1
|
Caputo B, De Marco CM, Pichler V, Bottà G, Bennett KL, Amambua-Ngwa A, Assogba SB, Opondo KO, Clarkson CS, Tennessen JA, Weetman D, Miles A, Della Torre A. Population genomic evidence of a putative 'far-west' African cryptic taxon in the Anopheles gambiae complex. Commun Biol 2024; 7:1115. [PMID: 39256556 PMCID: PMC11387608 DOI: 10.1038/s42003-024-06809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
The two main Afrotropical malaria vectors - Anopheles coluzzii and An. gambiae - are genetically distinct and reproductively isolated across West Africa. However, populations at the western extreme of their range are assigned as "intermediate" between the two species by whole genome sequence (WGS) data, and as hybrid forms by conventional molecular diagnostics. By exploiting WGS data from 1190 specimens collected across west Africa via the Anopheles gambiae 1000 Genomes network, we identified a putative taxon in the far-west (provisionally named Bissau molecular form), which did not arise by admixture but rather may have originated at the same time as the split between An. coluzzii and An. gambiae. Intriguingly, this taxon lacks insecticide resistance mechanisms commonly observed in the two main species. These findings lead to a change of perspective on malaria vector species in the far-west region with potential for epidemiological implications, and a new challenge for genetic-based mosquito control approaches.
Collapse
Affiliation(s)
- Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Carlo M De Marco
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Giordano Bottà
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy
| | - Kelly L Bennett
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination Theme (DCE), Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine (MRCG-LSHTM), Banjul, The Gambia
| | - Sessinou B Assogba
- Disease Control and Elimination Theme (DCE), Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine (MRCG-LSHTM), Banjul, The Gambia
| | - Kevin O Opondo
- Disease Control and Elimination Theme (DCE), Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine (MRCG-LSHTM), Banjul, The Gambia
| | - Chris S Clarkson
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Jacob A Tennessen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - David Weetman
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Alistair Miles
- Wellcome Sanger Genomic Surveillance Unit, Wellcome Sanger Institute, Cambridge, UK
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "Sapienza", Rome, Italy.
| |
Collapse
|
2
|
Dennis TPW, Essandoh J, Mable BK, Viana MS, Yawson AE, Weetman D. Signatures of adaptation at key insecticide resistance loci in Anopheles gambiae in Southern Ghana revealed by reduced-coverage WGS. Sci Rep 2024; 14:8650. [PMID: 38622230 PMCID: PMC11018624 DOI: 10.1038/s41598-024-58906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.
Collapse
Affiliation(s)
- Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Conservation Biology and Entomology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Barbara K Mable
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Mafalda S Viana
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alexander E Yawson
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
3
|
Wang HL, Rao Q, Chen ZZ. Identifying potential insecticide resistance markers through genomic-level comparison of Bemisia tabaci (Gennadius) lines. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22034. [PMID: 37434515 DOI: 10.1002/arch.22034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
The invasive whitefly (Bemisia tabaci) MED is one of the most economically damaging plant pests. The extensive use of insecticide over decades has led to that the invasive B. tabaci MED has developed resistance to a wide range of insecticide classes, but little is known about the genetic background associated with resistance. To this end, we conducted a comparative genome-wide analysis of single-base nucleotide polymorphisms between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line collected in 1976. First, low-coverage genome sequencings were conducted on DNA isolated from individual whiteflies. The sequencing results were evaluated using an available B. tabaci MED genome as a reference. Significant genetic differences were discovered between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line based on the principal component analyses. Top GO categories and KEGG pathways that might be involved in insecticide resistance development were identified, and several of them have not been previously associated with resistance. Additionally, we identified several genetic loci with novel variations including Cytochrome P450 monooxygenases (P450s), UDP-glucuronosyltransferases (UGTs), Glutathione S-transferases (GSTs), esterase, carboxyl-esterases (COE), ABC transporters, fatty acyl-CoA reductase, voltage-gated sodium channels, GABA receptor, and cuticle proteins (CPs) that were previously reported to have close associations with pesticide resistance in well-studied insect groups that provide an essential resource for the design of insecticide resistance-linked loci arrays insecticide. Our results was obtained solely on resequencing genome data sets, more pesticide bio-assays combined with omics datasets should be further used to verify the markers identified here.
