1
|
Hernández F, Vercellino RB, Todesco M, Bercovich N, Alvarez D, Brunet J, Presotto A, Rieseberg LH. Admixture With Cultivated Sunflower Likely Facilitated Establishment and Spread of Wild Sunflower (Helianthus annuus) in Argentina. Mol Ecol 2024; 33:e17560. [PMID: 39422702 DOI: 10.1111/mec.17560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
A better understanding of the genetic and ecological factors underlying successful invasions is critical to mitigate the negative impacts of invasive species. Here, we study the invasion history of Helianthus annuus populations from Argentina, with particular emphasis on the role of post-introduction admixture with cultivated sunflower (also H. annuus) and climate adaptation driven by large haploblocks. We conducted genotyping-by-sequencing of samples of wild populations as well as Argentinian cultivars and compared them with wild (including related annual Helianthus species) and cultivated samples from the native range. We also characterised samples for 11 known haploblocks associated with environmental variation in native populations to test whether haploblocks contributed to invasion success. Population genomics analyses supported two independent geographic sources for Argentinian populations, the central United States and Texas, but no significant contribution of related annual Helianthus species. We found pervasive admixture with cultivated sunflower, likely as result of post-introduction hybridization. Genomic scans between invasive populations and their native sources identified multiple genomic regions of divergence, possibly indicative of selection, in the invaded range. These regions significantly overlapped between the two native-invasive comparisons and showed disproportionally high crop ancestry, suggesting that crop alleles contributed to invasion success. We did not find evidence of climate adaptation mediated by haploblocks, yet outliers of genome scans were enriched in haploblock regions and, for at least two haploblocks, the cultivar haplotype was favoured in Argentina. Our results show that admixture with cultivated sunflower played a major role in the establishment and spread of H. annuus populations in Argentina.
Collapse
Affiliation(s)
- Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Román B Vercellino
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Irving K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Alvarez
- Estación Experimental Agropecuaria INTA Manfredi, Córdoba, Argentina
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA-ARS, Madison, Wisconsin, USA
| | - Alejandro Presotto
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Berlow M, Mesa M, Creek M, Duarte JG, Carpenter E, Phinizy B, Andonian K, Dlugosch KM. Plant G × Microbial E: Plant Genotype Interaction with Soil Bacterial Community Shapes Rhizosphere Composition During Invasion. MICROBIAL ECOLOGY 2024; 87:113. [PMID: 39259393 PMCID: PMC11390927 DOI: 10.1007/s00248-024-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes in Centaurea solstitialis (yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Miles Mesa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Mikayla Creek
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jesse G Duarte
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elizabeth Carpenter
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brandon Phinizy
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Krikor Andonian
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
3
|
Cang FA, Welles SR, Wong J, Ziaee M, Dlugosch KM. Genome size variation and evolution during invasive range expansion in an introduced plant. Evol Appl 2024; 17:e13624. [PMID: 38283607 PMCID: PMC10810172 DOI: 10.1111/eva.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Plants demonstrate exceptional variation in genome size across species, and their genome sizes can also vary dramatically across individuals and populations within species. This aspect of genetic variation can have consequences for traits and fitness, but few studies attributed genome size differentiation to ecological and evolutionary processes. Biological invasions present particularly useful natural laboratories to infer selective agents that might drive genome size shifts across environments and population histories. Here, we test hypotheses for the evolutionary causes of genome size variation across 14 invading populations of yellow starthistle, Centaurea solstitialis, in California, United States. We use a survey of genome sizes and trait variation to ask: (1) Is variation in genome size associated with developmental trait variation? (2) Are genome sizes smaller toward the leading edge of the expansion, consistent with selection for "colonizer" traits? Or alternatively, does genome size increase toward the leading edge of the expansion, consistent with predicted consequences of founder effects and drift? (3) Finally, are genome sizes smaller at higher elevations, consistent with selection for shorter development times? We found that 2C DNA content varied 1.21-fold among all samples, and was associated with flowering time variation, such that plants with larger genomes reproduced later, with lower lifetime capitula production. Genome sizes increased toward the leading edge of the invasion, but tended to decrease at higher elevations, consistent with genetic drift during range expansion but potentially strong selection for smaller genomes and faster development time at higher elevations. These results demonstrate how genome size variation can contribute to traits directly tied to reproductive success, and how selection and drift can shape that variation. We highlight the influence of genome size on dynamics underlying a rapid range expansion in a highly problematic invasive plant.
Collapse
Affiliation(s)
- F. Alice Cang
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Shana R. Welles
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Utah Valley UniversityOremUtahUSA
| | - Jenny Wong
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Maia Ziaee
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Mills CollegeOaklandCaliforniaUSA
| | - Katrina M. Dlugosch
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
4
|
Branco S, Irimia RE, Montesinos D. The introduction of an invasive weed was not followed by the introduction of ethnobotanical knowledge: a review on the ethnobotany of Centaurea solstitialis L. (Asteraceae). PeerJ 2023; 11:e15489. [PMID: 37304862 PMCID: PMC10257394 DOI: 10.7717/peerj.15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Invasive plants are known for their impacts to ecosystems and societies, but their potential cultural use tend to be unexplored. One important mechanism of plant invasion is the use of "allelochemicals" or "novel weapons": chemical defenses which are new to their invaded habitats and that confer them competitive advantages. However, these chemicals are precisely what confers them ethnobotanical and medicinal properties. We reviewed the literature assessing the biogeography of the cultural uses of the model invasive plant yellow-starthistle (Centaurea solstitialis L.; Asteraceae), and assessed the extent to which the introduction of a weed native to Eurasia into several non-native world regions was paralleled by the spread of cultural uses from its native range. We found that the species was rich in pharmaceutically active compounds and that the species had been traditionally used for medicinal purposes, as raw material, and as food. However, ethnobotanical uses were reported almost exclusively in its native range, with no uses described for the non-native range, apart from honey production in California, Argentina, and Australia. Our study exemplifies how, when plant introductions are not paralleled synchronously by significant human migrations, cultural adoption can be extremely slow, even within the native range of the species. Invasive species can provide real-time insights into the cultural processes by which humans learn to use plants. This case study highlights how biological invasions and cultural expansions can be subjected to different constraints.
Collapse
Affiliation(s)
- Soraia Branco
- Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Ramona E. Irimia
- Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Daniel Montesinos
- Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
- Australian Tropical Herbarium, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
5
|
Irimia RE, Montesinos D, Chaturvedi A, Sanders I, Hierro JL, Sotes G, Cavieres LA, Eren Ö, Lortie CJ, French K, Brennan AC. Trait evolution during a rapid global weed invasion despite little genetic differentiation. Evol Appl 2023; 16:997-1011. [PMID: 37216028 PMCID: PMC10197227 DOI: 10.1111/eva.13548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Invasive species often possess a great capacity to adapt to novel environments in the form of spatial trait variation, as a result of varying selection regimes, genetic drift, or plasticity. We explored the geographic differentiation in several phenotypic traits related to plant growth, reproduction, and defense in the highly invasive Centaurea solstitialis by measuring neutral genetic differentiation (F ST), and comparing it with phenotypic differentiation (P ST), in a common garden experiment in individuals originating from regions representing the species distribution across five continents. Native plants were more fecund than non-native plants, but the latter displayed considerably larger seed mass. We found indication of divergent selection for these two reproductive traits but little overall genetic differentiation between native and non-native ranges. The native versus invasive P ST-F ST comparisons demonstrated that, in several invasive regions, seed mass had increased proportionally more than the genetic differentiation. Traits displayed different associations with climate variables in different regions. Both capitula numbers and seed mass were associated with winter temperature and precipitation and summer aridity in some regions. Overall, our study suggests that rapid evolution has accompanied invasive success of C. solstitialis and provides new insights into traits and their genetic bases that can contribute to fitness advantages in non-native populations.
