Fulvivirga, and Gammaproteobacteria Ga0077536 were more abundant in healthy samples. Cyanobacteria proliferation was also observed in WPL, mostly in the winter. These results indicate a scenario of dysbiosis in WPL-affected M. braziliensis, with the loss of potentially symbiotic bacteria and proliferation of opportunistic microbes after the start of the infection process.
Collapse
Affiliation(s)
- A W Silva-Lima
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
| | - A M Froes
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
| | - G D Garcia
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - L A C Tonon
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - J Swings
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - C A N Cosenza
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - M Medina
- Pennsylvania State University, 324 Mueller Lab, University Park, PA, 16802, USA
| | - K Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C C Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - F L Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil.
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil.
| |
Collapse
|
3
|
Romanis CS, Pearson LA, Neilan BA. Cyanobacterial blooms in wastewater treatment facilities: Significance and emerging monitoring strategies. J Microbiol Methods 2020; 180:106123. [PMID: 33316292 DOI: 10.1016/j.mimet.2020.106123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Municipal wastewater treatment facilities (WWTFs) are prone to the proliferation of cyanobacterial species which thrive in stable, nutrient-rich environments. Dense cyanobacterial blooms frequently disrupt treatment processes and the supply of recycled water due to their production of extracellular polymeric substances, which hinder microfiltration, and toxins, which pose a health risk to end-users. A variety of methods are employed by water utilities for the identification and monitoring of cyanobacteria and their toxins in WWTFs, including microscopy, flow cytometry, ELISA, chemoanalytical methods, and more recently, molecular methods. Here we review the literature on the occurrence and significance of cyanobacterial blooms in WWTFs and discuss the pros and cons of the various strategies for monitoring these potentially hazardous events. Particular focus is directed towards next-generation metagenomic sequencing technologies for the development of site-specific cyanobacterial bloom management strategies. Long-term multi-omic observations will enable the identification of indicator species and the development of site-specific bloom dynamics models for the mitigation and management of cyanobacterial blooms in WWTFs. While emerging metagenomic tools could potentially provide deep insight into the diversity and flux of problematic cyanobacterial species in these systems, they should be considered a complement to, rather than a replacement of, quantitative chemoanalytical approaches.
Collapse
Affiliation(s)
- Caitlin S Romanis
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle 2308, Australia.
| |
Collapse
|
4
|
Cárdenas A, Ye J, Ziegler M, Payet JP, McMinds R, Vega Thurber R, Voolstra CR. Coral-Associated Viral Assemblages From the Central Red Sea Align With Host Species and Contribute to Holobiont Genetic Diversity. Front Microbiol 2020; 11:572534. [PMID: 33117317 PMCID: PMC7561429 DOI: 10.3389/fmicb.2020.572534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Coral reefs are highly diverse marine ecosystems increasingly threatened on a global scale. The foundation species of reef ecosystems are stony corals that depend on their symbiotic microalgae and bacteria for aspects of their metabolism, immunity, and environmental adaptation. Conversely, the function of viruses in coral biology is less well understood, and we are missing an understanding of the diversity and function of coral viruses, particularly in understudied regions such as the Red Sea. Here we characterized coral-associated viruses using a large metagenomic and metatranscriptomic survey across 101 cnidarian samples from the central Red Sea. While DNA and RNA viral composition was different across coral hosts, biological traits such as coral life history strategy correlated with patterns of viral diversity. Coral holobionts were broadly associated with Mimiviridae and Phycodnaviridae that presumably infect protists and algal cells, respectively. Further, Myoviridae and Siphoviridae presumably target members of the bacterial phyla Actinobacteria, Firmicutes, and Proteobacteria, whereas Hepadnaviridae and Retroviridae might infect the coral host. Genes involved in bacterial virulence and auxiliary metabolic genes were common among the viral sequences, corroborating a contribution of viruses to the holobiont’s genetic diversity. Our work provides a first insight into Red Sea coral DNA and RNA viral assemblages and reveals that viral diversity is consistent with global coral virome patterns.