Collapse
Affiliation(s)
- Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Zhen-Zhu Chen
- College of Forestry, Hebei Agricultural University, Hebei, China
| |
Collapse
|
4
|
McCulloch GA, Waters JM. Rapid adaptation in a fast-changing world: Emerging insights from insect genomics. GLOBAL CHANGE BIOLOGY 2023; 29:943-954. [PMID: 36333958 PMCID: PMC10100130 DOI: 10.1111/gcb.16512] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 05/31/2023]
Abstract
Many researchers have questioned the ability of biota to adapt to rapid anthropogenic environmental shifts. Here, we synthesize emerging genomic evidence for rapid insect evolution in response to human pressure. These new data reveal diverse genomic mechanisms (single locus, polygenic, structural shifts; introgression) underpinning rapid adaptive responses to a variety of anthropogenic selective pressures. While the effects of some human impacts (e.g. pollution; pesticides) have been previously documented, here we highlight startling new evidence for rapid evolutionary responses to additional anthropogenic processes such as deforestation. These recent findings indicate that diverse insect assemblages can indeed respond dynamically to major anthropogenic evolutionary challenges. Our synthesis also emphasizes the critical roles of genomic architecture, standing variation and gene flow in maintaining future adaptive potential. Broadly, it is clear that genomic approaches are essential for predicting, monitoring and responding to ongoing anthropogenic biodiversity shifts in a fast-changing world.
Collapse
|
5
|
Rashid I, Campos M, Collier T, Crepeau M, Weakley A, Gripkey H, Lee Y, Schmidt H, Lanzaro GC. Spontaneous mutation rate estimates for the principal malaria vectors Anopheles coluzzii and Anopheles stephensi. Sci Rep 2022; 12:226. [PMID: 34996998 PMCID: PMC8742016 DOI: 10.1038/s41598-021-03943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Using high-depth whole genome sequencing of F0 mating pairs and multiple individual F1 offspring, we estimated the nuclear mutation rate per generation in the malaria vectors Anopheles coluzzii and Anopheles stephensi by detecting de novo genetic mutations. A purpose-built computer program was employed to filter actual mutations from a deep background of superficially similar artifacts resulting from read misalignment. Performance of filtering parameters was determined using software-simulated mutations, and the resulting estimate of false negative rate was used to correct final mutation rate estimates. Spontaneous mutation rates by base substitution were estimated at 1.00 × 10−9 (95% confidence interval, 2.06 × 10−10—2.91 × 10−9) and 1.36 × 10−9 (95% confidence interval, 4.42 × 10−10—3.18 × 10−9) per site per generation in A. coluzzii and A. stephensi respectively. Although similar studies have been performed on other insect species including dipterans, this is the first study to empirically measure mutation rates in the important genus Anopheles, and thus provides an estimate of µ that will be of utility for comparative evolutionary genomics, as well as for population genetic analysis of malaria vector mosquito species.
Collapse
Affiliation(s)
- Iliyas Rashid
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA.,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.,Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Travis Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Allison Weakley
- Department of ChEM-H Operations, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Hans Gripkey
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE, Vero Beach, FL, 32962, USA
| | - Hanno Schmidt
- Anthropology, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University of Mainz, Saarstraße 21, 55122, Mainz, Germany
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, 1089 Veterinary Medicine Dr, 4225 VM3B, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
2La Paracentric Chromosomal Inversion and Overexpressed Metabolic Genes Enhance Thermotolerance and Pyrethroid Resistance in the Major Malaria Vector Anopheles gambiae. BIOLOGY 2021; 10:biology10060518. [PMID: 34200806 PMCID: PMC8230517 DOI: 10.3390/biology10060518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/31/2023]
Abstract
Changes in global temperature are impacting the spread/intensity of vector-borne diseases, including malaria, and accelerating evolutionary/adaptive changes in vector species. These changes, including chromosomal inversions and overexpression and/or changes in allele frequencies of thermotolerance-associated genes, may facilitate insecticide resistance through pleiotropy. This study investigated the impact of thermotolerance on pyrethroid resistance in four populations of the malaria vector An. gambiae s.l., from the savanna/sub-Sahel of northern Nigeria. Anopheles coluzzii and An. gambiae s.s. were the only malaria vectors found, sympatric in all the sites, with the former species predominant. High thermotolerance was observed, with no mortality at 38 °C, and LT50 of ~44 °C. Significantly high permethrin resistance was observed (mortality < 50%) in 44 °C heat-hardened (exposure to an intermediately high temperature provides protection to a more severe temperature or insecticide) larvae from two sites, BUK and Pantami, compared with the control, and heat-hardened adult females from Auyo (mortality = 3.00% ± 1.20, χ2 = 5.83, p < 0.01) compared with the control (12.00% ± 4.65). The 2La chromosomal inversion was detected at ~50% in subset of larvae and 58% in subset of adult females genotyped. A significant association was observed (OR = 7.2, p < 0.03) between permethrin resistance and the 2La/+a rearrangement compared with 2L+a/+a, in BUK larvae. For all sites, permethrin resistance correlated with 2La/a homozygosity in adult females (R = 5.02, p = 0.01). qRT-PCR identified six genes commonly induced/overexpressed, including the heat shock protein 70 (AGAP004581) which was 2468× and 5× overexpressed in heat-hardened and permethrin-resistant females, respectively; trehalose-6-phosphate synthase (AGAP008227); and the ionotropic glutamate receptor genes, IR25a (AGAP010272) and IR21a (AGAP008511). This study highlights challenges associated with insecticide-based malaria vector control, and the epidemiological significance of taking climate variables into account for the design/choice of control measures.