Collapse
Affiliation(s)
- Ramona E. Irimia
- Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
- Plant Evolutionary Ecology, Institute of Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Daniel Montesinos
- Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
- Australian Tropical HerbariumJames Cook UniversityQueenslandCairnsAustralia
| | - Anurag Chaturvedi
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Environmental Genomics Group, School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Ian Sanders
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - José L. Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de La Pampa (UNLPam)Santa RosaArgentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNLPamSanta RosaArgentina
| | - Gastón Sotes
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de La Pampa (UNLPam)Santa RosaArgentina
| | - Lohengrin A. Cavieres
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
| | - Özkan Eren
- Aydın Adnan Menderes Üniversitesi, Biyoloji Bölümü, Fen‐Edebiyat FakültesiAydınTurkey
| | - Christopher J. Lortie
- Department of BiologyYork UniversityOntarioTorontoCanada
- The National Center for Ecological Analysis and Synthesis (NCEAS), UCSBCaliforniaUSA
| | - Kristine French
- School of Earth, Atmospheric and Life SciencesUniversity of WollongongNew South WalesWollongongAustralia
| | | |
Collapse
|
6
|
Jia T, Qi Y, Zhao H, Xian X, Li J, Huang H, Yu W, Liu WX. Estimation of climate-induced increased risk of Centaurea solstitialis L. invasion in China: An integrated study based on biomod2. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1113474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
IntroductionInvasive alien plants (IAPs) are major hazards to biodiversity, human health, and the agricultural economy. As one of the most aggressive species of IAPs, the distribution area of Centaurea solstitialis L. has increased exponentially in the past two years since its invasion into Xinjiang, China, in July 2014. Predicting the potential geographic distributions (PGDs) of C. solstitialis in China can provide theoretical support for preventing the continued spread of this weed.MethodsIn this study, based on 5,969 valid occurrence records of C. solstitialis and 33 environmental variables, we constructed an ensemble model to predict suitable habitats for C. solstitialis under climate change scenarios.ResultsOur results showed that the mean true skill statistic (TSS) values, area under the receiver operating characteristic (ROC) curve (AUC), and Cohen’s Kappa (KAPPA) for the ensemble model were 0.954, 0.996, and 0.943, respectively. The ensemble model yielded more precise predictions than those of the single model. Temperature seasonality (Bio4), minimum temperature of the coldest month (Bio6), precipitation of the driest month (Bio14), and human influence index (HII) have significantly disrupted the PGDs of C. solstitialis in China. The total (high) suitability habitat area of C. solstitialis in China was 275.91 × 104 (67.78 × 104) km2, accounting for 71.26 (7.06)% of China. The PGDs of C. solstitialis in China under the current climate were mainly in East China (Shandong, Jiangsu, Shanghai, Zhejiang, and Anhui), Central China (Henan, southwestern Shanxi, southern Shaanxi, southern Gansu, Hubei, Hunan, Jiangxi, Chongqing, and Guizhou), and South China (southern Tibet, eastern Sichuan, Yunnan, Guangxi, Guangdong, Fujian, and Taiwan). Under future climate scenarios, the total suitability habitat area for C. solstitialis will expand, whereas the high suitability habitat area will decrease.DiscussionThe main manifestation is that the shift of southeast China into a moderate suitability habitat, and the total suitability habitats will be extended to northwest China. More focus needs to be placed on preventing further spread of C. solstitialis in northwest China.
Collapse
|
7
|
Byrne D, Scheben A, Scott JK, Webber BL, Batchelor KL, Severn-Ellis AA, Gooden B, Bell KL. Genomics reveals the history of a complex plant invasion and improves the management of a biological invasion from the South African-Australian biotic exchange. Ecol Evol 2022; 12:e9179. [PMID: 36016815 PMCID: PMC9396708 DOI: 10.1002/ece3.9179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Many plants exchanged in the global redistribution of species in the last 200 years, particularly between South Africa and Australia, have become threatening invasive species in their introduced range. Refining our understanding of the genetic diversity and population structure of native and alien populations, introduction pathways, propagule pressure, naturalization, and initial spread, can transform the effectiveness of management and prevention of further introductions. We used 20,221 single nucleotide polymorphisms to reconstruct the invasion of a coastal shrub, Chrysanthemoides monilifera ssp. rotundata (bitou bush) from South Africa, into eastern Australia (EAU), and Western Australia (WAU). We determined genetic diversity and population structure across the native and introduced ranges and compared hypothesized invasion scenarios using Bayesian modeling. We detected considerable genetic structure in the native range, as well as differentiation between populations in the native and introduced range. Phylogenetic analysis showed the introduced samples to be most closely related to the southern-most native populations, although Bayesian analysis inferred introduction from a ghost population. We detected strong genetic bottlenecks during the founding of both the EAU and WAU populations. It is likely that the WAU population was introduced from EAU, possibly involving an unsampled ghost population. The number of private alleles and polymorphic SNPs successively decreased from South Africa to EAU to WAU, although heterozygosity remained high. That bitou bush remains an invasion threat in EAU, despite reduced genetic diversity, provides a cautionary biosecurity message regarding the risk of introduction of potentially invasive species via shipping routes.