Collapse
Affiliation(s)
- Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jin Ye
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Ryan McMinds
- Center of Modeling, Simulation and Interactions, Université Côte d'Azur, Nice, France
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz, Germany.,Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Insights on the genetic repertoire of the coral Mussismilia braziliensis endosymbiont Symbiodinium. Symbiosis 2020. [DOI: 10.1007/s13199-020-00664-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Francini-Filho RB, Cordeiro MC, Omachi CY, Rocha AM, Bahiense L, Garcia GD, Tschoeke D, de Almeida MG, Rangel TP, De Oliveira BCV, de Almeida DQR, Menezes R, Mazzei EF, Joyeux JC, Rezende CE, Thompson CC, Thompson FL. Remote sensing, isotopic composition and metagenomics analyses revealed Doce River ore plume reached the southern Abrolhos Bank Reefs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134038. [PMID: 32380596 DOI: 10.1016/j.scitotenv.2019.134038] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 06/11/2023]
Abstract
On November 5th, 2015, the Fundão dam rupture released >50 million m3 of ore tailings into the Doce River, Minas Gerais State, Brazil. The huge volume of mud spread along the river and reached the sea, 17 days after the disaster, in Regência, Espírito Santo State (ES). In 2018, after three years of the disaster, the impacts of the ore tailings in the marine environment are still unclear. This study aims to investigate possible short-term impacts in marine biodiversity caused by the ore tailings' mud over the reef ecosystems that are closest to the disaster area: i.e. recently discovered reefs in the southern Abrolhos Bank. A remote sensing surveillance including winds, sea surface temperature, total suspended material and watercolor (MODIS Aqua data) indicated that the iron tailings plume reached the southern portion of Abrolhos Bank on June 16th, 2016. Subsequently, to obtain further evidence of the presence of the tailings in the coral reefs, water samples were collected in a gradient spanning from the river estuary to the reefs in southern Abrolhos Bank, we also analyzed the isotopic and microbial composition of the samples, as well as the reef benthic composition. Despite no clues of negative impact on benthic (coral) communities, isotopic analysis confirmed the presence of the plume over the reefs area. This study serves as a baseline for future long-term impact assessments of the health of coral reefs in the Abrolhos Bank.
Collapse
Affiliation(s)
- Ronaldo B Francini-Filho
- Departamento de Engenharia e Meio Ambiente, Universidade Federal da Paraíba, Rio Tinto, Paraíba, Brazil
| | - Marcelle C Cordeiro
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Claudia Y Omachi
- Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - André M Rocha
- Systems Engineering and Computer Science Program at COPPE/UFRJ (Brazil), Avenida Horácio Macedo 2030, Centro de Tecnologia, Bloco H, sala 319, Cidade Universitária, Rio de Janeiro, RJ 21941-914, Brazil
| | - Laura Bahiense
- Systems Engineering and Computer Science Program at COPPE/UFRJ (Brazil), Avenida Horácio Macedo 2030, Centro de Tecnologia, Bloco H, sala 319, Cidade Universitária, Rio de Janeiro, RJ 21941-914, Brazil
| | - Gizele D Garcia
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Diogo Tschoeke
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Marcelo G de Almeida
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Thiago P Rangel
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Braulio Cherene Vaz De Oliveira
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Diogo Q R de Almeida
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Rafael Menezes
- Laboratório de Ictiologia, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB, Brazil
| | | | - Jean-Christophe Joyeux
- Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Carlos E Rezende
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Cristiane C Thompson
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Fabiano L Thompson
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
7
|
Calegario G, Freitas L, Santos E, Silva B, Oliveira L, Garcia G, Omachi C, Pereira R, Thompson C, Thompson F. Environmental modulation of the proteomic profiles from closely phylogenetically related populations of the red seaweed Plocamium brasiliense. PeerJ 2019; 7:e6469. [PMID: 30972241 PMCID: PMC6450377 DOI: 10.7717/peerj.6469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022] Open
Abstract
The genus Plocamium encompasses seaweeds that are widely distributed throughout the world’s oceans, with Plocamium brasiliense found along the tropical and subtropical coasts of the Western Atlantic. This wide distribution can lead to structured populations due to environmental differences (e.g., light levels or temperature), restricted gene flow, and the presence of cryptic species. Abiotic variation can also affect gene expression, which consequently leads to differences in the seaweeds protein profile. This study aimed to analyze the genetic and proteomic profiles of P. brasiliense sampled in two geographically distinct sites on the coastline of Rio de Janeiro state, Brazil: Arraial do Cabo (P1) and Búzios (P2). The genetic profiles of macroalgal specimens from these two sites were indistinguishable as assessed by the markers UPA/23S, rbcL, and COI-5P; however, the protein profiles varied significantly between populations from the two sites. At both sites the ribulose-1,5-biphosphate carboxylase/oxygenase was the most abundant protein found in P. brasiliense specimens. The number of phycobiliproteins differed between both sites with the highest numbers being found at P1, possibly due to water depth. The differences in proteomic profiles of the two nearly identical populations of P. brasiliense suggest that environmental parameters such as light availability and desiccation might induce distinct protein expression, probably as a result of the phenotypic plasticity within this population of seaweed.