Collapse
|
7
|
Bennett KL, McMillan WO, Loaiza JR. The genomic signal of local environmental adaptation in Aedes aegypti mosquitoes. Evol Appl 2021; 14:1301-1313. [PMID: 34025769 PMCID: PMC8127705 DOI: 10.1111/eva.13199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Local adaptation is important when predicting arthropod-borne disease risk because of its impacts on vector population fitness and persistence. However, the extent that vector populations are adapted to the environment generally remains unknown. Despite low population structure and high gene flow in Aedes aegypti mosquitoes across Panama, excepting the province of Bocas del Toro, we identified 128 candidate SNPs, clustered within 17 genes, which show a strong genomic signal of local environmental adaptation. This putatively adaptive variation occurred across fine geographical scales with the composition and frequency of candidate adaptive loci differing between populations in wet tropical environments along the Caribbean coast and dry tropical conditions typical of the Pacific coast. Temperature and vegetation were important predictors of adaptive genomic variation in Ae. aegypti with several potential areas of local adaptation identified. Our study lays the foundations of future work to understand whether environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and whether this could either aid or hinder efforts of population control.
Collapse
Affiliation(s)
- Kelly L. Bennett
- Smithsonian Tropical Research InstituteBalboa AnconRepublic of Panama
| | - W. Owen McMillan
- Smithsonian Tropical Research InstituteBalboa AnconRepublic of Panama
| | - Jose R. Loaiza
- Smithsonian Tropical Research InstituteBalboa AnconRepublic of Panama
- Instituto de Investigaciones Científicas y Servicios de Alta TecnologíaPanamáRepublic of Panama
- Programa Centroamericano de Maestría en EntomologíaUniversidad de PanamáPanamáRepublic of Panama
| |
Collapse
|
8
|
Sun X, Liu W, Li R, Zhao C, Pan L, Yan C. A chromosome level genome assembly of Propsilocerus akamusi to understand its response to heavy metal exposure. Mol Ecol Resour 2021; 21:1996-2012. [PMID: 33710757 DOI: 10.1111/1755-0998.13377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022]
Abstract
Chironomidae species are universally used for studying the impact of pollutants in aquatic systems. The nonbiting midge Propsilocerus akamusi is often found in urban streams and is suitable for use as a toxicological bioindicator. However, few studies have previously examined metal stress in this species. We sequenced the genome of this urban midge to address this question. Here, we present the first chromosome-level genome of P. akamusi, obtained from Illumina short-read and PacBio long-read sequences with Hi-C technology. The size of the very small assembled genome was 85.83 Mb with a contig N50 of 6.2 Mb and a scaffold N50 of 26.1 Mb. This assembly revealed significant expansion of haemoglobin (Hb) genes, some of which formed large tandem repeats. Transcriptomic studies for copper tolerance identified four genes in the tandem array that were highly expressed, all of which presented intron loss. This characteristic might highlight the potential role of Hb genes in copper tolerance. Additionally, detoxification genes, chemosensory genes and heat shock protein genes of this midge were identified, some of which are associated with metal stress. The high-quality assembled genome of P. akamusi and the transcriptomic analyses provide new insight into the molecular mechanisms of heavy metal stress. Our comparison of the P. akamusi genome with other dipteran genomes provides valuable resources for understanding the evolutionary history, genetics, and ecology of this species as well as those of other midges.