Collapse
Affiliation(s)
- Dennis Byrne
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| | - Armin Scheben
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory Cold Spring, Harbor New York USA
| | - John K Scott
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| | - Bruce L Webber
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Western Australian Biodiversity Science Institute Perth Western Australia Australia
| | | | - Anita A Severn-Ellis
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| | - Ben Gooden
- CSIRO Health and Biosecurity Canberra Australian Capital Territory Australia
- Centre for Sustainable Ecosystem Solutions School of Earth, Atmospheric and Life Sciences, University of Wollongong Wollongong New South Wales Australia
| | - Karen L Bell
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
8
|
Encinas‐Viso F, Morin L, Sathyamurthy R, Knerr N, Roux C, Broadhurst L. Population genomics reveal multiple introductions and admixture of
Sonchus oleraceus
in Australia. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Francisco Encinas‐Viso
- Centre for Australian National Biodiversity Research Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra Australian Capital Territory Australia
| | - Louise Morin
- CSIRO Health and Biosecurity Canberra Australian Capital Territory Australia
| | | | - Nunzio Knerr
- Centre for Australian National Biodiversity Research Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra Australian Capital Territory Australia
| | - Camille Roux
- UMR 8198 – Evo‐Eco‐Paleo CNRS – Univ Lille Lille France
| | - Linda Broadhurst
- Centre for Australian National Biodiversity Research Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra Australian Capital Territory Australia
| |
Collapse
|
9
|
Hierro JL, Eren Ö, Čuda J, Meyerson LA. Evolution of increased competitive ability (
EICA
) may explain dominance of introduced species in ruderal communities. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- José L. Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV) Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐Universidad Nacional de La Pampa (UNLPam) Santa Rosa Argentina
- Departamento de Biología Facultad de Ciencias Exactas y Naturales, UNLPam
| | - Özkan Eren
- Aydin Adnan Menderes Üniversitesi, Biyoloji Bölümü, Fen‐Edebiyat Fakültesi Aydın Turkey
| | - Jan Čuda
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology Průhonice Czech Republic
| | - Laura A. Meyerson
- The University of Rhode Island, Department of Natural Resources Science Kingston RI USA
| |
Collapse
|
10
|
Eren Ö, Hierro JL. Trait variation, trade-offs, and attributes may contribute to colonization and range expansion of a globally distributed weed. AMERICAN JOURNAL OF BOTANY 2021; 108:2183-2195. [PMID: 34609739 DOI: 10.1002/ajb2.1755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Trait variation, trade-offs, and attributes can facilitate colonization and range expansion. We explored how those trait features compare between ancestral and nonnative populations of the globally distributed weed Centaurea solstitialis. METHODS We measured traits related to survival, size, reproduction, and dispersal in field sampling following major environmental gradients; that of elevation in Anatolia (ancestral range) and that of precipitation in Argentina (nonnative range). We also estimated abundance. RESULTS We found that overall variation in traits in ancestral populations was similar to that in nonnative populations. Only one trait-seed mass-displayed greater variation in ancestral than nonnative populations; coincidentally, seed mass has been shown to track global range expansion of C. solstitialis. Traits displayed several associations, among which seed mass and number were positively related in both ranges. Many traits varied with elevation in the ancestral range, whereas none varied with precipitation in the nonnative one. Interestingly, most traits varying with elevation within the ancestral range also displayed differences in attributes between ancestral and nonnative ranges. Unexpectedly, ancestral plants were more fecund than nonnative plants, but density was greater in the nonnative than ancestral range, indicating that C. solstitialis survives at larger proportions in the nonnative than ancestral range. CONCLUSIONS Our results suggest that maintaining levels of trait variation in nonnative populations comparable to those in ancestral populations, avoiding trait trade-offs, and developing differences in trait attributes between ranges can play a major role in the success of many weeds in novel environments.
Collapse
Affiliation(s)
- Özkan Eren
- Biyoloji Bölümü, Fen-Edebiyat Fakültesi, Aydın Adnan Menderes Üniversitesi, Aydın, 09010, Turkey
| | - José L Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Pampa (UNLPam), Mendoza 109, Santa Rosa, La Pampa, 6300, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, UNLPam, Uruguay 151, Santa Rosa, La Pampa, 6300, Argentina
| |
Collapse
|
11
|
Errbii M, Keilwagen J, Hoff KJ, Steffen R, Altmüller J, Oettler J, Schrader L. Transposable elements and introgression introduce genetic variation in the invasive ant Cardiocondyla obscurior. Mol Ecol 2021; 30:6211-6228. [PMID: 34324751 DOI: 10.1111/mec.16099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Introduced populations of invasive organisms have to cope with novel environmental challenges, while having reduced genetic variation caused by founder effects. The mechanisms associated with this "genetic paradox of invasive species" has received considerable attention, yet few studies have examined the genomic architecture of invasive species. Populations of the heart node ant Cardiocondyla obscurior belong to two distinct lineages, a New World lineage so far only found in Latin America and a more globally distributed Old World lineage. In the present study, we use population genomic approaches to compare populations of the two lineages with apparent divergent invasive potential. We find that the strong genetic differentiation of the two lineages began at least 40,000 generations ago and that activity of transposable elements (TEs) has contributed significantly to the divergence of both lineages, possibly linked to the very unusual genomic distribution of TEs in this species. Furthermore, we show that introgression from the Old World lineage is a dominant source of genetic diversity in the New World lineage, despite the lineages' strong genetic differentiation. Our study uncovers mechanisms underlying novel genetic variation in introduced populations of C. obscurior that could contribute to the species' adaptive potential.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany.,Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Raphael Steffen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Institute of Human Genetics, University of Cologne, Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, Regensburg, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Comeault AA, Kautt AF, Matute DR. Genomic signatures of admixture and selection are shared among populations of Zaprionus indianus across the western hemisphere. Mol Ecol 2021; 30:6193-6210. [PMID: 34233050 PMCID: PMC9290797 DOI: 10.1111/mec.16066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Introduced species have become an increasingly common component of biological communities around the world. A central goal in invasion biology is therefore to identify the demographic and evolutionary factors that underlie successful introductions. Here we use whole genome sequences, collected from populations in the native and introduced range of the African fig fly, Zaprionus indianus, to quantify genetic relationships among them, identify potential sources of the introductions, and test for selection at different spatial scales. We find that geographically widespread populations in the western hemisphere are genetically more similar to each other than to lineages sampled across Africa, and that these populations share a mixture of alleles derived from differentiated African lineages. Using patterns of allele‐sharing and demographic modelling we show that Z. indinaus have undergone a single expansion across the western hemisphere with admixture between African lineages predating this expansion. We also find support for selection that is shared across populations in the western hemisphere, and in some cases, with a subset of African populations. This suggests either that parallel selection has acted across a large part of Z. indianus's introduced range; or, more parsimoniously, that Z. indianus has experienced selection early on during (or prior‐to) its expansion into the western hemisphere. We suggest that the range expansion of Z. indianus has been facilitated by admixture and selection, and that management of this invasion could focus on minimizing future admixture by controlling the movement of individuals within this region rather than between the western and eastern hemisphere.