Collapse
Affiliation(s)
- Gabriela Calegario
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Freitas
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Eidy Santos
- Unit of Biology, State University of the West Zone, Rio de Janeiro, Brazil
| | - Bruno Silva
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louisi Oliveira
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gizele Garcia
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Undergraduate Education, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Cláudia Omachi
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Pereira
- Department of Marine Biology, Fluminense Federal University, Niterói, Brazil.,Rio de Janeiro Botanical Garden, Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Olguín-López N, Hérnandez-Elizárraga VH, Hernández-Matehuala R, Cruz-Hernández A, Guevara-González R, Caballero-Pérez J, Ibarra-Alvarado C, Rojas-Molina A. Impact of El Niño-Southern Oscillation 2015-2016 on the soluble proteomic profile and cytolytic activity of Millepora alcicornis ("fire coral") from the Mexican Caribbean. PeerJ 2019; 7:e6593. [PMID: 30918755 PMCID: PMC6428038 DOI: 10.7717/peerj.6593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/09/2019] [Indexed: 12/24/2022] Open
Abstract
Reef-forming cnidarians are extremely susceptible to the “bleaching” phenomenon caused by global warming. The effect of elevated seawater temperature has been extensively studied on Anthozoans; however, to date the impact of thermal stress on the expression of genes and proteins in Hydrozoan species has not been investigated. The present study aimed to determine the differential proteomic profile of Millepora alcicornis, which inhabits the Mexican Caribbean, in response to the El Niño-Southern Oscillation 2015–2016. Additionally, the cytolytic activity of the soluble proteomes obtained from normal and bleached M. alcicornis was assessed. Bleached specimens showed decreased symbiont’s density and chlorophyll a and c2 levels. After bleaching, we observed a differential expression of 17 key proteins, tentatively identified as related to exocytosis, calcium homeostasis, cytoskeletal organization, and potential toxins, including a metalloprotease, a phospholipase A2 (PLA2), and an actitoxin. Although, some of the differentially expressed proteins included potential toxins, the hemolytic, PLA2, and proteolytic activities elicited by the soluble proteomes from bleached and normal specimens were not significantly different. The present study provides heretofore-unknown evidence that thermal stress produces a differential expression of proteins involved in essential cellular processes of Hydrozoan species. Even though our results showed an over-expression of some potential toxin-related proteins, the cytolytic effect (as assessed by hemolytic, PLA2, and caseinolytic activities) was not increased in bleached M. alcicornis, which suggests that the cytolysis is mainly produced by toxins whose expression was not affected by temperature stress. These findings allow hypothesizing that this hydrocoral is able to prey heterotrophically when suffering from moderate bleaching, giving it a better chance to withstand the effects of high temperature.
Collapse
Affiliation(s)
- Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas-Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico.,Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Víctor Hugo Hérnandez-Elizárraga
- Posgrado en Ciencias Químico Biológicas-Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico.,Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas-Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico.,Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Andrés Cruz-Hernández
- Laboratorio de Biología Molecular-Escuela de Agronomía, Universidad De la Salle Bajío, León, Guanajuato, México
| | - Ramón Guevara-González
- C.A Ingeniería de Biosistemas-Facultad de Ingeniería-Campus Amazcala, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Juan Caballero-Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, Mexico
| |
Collapse
|
9
|
Megaviridae-like particles associated with Symbiodinium spp. from the endemic coral Mussismilia braziliensis. Symbiosis 2018. [DOI: 10.1007/s13199-018-0567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Coutinho FH, Gregoracci GB, Walter JM, Thompson CC, Thompson FL. Metagenomics Sheds Light on the Ecology of Marine Microbes and Their Viruses. Trends Microbiol 2018; 26:955-965. [PMID: 29937307 DOI: 10.1016/j.tim.2018.05.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 01/31/2023]
Abstract
Advances brought about by omics-based approaches have revolutionized our understanding of the diversity and ecological processes involving marine archaea, bacteria, and their viruses. This broad review discusses recent examples of how genomics, metagenomics, and ecogenomics have been applied to reveal the ecology of these biological entities. Three major topics are covered in this revision: (i) the novel roles of microorganisms in ecosystem processes; (ii) virus-host associations; and (iii) ecological associations of microeukaryotes and other microbes. We also briefly comment on the discovery of novel taxa from marine ecosystems; development of a robust taxonomic framework for prokaryotes; breakthroughs on the diversity and ecology of cyanobacteria; and advances on ecological modelling. We conclude by discussing limitations of the field and suggesting directions for future research.