Collapse
Affiliation(s)
- Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Ruoqun Li
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Cong Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Lina Pan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| |
Collapse
|
9
|
Nowling RJ, Manke KR, Emrich SJ. Detecting inversions with PCA in the presence of population structure. PLoS One 2020; 15:e0240429. [PMID: 33119626 PMCID: PMC7595445 DOI: 10.1371/journal.pone.0240429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Chromosomal inversions can lead to reproductive isolation and adaptation in insects such as Drosophila melanogaster and the non-model malaria vector Anopheles gambiae. Inversions can be detected and characterized using principal component analysis (PCA) of single nucleotide polymorphisms (SNPs). To aid in developing such methods, we formed a new benchmark derived from three publicly-available insect data. We then used this benchmark to perform an extended validation of our software for inversion analysis (Asaph). Through that process, we identified and characterized several problematic test cases liable to misinterpretation that can help guide PCA-based inversion detection. Lastly, we re-analyzed the 2R chromosome arm of 150 An. gambiae and coluzzii samples and observed two inversions (2Rc and 2Rd) that were previously known but not annotated in these particular individuals. The resulting benchmark data set and methods will be useful for future inversion detection based solely on SNP data.
Collapse
Affiliation(s)
- Ronald J. Nowling
- Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, WI
| | - Krystal R. Manke
- Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI
| | - Scott J. Emrich
- Electrical Engineering and Computer Science, University of Tennessee–Knoxville, Knoxville, TN
| |
Collapse
|
10
|
Inversion Genotyping in the Anopheles gambiae Complex Using High-Throughput Array and Sequencing Platforms. G3-GENES GENOMES GENETICS 2020; 10:3299-3307. [PMID: 32680855 PMCID: PMC7467005 DOI: 10.1534/g3.120.401418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chromosomal inversion polymorphisms have special importance in the Anopheles gambiae complex of malaria vector mosquitoes, due to their role in local adaptation and range expansion. The study of inversions in natural populations is reliant on polytene chromosome analysis by expert cytogeneticists, a process that is limited by the rarity of trained specialists, low throughput, and restrictive sampling requirements. To overcome this barrier, we ascertained tag single nucleotide polymorphisms (SNPs) that are highly correlated with inversion status (inverted or standard orientation). We compared the performance of the tag SNPs using two alternative high throughput molecular genotyping approaches vs. traditional cytogenetic karyotyping of the same 960 individual An. gambiae and An. coluzzii mosquitoes sampled from Burkina Faso, West Africa. We show that both molecular approaches yield comparable results, and that either one performs as well or better than cytogenetics in terms of genotyping accuracy. Given the ability of molecular genotyping approaches to be conducted at scale and at relatively low cost without restriction on mosquito sex or developmental stage, molecular genotyping via tag SNPs has the potential to revitalize research into the role of chromosomal inversions in the behavior and ongoing adaptation of An. gambiae and An. coluzzii to environmental heterogeneities.
Collapse
|
11
|
Fuller ZL, Koury SA, Leonard CJ, Young RE, Ikegami K, Westlake J, Richards S, Schaeffer SW, Phadnis N. Extensive Recombination Suppression and Epistatic Selection Causes Chromosome-Wide Differentiation of a Selfish Sex Chromosome in Drosophila pseudoobscura. Genetics 2020; 216:205-226. [PMID: 32732371 PMCID: PMC7463281 DOI: 10.1534/genetics.120.303460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
Sex-Ratio (SR) chromosomes are selfish X-chromosomes that distort Mendelian segregation and are commonly associated with inversions. These chromosomal rearrangements suppress recombination with Standard (ST) X-chromosomes and are hypothesized to maintain multiple alleles important for distortion in a single large haplotype. Here, we conduct a multifaceted study of the multiply inverted Drosophila pseudoobscura SR chromosome to understand the evolutionary history, genetic architecture, and present-day dynamics that shape this enigmatic selfish chromosome. The D. pseudoobscura SR chromosome has three nonoverlapping inversions of the right arm of the metacentric X-chromosome: basal, medial, and terminal. We find that 23 of 29 Mb of the D. pseudoobscuraX-chromosome right arm is highly differentiated between the Standard and SR arrangements, including a 6.6 Mb collinear region between the medial and terminal inversions. Although crossing-over is heavily suppressed on this chromosome arm, we discover it is not completely eliminated, with measured rates indicating recombination suppression alone cannot explain patterns of differentiation or the near-perfect association of the three SR chromosome inversions in nature. We then demonstrate the ancient basal and medial inversions of the SR chromosome contain genes sufficient to cause weak distortion. In contrast, the younger terminal inversion cannot distort by itself, but contains at least one modifier gene necessary for full manifestation of strong sex chromosome distortion. By parameterizing population genetic models for chromosome-wide linkage disequilibrium with our experimental results, we infer that strong selection acts to maintain the near-perfect association of SR chromosome inversions in present-day populations. Based on comparative genomic analyses, direct recombination experiments, segregation distortion assays, and population genetic modeling, we conclude the combined action of suppressed recombination and strong, ongoing, epistatic selection shape the D. pseudoobscura SR arrangement into a highly differentiated chromosome.
