1
|
Da YM, Yang XR, Li MJ, Li SS, Gao ZP, Zhang Y, Su JQ, Zhou GW. Promotion of antibiotic-resistant genes dissemination by the micro/nanoplastics in the gut of snail Achatina fulica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176829. [PMID: 39437930 DOI: 10.1016/j.scitotenv.2024.176829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Terrestrial animal intestines are hotspots for the enrichment of micro/nano plastics (M/NPs) and antibiotic-resistant genes (ARGs). However, little is known about the further impact of M/NPs on the spread of ARGs in animal guts. This study investigates the role of M/NPs (polystyrene) with varying particle sizes (0.082, 42, and 182 μm), concentrations (10 and 100 mg/L), and exposure durations (4 and 16 days) in the ARGs dissemination via conjugation in the edible snail (Achatina fulica) gut. Combination of qPCR with 16S rRNA-based sequencing, we found that PS exposure caused intestinal cell impairment and shifts in the gut microbial community of snails. Conjugation rate increased with PS particle sizes in the snail gut. After 4 days of exposure, significantly higher conjugation rates were observed in the gut exposed to 100 mg/L PS compared to 10 mg/L, however, this trend reversed after 16 days. Consistently, the abundances of conjugation relevant genes trfA and trbB shared similar trends to the conjugation ratios in the snail gut after PS exposure. Transconjugant diversity was much lower in 10 mg/L PS groups than in 100 mg/L PS treatments. Therefore, this study suggests that the presence of M/NPs would complicate management of ARG spread. The selection pressure exerted by M/NPs may sustain or even amplify the spread of ARGs in the gut of terrestrial animals even in the absence of antibiotics. It highlights the necessity of avoiding M/NPs intake as a part of comprehensive strategy for cubing ARG dissemination in the gut of animals.
Collapse
Affiliation(s)
- Yan-Mei Da
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ming-Jun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shun-Shun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Ze-Ping Gao
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Ying Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guo-Wei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
2
|
Guo X, Zhao W, Yin D, Mei Z, Wang F, Tiedje J, Ling S, Hu S, Xu T. Aspirin altered antibiotic resistance genes response to sulfonamide in the gut microbiome of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124566. [PMID: 39025292 DOI: 10.1016/j.envpol.2024.124566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Pharmaceuticals are widespread in aquatic environments and might contribute to the prevalence of antibiotic resistance. However, the co-effect of antibiotics and non-antibiotic pharmaceuticals on the gut microbiome of fish is poorly understood. In this study, we characterized the variation of the zebrafish gut microbiome and resistome after exposure to sulfamethoxazole (SMX) and aspirin under different treatments. SMX contributed to the significant increase in the antibiotic resistance genes (ARGs) richness and abundance with 46 unique ARGs and five mobile genetic elements (MGEs) detected. Combined exposure to SMX and aspirin enriched total ARGs abundance and rearranged microbiota under short-term exposure. Exposure time was more responsible for resistome and the gut microbiome than exposure concentrations. Perturbation of the gut microbiome contributed to the functional variation related to RNA processing and modification, cell motility, signal transduction mechanisms, and defense mechanisms. A strong significant positive correlation (R = 0.8955, p < 0.001) was observed between total ARGs and MGEs regardless of different treatments revealing the key role of MGEs in ARGs transmission. Network analysis indicated most of the potential ARGs host bacteria belonged to Proteobacteria. Our study suggested that co-occurrence of non-antibiotics and antibiotics could accelerate the spread of ARGs in gut microbial communities and MGEs played a key role.
Collapse
Affiliation(s)
- Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wanting Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhi Mei
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824, USA
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
3
|
Wang C, Song Y, Liang J, Wang Y, Zhang D, Zhao Z. Antibiotic resistance genes are transferred from manure-contaminated water bodies to the gut microbiota of animals through the food chain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125087. [PMID: 39383990 DOI: 10.1016/j.envpol.2024.125087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Fecal-contaminated water may enter the food chain and become an important route for the transmission of antibiotic resistance genes (ARGs) to the human microbiome. However, little is known about the spread of ARGs from fecal contamination in water bodies along the aquatic food chain. In this study, laboratory-raised Daphnia magna and Aristichthys nobilis were used to investigate the effects of the addition of manure on target ARGs in water and their intestinal contents to determine the potential transmission route of ARGs in the aquatic food chain system. The abundance of target ARGs in water as well as D. magna and A. nobilis intestinal contents significantly increased when fecal contamination was present. ARGs bioaccumulated along the food chain, with four ARGs (tetM-01, tetX, qnrS, and sul2) detected regularly. Mn and Cr were key environmental factors that promoted the transfer of ARGs along the food chain. Fecal addition significantly changed the structure of microbial communities in water, D. magna gut, and A. nobilis gut. The ARG spectrum was significantly correlated with the composition and structure of the bacterial community. Proteobacteria, Bacteroidetes, and Firmicutes were identified as the main host bacteria and were likely to act as carriers of ARGs to promote the spread of antibiotic resistance in the food chain. The composition and structure of bacterial communities, along with mobile genetic elements, were two key drivers of ARG transfer. These findings provide new insights into the distribution and spread of ARGs along the freshwater food chain.
Collapse
Affiliation(s)
- Ce Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yuzi Song
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jingxuan Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Di Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
4
|
Pan Q, Lv T, Xu H, Fang H, Li M, Zhu J, Wang Y, Fan X, Xu P, Wang X, Wang Q, Matsumoto H, Wang M. Gut pathobiome mediates behavioral and developmental disorders in biotoxin-exposed amphibians. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100415. [PMID: 38577706 PMCID: PMC10992726 DOI: 10.1016/j.ese.2024.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
Emerging evidence suggests a link between alterations in the gut microbiome and adverse health outcomes in the hosts exposed to environmental pollutants. Yet, the causal relationships and underlying mechanisms remain largely undefined. Here we show that exposure to biotoxins can affect gut pathobiome assembly in amphibians, which in turn triggers the toxicity of exogenous pollutants. We used Xenopus laevis as a model in this study. Tadpoles exposed to tropolone demonstrated notable developmental impairments and increased locomotor activity, with a reduction in total length by 4.37%-22.48% and an increase in swimming speed by 49.96%-84.83%. Fusobacterium and Cetobacterium are predominant taxa in the gut pathobiome of tropolone-exposed tadpoles. The tropolone-induced developmental and behavioral disorders in the host were mediated by assembly of the gut pathobiome, leading to transcriptome reprogramming. This study not only advances our understanding of the intricate interactions between environmental pollutants, the gut pathobiome, and host health but also emphasizes the potential of the gut pathobiome in mediating the toxicological effects of environmental contaminants.
Collapse
Affiliation(s)
- Qianqian Pan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tianxing Lv
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haorong Xu
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongda Fang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiaping Zhu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yue Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Fan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ping Xu
- Institution of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuguo Wang
- The Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qiangwei Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haruna Matsumoto
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Goh SG, You L, Ng C, Tong X, Mohapatra S, Khor WC, Ong HMG, Aung KT, Gin KYH. A multi-pronged approach to assessing antimicrobial resistance risks in coastal waters and aquaculture systems. WATER RESEARCH 2024; 266:122353. [PMID: 39241380 DOI: 10.1016/j.watres.2024.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Antimicrobial resistance (AMR) is a global challenge that has impacted aquaculture and surrounding marine environments. In this study, a year-long monitoring program was implemented to evaluate AMR in two different aquaculture settings (i.e., open cage farming, recirculating aquaculture system (RAS)) and surrounding marine environment within a tropical coastal region. The objectives of this study are to (i) investigate the prevalence and co-occurrence of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), antibiotics (AB) and various associated chemical compounds at these study sites; (ii) explore the contributing factors to development and propagation of AMR in the coastal environment; and (iii) assess the AMR risks from different perspectives based on the three AMR determinants (i.e., ARB, ARGs and AB). Key findings revealed a distinct pattern of AMR across the different aquaculture settings, notably a higher prevalence of antibiotic-resistant Vibrio at RAS outfalls, suggesting a potential accumulation of microorganisms within the treatment system. Despite the relative uniform distribution of ARGs across marine sites, specific genes such as qepA, blaCTX-M and bacA, were found to be abundant in fish samples, especially from the RAS. Variations in chemical contaminant prevalence across sites highlighted possible anthropogenic impacts. Moreover, environmental and seasonal variations were found to significantly influence the distribution of ARGs and chemical compounds in the coastal waters. Hierarchical cluster analysis that was based on ARGs, chemical compounds and environmental data, categorized the sites into three distinct clusters which reflected strong association with location, seasonality and aquaculture activities. The observed weak correlations between ARGs and chemical compounds imply that low environmental concentrations may be insufficient for resistance selection. A comprehensive risk assessment using methodologies such as the multiple antibiotic resistance (MAR) index, comparative AMR risk index (CAMRI) and Risk quotient (RQ) underscored the complexity of AMR risks. This research significantly contributes to the understanding of AMR dynamics in natural aquatic systems and provides valuable insights for managing and mitigating AMR risks in coastal environments.