Collapse
Affiliation(s)
- Aaron A Comeault
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, Bangor, UK
| | - Andreas F Kautt
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Eyer PA, Blumenfeld AJ, Johnson LNL, Perdereau E, Shults P, Wang S, Dedeine F, Dupont S, Bagnères AG, Vargo EL. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol Ecol 2021; 30:3948-3964. [PMID: 34142394 DOI: 10.1111/mec.16022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022]
Abstract
As native ranges are often geographically structured, invasive species originating from a single source population only carry a fraction of the genetic diversity present in their native range. The invasion process is thus often associated with a drastic loss of genetic diversity resulting from a founder event. However, the fraction of diversity brought to the invasive range may vary under different invasion histories, increasing with the size of the propagule, the number of reintroduction events, and/or the total genetic diversity represented by the various source populations in a multiple-introduction scenario. In this study, we generated a SNP data set for the invasive termite Reticulitermes flavipes from 23 native populations in the eastern United States and six introduced populations throughout the world. Using population genetic analyses and approximate Bayesian computation random forest, we investigated its worldwide invasion history. We found a complex invasion pathway with multiple events out of the native range and bridgehead introductions from the introduced population in France. Our data suggest that extensive long-distance jump dispersal appears common in both the native and introduced ranges of this species, probably through human transportation. Overall, our results show that similar to multiple introduction events into the invasive range, admixture in the native range prior to invasion can potentially favour invasion success by increasing the genetic diversity that is later transferred to the introduced range.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| | | | - Laura N L Johnson
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | | | - Phillip Shults
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| | - Shichen Wang
- Texas A&M Agrilife Genomics and Bioinformatics Service, College Station, TX, USA
| | | | - Simon Dupont
- IRBI, UMR 7261 CNRS-Université de Tours, Tours, France
| | - Anne-Geneviève Bagnères
- IRBI, UMR 7261 CNRS-Université de Tours, Tours, France.,CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| |
Collapse
|
14
|
Andersen JC, Havill NP, Caccone A, Elkinton JS. Four times out of Europe: Serial invasions of the winter moth, Operophtera brumata, to North America. Mol Ecol 2021; 30:3439-3452. [PMID: 34033202 DOI: 10.1111/mec.15983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Reconstructing the geographic origins of non-native species is important for studying the factors that influence invasion success, however; these analyses can be constrained by the amount of diversity present in the native and invaded regions, and by changes in the genetic background of the invading population following bottlenecks and/or hybridization events. Here we explore the geographical origins of the invasive winter moth (Operopthera brumata L.) that has caused widespread defoliation to forests, orchards, and crops in Nova Scotia, British Columbia, Oregon, and the northeastern United States. It is not known whether these represent independent introductions to North America, or a "stepping stone" spread among regions. Using a combination of Bayesian assignment and approximate Bayesian computation methods, we analysed a population genetic data set of 24 microsatellite loci. We estimate that winter moth was introduced to North America on at least four occasions, with the Nova Scotian and British Columbian populations probably being introduced from France and Sweden, respectively; the Oregonian population probably being introduced from either the British Isles or northern Fennoscandia; and the population in the northeastern United States probably being introduced from somewhere in Central Europe. We discuss the impact of genetic bottlenecks on analyses meant to determine region of origin.
Collapse
Affiliation(s)
- Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, CT, USA
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Joseph S Elkinton
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
15
|
Comeault AA, Wang J, Tittes S, Isbell K, Ingley S, Hurlbert AH, Matute DR. Genetic Diversity and Thermal Performance in Invasive and Native Populations of African Fig Flies. Mol Biol Evol 2021; 37:1893-1906. [PMID: 32109281 PMCID: PMC7306694 DOI: 10.1093/molbev/msaa050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During biological invasions, invasive populations can suffer losses of genetic diversity that are predicted to negatively impact their fitness/performance. Despite examples of invasive populations harboring lower diversity than conspecific populations in their native range, few studies have linked this lower diversity to a decrease in fitness. Using genome sequences, we show that invasive populations of the African fig fly, Zaprionus indianus, have less genetic diversity than conspecific populations in their native range and that diversity is proportionally lower in regions of the genome experiencing low recombination rates. This result suggests that selection may have played a role in lowering diversity in the invasive populations. We next use interspecific comparisons to show that genetic diversity remains relatively high in invasive populations of Z. indianus when compared with other closely related species. By comparing genetic diversity in orthologous gene regions, we also show that the genome-wide landscape of genetic diversity differs between invasive and native populations of Z. indianus indicating that invasion not only affects amounts of genetic diversity but also how that diversity is distributed across the genome. Finally, we use parameter estimates from thermal performance curves for 13 species of Zaprionus to show that Z. indianus has the broadest thermal niche of measured species, and that performance does not differ between invasive and native populations. These results illustrate how aspects of genetic diversity in invasive species can be decoupled from measures of fitness, and that a broad thermal niche may have helped facilitate Z. indianus's range expansion.
Collapse
Affiliation(s)
- Aaron A Comeault
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Jeremy Wang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Silas Tittes
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Kristin Isbell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Spencer Ingley
- Faculty of Sciences, Brigham Young University, Hawaii, Laie, HI
| | - Allen H Hurlbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Daniel R Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
16
|
Hirsch H, Richardson DM, Pauchard A, Le Roux JJ. Genetic analyses reveal complex introduction histories for the invasive tree
Acacia dealbata
Link around the world. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Heidi Hirsch
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Matieland South Africa
| | - David M. Richardson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Matieland South Africa
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biológicas Facultad de Ciencias Forestales Universidad de Concepción Concepción Chile
- Institute of Ecology and Biodiversity (IEB) Santiago Chile
| | - Johannes J. Le Roux
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Matieland South Africa
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| |
Collapse
|
17
|
Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Proc Natl Acad Sci U S A 2020; 117:25618-25627. [PMID: 32989136 DOI: 10.1073/pnas.2006633117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Global trade has considerably accelerated biological invasions. The annual tropical teosintes, the closest wild relatives of maize, were recently reported as new agricultural weeds in two European countries, Spain and France. Their prompt settlement under climatic conditions differing drastically from that of their native range indicates rapid genetic evolution. We performed a phenotypic comparison of French and Mexican teosintes under European conditions and showed that only the former could complete their life cycle during maize cropping season. To test the hypothesis that crop-to-wild introgression triggered such rapid adaptation, we used single nucleotide polymorphisms to characterize patterns of genetic variation in French, Spanish, and Mexican teosintes as well as in maize germplasm. We showed that both Spanish and French teosintes originated from Zea mays ssp. mexicana race "Chalco," a weedy teosinte from the Mexican highlands. However, introduced teosintes differed markedly from their Mexican source by elevated levels of genetic introgression from the high latitude Dent maize grown in Europe. We identified a clear signature of divergent selection in a region of chromosome 8 introgressed from maize and encompassing ZCN8, a major flowering time gene associated with adaptation to high latitudes. Moreover, herbicide assays and sequencing revealed that French teosintes have acquired herbicide resistance via the introgression of a mutant herbicide-target gene (ACC1) present in herbicide-resistant maize cultivars. Altogether, our results demonstrate that adaptive crop-to-wild introgression has triggered both rapid adaptation to a new climatic niche and acquisition of herbicide resistance, thereby fostering the establishment of an emerging noxious weed.
Collapse
|
18
|
Montesinos D, Callaway RM. Soil origin corresponds with variation in growth of an invasive Centaurea, but not of non-invasive congeners. Ecology 2020; 101:e03141. [PMID: 32722846 DOI: 10.1002/ecy.3141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022]
Abstract
Why only a small proportion of exotic species become invasive is an unresolved question. Escape from the negative effects of soil biota in the native range can be important for the success of many invasives, but comparative effects of soil biota on less successful exotic species are poorly understood. Studies of other mechanisms suggest that such comparisons might be fruitful. Seeds of three closely related Centaurea species with overlapping distributions in both their native range of Spain and their nonnative range of California were grown to maturity in pots to obtain an F1 generation of full sibling seeds with reduced maternal effects. Full sibling F1 seeds from both ranges were subsequently grown in pots with inoculations of soil from either the native or nonnative ranges in a fully orthogonal factorial design. We then compared plant biomass among species, regions, and soil sources. Our results indicate that escape from soil pathogens may unleash the highly invasive Centaurea solstitialis, which was suppressed by native Spanish soils but not by soils from California. In contrast, the two non-invasive Centaurea species grew the same on all soils. These results add unprecedented phylogenetically controlled insight into why some species invade and others do not.