Collapse
Affiliation(s)
- Zachary L Fuller
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Spencer A Koury
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | | | - Randee E Young
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Kobe Ikegami
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Jonathan Westlake
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030
| | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Nitin Phadnis
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
12
|
Schmidt H, Collier TC, Hanemaaijer MJ, Houston PD, Lee Y, Lanzaro GC. Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes. Nat Commun 2020; 11:1425. [PMID: 32188851 PMCID: PMC7080748 DOI: 10.1038/s41467-020-15204-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
A number of recent papers report that standing genetic variation in natural populations includes ubiquitous polymorphisms within target sites for Cas9-based gene drive (CGD) and that these "drive resistant alleles" (DRA) preclude the successful application of CGD for managing these populations. Here we report the results of a survey of 1280 genomes of the mosquitoes Anopheles gambiae, An. coluzzii, and Aedes aegypti in which we determine that ~90% of all protein-encoding CGD target genes in natural populations include at least one target site with no DRAs at a frequency of ≥1.0%. We conclude that the abundance of conserved target sites in mosquito genomes and the inherent flexibility in CGD design obviates the concern that DRAs present in the standing genetic variation of mosquito populations will be detrimental to the deployment of this technology for population modification strategies.
Collapse
Affiliation(s)
- Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Travis C Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Mark J Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Winclove Probiotics, Hulstweg 11, 1032 LB, Amesterdam, Netherlands
| | - Parker D Houston
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Love RR, Redmond SN, Pombi M, Caputo B, Petrarca V, Della Torre A, Besansky NJ. In Silico Karyotyping of Chromosomally Polymorphic Malaria Mosquitoes in the Anopheles gambiae Complex. G3 (BETHESDA, MD.) 2019; 9:3249-3262. [PMID: 31391198 PMCID: PMC6778791 DOI: 10.1534/g3.119.400445] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023]
Abstract
Chromosomal inversion polymorphisms play an important role in adaptation to environmental heterogeneities. For mosquito species in the Anopheles gambiae complex that are significant vectors of human malaria, paracentric inversion polymorphisms are abundant and are associated with ecologically and epidemiologically important phenotypes. Improved understanding of these traits relies on determining mosquito karyotype, which currently depends upon laborious cytogenetic methods whose application is limited both by the requirement for specialized expertise and for properly preserved adult females at specific gonotrophic stages. To overcome this limitation, we developed sets of tag single nucleotide polymorphisms (SNPs) inside inversions whose biallelic genotype is strongly correlated with inversion genotype. We leveraged 1,347 fully sequenced An. gambiae and Anopheles coluzzii genomes in the Ag1000G database of natural variation. Beginning with principal components analysis (PCA) of population samples, applied to windows of the genome containing individual chromosomal rearrangements, we classified samples into three inversion genotypes, distinguishing homozygous inverted and homozygous uninverted groups by inclusion of the small subset of specimens in Ag1000G that are associated with cytogenetic metadata. We then assessed the correlation between candidate tag SNP genotypes and PCA-based inversion genotypes in our training sets, selecting those candidates with >80% agreement. Our initial tests both in held-back validation samples from Ag1000G and in data independent of Ag1000G suggest that when used for in silico inversion genotyping of sequenced mosquitoes, these tags perform better than traditional cytogenetics, even for specimens where only a small subset of the tag SNPs can be successfully ascertained.