Collapse
Affiliation(s)
- Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Luhua You
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Charmaine Ng
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Xuneng Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Hong Ming Glendon Ong
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
6
|
Li W, Zhang X, Hao X, Xin R, Zhang Y, Ma Y, Niu Z. Fish skin mucosal surface becomes a barrier of antibiotic resistance genes under apramycin exposure. ENVIRONMENTAL RESEARCH 2024; 252:118930. [PMID: 38615788 DOI: 10.1016/j.envres.2024.118930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Antibiotic resistance genes (ARGs) are a kind of emerging environmental contamination, and are commonly found in antibiotic application situations, attracting wide attention. Fish skin mucosal surface (SMS), as the contact interface between fish and water, is the first line of defense against external pollutant invasion. Antibiotics are widely used in aquaculture, and SMS may be exposed to antibiotics. However, what happens to SMS when antibiotics are applied, and whether ARGs are enriched in SMS are not clear. In this study, Zebrafish (Danio rerio) were exposed to antibiotic and antibiotic resistant bacteria in the laboratory to simulate the aquaculture situation, and the effects of SMS on the spread of ARGs were explored. The results showed that SMS maintained the stability of the bacterial abundance and diversity under apramycin (APR) and bacterial exposure effectively. Until 11 days after stopping APR exposure, the abundance of ARGs in SMS (mean value was 3.32 × 10-3 copies/16S rRNA copies) still did not recover to the initial stage before exposure, which means that enriched ARGs in SMS were persistently remained. Moreover, non-specific immunity played an important role in resisting infection of external contamination. Besides, among antioxidant proteins, superoxide dismutase showed the highest activity. Consequently, it showed that SMS became a barrier of antibiotic resistance genes under APR exposure, and ARGs in SMS were difficult to remove once colonized. This study provided a reference for understanding the transmission, enrichment process, and ecological impact of antibiotics and ARGs in aquatic environments.
Collapse
Affiliation(s)
- Wenpeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaohan Hao
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
You Z, Wang C, Yang X, Liu Z, Guan Y, Mu J, Shi H, Zhao Z. Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. ENVIRONMENTAL RESEARCH 2024; 251:118692. [PMID: 38493856 DOI: 10.1016/j.envres.2024.118692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0-2.5 g/L KNO3). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment.
Collapse
Affiliation(s)
- Ziqi You
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| | - Ce Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Xiaobin Yang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zikuo Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yueqiang Guan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, 066200, China
| | - Huijuan Shi
- Museum of Hebei University, Hebei University, Baoding, Hebei, China.
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
8
|
Zhou R, Huang X, Xie Z, Ding Z, Wei H, Jin Q. A review focusing on mechanisms and ecological risks of enrichment and propagation of antibiotic resistance genes and mobile genetic elements by microplastic biofilms. ENVIRONMENTAL RESEARCH 2024; 251:118737. [PMID: 38493850 DOI: 10.1016/j.envres.2024.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Microplastics (MPs) are emerging ubiquitous pollutants in aquatic environment and have received extensive global attention. In addition to the traditional studies related to the toxicity of MPs and their carrier effects, their unique surface-induced biofilm formation also increases the ecotoxicity potential of MPs from multiple perspectives. In this review, the ecological risks of MPs biofilms were summarized and assessed in detail from several aspects, including the formation and factors affecting the development of MPs biofilms, the selective enrichment and propagation mechanisms of current pollution status of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in MPs biofilms, the dominant bacterial communities in MPs biofilms, as well as the potential risks of ARGs and MGEs transferring from MPs biofilms to aquatic organisms. On this basis, this paper also put forward the inadequacy and prospects of the current research and revealed that the MGEs-mediated ARG propagation on MPs under actual environmental conditions and the ecological risk of the transmission of ARGs and MGEs to aquatic organisms and human beings are hot spots for future research. Relevant research from the perspective of MPs biofilm should be carried out as soon as possible to provide support for the ecological pollution prevention and control of MPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Xirong Huang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Zhongtang Xie
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China.
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Hengchen Wei
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| |
Collapse
|
9
|
Xia J, Ge C, Yao H. Antimicrobial peptides: An alternative to antibiotic for mitigating the risks of Antibiotic resistance in aquaculture. ENVIRONMENTAL RESEARCH 2024; 251:118619. [PMID: 38442817 DOI: 10.1016/j.envres.2024.118619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
The utilization of antibiotics increases the prevalence of antibiotic resistance genes (ARGs) in various matrices and poses the potential risk of ARG transmission, garnering global attention. Antimicrobial peptides (AMPs) represent a promising novel category of antimicrobials that may address the urgent issue of antibiotic resistance. Here, a zebrafish cultivation assay in which zebrafish were fed a diet supplemented with AMP (Cecropin A) or antibiotics was conducted to determine the effects of the intervention on the microorganisms and antibiotic resistance spectrum in zebrafish gut samples. Cecropin A treatment decreased the α-diversity of the microbiota. Moreover, NMDS (nonmetric multidimensional scaling) results revealed that the β-diversity in the microbiota was more similar between the control (CK) and Cecropin A samples than between the antibiotic treatment groups. The absolute quantity of ARGs in the AMP treatment was less than that observed in the antibiotic treatment. The findings indicated that FFCH7168, Chitinibacter and Cetobacterium were the most significant biomarkers detected in the CK, Cecropin A and antibiotic treatments, respectively. Although the use of antibiotics notably enhanced the occurrence of multidrug-resistant bacteria, the application of Cecropin A did not lead to this phenomenon. The results indicated that the application of AMPs can effectively manage and control ARGs in aquaculture.
Collapse
Affiliation(s)
- Jing Xia
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, PR China.
| |
Collapse
|
10
|
Thibodeau AJ, Barret M, Mouchet F, Nguyen VX, Pinelli E. The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123894. [PMID: 38599270 DOI: 10.1016/j.envpol.2024.123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.
Collapse
Affiliation(s)
- Alexandre J Thibodeau
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France.
| | - Maialen Barret
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Florence Mouchet
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Van Xuan Nguyen
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Eric Pinelli
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| |
Collapse
|
11
|
Miranda CD, Concha C, Hurtado L, Urtubia R, Rojas R, Romero J. Occurrence of Antimicrobial-Resistant Bacteria in Intestinal Contents of Wild Marine Fish in Chile. Antibiotics (Basel) 2024; 13:332. [PMID: 38667008 PMCID: PMC11047320 DOI: 10.3390/antibiotics13040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobial-resistant bacteria (ARB) from the intestinal contents of wild fish may have a relevant ecological significance and could be used as indicators of antimicrobial-resistance dissemination in natural bacterial populations in water bodies impacted by urban contamination. Thus, the occurrence of ARB in the intestinal contents of pelagic and demersal wild fishes captured in anthropogenic-impacted Coquimbo Bay in Chile was studied. Culturable counts of total and antimicrobial-resistant bacteria were determined by a spread plate method using Trypticase soy agar and R2A media, both alone and supplemented with the antimicrobials amoxicillin, streptomycin, florfenicol, oxytetracycline and ciprofloxacin, respectively. Heterotrophic plate counts of pelagic and demersal fishes ranged from 1.72 × 106 CFU g-1 to 3.62 × 109 CFU g-1, showing variable proportions of antimicrobial resistance. Representative antimicrobial-resistant isolates were identified by 16S rRNA gene sequencing, and isolates (74) from pelagic fishes mainly belonged to Pseudomonas (50.0%) and Shewanella (17.6%) genera, whereas isolates (68) from demersal fishes mainly belonged to Vibrio (33.8%) and Pseudomonas (26.5%) genera. Antimicrobial-resistant isolates were tested for susceptibility to 12 antimicrobials by an agar disk diffusion method, showing highest resistance to streptomycin (85.2%) and amoxicillin (64.8%), and lowest resistance to oxytetracycline (23.2%) and ciprofloxacin (0.7%). Only furazolidone and trimethoprim/sulfamethoxazole were statistically different (p < 0.05) in comparisons between isolates from pelagic and demersal wild fishes. Furthermore, an important number of these isolates carried plasmids (53.5%) and produced Extended-Spectrum-β-lactamases (ESBL) (16.9%), whereas the detection of Metallo-β-Lactamases and class 1-integron was rare. This study provides evidence that wild fish are important reservoirs and spreading-vehicles of ARB, carrying plasmids and producing ESBLs in Chilean marine environments.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Luz Hurtado
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Rocío Urtubia
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile; (C.C.); (L.H.); (R.U.); (R.R.)
| | - Jaime Romero
- Laboratorio de Biotecnología de los Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830417, Chile;
| |
Collapse
|
12
|
Wang CZ, Li XP, Zhang YJ, Zhong WC, Liu YH, Liao XP, Sun J, Zhou YF. Molecular characteristic of mcr-1 gene in Escherichia coli from aquatic products in Guangdong, China. J Glob Antimicrob Resist 2024; 36:36-40. [PMID: 38072241 DOI: 10.1016/j.jgar.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/31/2023] Open
Abstract
OBJECTIVES Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study aimed to determine the prevalence of colistin-resistant mcr-like genes in Enterobacteriales in aquatic products, which may be contribute to the transfer of ARGs in water environments. METHODS The mcr-1-positive Escherichia coli were recovered from 123 freshwater fish and 34 cultured crocodile cecum samples from 10 farmers' markets in Guangdong, China. Minimum inhibitory concentration (MIC) was determined using the agar dilution method. Genotyping was performed using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Conjugation assay was carried out to investigate the transferability of mcr-1. Genomic information was obtained by whole genome sequencing (WGS) and bioinformatic analysis. RESULTS Forty-four mcr-1 positive isolates showed co-resistance to tetracycline, trimethoprim/sulfamethoxazole, and gentamicin, while they were all sensitive to tigecycline, meropenem, and amikacin. They were typed into sixteen PFGE clusters. ST10 and ST117 were the most popular sequence types, followed by ST1114. S1-PFGE verified the presence of the mcr-1 gene on plasmids in sizes of ∼60 kb (n = 1) and ∼240 kb (n = 3). Whole genome sequencing-based analysis identified mcr-1 integrated in IncHI2 plasmid (n = 3), IncI2 plasmid (n = 2), and bacterial chromosome in two copies (n = 1). In addition to mcr-1, they carried several other antibiotic resistance genes, such as blaCTX-M-14, fosA3, and aac(6')-Ib-cr. CONCLUSION These data suggest that aquatic products are an important antibiotic resistance reservoir and highlight possible risks regarding food safety.