Collapse
Affiliation(s)
- Felipe Hernandes Coutinho
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Evolutionary Genomics Group, Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández (UMH), Alicante, Spain
| | | | - Juline Marta Walter
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Carneiro Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology - CT2, SAGE-COPPE, Federal Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Cheng H, Zhao H, Yang T, Ruan S, Wang H, Xiang N, Zhou H, Li QX, Diao X. Comparative evaluation of five protocols for protein extraction from stony corals (Scleractinia) for proteomics. Electrophoresis 2018; 39:1062-1070. [DOI: 10.1002/elps.201700436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/04/2018] [Accepted: 01/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Huamin Cheng
- State Key Laboratory of South China Sea Marine Resource Utilization; Hainan University; Haikou P. R. China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou P. R. China
| | - Hongwei Zhao
- State Key Laboratory of South China Sea Marine Resource Utilization; Hainan University; Haikou P. R. China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou P. R. China
| | - Tinghan Yang
- State Key Laboratory of South China Sea Marine Resource Utilization; Hainan University; Haikou P. R. China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou P. R. China
| | - Sunlan Ruan
- State Key Laboratory of South China Sea Marine Resource Utilization; Hainan University; Haikou P. R. China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou P. R. China
| | - Haihua Wang
- State Key Laboratory of South China Sea Marine Resource Utilization; Hainan University; Haikou P. R. China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou P. R. China
| | - Nan Xiang
- State Key Laboratory of South China Sea Marine Resource Utilization; Hainan University; Haikou P. R. China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou P. R. China
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilization; Hainan University; Haikou P. R. China
- Institute of Tropical Agriculture and Forestry; Hainan University; Haikou P. R. China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering; University of Hawaii at Manoa; Honolulu USA
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilization; Hainan University; Haikou P. R. China
- Ministry of Eduction Key Laboratory of Tropical Island Ecology; Hainan Normal University; Haikou P. R. China
| |
Collapse
|
12
|
Silveira CB, Cavalcanti GS, Walter JM, Silva-Lima AW, Dinsdale EA, Bourne DG, Thompson CC, Thompson FL. Microbial processes driving coral reef organic carbon flow. FEMS Microbiol Rev 2017; 41:575-595. [PMID: 28486655 DOI: 10.1093/femsre/fux018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 04/10/2017] [Indexed: 01/13/2023] Open
Abstract
Coral reefs are one of the most productive ecosystems on the planet, with primary production rates compared to that of rain forests. Benthic organisms release 10-50% of their gross organic production as mucus that stimulates heterotrophic microbial metabolism in the water column. As a result, coral reef microbes grow up to 50 times faster than open ocean communities. Anthropogenic disturbances cause once coral-dominated reefs to become dominated by fleshy organisms, with several outcomes for trophic relationships. Here we review microbial processes implicated in organic carbon flux in coral reefs displaying species phase shifts. The first section presents microbial players and interactions within the coral holobiont that contribute to reef carbon flow. In the second section, we identify four ecosystem-level microbial features that directly respond to benthic species phase shifts: community composition, biomass, metabolism and viral predation. The third section discusses the significance of microbial consumption of benthic organic matter to reef trophic relationships. In the fourth section, we propose that the 'microbial phase shifts' discussed here are conducive to lower resilience, facilitating the transition to new degradation states in coral reefs.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil.,Biology Department, San Diego State University, 5500 Campanille Dr, San Diego, CA 92182, USA
| | - Giselle S Cavalcanti
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil.,Biology Department, San Diego State University, 5500 Campanille Dr, San Diego, CA 92182, USA
| | - Juline M Walter
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| | - Arthur W Silva-Lima
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| | - Elizabeth A Dinsdale
- Biology Department, San Diego State University, 5500 Campanille Dr, San Diego, CA 92182, USA
| | - David G Bourne
- College of Science and Engineering, James Cook University and Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Cristiane C Thompson
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| | - Fabiano L Thompson
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| |
Collapse
|
13
|
Mera H, Bourne DG. Disentangling causation: complex roles of coral-associated microorganisms in disease. Environ Microbiol 2017; 20:431-449. [DOI: 10.1111/1462-2920.13958] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hanaka Mera
- College of Science and Engineering; James Cook University; Townsville Queensland 4811, Australia
| | - David G. Bourne
- College of Science and Engineering; James Cook University; Townsville Queensland 4811, Australia
- Australian Institute of Marine Science; PMB 3, Townsville, Queensland 4810 Australia
| |
Collapse
|
14
|
Unlocking Marine Biotechnology in the Developing World. Trends Biotechnol 2017; 35:1119-1121. [PMID: 28890138 DOI: 10.1016/j.tibtech.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
Fulfilling the promise of marine biotechnology as a source for environmental and biomedical applications remains challenging. New technologies will be necessary to harness marine biodiversity, and collaboration across government, academic, and private sectors will be crucial to create mechanisms of technology transfer and promote the development of new marine biotechnology companies.