Collapse
Affiliation(s)
- Daniel Montesinos
- Australian Tropical Herbarium, James Cook University, McGregor Road, Smithfield, Queensland, 4878, Australia.,Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000, Portugal
| | - Ragan M Callaway
- Division of Biological Sciences and the Institute on Ecosystems, The University of Montana, 32 Campus Drive, Missoula, Montana, 59812, USA
| |
Collapse
|
19
|
Popovic I, Matias AMA, Bierne N, Riginos C. Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evol Appl 2020; 13:515-532. [PMID: 32431733 PMCID: PMC7045716 DOI: 10.1111/eva.12857] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Introduced species can impose profound impacts on the evolution of receiving communities with which they interact. If native and introduced taxa remain reproductively semi-isolated, human-mediated secondary contact may promote genetic exchange across newly created hybrid zones, potentially impacting native genetic diversity and invasive species spread. Here, we investigate the contributions of recent divergence histories and ongoing (post-introduction) gene flow between the invasive marine mussel, Mytilus galloprovincialis, and a morphologically indistinguishable and taxonomically contentious native Australian taxon, Mytilus planulatus. Using transcriptome-wide markers, we demonstrate that two contemporary M. galloprovincialis introductions into south-eastern Australia originate from genetically divergent lineages from its native range in the Mediterranean Sea and Atlantic Europe, where both introductions have led to repeated instances of admixture between introduced and endemic populations. Through increased genome-wide resolution of species relationships, combined with demographic modelling, we validate that mussels sampled in Tasmania are representative of the endemic Australian taxon (M. planulatus), but share strong genetic affinities to M. galloprovincialis. Demographic inferences indicate late-Pleistocene divergence times and historical gene flow between the Tasmanian endemic lineage and northern M. galloprovincialis, suggesting that native and introduced taxa have experienced a period of historical isolation of at least 100,000 years. Our results demonstrate that many genomic loci and sufficient sampling of closely related lineages in both sympatric (e.g. Australian populations) and allopatric (e.g. northern hemisphere Mytilus taxa) ranges are necessary to accurately (a) interpret patterns of intraspecific differentiation and to (b) distinguish contemporary invasive introgression from signatures left by recent divergence histories in high dispersal marine species. More broadly, our study fills a significant gap in systematic knowledge of native Australian biodiversity and sheds light on the intrinsic challenges for invasive species research when native and introduced species boundaries are not well defined.
Collapse
Affiliation(s)
- Iva Popovic
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| | | | - Nicolas Bierne
- Institut des Sciences de l’EvolutionUMR 5554CNRS‐IRD‐EPHE‐UMUniversité de MontpellierMontpellierFrance
| | - Cynthia Riginos
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
20
|
Hierro JL, Eren Ö, Montesinos D, Andonian K, Kethsuriani L, Özcan R, Diaconu A, Török K, Cavieres L, French K. Increments in weed seed size track global range expansion and contribute to colonization in a non-native region. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02137-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Hernández F, Presotto A, Poverene M, Mandel JR. Genetic Diversity and Population Structure of Wild Sunflower (Helianthus annuus L.) in Argentina: Reconstructing Its Invasion History. J Hered 2019; 110:746-759. [PMID: 31353398 DOI: 10.1093/jhered/esz047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/27/2019] [Indexed: 11/13/2022] Open
Abstract
Studying the levels and patterns of genetic diversity of invasive populations is important to understand the evolutionary and ecological factors promoting invasions and for better designing preventive and control strategies. Wild sunflower (Helianthus annuus L.) is native to North America and was introduced, and has become invasive, in several countries, including Argentina (ARG). Here, using classical population genetic analyses and approximate Bayesian computation (ABC) modeling, we studied the invasion history of wild sunflower in ARG. We analyzed 115 individuals belonging to 15 populations from ARG (invasive range) and United States (US, native range) at 14 nuclear and 3 chloroplast simple sequence repeat markers along with 23 phenotypic variables. Populations from ARG showed similar levels of nuclear genetic diversity to US populations and higher genetic diversity in the chloroplast genome, indicating no severe genetic bottlenecks during the invasion process. Bayesian clustering analysis, based on nuclear markers, suggests the presence of 3 genetic clusters, all present in both US and ARG. Discriminant analysis of principal components (DAPC) detected an overall low population structure between central US and ARG populations but separated 2 invasive populations from the rest. ABC modeling supports multiple introductions but also a southward dispersal within ARG. Genetic and phenotypic data support the central US as a source of introduction while the source of secondary introductions could not be resolved. Finally, using genetic markers from the chloroplast genome, we found lower population structure in ARG when compared with US populations, suggesting a role for seed-mediated gene flow in Argentina.
Collapse
Affiliation(s)
- Fernando Hernández
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, Bahía Blanca, Argentina.,Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), CONICET-Bahía Blanca, Bahía Blanca, Argentina
| | - Alejandro Presotto
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, Bahía Blanca, Argentina.,Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), CONICET-Bahía Blanca, Bahía Blanca, Argentina
| | - Mónica Poverene
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), San Andrés 800, Bahía Blanca, Argentina.,Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), CONICET-Bahía Blanca, Bahía Blanca, Argentina
| | - Jennifer R Mandel
- Department of Biological Sciences, University of Memphis, Memphis, TN
| |
Collapse
|
22
|
Zhu X, Gopurenko D, Serrano M, Spencer MA, Pieterse PJ, Skoneczny D, Lepschi BJ, Reigosa MJ, Gurr GM, Callaway RM, Weston LA. Genetic evidence for plural introduction pathways of the invasive weed Paterson's curse (Echium plantagineum L.) to southern Australia. PLoS One 2019; 14:e0222696. [PMID: 31536564 PMCID: PMC6752891 DOI: 10.1371/journal.pone.0222696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
Paterson’s curse (Echium plantagineum L. (Boraginaceae)), is an herbaceous annual native to Western Europe and northwest Africa. It has been recorded in Australia since the 1800’s and is now a major weed in pastures and rangelands, but its introduction history is poorly understood. An understanding of its invasion pathway and subsequent genetic structure is critical to the successful introduction of biological control agents and for provision of informed decisions for plant biosecurity efforts. We sampled E. plantagineum in its native (Iberian Peninsula), non-native (UK) and invaded ranges (Australia and South Africa) and analysed three chloroplast gene regions. Considerable genetic diversity was found among E. plantagineum in Australia, suggesting a complex introduction history. Fourteen haplotypes were identified globally, 10 of which were co-present in Australia and South Africa, indicating South Africa as an important source population, likely through contamination of traded goods or livestock. Haplotype 4 was most abundant in Australia (43%), and in historical and contemporary UK populations (80%), but scarce elsewhere (< 17%), suggesting that ornamental and/or other introductions from genetically impoverished UK sources were also important. Collectively, genetic evidence and historical records indicate E. plantagineum in southern Australia exists as an admixture that is likely derived from introduced source populations in both the UK and South Africa.