Collapse
Affiliation(s)
- Chang-Zhen Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xing-Ping Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yue-Jun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Wei-Cheng Zhong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
13
|
Mawardi M, Indrawati A, Lusiastuti AM, Wibawan IWT. Antibiotic resistance gene-free probiont administration to tilapia for growth performance and Streptococcus agalactiae resistance. Vet World 2023; 16:2504-2514. [PMID: 38328352 PMCID: PMC10844778 DOI: 10.14202/vetworld.2023.2504-2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 02/09/2024] Open
Abstract
Background and Aim The rapid development of aquaculture as a major food sector is accompanied by challenges, including diseases that affect tilapia farming worldwide. One such infectious disease caused by Streptococcus agalactiae poses a serious threat to tilapia populations. Probiotics have emerged as a potentially safe preventive measure against S. agalactiae infection. However, antimicrobial resistance from antibiotic-resistant bacteria remains a concern because it can lead to the spread of resistant bacteria and serve as a reservoir of antibiotic-resistant genes in fishes and the surrounding environment. This study aimed to identify candidate probiotic bacteria capable of promoting tilapia growth, providing resistance to S. agalactiae infection, devoid of potential pathogenicity, and free from antibiotic resistance genes. Subsequently, the performance of these probiotic candidates in tilapia was evaluated. Materials and Methods Lactococcus garvieae, Priestia megaterium, Bacterium spp., Bacillus megaterium, Bacillus subtilis, and Bacillus pumilus were examined to assess their antibacterial properties, hemolytic patterns, and antibiotic resistance genes. We used the specific primers tetA, tetB, tetD, tetE, tetO, tetQ, ermB, and qnrS that were used for antibiotic resistance gene detection. In vivo probiotic efficacy was evaluated by administering probiotic candidates in tilapia feed at a concentration of 1 × 106 colonies/mL/50 g of feed over a 60-day maintenance period. Resistance to S. agalactiae infection was observed for 14 days after the challenge test. Results Lactococcus garvieae, P. megaterium, and Bacterium spp. were identified as promising probiotic candidates among the bacterial isolates. On the other hand, B. megaterium, B. subtilis, and B. pumilus carried resistance genes and exhibited a β hemolytic pattern, rendering them unsuitable as probiotic candidates. The selected probiotic candidates (L. garvieae, P. megaterium, and Bacterium spp.) demonstrated the potential to enhance tilapia growth, exhibited no pathogenic tendencies, and were free from antibiotic resistance genes. Supplementation with L. garvieae and Bacterium spp. enhanced tilapia resistance to S. agalactiae infection, whereas P. megaterium supplementation showed an insignificant survival rate compared with controls after the challenge test period. Conclusion Probiotics, particularly L. garvieae, P. megaterium, and Bacterium spp., enhance growth and resistance against S. agalactiae infection, without harboring antibiotic resistance genes. Selecting probiotic candidates based on antibiotic resistance genes is essential to ensure the safety of fish, the environment, and human health.
Collapse
Affiliation(s)
- Mira Mawardi
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, Jawa Barat, 16680 Indonesia
- Government of Indonesia Ministry of Marine Affairs and Fisheries, Main Center for Freshwater Aquaculture - Ministry of Marine Affairs and Fisheries, Jl. Selabintana No. 37, Selabatu, Kec. Cikole, Kota Sukabumi, Jawa Barat 43114, Indonesia
| | - Agustin Indrawati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, Jawa Barat, 16680 Indonesia
| | - Angela Mariana Lusiastuti
- Research Center for Veterinary Sciences. National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - I Wayan Teguh Wibawan
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, Jawa Barat, 16680 Indonesia
| |
Collapse
|
14
|
Lin X, Zhang C, Han R, Li S, Peng H, Zhou X, Huang L, Xu Y. Oxytetracycline and heavy metals promote the migration of resistance genes in the intestinal microbiome by plasmid transfer. THE ISME JOURNAL 2023; 17:2003-2013. [PMID: 37700035 PMCID: PMC10579362 DOI: 10.1038/s41396-023-01514-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Horizontal gene transfer (HGT) has been considered the most important pathway to introduce antibiotic resistance genes (ARGs), which seriously threatens human health and biological security. The presence of ARGs in the aquatic environment and their effect on the intestinal micro-ecosystem of aquatic animals can occur easily. To investigate the HGT potential and rule of exogenous ARGs in the intestinal flora, a visual conjugative model was developed, including the donor of dual-fluorescent bacterium and the recipient of Xenopus tropicalis intestinal microbiome. Some common pollutants of oxytetracycline (OTC) and three heavy metals (Zn, Cu and Pb) were selected as the stressor. The multi-techniques of flow cytometry (FCM), scanning electron microscopy (SEM), atomic force microscopy (AFM), single-cell Raman spectroscopy with sorting (SCRSS) and indicator analysis were used in this study. The results showed that ARG transfer could occur more easily under stressors. Moreover, the conjugation efficiency mainly depended on the viability of the intestinal bacteria. The mechanisms of OTC and heavy metal stressing conjugation included the upregulation of ompC, traJ, traG and the downregulation of korA gene. Moreover, the enzymatic activities of SOD, CAT, GSH-PX increased and the bacterial surface appearance also changed. The predominant recipient was identified as Citrobacter freundi by SCRSS, in which the abundance and quantity of ARG after conjugation were higher than those before. Therefore, since the diversity of potential recipients in the intestine are very high, the migration of invasive ARGs in the microbiome should be given more attention to prevent its potential risks to public health.
Collapse
Affiliation(s)
- Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Ruiqi Han
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Shoupeng Li
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Huishi Peng
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China.
| |
Collapse
|
15
|
Yin X, Li Y, Liu Y, Zheng J, Yu X, Li Y, Achterberg EP, Wang X. Dietary exposure to sulfamethazine alters fish intestinal homeostasis and promotes resistance gene transfer. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106733. [PMID: 37875383 DOI: 10.1016/j.aquatox.2023.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
The present study was undertaken to explore the effects of sulfamethazine (SMZ) dietary exposure on the enrichment of the intestine microbial structure, and antibiotic resistance gene (ARGs) transmission in marine medaka, with respect to antibiotic dose, duration, and sex. In male fish, a dietary exposure of 10 μg/L SMZ led to a heightened SMZ enrichment in the intestine, whereas metabolite (N-SMZ) levels were elevated at a higher exposure concentration (100 μg/L). Conversely, female fish exhibited stable levels of accumulation and metabolic rates across the exposure period. The composition of intestinal microorganisms revealed that exposure duration exerted a greater impact on the abundance and diversity of gut microbes, and microbial responses to SMZ varied across exposure time points. The expansion of Bacteroidetes and Ruegeria likely stimulated SMZ metabolism and contributed to the more balanced level of SMZ and N-SMZ observed in females. In males, short-term SMZ stress resulted in a disruption of intestinal homeostasis, while the rise in the abundance of the Fusobacteria and Propionigeniuma suggested a potential enhancement in intestinal anti-inflammatory capacity over time. Overall, female medaka exhibited greater adaptability to SMZ, and males appear to experience prolonged effects due to SMZ. A total of 11 ARGs and 5 mobile genetic elements (MGEs) were identified. Ruegeria is the main carrier of two types of MGEs (IS1247, ISSm2-Xanthob), and may serve as an indicator of ARG transmission. Therefore, it is rational to consider some fish breeding areas in natural waters as potential "reservoirs" of antibiotic resistance. This research will provide a valuable reference for the transmission of drug resistance along the food chain.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jingyi Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Xiaoxuan Yu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | | | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
16
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
17
|
Zhang L, Wang L, Huang J, Jin Z, Guan J, Yu H, Zhang M, Yu M, Jiang H, Qiao Z. Effects of Aeromonas hydrophila infection on the intestinal microbiota, transcriptome, and metabolomic of common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2023:108876. [PMID: 37271325 DOI: 10.1016/j.fsi.2023.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Aeromonas hydrophila frequently has harmful effects on aquatic organisms. The intestine is an important defense against stress. In this study, we investigated the intestinal microbiota and transcriptomic and metabolomic responses of Cyprinus carpio subjected to A. hydrophila infection. The results showed that obvious variation in the intestinal microbiota was observed after infection, with increased levels of Firmicutes and Bacteroidetes and decreased levels of Proteobacteria. Several genera of putatively beneficial microbiota (Cetobacterium, Bacteroides, and Lactobacillus) were abundant, while Demequina, Roseomonas, Rhodobacter, Pseudoxanthomonas, and Cellvibrio were decreased; pathogenic bacteria of the genus Vibrio were increased after microbiota infection. The intestinal transcriptome revealed several immune-related differentially expressed genes associated with the cytokines and oxidative stress. The metabolomic analysis showed that microbiota infection disturbed the metabolic processes of the carp, particularly amino acid metabolism. This study provides insight into the underlying mechanisms associated with the intestinal microbiota, immunity, and metabolism of carp response to A. hydrophila infection; eleven stress-related metabolite markers were identified, including N-acetylglutamic acid, capsidiol, sedoheptulose 7-phosphate, prostaglandin B1, 8,9-DiHETrE, 12,13-DHOME, ADP, cellobiose, 1H-Indole-3-carboxaldehyde, sinapic acid and 5,7-dihydroxyflavone.