Collapse
Affiliation(s)
- R Rebecca Love
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Seth N Redmond
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Vincenzo Petrarca
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Nora J Besansky
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
14
|
Shields GF, Hokit DG. Do Cytotypes of Black Flies of the Simulium arcticum Complex (Diptera: Simuliidae) Arise from Sibling Species? WEST N AM NATURALIST 2019; 79:148-158. [DOI: 10.3398/064.079.0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Gerald F. Shields
- Department of Life and Environmental Sciences, Carroll College, Helena, MT 59625
| | - D. Grant Hokit
- Department of Life and Environmental Sciences, Carroll College, Helena, MT 59625
| |
Collapse
|
15
|
Clucas GV, Kerr LA, Cadrin SX, Zemeckis DR, Sherwood GD, Goethel D, Whitener Z, Kovach A. Adaptive genetic variation underlies biocomplexity of Atlantic Cod in the Gulf of Maine and on Georges Bank. PLoS One 2019; 14:e0216992. [PMID: 31125344 PMCID: PMC6534298 DOI: 10.1371/journal.pone.0216992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
Atlantic cod (Gadus morhua) populations in the Gulf of Maine (GoM) are at a fraction of their historical abundance, creating economic hardships for fishermen and putting at risk the genetic diversity of the remaining populations. An understanding of the biocomplexity among GoM populations will allow for adaptive genetic diversity to be conserved to maximize the evolutionary potential and resilience of the fishery in a rapidly changing environment. We used restriction-site-associated DNA sequencing (RADseq) to characterize the population structure and adaptive genetic diversity of five spawning aggregations from the western GoM and Georges Bank. We also analyzed cod caught in the eastern GoM, an under-sampled area where spawning aggregations have been extirpated. Using 3,128 single nucleotide polymorphisms (SNPs), we confirmed the existence of three genetically separable spawning groups: (1) winter spawning cod from the western GoM, (2) spring spawning cod, also from the western GoM, and (3) Georges Bank cod. Non-spawning cod from the eastern GoM could not be decisively linked to either of the three spawning groups and may represent a unique component of the resource, a mixed sample, or cod from other unsampled source populations. The genetic differentiation among the three major spawning groups was primarily driven by loci putatively under selection, particularly loci in regions known to contain genomic inversions on linkage groups (LG) 7 and 12. These LGs have been found to be linked to thermal regime in cod across the Atlantic, and so it is possible that variation in timing of spawning in western GoM cod has resulted in temperature-driven adaptive divergence. This complex population structure and adaptive genetic differentiation could be crucial to ensuring the long-term productivity and resilience of the cod fishery, and so it should be considered in future management plans.
Collapse
Affiliation(s)
- G. V. Clucas
- Department of Natural Resources, University of New Hampshire, Durham, NH, United States of America
| | - L. A. Kerr
- Gulf of Maine Research Institute, Portland, ME, United States of America
| | - S. X. Cadrin
- School for Marine Science & Technology, University of Massachusetts Dartmouth, New Bedford, MA, United States of America
| | - D. R. Zemeckis
- Department of Agriculture and Natural Resources, Rutgers University, Toms River, NJ, United States of America
| | - G. D. Sherwood
- Gulf of Maine Research Institute, Portland, ME, United States of America
| | - D. Goethel
- F/V Ellen Diane, Hampton, NH, United States of America
| | - Z. Whitener
- Gulf of Maine Research Institute, Portland, ME, United States of America
| | - A.I. Kovach
- Department of Natural Resources, University of New Hampshire, Durham, NH, United States of America
| |
Collapse
|
16
|
Flagel LE, Blackman BK, Fishman L, Monnahan PJ, Sweigart A, Kelly JK. GOOGA: A platform to synthesize mapping experiments and identify genomic structural diversity. PLoS Comput Biol 2019; 15:e1006949. [PMID: 30986215 PMCID: PMC6483263 DOI: 10.1371/journal.pcbi.1006949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 04/25/2019] [Accepted: 03/15/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding genomic structural variation such as inversions and translocations is a key challenge in evolutionary genetics. We develop a novel statistical approach to comparative genetic mapping to detect large-scale structural mutations from low-level sequencing data. The procedure, called Genome Order Optimization by Genetic Algorithm (GOOGA), couples a Hidden Markov Model with a Genetic Algorithm to analyze data from genetic mapping populations. We demonstrate the method using both simulated data (calibrated from experiments on Drosophila melanogaster) and real data from five distinct crosses within the flowering plant genus Mimulus. Application of GOOGA to the Mimulus data corrects numerous errors (misplaced sequences) in the M. guttatus reference genome and confirms or detects eight large inversions polymorphic within the species complex. Finally, we show how this method can be applied in genomic scans to improve the accuracy and resolution of Quantitative Trait Locus (QTL) mapping.