Collapse
Affiliation(s)
- Xiaocheng Zhu
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, Australia
- * E-mail:
| | - David Gopurenko
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, Australia
| | - Miguel Serrano
- Department of Botany, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mark A. Spencer
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Petrus J. Pieterse
- Department of Agronomy, Stellenbosch University, Private bag X1, Matieland, South Africa
| | - Dominik Skoneczny
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Brendan J. Lepschi
- Australian National Herbarium, Centre for Australian National Biodiversity Research, Canberra, Australia
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Pontevedra, Spain
| | - Geoff M. Gurr
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, Australia
| | - Ragan M. Callaway
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Leslie A. Weston
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
23
|
|
24
|
Climate outweighs native vs. nonnative range‐effects for genetics and common garden performance of a cosmopolitan weed. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1386] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Winkler DE, Chapin KJ, François O, Garmon JD, Gaut BS, Huxman TE. Multiple introductions and population structure during the rapid expansion of the invasive Sahara mustard ( Brassica tournefortii). Ecol Evol 2019; 9:7928-7941. [PMID: 31380061 PMCID: PMC6662425 DOI: 10.1002/ece3.5239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 12/23/2022] Open
Abstract
The specific mechanisms that result in the success of any species invasion case are difficult to document. Reproductive strategies are often cited as a primary driver of invasive success, with human activities further facilitating invasions by, for example, acting as seed vectors for dispersal via road, train, air, and marine traffic, and by producing efficient corridors for movement including canals, drainages, and roadways. Sahara mustard (Brassica tournefortii) is a facultative autogamous annual native to Eurasia that has rapidly invaded the southwestern United States within the past century, displacing natives, and altering water-limited landscapes in the southwest. We used a genotyping-by-sequencing approach to study the population structure and spatial geography of Sahara mustard from 744 individuals from 52 sites across the range of the species' invasion. We also used herbaria records to model range expansion since its initial introduction in the 1920s. We found that Sahara mustard occurs as three populations in the United States unstructured by geography, identified three introduction sites, and combined herbaria records with genomic analyses to map the spread of the species. Low genetic diversity and linkage disequilibrium are consistent with self-fertilization, which likely promoted rapid invasive spread. Overall, we found that Sahara mustard experienced atypical expansion patterns, with a relatively constant rate of expansion and without the lag phase that is typical of many invasive species.
Collapse
Affiliation(s)
- Daniel E. Winkler
- Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineCalifornia
- U.S. Geological SurveySouthwest Biological Science CenterMoabUtah
| | - Kenneth J. Chapin
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCalifornia
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona
| | | | | | - Brandon S. Gaut
- Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineCalifornia
| | - Travis E. Huxman
- Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineCalifornia
| |
Collapse
|
26
|
|
27
|
Braasch J, Barker BS, Dlugosch KM. Expansion history and environmental suitability shape effective population size in a plant invasion. Mol Ecol 2019; 28:2546-2558. [PMID: 30993767 DOI: 10.1111/mec.15104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
The margins of an expanding range are predicted to be challenging environments for adaptation. Marginal populations should often experience low effective population sizes (Ne ) where genetic drift is high due to demographic expansion and/or census population size is low due to unfavourable environmental conditions. Nevertheless, invasive species demonstrate increasing evidence of rapid evolution and potential adaptation to novel environments encountered during colonization, calling into question whether significant reductions in Ne are realized during range expansions in nature. Here we report one of the first empirical tests of the joint effects of expansion dynamics and environment on effective population size variation during invasive range expansion. We estimate contemporary values of Ne using rates of linkage disequilibrium among genome-wide markers within introduced populations of the highly invasive plant Centaurea solstitialis (yellow starthistle) in North America (California, USA), and within native Eurasian populations. As predicted, we find that Ne within the invaded range is positively correlated with both expansion history (time since founding) and habitat quality (abiotic climate). History and climate had independent additive effects with similar effect sizes, indicating an important role for both factors in this invasion. These results support theoretical expectations for the population genetics of range expansion, though whether these processes can ultimately arrest the spread of an invasive species remains an unanswered question.
Collapse
Affiliation(s)
- Joseph Braasch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| | - Brittany S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona.,Integrated Plant Protection Center and Department of Horticulture, Oregon State University, Corvallis, Oregon
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
28
|
Sherpa S, Blum MGB, Capblancq T, Cumer T, Rioux D, Després L. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol Ecol 2019; 28:2360-2377. [PMID: 30849200 DOI: 10.1111/mec.15071] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/15/2023]
Abstract
Multiple introductions are key features for the establishment and persistence of introduced species. However, little is known about the contribution of genetic admixture to the invasive potential of populations. To address this issue, we studied the recent invasion of the Asian tiger mosquito (Aedes albopictus) in Europe. Combining genome-wide single nucleotide polymorphisms and historical knowledge using an approximate Bayesian computation framework, we reconstruct the colonization routes and establish the demographic dynamics of invasion. The colonization of Europe involved at least three independent introductions in Albania, North Italy and Central Italy that subsequently acted as dispersal centres throughout Europe. We show that the topology of human transportation networks shaped demographic histories with North Italy and Central Italy being the main dispersal centres in Europe. Introduction modalities conditioned the levels of genetic diversity in invading populations, and genetically diverse and admixed populations promoted more secondary introductions and have spread farther than single-source invasions. This genomic study provides further crucial insights into a general understanding of the role of genetic diversity promoted by modern trade in driving biological invasions.