Collapse
Affiliation(s)
- Lan Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China.
| | - Jintai Huang
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Zhan Jin
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Junxiang Guan
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Hang Yu
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Meng Zhang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Miao Yu
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Hongxia Jiang
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| | - Zhigang Qiao
- College of Fisheries, Henan Normal University, Xinxiang, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang, China
| |
Collapse
|
18
|
Wang S, Li S, Du D, Abass OK, Nasir MS, Yan W. Stimulants and donors promote megaplasmid pND6-2 horizontal gene transfer in activated sludge. J Environ Sci (China) 2023; 126:742-753. [PMID: 36503799 DOI: 10.1016/j.jes.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/17/2023]
Abstract
The activated sludge process is characterized by high microbial density and diversity, both of which facilitate antibiotic resistance gene transfer. Many studies have suggested that antibiotic and non-antibiotic drugs at sub-inhibitory concentrations are major inducers of conjugative gene transfer. The self-transmissible plasmid pND6-2 is one of the endogenous plasmids harbored in Pseudomonas putida ND6, which can trigger the transfer of another co-occurring naphthalene-degrading plasmid pND6-1. Therefore, to illustrate the potential influence of stimulants on conjugative transfer of pND6-2, we evaluated the effects of four antibiotics (ampicillin, gentamycin, kanamycin, and tetracycline) and naphthalene, on the conjugal transfer efficiency of pND6-2 by filter-mating experiment. Our findings demonstrated that all stimulants within an optimal dose promoted conjugative transfer of pND6-2 from Pseudomonas putida GKND6 to P. putida KT2440, with tetracycline being the most effective (100 µg/L and 10 µg/L), as it enhanced pND6-2-mediated intra-genera transfer by approximately one hundred-fold. Subsequently, seven AS reactors were constructed with the addition of donors and different stimulants to further elucidate the conjugative behavior of pND6-2 in natural environment. The stimulants positively affected the conjugal process of pND6-2, while donors reshaped the host abundance in the sludge. This was likely because stimulant addition enhanced the expression levels of conjugation transfer-related genes. Furthermore, Blastocatella and Chitinimonas were identified as the potential receptors of plasmid pND6-2, which was not affected by donor types. These findings demonstrate the positive role of sub-inhibitory stimulant treatment on pND6-2 conjugal transfer and the function of donors in re-shaping the host spectrum of pND6-2.
Collapse
Affiliation(s)
- Shan Wang
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dan Du
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| | - Olusegun K Abass
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Muhammad Salman Nasir
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China; Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad 38040, Pakistan
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Spatially and Temporally Confined Response of Gastrointestinal Antibiotic Resistance Gene Levels to Sulfadiazine and Extracellular Antibiotic Resistance Gene Exposure in Mice. BIOLOGY 2023; 12:biology12020210. [PMID: 36829487 PMCID: PMC9953105 DOI: 10.3390/biology12020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
This work aims to investigate the impact of antibiotics and extracellular antibiotic resistance genes (eARGs) on the dynamics of gastrointestinal antimicrobial resistance (AMR). The antibiotic resistance gene (ARG) levels of different segments of the gastrointestinal tract of mouse models were analyzed and compared after exposure to clinical concentrations of sulfadiazine and environmental levels of eARGs carried by the conjugative plasmid pR55. Exposure to sulfadiazine and eARGs led to significant changes in ARG levels by as many as four log-folds. Further analysis showed that the response of ARG levels appeared from 12-16 days after exposure and diminished 20 days after exposure. The responses in ARG levels were also restricted to different gastrointestinal segments for sulfadiazine and eARGs. Combined exposure of sulfadiazine and eARGs was unable to further increase ARG levels. From these findings, we concluded that the short-term consumption of environmental levels of eARGs and uptake of clinical levels of antibiotics lead to a spatially and temporally confined response in gastrointestinal AMR. These findings further clarify the detrimental impacts of antibiotic and eARG uptake, and the complexity of AMR development and dissemination dynamics in the gastrointestinal tract.
Collapse
|
20
|
Chen J, Chen H, Liu C, Huan H, Teng Y. Evaluation of FEAST for metagenomics-based source tracking of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130116. [PMID: 36209606 DOI: 10.1016/j.jhazmat.2022.130116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
A metagenomics-based technological framework has been proposed for evaluating the potential and utility of FEAST as an ARG profile-based source apportionment tool. To this end, a large panel of metagenomic data sets was analyzed, associating with eight source types of ARGs in environments. Totally, 1089 different ARGs were found in the 604 source metagenomes, and 396 ARG indicators were identified as the source-specific fingerprints to characterize each of the source types. With the source fingerprints, predictive performance of FEAST was checked using "leave-one-out" cross-validation strategy. Furthermore, artificial sink communities were simulated to evaluate the FEAST for source apportionment of ARGs. The prediction of FEAST showed high accuracy values (0.933 ± 0.046) and specificity values (0.959 ± 0.041), confirming its suitability to discriminate samples from different source types. The apportionment results reflected well the expected output of artificial communities which were generated with different ratios of source types to simulate various contamination levels. Finally, the validated FEAST was applied to track the sources of ARGs in river sediments. Results showed STP effluents were the main contributor of ARGs, with an average contribution of 76 %, followed by sludge (10 %) and aquaculture effluent (2.7 %), which were basically consistent with the actual environment in the area.
Collapse
Affiliation(s)
- Jinping Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huan Huan
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
21
|
Mills M, Lee S, Mollenkopf D, Wittum T, Sullivan SMP, Lee J. Comparison of environmental microbiomes in an antibiotic resistance-polluted urban river highlights periphyton and fish gut communities as reservoirs of concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158042. [PMID: 35973543 DOI: 10.1016/j.scitotenv.2022.158042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Natural waterways near urban areas are heavily impacted by anthropogenic activities, including their microbial communities. A contaminant of growing public health concern in rivers is antibiotic resistant genes (ARGs), which can spread between neighboring bacteria and increase the potential for transmission of AR bacteria to animals and humans. To identify the matrices of most concern for AR, we compared ARG burdens and microbial community structures between sample types from the Scioto River Watershed, Ohio, the United States, from 2017 to 2018. Five environmental matrices (water, sediment, periphyton, detritus, and fish gut) were collected from 26 river sites. Due to our focus on clinically relevant ARGs, three carbapenem resistance genes (blaKPC, blaNDM, and blaOXA-48) were quantified via DropletDigital™ PCR. At a subset of nine urbanized sites, we conducted16S rRNA gene sequencing and functional gene predictions. Carbapenem resistance genes were quantified from all matrices, with blaKPC being the most detected (88 % of samples), followed by blaNDM (64 %) and blaOXA-48 (23 %). Fish gut samples showed higher concentrations of blaKPC and blaNDM than any other matrix, indicating potential ARG bioaccumulation, and risk of broader dissemination through aquatic and nearshore food webs. Periphyton had higher concentrations of blaNDM than water, sediment, or detritus. Microbial community analysis identified differences by sample type in community diversity and structure. Sediment samples had the most diverse microbial communities, and detritus, the least. Spearman correlations did not reveal significant relationships between the concentrations of the monitored ARGs and microbial community diversity. However, several differentially abundant taxa and microbial functions were identified by sample type that is definitive of these matrices' roles in the river ecosystem and habitat type. In summary, the fish gut and periphyton are a concern as AR reservoirs due to their relatively high concentration of carbapenem resistance genes, diverse microbial communities, and natural functions that promote AR.
Collapse
Affiliation(s)
- Molly Mills
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Dixie Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - S Mažeika Patricio Sullivan
- Schiermeier Olentangy River Wetland Research Park, School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA; Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Yin X, Zheng J, Liu Y, Li Y, Yu X, Li Y, Wang X. Metagenomic evidence for increasing antibiotic resistance in progeny upon parental antibiotic exposure as the cost of hormesis. CHEMOSPHERE 2022; 309:136738. [PMID: 36216115 DOI: 10.1016/j.chemosphere.2022.136738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are widely consumed in the intensive mariculture industry. A better understanding of the effect of antibiotics on intergenerational antibiotic resistance in organisms is urgent since intergenerational transmission is crucial for the spread of antibiotic resistance genes (ARGs) in the environment. Herein, marine medaka (Oryzias melastigma) chronically exposed to low doses of sulfamethazine (SMZ) hormetically affected the progeny, characterized by increased richness and diversity of fecal microbiota and intestinal barrier-related gene up-regulation. Progeny immunity was modulated and caused by genetic factors due to the absence of significant SMZ accumulation in F1 embryos. In addition, some of the top genera in the progeny were positively correlated with immune diseases, while the expression of some immune-related genes, such as TNFα, IL1R2, and TLR3 changed significantly. This further indicated that the host selection caused by changes in progeny immunity was probably the primary determinant of progeny intestinal microbial colonization. Metagenomic analysis revealed that Proteobacteria represented the primary carriers of ARGs, while parental SMZ exposure facilitated the distribution and enrichment of multiple ARGs involved in the antibiotic inactivation in the progeny by promoting the diversity of Gammaproteobacteria and Bacteroidetes, further illustrating that antibiotic selection pressure persisted even if the offspring were not exposed. Therefore, SMZ induced hormesis in the progeny at the expense of increasing antibiotic resistance. Collectively, these findings provide a comprehensive overview of the intergenerational effect of antibiotics and serve as a reminder that the ARG transmission induced by the intergenerational impact of antibiotics on organisms should not be ignored.