Collapse
Affiliation(s)
- Lex E. Flagel
- Bayer Crop Science, Chesterfield, MO, United States of America
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States of America
- * E-mail: (LEF); (JKK)
| | - Benjamin K. Blackman
- Department of Plant and Microbial Biology, University of California—Berkeley, Berkeley, CA, United States of America
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT, United States of America
| | - Patrick J. Monnahan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States of America
| | - Andrea Sweigart
- Department of Genetics, University of Georgia, Athens, GA, United States of America
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
- * E-mail: (LEF); (JKK)
| |
Collapse
|
17
|
Cassin-Sackett L, Callicrate TE, Fleischer RC. Parallel evolution of gene classes, but not genes: Evidence from Hawai'ian honeycreeper populations exposed to avian malaria. Mol Ecol 2018; 28:568-583. [PMID: 30298567 DOI: 10.1111/mec.14891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult because population demographics cause correlations with nonadaptive loci. Introduction events provide opportunities to observe adaptation over known spatial and temporal scales, facilitating the identification of genes involved in adaptation. The pathogen causing avian malaria, Plasmodium relictum, was introduced to Hawai'i in the 1930s and elicited extinctions and precipitous population declines in native honeycreepers. After a sharp initial population decline, the Hawai'i 'amakihi (Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations where P. relictum exists, and can sustain infection without major fitness consequences. High-elevation, unexposed populations of 'amakihi display little to no tolerance. To explore the genomic basis of adaptation to P. relictum in low-elevation 'amakihi, we genotyped 125 'amakihi from the island of Hawai'i via hybridization capture to 40,000 oligonucleotide baits containing SNPs and used the reference 'amakihi genome to identify genes potentially under selection from malaria. We tested for outlier loci between low- and high-elevation population pairs and identified loci with signatures of selection within low-elevation populations. In some cases, genes commonly involved in the immune response (e.g., major histocompatibility complex) were associated with malaria presence in the population. We also detected several novel candidate loci that may be implicated in surviving malaria infection (e.g., beta-defensin, glycoproteins and interleukin-related genes). Our results suggest that rapid adaptation to pathogens may occur through changes in different immune genes, but in the same classes of genes, across populations.
Collapse
Affiliation(s)
- Loren Cassin-Sackett
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,Department of Integrative Biology, University of South Florida, Tampa, Florida
| | - Taylor E Callicrate
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,Species Conservation Toolkit Initiative, Department of Conservation Science, Chicago Zoological Society, Brookfield, Illinois
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| |
Collapse
|
18
|
Anselmetti Y, Duchemin W, Tannier E, Chauve C, Bérard S. Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes. BMC Genomics 2018; 19:96. [PMID: 29764366 PMCID: PMC5954271 DOI: 10.1186/s12864-018-4466-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions. Results We present a computational method, ADseq, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADseq provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADseq to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes. Conclusions We demonstrate the method’s ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression. Electronic supplementary material The online version of this article (10.1186/s12864-018-4466-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoann Anselmetti
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex, 69622, France
| | - Wandrille Duchemin
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex, 69622, France.,INRIA Grenoble - Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin, 38330, France
| | - Eric Tannier
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex, 69622, France.,INRIA Grenoble - Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin, 38330, France
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, V5A1S6, BC, Canada
| | - Sèverine Bérard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| |
Collapse
|
19
|
Fouet C, Atkinson P, Kamdem C. Human Interventions: Driving Forces of Mosquito Evolution. Trends Parasitol 2018; 34:127-139. [PMID: 29301722 DOI: 10.1016/j.pt.2017.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022]
Abstract
One of the most common strategies for controlling mosquito-borne diseases relies on the use of chemical pesticides to repel or kill the mosquito vector. Pesticide exposure interferes with several key biological functions in the mosquito and triggers a variety of adaptive responses whose underlying mechanisms are only partially elucidated. The availability of reference genome sequences opens up the possibility of tracking signatures of evolutionary changes, including the most recent, across the genomes of many vector species. In this review, we highlight the recent genomic changes, which contribute to the fascinating adaptation of malaria vectors of the sub-Saharan African region to intensive insecticide-based interventions. We emphasize the operational significance of detailed genomic knowledge for current monitoring and decision-making.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Peter Atkinson