Collapse
Affiliation(s)
| | - Michael G B Blum
- Université Grenoble Alpes, CNRS UMR 5525 TIMC-IMAG, Grenoble, France
| | | | - Tristan Cumer
- Université Grenoble Alpes, CNRS UMR 5553 LECA, Grenoble, France
| | - Delphine Rioux
- Université Grenoble Alpes, CNRS UMR 5553 LECA, Grenoble, France
| | | |
Collapse
|
29
|
Lu-Irving P, Harenčár JG, Sounart H, Welles SR, Swope SM, Baltrus DA, Dlugosch KM. Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria. mSphere 2019; 4:e00088-19. [PMID: 30842267 PMCID: PMC6403453 DOI: 10.1128/msphere.00088-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022] Open
Abstract
Invasive species could benefit from being introduced to locations with more favorable species interactions, including the loss of enemies, the gain of mutualists, or the simplification of complex interaction networks. Microbiomes are an important source of species interactions with strong fitness effects on multicellular organisms, and these interactions are known to vary across regions. The highly invasive plant yellow starthistle (Centaurea solstitialis) has been shown to experience more favorable microbial interactions in its invasions of the Americas, but the microbiome that must contribute to this variation in interactions is unknown. We sequenced amplicons of 16S rRNA genes to characterize bacterial community compositions in the phyllosphere, ectorhizosphere, and endorhizosphere of yellow starthistle plants from seven invading populations in California, USA, and eight native populations in Europe. We tested for the differentiation of microbiomes by geography, plant compartment, and plant genotype. Bacterial communities differed significantly between native and invading plants within plant compartments, with consistently lower diversity in the microbiome of invading plants. The diversity of bacteria in roots was positively correlated with plant genotype diversity within both ranges, but this relationship did not explain microbiome differences between ranges. Our results reveal that these invading plants are experiencing either a simplified microbial environment or simplified microbial interactions as a result of the dominance of a few taxa within their microbiome. Our findings highlight several alternative hypotheses for the sources of variation that we observe in invader microbiomes and the potential for altered bacterial interactions to facilitate invasion success.IMPORTANCE Previous studies have found that introduced plants commonly experience more favorable microbial interactions in their non-native range, suggesting that changes to the microbiome could be an important contributor to invasion success. Little is known about microbiome variation across native and invading populations, however, and the potential sources of more favorable interactions are undescribed. Here, we report one of the first microbiome comparisons of plants from multiple native and invading populations, in the noxious weed yellow starthistle. We identify clear differences in composition and diversity of microbiome bacteria. Our findings raise new questions about the sources of these differences, and we outline the next generation of research that will be required to connect microbiome variation to its potential role in plant invasions.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Evolutionary Ecology, Royal Botanic Gardens Sydney, Sydney, New South Wales, Australia
| | - Julia G Harenčár
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - Hailey Sounart
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Biology, Mills College, Oakland, California, USA
| | - Shana R Welles
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Sarah M Swope
- Department of Biology, Mills College, Oakland, California, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
30
|
Hirsch H, Castillo ML, Impson FAC, Kleinjan C, Richardson DM, Le Roux JJ. Ghosts from the past: even comprehensive sampling of the native range may not be enough to unravel the introduction history of invasive species-the case of Acacia dealbata invasions in South Africa. AMERICAN JOURNAL OF BOTANY 2019; 106:352-362. [PMID: 30816998 DOI: 10.1002/ajb2.1244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Knowledge about the introduction history (source(s), number and size of introduction events) of an invasive species is a crucial prerequisite to understand invasion success and to facilitate effective and sustainable management approaches, especially for effective biological control. We investigated the introduction history of the Australian legume tree Acacia dealbata in South Africa. Results of this study will not only provide critical information for the management of this species in South Africa, but will also broaden our overall knowledge on the invasion ecology of this globally important invasive tree. METHODS We used nuclear microsatellite markers to compare the genetic diversity and structure between 42 native Australian and 18 invasive South African populations and to test different and competing introduction scenarios using Approximate Bayesian Computation analyses. KEY RESULTS Australian populations were characterized by two distinct genetic clusters, while South African populations lacked any clear genetic structure and showed significantly lower levels of genetic diversity compared to native range populations. South African populations were also genetically divergent from native populations and the most likely introduction scenario indicated an unknown source population. CONCLUSIONS Although we cannot definitely prove the cause of the observed genetic novelty/diversification in South African Acacia dealbata populations, it cannot be attributable to insufficient sampling of native populations. Our study highlights the complexity of unravelling the introduction histories of commercially important alien species.
Collapse
Affiliation(s)
- Heidi Hirsch
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maria L Castillo
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Fiona A C Impson
- Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599, South Africa
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| | - Catharina Kleinjan
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Johannes J Le Roux
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
31
|
Bouteiller XP, Verdu CF, Aikio E, Bloese P, Dainou K, Delcamp A, De Thier O, Guichoux E, Mengal C, Monty A, Pucheu M, van Loo M, Josée Porté A, Lassois L, Mariette S. A few north Appalachian populations are the source of European black locust. Ecol Evol 2019; 9:2398-2414. [PMID: 30891188 PMCID: PMC6405530 DOI: 10.1002/ece3.4776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
The role of evolution in biological invasion studies is often overlooked. In order to evaluate the evolutionary mechanisms behind invasiveness, it is crucial to identify the source populations of the introduction. Studies in population genetics were carried out on Robinia pseudoacacia L., a North American tree which is now one of the worst invasive tree species in Europe. We realized large-scale sampling in both the invasive and native ranges: 63 populations were sampled and 818 individuals were genotyped using 113 SNPs. We identified clonal genotypes in each population and analyzed between and within range population structure, and then, we compared genetic diversity between ranges, enlarging the number of SNPs to mitigate the ascertainment bias. First, we demonstrated that European black locust was introduced from just a limited number of populations located in the Appalachian Mountains, which is in agreement with the historical documents briefly reviewed in this study. Within America, population structure reflected the effects of long-term processes, whereas in Europe it was largely impacted by human activities. Second, we showed that there is a genetic bottleneck between the ranges with a decrease in allelic richness and total number of alleles in Europe. Lastly, we found more clonality within European populations. Black locust became invasive in Europe despite being introduced from a reduced part of its native distribution. Our results suggest that human activity, such as breeding programs in Europe and the seed trade throughout the introduced range, had a major role in promoting invasion; therefore, the introduction of the missing American genetic cluster to Europe should be avoided.
Collapse
Affiliation(s)
| | - Cindy Frédérique Verdu
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Emmi Aikio
- Department of Genetics and PhysiologyUniversity of OuluOuluFinland
| | - Paul Bloese
- Department of ForestryMichigan State UniversityEast LansingMichigan
| | - Kasso Dainou
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | | - Olivier De Thier
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | | - Coralie Mengal
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Arnaud Monty
- Forest Management Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | | - Marcela van Loo
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Ludivine Lassois
- Biodiversity and Landscape Unit, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | | |
Collapse
|
32
|
Barker BS, Cocio JE, Anderson SR, Braasch JE, Cang FA, Gillette HD, Dlugosch KM. Potential limits to the benefits of admixture during biological invasion. Mol Ecol 2018; 28:100-113. [PMID: 30485593 DOI: 10.1111/mec.14958] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plant Centaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion.
Collapse
Affiliation(s)
- Brittany S Barker
- University of Arizona, Tucson, Arizona.,United States Geological Survey, Boise, Idaho
| | | | | | | | | | - Heather D Gillette
- University of Arizona, Tucson, Arizona.,Northern Arizona University, Flagstaff, Arizona
| | | |
Collapse
|
33
|
Helliwell EE, Faber‐Hammond J, Lopez ZC, Garoutte A, Wettberg E, Friesen ML, Porter SS. Rapid establishment of a flowering cline in
Medicago polymorpha
after invasion of North America. Mol Ecol 2018; 27:4758-4774. [DOI: 10.1111/mec.14898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Emily E. Helliwell
- School of Biological Sciences Washington State University Vancouver Washington
| | | | - Zoie C. Lopez
- School of Biological Sciences Washington State University Vancouver Washington
| | - Aaron Garoutte
- Department of Plant Biology Michigan State University East Lansing Michigan
| | - Eric Wettberg
- Department of Plant and Soil Science The University of Vermont Burlington Vermont
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University East Lansing Michigan
- Department of Plant Pathology Washington State University Pullman Washington
- Department of Crop and Soil Sciences Washington State University Pullman Washington
| | - Stephanie S. Porter
- School of Biological Sciences Washington State University Vancouver Washington
| |
Collapse
|
34
|
van Kleunen M, Bossdorf O, Dawson W. The Ecology and Evolution of Alien Plants. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062654] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the state of the art of alien plant research with emphasis on conceptual advances and knowledge gains on general patterns and drivers, biotic interactions, and evolution. Major advances include the identification of different invasion stages and invasiveness dimensions (geographic range, habitat specificity, local abundance) and the identification of appropriate comparators while accounting for propagule pressure and year of introduction. Developments in phylogenetic and functional trait research bear great promise for better understanding of the underlying mechanisms. Global patterns are emerging with propagule pressure, disturbance, increased resource availability, and climate matching as major invasion drivers, but species characteristics also play a role. Biotic interactions with resident communities shape invasion outcomes, with major roles for species diversity, enemies, novel weapons, and mutualists. Mounting evidence has been found for rapid evolution of invasive aliens and evolutionary responses of natives, but a mechanistic understanding requires tighter integration of molecular and phenotypic approaches. We hope the open questions identified in this review will stimulate further research on the ecology and evolution of alien plants.