Collapse
Affiliation(s)
- Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Jingyi Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Xiaoxuan Yu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
23
|
Suzzi AL, Stat M, MacFarlane GR, Seymour JR, Williams NL, Gaston TF, Alam MR, Huggett MJ. Legacy metal contamination is reflected in the fish gut microbiome in an urbanised estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120222. [PMID: 36150623 DOI: 10.1016/j.envpol.2022.120222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Estuaries are critical habitats subject to a range of stressors requiring effective management. Microbes are gaining recognition as effective environmental indicators, however, the response of host associated communities to stressors remains poorly understood. We examined microbial communities from seawater, sediments and the estuarine fish Pelates sexlineatus, in Australia's largest urbanised estuary, and hypothesised that anthropogenic contamination would be reflected in the microbiology of these sample types. The human faecal markers Lachno3 and HF183 were not detected, indicating negligible influence of sewage, but a gradient in copy numbers of the class 1 integron (intI-1), which is often used as a marker for anthropogenic contamination, was observed in sediments and positively correlated with metal concentrations. While seawater communities were not strongly driven by metal contamination, shifts in the diversity and composition of the fish gut microbiome were observed, with statistical links to levels of metal contamination (F2, 21 = 1.536, p < 0.01). Within the fish gut microbiome, we further report increased relative abundance of amplicon sequence variants (ASVs; single inferred DNA sequences obtained in sequencing) identified as metal resistant and potentially pathogenic genera, as well as those that may have roles in inflammation. These results demonstrate that microbial communities from distinct habitats within estuarine systems have unique response to stressors, and alterations of the fish gut microbiome may have implications for the adaptation of estuarine fish to legacy metal contamination.
Collapse
Affiliation(s)
- Alessandra L Suzzi
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia.
| | - Michael Stat
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, NSW, 2007, Australia
| | - Nathan Lr Williams
- Climate Change Cluster, University of Technology Sydney, NSW, 2007, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Megan J Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
24
|
Guan Y, Xue X, Jia J, Li X, Xing H, Wang Z. Metagenomic assembly and binning analyses the prevalence and spread of antibiotic resistome in water and fish gut microbiomes along an environmental gradient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115521. [PMID: 35716556 DOI: 10.1016/j.jenvman.2022.115521] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The pristine river and urban river show an environmental gradient caused by anthropogenic impacts such as wastewater treatment plants and domestic wastewater discharges. Here, metagenomic and binning analyses unveiled antibiotic resistance genes (ARGs) profiles, their co-occurrence with metal resistance genes (MRGs) and mobile genetic elements (MGEs), and their host bacteria in water and Hemiculter leucisculus samples of the river. Results showed that the decrease of ARG abundances from pristine to anthropogenic regions was attributed to the reduction of the relative abundance of multidrug resistance genes in water microbiomes along the environmental gradient. Whereas anthropogenic impact contributed to the enrichment of ARGs in fish gut microbiomes. From pristine to anthropogenic water samples, the dominant host bacteria shifted from Pseudomonas to Actinobacteria. Potential pathogens Vibrio parahaemolyticus, Enterobacter kobei, Aeromonas veronii and Microcystis aeruginosa_C with multiple ARGs were retrieved from fish gut microbes in lower reach of Ba River. The increasing trends in the proportion of the contigs carrying ARGs (ARCs) concomitant with plasmids along environmental gradient indicated that plasmids act as efficient mobility vehicles to enhance the spread of ARGs under anthropogenic pressures. Moreover, the higher co-occurrence of ARGs and MRGs on plasmids revealed that anthropogenic impacts accelerated the co-transfer potential of ARGs and MRGs and the enrichment of ARGs. Partial least squares path modeling revealed anthropogenic contamination could shape fish gut antibiotic resistome mainly via affecting ARG host bacteria in water microbiomes, following by ARGs co-occurrence with MGEs and MRGs in gut microbiomes. This study enhanced our understanding of the mechanism of the anthropogenic activities on the transmission of antibiotic resistome in river ecosystem and emphasized the risk of ARGs and pathogens transferring from an aquatic environment to fish guts.
Collapse
Affiliation(s)
- Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuening Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoran Xing
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
Li S, Ondon BS, Ho SH, Jiang J, Li F. Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156544. [PMID: 35679932 DOI: 10.1016/j.scitotenv.2022.156544] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
This study aims to discuss the following: (1) occurrence and proliferation of antibiotic resistance in wastewater treatment plants (WWTPs); (2) factors influencing antibiotic resistance bacteria and genes in WWTPs; (3) tools to assess antibiotic resistance in WWTPs; (4) environmental contamination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from WWTPs; (5) effects of ARB and ARGs from WWTPs on human health; and (6) treatment strategies. In general, resistant and multi-resistant bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Escherichia coli, exist in various processes of WWTPs. The existence of ARB and ARGs results from the high concentration of antibiotics in wastewater, which promote selective pressures on the local bacteria present in WWTPs. Thus, improving wastewater treatment technology and avoiding the misuse of antibiotics is critical to overcoming the threat of proliferation of ARBs and ARGs. Numerous factors can affect the development of ARB and ARGs in WWTPs. Abiotic factors can affect the bacterial community dynamics, thereby, affecting the applicability of ARB during the wastewater treatment process. Furthermore, the organic loads and other nutrients influence bacterial survival and growth. Specifically, molecular methods for the rapid characterization and detection of ARBs or their genes comprise DNA sequencing, real-time PCR, simple and multiplex PCR, and hybridization-based technologies, including micro- and macro-arrays. The reuse of effluent from WWTPs for irrigation is an efficient method to overcome water scarcity. However, there are also some potential environmental risks associated with this practice, such as increase in the levels of antibiotic resistance in the soil microbiome. Human mortality rates may significantly increase, as ARB can lead to resistance among several types of antibiotics or longer treatment times. Some treatment technologies, such as anaerobic and aerobic treatment, coagulation, membrane bioreactors, and disinfection processes, are considered potential techniques to restrict antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Brim Stevy Ondon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
26
|
Modulatory effect of Gracilaria gracilis on European seabass gut microbiota community and its functionality. Sci Rep 2022; 12:14836. [PMID: 36050345 PMCID: PMC9437047 DOI: 10.1038/s41598-022-17891-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Seaweeds are an important source of nutrients and bioactive compounds and have a high potential as health boosters in aquaculture. This study evaluated the effect of dietary inclusion of Gracilaria gracilis biomass or its extract on the European seabass (Dicentrarchus labrax) gut microbial community. Juvenile fish were fed a commercial-like diet with 2.5% or 5% seaweed biomass or 0.35% seaweed extract for 47 days. The gut microbiome was assessed by 16S rRNA amplicon sequencing, and its diversity was not altered by the seaweed supplementation. However, a reduction in Proteobacteria abundance was observed. Random forest analysis highlighted the genera Photobacterium, Staphylococcus, Acinetobacter, Micrococcus and Sphingomonas, and their abundances were reduced when fish were fed diets with algae. SparCC correlation network analysis suggested several mutualistic and other antagonistic relationships that could be related to the predicted altered functions. These pathways were mainly related to the metabolism and biosynthesis of protective compounds such as ectoine and were upregulated in fish fed diets supplemented with algae. This study shows the beneficial potential of Gracilaria as a functional ingredient through the modulation of the complex microbial network towards fish health improvement.
Collapse
|
27
|
Lu J, Zhang H, Pan L, Guan W, Lou Y. Environmentally relevant concentrations of triclosan exposure promote the horizontal transfer of antibiotic resistance genes mediated by Edwardsiella piscicida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64622-64632. [PMID: 35474424 PMCID: PMC9041674 DOI: 10.1007/s11356-022-20082-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Aquaculture pathogen and antibiotic resistance genes (ARGs) co-occur in the aquatic environment. Accumulated evidence suggests that aquaculture pathogens can facilitate the horizontal transfer of plasmid-mediated ARGs. However, the role of Edwardsiella piscicida (E. piscicida) in ARG dissemination is still not fully understood. In addition, the potential impact of triclosan (TCS) on the spread of ARGs mediated by E. piscicida is still unknown, so a mating model system was established to investigate the transfer process of ARGs. The results showed that E. piscicida disseminated ARGs on RP4 by horizontal gene transfer (HGT). Furthermore, TCS exposure promoted this process. The conjugative transfer frequencies were enhanced approximately 1.2-1.4-fold by TCS at concentrations from 2 to 20 μg/L, when compared with the control. TCS promoted the HGT of ARGs by stimulating reactive oxygen species (ROS) production, increasing cell membrane permeability, and altering expressions of conjugative transfer-associated genes. Together, the results suggested that aquaculture pathogens spread ARGs and that the emerging contaminant TCS enhanced the transfer of ARGs between bacteria.
Collapse
Affiliation(s)
- Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Liangliang Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
28
|
Li W, Zhang G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. ENVIRONMENTAL RESEARCH 2022; 212:113267. [PMID: 35413299 DOI: 10.1016/j.envres.2022.113267] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/25/2023]
Abstract
Bacterial antibiotic resistance in water environments is becoming increasingly severe, and new antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have also attracted the attention of researchers. The horizontal transfer of ARGs in water environments is considered one of the main sources of bacterial resistance in the natural environment. Horizontal gene transfer (HGT) mainly includes conjugation, natural transformation, and transduction, and conjugation has been investigated most. Several studies have shown that there are a large number of environmental factors that might affect the horizontal transfer of ARGs in water environments, such as nanomaterials, various oxidants, and light; however, there is still a lack of systematic and comprehensive reviews on the detection and the effects of the influence factors of on ARG horizontal transfer. Therefore, this study introduced three HGT modes, analysed the advantages and disadvantages of current methods for monitoring HGT, and then summarized the influence and mechanism of various factors on ARG horizontal transfer, and the possible reasons for the different effects caused by similar factors were mainly critically discussed. Finally, existing research deficiencies and future research directions of ARG horizontal transfer in water environments were discussed.