Collapse
|
15
|
Morgan MB, Edge SE, Venn AA, Jones RJ. Developing transcriptional profiles in Orbicella franksi exposed to copper: Characterizing responses associated with a spectrum of laboratory-controlled environmental conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:60-76. [PMID: 28599170 DOI: 10.1016/j.aquatox.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/23/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, School of Mathematics and Natural Sciences, 2277 Martha Berry Hwy, Mount Berry, GA, 30149, USA.
| | - Sara E Edge
- Hawaii Pacific University, 45-045 Kamehameha Hwy, Kaneohe, HI, 96744, USA
| | - Alexander A Venn
- Marine Biology Department et Laboratoire International Associé 647 "BIOSENSIB", Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco
| | - Ross J Jones
- Australian Institute of Marine Science (AIMS), Perth, 6009, Australia
| |
Collapse
|
16
|
Seveso D, Montano S, Reggente MAL, Maggioni D, Orlandi I, Galli P, Vai M. The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease. Cell Stress Chaperones 2017; 22:225-236. [PMID: 27988888 PMCID: PMC5352596 DOI: 10.1007/s12192-016-0756-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Black band disease (BBD) is a widespread coral pathology caused by a microbial consortium dominated by cyanobacteria, which is significantly contributing to the loss of coral cover and diversity worldwide. Since the effects of the BBD pathogens on the physiology and cellular stress response of coral polyps appear almost unknown, the expression of some molecular biomarkers, such as Hsp70, Hsp60, HO-1, and MnSOD, was analyzed in the apparently healthy tissues of Goniopora columna located at different distances from the infection and during two disease development stages. All the biomarkers displayed different levels of expression between healthy and diseased colonies. In the healthy corals, low basal levels were found stable over time in different parts of the same colony. On the contrary, in the diseased colonies, a strong up-regulation of all the biomarkers was observed in all the tissues surrounding the infection, which suffered an oxidative stress probably generated by the alternation, at the progression front of the disease, of conditions of oxygen supersaturation and hypoxia/anoxia, and by the production of the cyanotoxin microcystin by the BBD cyanobacteria. Furthermore, in the infected colonies, the expression of all the biomarkers appeared significantly affected by the development stage of the disease. In conclusion, our approach may constitute a useful diagnostic tool, since the cellular stress response of corals is activated before the pathogens colonize the tissues, and expands the current knowledge of the mechanisms controlling the host responses to infection in corals.
Collapse
Affiliation(s)
- Davide Seveso
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives.
| | - Simone Montano
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Melissa Amanda Ljubica Reggente
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Davide Maggioni
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Ivan Orlandi
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Paolo Galli
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Marina Vai
- Department of Biotechnologies and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
17
|
Unraveling the microbial processes of black band disease in corals through integrated genomics. Sci Rep 2017; 7:40455. [PMID: 28094312 PMCID: PMC5240343 DOI: 10.1038/srep40455] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/29/2016] [Indexed: 11/08/2022] Open
Abstract
Coral disease outbreaks contribute to the ongoing degradation of reef ecosystems, however, microbial mechanisms underlying the onset and progression of most coral diseases are poorly understood. Black band disease (BBD) manifests as a cyanobacterial-dominated microbial mat that destroys coral tissues as it rapidly spreads over coral colonies. To elucidate BBD pathogenesis, we apply a comparative metagenomic and metatranscriptomic approach to identify taxonomic and functional changes within microbial lesions during in-situ development of BBD from a comparatively benign stage termed cyanobacterial patches. Results suggest that photosynthetic CO2-fixation in Cyanobacteria substantially enhances productivity of organic matter within the lesion during disease development. Photosynthates appear to subsequently promote sulfide-production by Deltaproteobacteria, facilitating the major virulence factor of BBD. Interestingly, our metagenome-enabled transcriptomic analysis reveals that BBD-associated cyanobacteria have a putative mechanism that enables them to adapt to higher levels of hydrogen sulfide within lesions, underpinning the pivotal roles of the dominant cyanobacterium within the polymicrobial lesions during the onset of BBD. The current study presents sequence-based evidence derived from whole microbial communities that unravel the mechanism of development and progression of BBD.
Collapse
|