Collapse
Affiliation(s)
- Mark van Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- Ecology Group, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology Group, Institute of Evolution and Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
35
|
Montesinos D, Graebner RC, Callaway RM. Evidence for evolution of increased competitive ability for invasive Centaurea solstitialis, but not for naturalized C. calcitrapa. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Abstract
Biological invasions are a major threat to biological diversity, agriculture, and human health. To predict and prevent new invasions, it is crucial to develop a better understanding of the drivers of the invasion process. The analysis of 4,533 border interception events revealed that at least 51 different alien ant species were intercepted at US ports over a period of 70 years (1914-1984), and 45 alien species were intercepted entering New Zealand over a period of 68 years (1955-2013). Most of the interceptions did not originate from species' native ranges but instead came from invaded areas. In the United States, 75.7% of the interceptions came from a country where the intercepted ant species had been previously introduced. In New Zealand, this value was even higher, at 87.8%. There was an overrepresentation of interceptions from nearby locations (Latin America for species intercepted in the United States and Oceania for species intercepted in New Zealand). The probability of a species' successful establishment in both the United States and New Zealand was positively related to the number of interceptions of the species in these countries. Moreover, species that have spread to more continents are also more likely to be intercepted and to make secondary introductions. This creates a positive feedback loop between the introduction and establishment stages of the invasion process, in which initial establishments promote secondary introductions. Overall, these results reveal that secondary introductions act as a critical driver of increasing global rates of invasions.
Collapse
|
37
|
Lu-Irving P, Marx HE, Dlugosch KM. Leveraging contemporary species introductions to test phylogenetic hypotheses of trait evolution. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:95-102. [PMID: 29754025 DOI: 10.1016/j.pbi.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Plant trait evolution is a topic of interest across disciplines and scales. Phylogenetic studies are powerful for generating hypotheses about the mechanisms that have shaped plant traits and their evolution. Introduced plants are a rich source of data on contemporary trait evolution. Introductions could provide especially useful tests of a variety of evolutionary hypotheses because the environments selecting on evolving traits are still present. We review phylogenetic and contemporary studies of trait evolution and identify areas of overlap and areas for further integration. Emerging tools which can promote integration include broadly focused repositories of trait data, and comparative models of trait evolution that consider both intra and interspecific variation.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA.
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| |
Collapse
|
38
|
|
39
|
Andersen JC, Mills NJ. Comparative genetics of invasive populations of walnut aphid, Chromaphis juglandicola, and its introduced parasitoid, Trioxys pallidus, in California. Ecol Evol 2018; 8:801-811. [PMID: 29321915 PMCID: PMC5756880 DOI: 10.1002/ece3.3667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023] Open
Abstract
Coevolution may be an important component of the sustainability of importation biological control, but how frequently introduced natural enemies coevolve with their target pests is unclear. Here we explore whether comparative population genetics of the invasive walnut aphid, Chromaphis juglandicola, and its introduced parasitoid, Trioxys pallidus, provide insights into the localized breakdown of biological control services in walnut orchards in California. We found that sampled populations of C. juglandicola exhibited higher estimates of genetic differentiation (FST) than co-occurring populations of T. pallidus. In contrast, estimates of both the inbreeding coefficient (GIS) and contemporary gene flow were higher for T. pallidus than for C. juglandicola. We also found evidence of reciprocal outlier loci in some locations, but none showed significant signatures of selection. Synthesis and applications. Understanding the importance of coevolutionary interactions for the sustainability of biological control remains an important and understudied component of biological control research. Given the observed differences in gene flow and genetic differentiation among populations of T. pallidus and C. juglandicola, we suspect that temporary local disruption of biological control services may occur more frequently than expected while remaining stable at broader regional scales. Further research that combines genomewide single nucleotide polymorphism genotyping with measurements of phenotypic traits is needed to provide more conclusive evidence of whether the occurrence of outlier loci that display significant signatures of selection can be interpreted as evidence of the presence of a geographic mosaic of coevolution in this system.
Collapse
Affiliation(s)
- Jeremy C. Andersen
- Department of Environmental Science Policy and ManagementUniversity of California BerkeleyBerkeleyCAUSA
| | - Nicholas J. Mills
- Department of Environmental Science Policy and ManagementUniversity of California BerkeleyBerkeleyCAUSA
| |
Collapse
|
40
|
Papadopoulou A, Knowles LL. Linking micro‐ and macroevolutionary perspectives to evaluate the role of Quaternary sea‐level oscillations in island diversification. Evolution 2017; 71:2901-2917. [DOI: 10.1111/evo.13384] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Anna Papadopoulou
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Avda. Américo Vespucio s/n 41092 Seville Spain
- Department of Ecology and Evolutionary Biology, Museum of Zoology University of Michigan 1109 Geddes Avenue Ann Arbor MI 48109‐1079
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology University of Michigan 1109 Geddes Avenue Ann Arbor MI 48109‐1079
| |
Collapse
|
41
|
Irimia RE, Montesinos D, Eren Ö, Lortie CJ, French K, Cavieres LA, Sotes GJ, Hierro JL, Jorge A, Loureiro J. Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization. PeerJ 2017; 5:e3531. [PMID: 28828232 PMCID: PMC5560225 DOI: 10.7717/peerj.3531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022] Open
Abstract
Centaurea solstitialis L. (yellow starthistle, Asteraceae) is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C. solstitialis had been reported to be diploid (2n = 2x = 16 chromosomes), however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C. solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg), with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C. solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level.
Collapse
Affiliation(s)
- Ramona-Elena Irimia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,National Institute of Research and Development for Biological Sciences, Stejarul Research Centre for Biological Sciences, Piatra Neamt, Romania
| | - Daniel Montesinos
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Özkan Eren
- Adnan Menderes Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, Aydın, Turkey
| | | | - Kristine French
- School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Lohengrin A Cavieres
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Gastón J Sotes
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - José L Hierro
- Instituto de Ciencias de La Tierra y Ambientales de la Pampa, Consejo Nacional de Investigaciones Científicas y Técnicas (INCITAP-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, Argentina
| | - Andreia Jorge
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|