Collapse
Affiliation(s)
- Weiying Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Guosheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| |
Collapse
|
29
|
Tao S, Chen H, Li N, Wang T, Liang W. The Spread of Antibiotic Resistance Genes In Vivo Model. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3348695. [PMID: 35898691 PMCID: PMC9314185 DOI: 10.1155/2022/3348695] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022]
Abstract
Infections caused by antibiotic-resistant bacteria are a major public health threat. The emergence and spread of antibiotic resistance genes (ARGs) in the environment or clinical setting pose a serious threat to human and animal health worldwide. Horizontal gene transfer (HGT) of ARGs is one of the main reasons for the dissemination of antibiotic resistance in vitro and in vivo environments. There is a consensus on the role of mobile genetic elements (MGEs) in the spread of bacterial resistance. Most drug resistance genes are located on plasmids, and the spread of drug resistance genes among microorganisms through plasmid-mediated conjugation transfer is the most common and effective way for the spread of multidrug resistance. Experimental studies of the processes driving the spread of antibiotic resistance have focused on simple in vitro model systems, but the current in vitro protocols might not correctly reflect the HGT of antibiotic resistance genes in realistic conditions. This calls for better models of how resistance genes transfer and disseminate in vivo. The in vivo model can better mimic the situation that occurs in patients, helping study the situation in more detail. This is crucial to develop innovative strategies to curtail the spread of antibiotic resistance genes in the future. This review aims to give an overview of the mechanisms of the spread of antibiotic resistance genes and then demonstrate the spread of antibiotic resistance genes in the in vivo model. Finally, we discuss the challenges in controlling the spread of antibiotic resistance genes and their potential solutions.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| | - Huimin Chen
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Na Li
- Bengbu Medical College, Bengbu, Anhui Province, China
| | - Tong Wang
- Nanjing Brain Hospital Affiliated Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| |
Collapse
|
30
|
Mengistu TS, Garcias B, Castellanos G, Seminati C, Molina-López RA, Darwich L. Occurrence of multidrug resistant Gram-negative bacteria and resistance genes in semi-aquatic wildlife - Trachemys scripta, Neovison vison and Lutra lutra - as sentinels of environmental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154814. [PMID: 35341839 DOI: 10.1016/j.scitotenv.2022.154814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Emergence of antimicrobial resistance (AMR) in bacterial pathogens has been recognized as a major public health concern worldwide. In the present study, antimicrobial resistant Gram-negative bacteria (AMRGNB) and AMR genes were assessed in semi-aquatic wild animals from a highly populated and intensive farming region of Spain, Catalonia. Cloacal/rectal swab samples were collected from 241 animals coming from invasive species Trachemys scripta (n = 91) and Neovison vison (n = 131), and endangered-protected species Lutra lutra (n = 19). Accordingly, 133 (55.2%) isolates were identified as AMRGNB. Escherichia coli and Pseudomonas fluorescens were among the bacteria most frequently isolated in all animal species, but other nosocomial agents such as Klebsiella pneumoniae, Salmonella spp. or Citrobacter freundii, were also prevalent. The phenotypic susceptibility testing showed the highest resistance to β-lactams (91%). Molecular analysis showed 25.3% of turtles (15.4% ESBL/Ampc genes), 21% of Eurasian otters (10.5% ESBL/Ampc genes) and 14.5% of American minks (8.4% ESBL/Ampc genes) were positive to AMR genes. The genotyping frequency was tetM (20.6%), blaCMY-2 (13%), ermB (6.1%), blaCMY-1 (4.6%), blaCTX-M-15 (3.1%) and mcr-4 (0.8%). Turtles had a larger prevalence of AMRGNB and AMR genes than mustelids, but American mink carried mcr-4 colistin-resistance gene. Moreover, cluster analysis of AMR gene distribution revealed that an ESBL/AmpC cluster in a highly populated area comprising big metropolitan regions, and another tetM/emrB cluster in an expended area with highly intensive livestock production. Although the mcr-4 positive case was not included in those clusters, that case was found in a county with a high pig farm density. In conclusion, semi-aquatic wild animals are a good sentinel for environmental contamination with AMRGNB and AMR genes. Therefore, One Health Approach is urgently needed in highly populated regions, and with intensive livestock production like Catalonia.
Collapse
Affiliation(s)
| | - Biel Garcias
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain.
| | - Gabriela Castellanos
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain.
| | - Chiara Seminati
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain.
| | | | - Laila Darwich
- Department Sanitat i Anatomia Animals, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, CP 08193, Spain.
| |
Collapse
|
31
|
Cao Z, Cui L, Liu Q, Liu F, Zhao Y, Guo K, Hu T, Zhang F, Sheng X, Wang X, Peng Z, Dai M. Phenotypic and Genotypic Characterization of Multidrug-Resistant Enterobacter hormaechei Carrying qnrS Gene Isolated from Chicken Feed in China. Microbiol Spectr 2022; 10:e0251821. [PMID: 35467399 PMCID: PMC9241693 DOI: 10.1128/spectrum.02518-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance (MDR) in Enterobacteriaceae including resistance to quinolones is rising worldwide. The plasmid-mediated quinolone resistance (PMQR) gene qnrS is prevalent in Enterobacteriaceae. However, the qnrS gene is rarely found in Enterobacter hormaechei (E. hormaechei). Here, we reported one multidrug resistant E. hormaechei strain M1 carrying the qnrS1 and blaTEM-1 genes. This study was to analyze the characteristics of MDR E. hormaechei strain M1. The E. hormaechei strain M1 was identified as Enterobacter cloacae complex by biochemical assay and 16S rRNA sequencing. The whole genome was sequenced by the Oxford Nanopore method. Taxonomy of the E. hormaechei was based on multilocus sequence typing (MLST). The qnrS with the other antibiotic resistance genes were coexisted on IncF plasmid (pM1). Besides, the virulence factors associated with pathogenicity were also located on pM1. The qnrS1 gene was located between insertion element IS2A (upstream) and transposition element ISKra4 (downstream). The comparison result of IncF plasmids revealed that they had a common plasmid backbone. Susceptibility experiment revealed that the E. hormaechei M1 showed extensive resistance to the clinical antimicrobials. The conjugation transfer was performed by filter membrane incubation method. The competition and plasmid stability assays suggested the host bacteria carrying qnrS had an energy burden. As far as we know, this is the first report that E. hormaechei carrying qnrS was isolated from chicken feed. The chicken feed and poultry products could serve as a vehicle for these MDR bacteria, which could transfer between animals and humans through the food chain. We need to pay close attention to the epidemiology of E. hormaechei and prevent their further dissemination. IMPORTANCE Enterobacter hormaechei is an opportunistic pathogen. It can cause infections in humans and animals. Plasmid-mediated quinolone resistance (PMQR) gene qnrS can be transferred intergenus, which is leading to increase the quinolone resistance levels in Enterobacteriaceae. Chicken feed could serve as a vehicle for the MDR E. hormaechei. Therefore, antibiotic-resistance genes (ARGs) might be transferred to the intestinal flora after entering the gastrointestinal tract with the feed. Furthermore, antibiotic-resistant bacteria (ARB) were also excreted into environment with feces, posing a huge threat to public health. This requires us to monitor the ARB and antibiotic-resistant plasmids in the feed. Here, we demonstrated the characteristics of one MDR E. hormaechei isolate from chicken feed. The plasmid carrying the qnrS gene is a conjugative plasmid with transferability. The presence of plasmid carrying antibiotic-resistance genes requires the maintenance of antibiotic pressure. In addition, the E. hormaechei M1 belonged to new sequence type (ST). These data show the MDR E. hormaechei M1 is a novel strain that requires our further research.
Collapse
Affiliation(s)
- Zhengzheng Cao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Luqing Cui
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Quan Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Fangjia Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Yue Zhao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Kaixuan Guo
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Tianyu Hu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Fan Zhang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Xijing Sheng
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zhong Peng
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Godijk NG, Bootsma MCJ, Bonten MJM. Transmission routes of antibiotic resistant bacteria: a systematic review. BMC Infect Dis 2022; 22:482. [PMID: 35596134 PMCID: PMC9123679 DOI: 10.1186/s12879-022-07360-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Quantification of acquisition routes of antibiotic resistant bacteria (ARB) is pivotal for understanding transmission dynamics and designing cost-effective interventions. Different methods have been used to quantify the importance of transmission routes, such as relative risks, odds ratios (OR), genomic comparisons and basic reproduction numbers. We systematically reviewed reported estimates on acquisition routes’ contributions of ARB in humans, animals, water and the environment and assessed the methods used to quantify the importance of transmission routes. Methods PubMed and EMBASE were searched, resulting in 6054 articles published up until January 1st, 2019. Full text screening was performed on 525 articles and 277 are included. Results We extracted 718 estimates with S. aureus (n = 273), E. coli (n = 157) and Enterobacteriaceae (n = 99) being studied most frequently. Most estimates were derived from statistical methods (n = 560), mainly expressed as risks (n = 246) and ORs (n = 239), followed by genetic comparisons (n = 85), modelling (n = 62) and dosage of ARB ingested (n = 17). Transmission routes analysed most frequently were occupational exposure (n = 157), travelling (n = 110) and contacts with carriers (n = 83). Studies were mostly performed in the United States (n = 142), the Netherlands (n = 87) and Germany (n = 60). Comparison of methods was not possible as studies using different methods to estimate the same route were lacking. Due to study heterogeneity not all estimates by the same method could be pooled. Conclusion Despite an abundance of published data the relative importance of transmission routes of ARB has not been accurately quantified. Links between exposure and acquisition are often present, but the frequency of exposure is missing, which disables estimation of transmission routes’ importance. To create effective policies reducing ARB, estimates of transmission should be weighed by the frequency of exposure occurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07360-z.