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Colince Kamdem
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
20
|
Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions. Heredity (Edinb) 2017; 119:418-428. [PMID: 28930288 PMCID: PMC5677996 DOI: 10.1038/hdy.2017.54] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/13/2017] [Accepted: 08/05/2017] [Indexed: 01/03/2023] Open
Abstract
Chromosomal rearrangements such as inversions can play a crucial role in maintaining polymorphism underlying complex traits and contribute to the process of speciation. In Atlantic cod (Gadus morhua), inversions of several megabases have been identified that dominate genomic differentiation between migratory and nonmigratory ecotypes in the Northeast Atlantic. Here, we show that the same genomic regions display elevated divergence and contribute to ecotype divergence in the Northwest Atlantic as well. The occurrence of these inversions on both sides of the Atlantic Ocean reveals a common evolutionary origin, predating the >100 000-year-old trans-Atlantic separation of Atlantic cod. The long-term persistence of these inversions indicates that they are maintained by selection, possibly facilitated by coevolution of genes underlying complex traits. Our data suggest that migratory behaviour is derived from more stationary, ancestral ecotypes. Overall, we identify several large genomic regions—each containing hundreds of genes—likely involved in the maintenance of genomic divergence in Atlantic cod on both sides of the Atlantic Ocean.
Collapse
|
21
|
Ryan SF, Fontaine MC, Scriber JM, Pfrender ME, O'Neil ST, Hellmann JJ. Patterns of divergence across the geographic and genomic landscape of a butterfly hybrid zone associated with a climatic gradient. Mol Ecol 2017; 26:4725-4742. [DOI: 10.1111/mec.14236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Sean F. Ryan
- USDA ARS Gainesville FL USA
- Department of Biological Sciences University of Notre Dame South Bend IN USA
| | - Michael C. Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen AG Groningen The Netherlands
| | - J. Mark Scriber
- Department of Entomology Michigan State University East Lansing MI USA
- McGuire Center for Lepidoptera and Diversity University of Florida Gainesville FL USA
| | - Michael E. Pfrender
- Department of Biological Sciences University of Notre Dame South Bend IN USA
- Environmental Change Initiative University of Notre Dame South Bend IN USA
| | - Shawn T. O'Neil
- Department of Biological Sciences University of Notre Dame South Bend IN USA
- Center for Genome Research and Biocomputing Oregon State University Corvallis OR USA
| | - Jessica J. Hellmann
- Department of Biological Sciences University of Notre Dame South Bend IN USA
- Institute on the Environment and Department of Ecology, Evolution and Behavior University of Minnesota St. Paul MN USA
| |
Collapse
|
22
|
Davey JW, Barker SL, Rastas PM, Pinharanda A, Martin SH, Durbin R, McMillan WO, Merrill RM, Jiggins CD. No evidence for maintenance of a sympatric Heliconius species barrier by chromosomal inversions. Evol Lett 2017; 1:138-154. [PMID: 30283645 PMCID: PMC6122123 DOI: 10.1002/evl3.12] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Mechanisms that suppress recombination are known to help maintain species barriers by preventing the breakup of coadapted gene combinations. The sympatric butterfly species Heliconius melpomene and Heliconius cydno are separated by many strong barriers, but the species still hybridize infrequently in the wild, and around 40% of the genome is influenced by introgression. We tested the hypothesis that genetic barriers between the species are maintained by inversions or other mechanisms that reduce between-species recombination rate. We constructed fine-scale recombination maps for Panamanian populations of both species and their hybrids to directly measure recombination rate within and between species, and generated long sequence reads to detect inversions. We find no evidence for a systematic reduction in recombination rates in F1 hybrids, and also no evidence for inversions longer than 50 kb that might be involved in generating or maintaining species barriers. This suggests that mechanisms leading to global or local reduction in recombination do not play a significant role in the maintenance of species barriers between H. melpomene and H. cydno.
Collapse
Affiliation(s)
- John W. Davey
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Sarah L. Barker
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
| | - Pasi M. Rastas
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
| | - Ana Pinharanda
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Simon H. Martin
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
| | - Richard Durbin
- Wellcome Trust Sanger InstituteCambridgeCB10 1SAUnited Kingdom
| | | | - Richard M. Merrill
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| |
Collapse
|