Collapse
Affiliation(s)
- Noortje G Godijk
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Martin C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Mathematics, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
33
|
Lin HY, Yen SC, Kang CH, Chung CY, Hsu MC, Wang CY, Lin JHY, Huang CC, Lin HJ. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128337. [PMID: 35121295 DOI: 10.1016/j.jhazmat.2022.128337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based nanomaterials have great potential in medical applications, especially in the treatment of infectious diseases and even tumors. However, to safely execute the application of carbon nanomaterials in human treatments, conducting safety assessments and establishing suitable evaluation criteria are necessary. In this study, lysine-carbonized nanogels (Lys-CNGs) that display antibacterial and antiviral abilities were employed in a comprehensive evaluation of their toxicity profiles through assessments in different animal models and growth stages. It was observed that zebrafish at the embryo and eleutheroembryo stages experienced significant toxic effects at a concentration of 15-fold the recommended dosage (0.5 ppm), whereas adult zebrafish following long-term consumption of fodder containing Lys-CNGs presented no adverse effects. Further microbiota analysis indicated that Lys-CNGs did not cause significant changes in the composition of the intestinal bacteria. In contrast, in the toxicity assessments with mammalian animal models, the Lys-CNGs showed no adverse effects, such as weight loss, dermal irritation, and skin sensitization responses in rabbits and guinea pigs, even at a high dose of 2000 mg/kg body weight. Our study revealed that Lys-CNGs have different toxic effects on different growth stages of zebrafish. Researchers in this field should carefully consider the implications of these toxicity profiles during the development of therapeutic carbon-based nanomaterials and for comparison of studies.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Shao-Chieh Yen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chia-Hui Kang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chih-Yu Chung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Man-Chun Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
34
|
Distribution and Transfer of Antibiotic Resistance Genes in Coastal Aquatic Ecosystems of Bohai Bay. WATER 2022. [DOI: 10.3390/w14060938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotic resistance genes (ARGs) are abundant in diverse ecosystems and the resistome may constitute a health threat for humans and animals. It is necessary to uncover ARGs and the accumulation mechanisms from different environmental sources. Various habitats, such as soil, seawater and fish intestines, could overflow a considerable amount of ARGs and the horizontal transfer of ARGs may occur in these environments. Thus, we assessed the composition and abundance of ARGs in seawater, soil and intestinal tracts of Cynoglossus semilaevis collected from different sites in Bohai Bay (China), including a natural area and three fish farms, through a high-throughput qPCR array. In total, 243 ARGs were uncovered, governing the resistance to aminoglycoside, multidrug, beta-lactamase, macrolide lincosamide streptomycin B (MLSB), chloramphenicol, sulfonamide, tetracycline, vancomycin and other antibiotics. The action mechanisms of these ARGs were mainly antibiotic deactivation, efflux pump and cellular protection. Importantly, similar ARGs were detected in different samples but show dissimilar enrichment levels. ARGs were highly enriched in the fish farms compared to the natural sea area, with more genes detected, while some ARGs were detected only in the natural sea area samples, such as bacA-02, tetL-01 and ampC-06. Regarding sample types, water samples from all locations shared more ARGs in common and held the highest average level of ARGs detected than in the soil and fish samples. Mobile genetic elements (MGEs) were also detected in three sample types, in the same trend as ARGs. This is the first study comparing the resistome of different samples of seawater, soil and intestines of C. semilaevis. This study contributes to a better understanding of ARG dissemination in water sources and could facilitate the effective control of ARG contamination in the aquatic environment.
Collapse
|
35
|
Li W, Niu Z, Zhang X, Zhang K, Luo S. Antibiotics and resistant genes in the gut of Chinese nine kinds of freshwater or marine fish. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:316-324. [PMID: 35293829 DOI: 10.1080/03601234.2022.2051401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) may lead to bacterial resistance and using antibiotics will promote ARGs spread. Large amounts of antibiotics were used in aquaculture, but little attention was paid to the antibiotic resistant in fish gut. In this study, nine kinds of Chinese freshwater and marine fish were acquired in a city of northern China to test the amount of antibiotics and ARGs residues in their intestinal contents. The results showed that 4 kinds of antibiotics were detected from the intestinal contents, including Doxycycline (DOX), Tetracycline (TC), Sulfamethoxazole (SMX) and Roxithromycin (ROX), and the antibiotics with the largest detected amount was ROX in Sardinops sagax (2.83 μg kg-1). Ten kinds of ARGs were detected from the intestinal contents, including strA, strB, ermB, blaTEM, oxa-30, qnrB, qnrD, sul1, sul2 and tetB, as well as one type of integron intI1. The most abundant ARGs were blaTEM. Correlation analysis showed huge difference between freshwater fish and marine fish. The results can improve our understanding of the antibiotics and ARGs residues in edible fish.
Collapse
Affiliation(s)
- Wenpeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Kai Zhang
- School of Geographic Sciences, Xinyang Normal University, Xinyang, China
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, China
| | - Susu Luo
- School of Marine Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
36
|
Tan R, Jin M, Shao Y, Yin J, Li H, Chen T, Shi D, Zhou S, Li J, Yang D. High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Gut Microbes 2022; 14:2022442. [PMID: 35030982 PMCID: PMC8765071 DOI: 10.1080/19490976.2021.2022442] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diet can not only provide nutrition for intestinal microbiota, it can also remodel them. However, is unclear whether and how diet affects the spread of antibiotic resistance genes (ARGs) in the intestinal microbiota. Therefore, we employed selected high-sugar, high-fat, high-protein, and normal diets to explore the effect. The results showed that high-sugar, high-fat, and high-protein diets promoted the amplification and transfer of exogenous ARGs among intestinal microbiota, and up-regulated the expression of trfAp and trbBp while significantly altered the intestinal microbiota and its metabolites. Inflammation-related products were strongly correlated with the spread of ARGs, suggesting the intestinal microenvironment after diet remodeling might be conducive to the spreading of ARGs. This may be attributed to changes in bacterial membrane permeability, the SOS response, and bacterial composition and diversity caused by diet-induced inflammation. In addition, acceptor bacteria (zygotes) screened by flow cytometry were mostly Proteobacteria, Firmicutes and Actinobacteria, and most were derived from dominant intestinal bacteria remodeled by diet, indicating that the transfer of ARGs was closely linked to diet, and had some selectivity. Metagenomic results showed that the gut resistance genome could be affected not only by diet, but by exogenous antibiotic resistant bacteria (ARB). Many ARG markers coincided with bacterial markers in diet groups. Therefore, dominant bacteria in different diets are important hosts of ARGs in specific dietary environments, but the many pathogenic bacteria present may cause serious harm to human health.
Collapse
Affiliation(s)
- Rong Tan
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Yifan Shao
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,CONTACT Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, P. R. China,Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin300050, China
| |
Collapse
|
37
|
Johny TK, Puthusseri RM, Bhat SG. Metagenomic landscape of taxonomy, metabolic potential and resistome of Sardinella longiceps gut microbiome. Arch Microbiol 2021; 204:87. [PMID: 34961896 DOI: 10.1007/s00203-021-02675-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
Abstract
Fish gut microbiota, encompassing a colossal reserve of microbes represents a dynamic ecosystem, influenced by a myriad of environmental and host factors. The current study presents a comprehensive insight into Sardinella longiceps gut microbiome using whole metagenome shotgun sequencing. Taxonomic profiling identified the predominance of phylum Proteobacteria, comprising of Photobacterium, Vibrio and Shewanella sp. Functional annotation revealed the dominance of Clustering based subsystems, Carbohydrate, and Amino acids and derivatives. Analysis of Virulence, disease and defense subsystem identified genes conferring resistance to antibiotics and toxic compounds, like multidrug resistance efflux pumps and resistance genes for fluoroquinolones and heavy metals like cobalt, zinc, cadmium and copper. The presence of overlapping genetic mechanisms of resistance to antibiotics and heavy metals, like the efflux pumps is a serious cause of concern as it is likely to aggravate co-selection pressure, leading to an increased dissemination of these resistance genes to fish and humans.
Collapse
Affiliation(s)
- Tina Kollannoor Johny
- Department of Biotechnology, Cochin University of Science and Technology, Kalamassery, Cochin, Kerala, 682022, India
| | - Rinu Madhu Puthusseri
- Department of Biotechnology, Cochin University of Science and Technology, Kalamassery, Cochin, Kerala, 682022, India
| | - Sarita Ganapathy Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kalamassery, Cochin, Kerala, 682022, India.
| |
Collapse
|
38
|
Liu C, Zhao LP, Shen YQ. A systematic review of advances in intestinal microflora of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2041-2053. [PMID: 34750711 DOI: 10.1007/s10695-021-01027-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/13/2021] [Indexed: 05/26/2023]
Abstract
Intestinal flora is closely related to the health of organisms and the occurrence and development of diseases. The study of intestinal flora will provide a reference for the research and treatment of disease pathogenesis. Upon hatching, fish begin to acquire a microbial community in the intestine. In response to the environment and the host itself, the fish gut eventually develops a unique set of microflora, with some microorganisms being common to different fish. The existence of intestinal microorganisms creates an excellent microecological environment for the host, while the fish symbiotically provides conditions for the growth and reproduction of intestinal microflora. The intestinal flora and the host are interdependent and mutually restrictive. This review mainly describes the formation of fish intestinal flora, the function of normal intestinal flora, factors affecting intestinal flora, and a series of fish models.
Collapse
Affiliation(s)
- Chang Liu
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Li-Ping Zhao
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Yan-Qin Shen
- Wuxi Medical School of Jiangnan University, Wuxi, China.
| |
Collapse
|
39
|
Ding C, Ma J, Jiang W, Zhao H, Shi M, Cui G, Yan T, Wang Q, Li J, Qiu Z. Chironomidae larvae: A neglected enricher of antibiotic resistance genes in the food chain of freshwater environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117486. [PMID: 34098457 DOI: 10.1016/j.envpol.2021.117486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Infection caused by pathogenic bacteria carrying antibiotic resistance genes (ARGs) is a serious challenge to human health. Water environment, including water and surface sediments, is an important repository of ARGs, and the activity of aquatic animal can affect the development of ARG pollution in the water environment. Macrobenthic invertebrates are an important component of aquatic ecosystems, and their effects on ARG development in aquatic environments remain unreported. The distribution of ARGs, including tetA gene, sul2 gene, and kan gene, in Chironomidae larvae is demonstrated in this study for the first time. The ARG distribution was related to sampling points, metal elements, and seasons. Animal models demonstrated that Chironomidae larvae enriched ARGs from water and passed them on to downstream predators in the food chain. Conjugative transfer mediated by resistant plasmids was crucial in the spread of ARG in Chironomidae larvae, and upregulated expression of trfAp gene and trbBp gene was the molecular mechanism. Escherichia in Proteobacteria and Flavobacterium in Bacteroidetes, which are gram-negative bacteria in Chironomidae larvae, are the primary host bacteria of ARGs confirmed via resistance screening and DNA sequencing of V4 region of 16S rRNA gene. Feeding experiments further confirmed that ARGs from Chironomidae larvae can be enriched in the fish gut. Research gaps in food chain between sediments and fish are addressed in this study, and Chironomidae larvae is an important enricher of ARGs in the freshwater environment.
Collapse
Affiliation(s)
- Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Wanxiang Jiang
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Hanyu Zhao
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Mengmeng Shi
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Guoqing Cui
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Tongdi Yan
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Qi Wang
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
40
|
Palencia-Gándara C, Getino M, Moyano G, Redondo S, Fernández-López R, González-Zorn B, de la Cruz F. Conjugation Inhibitors Effectively Prevent Plasmid Transmission in Natural Environments. mBio 2021; 12:e0127721. [PMID: 34425705 PMCID: PMC8406284 DOI: 10.1128/mbio.01277-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmid conjugation is a major route for the spread of antibiotic resistance genes. Inhibiting conjugation has been proposed as a feasible strategy to stop or delay the propagation of antibiotic resistance genes. Several compounds have been shown to be conjugation inhibitors in vitro, specifically targeting the plasmid horizontal transfer machinery. However, the in vivo efficiency and the applicability of these compounds to clinical and environmental settings remained untested. Here we show that the synthetic fatty acid 2-hexadecynoic acid (2-HDA), when used as a fish food supplement, lowers the conjugation frequency of model plasmids up to 10-fold in controlled water microcosms. When added to the food for mice, 2-HDA diminished the conjugation efficiency 50-fold in controlled plasmid transfer assays carried out in the mouse gut. These results demonstrate the in vivo efficiency of conjugation inhibitors, paving the way for their potential application in clinical and environmental settings. IMPORTANCE The spread of antibiotic resistance is considered one of the major threats for global health in the immediate future. A key reason for the speed at which antibiotic resistance spread is the ability of bacteria to share genes with each other. Antibiotic resistance genes harbored in plasmids can be easily transferred to commensal and pathogenic bacteria through a process known as bacterial conjugation. Blocking conjugation is thus a potentially useful strategy to curtail the propagation of antibiotic resistance. Conjugation inhibitors (COINS) are a series of compounds that block conjugation in vitro. Here we show that COINS efficiently block plasmid transmission in two controlled natural environments, water microcosms and the mouse gut. These observations indicate that COIN therapy can be used to prevent the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Carolina Palencia-Gándara
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria. Santander, Spain
| | - María Getino
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria. Santander, Spain
| | - Gabriel Moyano
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid. Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Veterinary Faculty, Complutense University of Madrid. Madrid, Spain
| | - Santiago Redondo
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria. Santander, Spain
| | - Raúl Fernández-López
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria. Santander, Spain
| | - Bruno González-Zorn
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid. Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Veterinary Faculty, Complutense University of Madrid. Madrid, Spain
| | - Fernando de la Cruz
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria. Santander, Spain
| |
Collapse
|
41
|
Jo H, Raza S, Farooq A, Kim J, Unno T. Fish farm effluents as a source of antibiotic resistance gene dissemination on Jeju Island, South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116764. [PMID: 33631683 DOI: 10.1016/j.envpol.2021.116764] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
The abuse or misuse of antibiotics is directly linked to the emergence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) in the environment. Most fish farms located on Jeju Island operate a flow-through system that pumps in seawater for fish farming and discharges it back to the ocean. To investigate the amount of ARGs that these fish farm effluents discharge into the marine environment, we conducted a metagenomic-based resistome analysis. We observed higher levels of ARGs in fish farm effluents than in seawater at beach and residential areas. A greater proportion of ARGs was found on plasmid rather than on chromosomal DNA, especially for sulfonamide and phenicol classes. The distribution of ARGs did not differ between summer and winter, but the microbial community did. In addition, fish farm samples contained significantly more opportunistic pathogens (i.e., Vibrio, Photobacterium, Aliivibrio, and Tenacibaculum) and virulence factors than non-fish farm samples. Vibrio was the most frequently identified host of ARGs and virulence factors. The presence of Vibrio in the coastal area has been increasing owing to the recent rise in the temperature of seawater. This study suggests the need for actions to treat or monitor ARGs in the coastal areas where fish farms operating a flow-through system are located.
Collapse
Affiliation(s)
- Hyejun Jo
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju, 63243, Republic of Korea
| | - Shahbaz Raza
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju, 63243, Republic of Korea
| | - Adeel Farooq
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju, 63243, Republic of Korea
| | - Jungman Kim
- Research Institute for Basic Sciences (RIBS), Jeju National University, Jeju, 63243, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju, 63243, Republic of Korea.
| |
Collapse
|
42
|
Loftie-Eaton W, Crabtree A, Perry D, Millstein J, Baytosh J, Stalder T, Robison BD, Forney LJ, Top EM. Contagious Antibiotic Resistance: Plasmid Transfer among Bacterial Residents of the Zebrafish Gut. Appl Environ Microbiol 2021; 87:e02735-20. [PMID: 33637574 PMCID: PMC8091013 DOI: 10.1128/aem.02735-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/20/2021] [Indexed: 01/12/2023] Open
Abstract
By characterizing the trajectories of antibiotic resistance gene transfer in bacterial communities such as the gut microbiome, we will better understand the factors that influence this spread of resistance. Our aim was to investigate the host network of a multidrug resistance broad-host-range plasmid in the culturable gut microbiome of zebrafish. This was done through in vitro and in vivo conjugation experiments with Escherichia coli as the donor of the plasmid pB10::gfp When this donor was mixed with the extracted gut microbiome, only transconjugants of Aeromonas veronii were detected. In separate matings between the same donor and four prominent isolates from the gut microbiome, the plasmid transferred to two of these four isolates, A. veronii and Plesiomonas shigelloides, but not to Shewanella putrefaciens and Vibrio mimicus When these A. veronii and P. shigelloides transconjugants were the donors in matings with the same four isolates, the plasmid now also transferred from A. veronii to S. putrefaciensP. shigelloides was unable to donate the plasmid, and V. mimicus was unable to acquire it. Finally, when the E. coli donor was added in vivo to zebrafish through their food, plasmid transfer was observed in the gut, but only to Achromobacter, a rare member of the gut microbiome. This work shows that the success of plasmid-mediated antibiotic resistance spread in a gut microbiome depends on the donor-recipient species combinations and therefore their spatial arrangement. It also suggests that rare gut microbiome members should not be ignored as potential reservoirs of multidrug resistance plasmids from food.IMPORTANCE To understand how antibiotic resistance plasmids end up in human pathogens, it is crucial to learn how, where, and when they are transferred and maintained in members of bacterial communities such as the gut microbiome. To gain insight into the network of plasmid-mediated antibiotic resistance sharing in the gut microbiome, we investigated the transferability and maintenance of a multidrug resistance plasmid among the culturable bacteria of the zebrafish gut. We show that the success of plasmid-mediated antibiotic resistance spread in a gut microbiome can depend on which species are involved, as some are important nodes in the plasmid-host network and others are dead ends. Our findings also suggest that rare gut microbiome members should not be ignored as potential reservoirs of multidrug resistance plasmids from food.
Collapse
Affiliation(s)
- Wesley Loftie-Eaton
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - Angela Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - David Perry
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jack Millstein
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - Justin Baytosh
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - Barrie D Robison
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - Larry J Forney
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
43
|
Abou-Kandil A, Shibli A, Azaizeh H, Wolff D, Wick A, Jadoun J. Fate and removal of bacteria and antibiotic resistance genes in horizontal subsurface constructed wetlands: Effect of mixed vegetation and substrate type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:144193. [PMID: 33338689 DOI: 10.1016/j.scitotenv.2020.144193] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the influence of cropping method and substrate type on the fate and the removal of bacterial and antibiotic resistance genes (ARGs) indicators from primary wastewater by constructed wetlands (CWs) during startup and maturation stages. Four small-scale CWs differing in their plantation pattern (monoculture vs. polyculture) and substrate type were constructed and operated under field conditions. While for bacteria, the greatest impact of the cropping method and substrate type on removal was during the startup stage rather than the maturation stage, for ARGs, such impact was significant at both stages. During startup, the removal efficiencies of heterotrophic bacteria, fecal coliforms, E. coli, 16S rRNA genes and lacZ increased with the operation time. At maturation, the removal efficiencies were constant and were within the range of 89.2-99.4%, 93.7-98.9%, 89-98.8%, 94.1-99.6% and 92.9-98.7%, respectively. The removal efficiencies of intl1, tetM, intl1, sul1, ermB and total ARGs were also increased with the operation time. However, they were ARG type and configuration-dependent; at maturation they ranged between 50.7%-89.4%, 85.9%-97%, 49.6%-92.9%, 58.2%-96.7% and 79.9-94.3%, respectively. The tuff-filled serially planted CW was also the only one capable of removing these genes at similar high efficiency. Metagenomic analysis showed that none of the ARGs was among the most common ARGs in water and biofilm samples; rather most ARGs belonged to bacterial efflux transporter superfamilies. Although ARGs were removed, they were still detected in substrate biofilm and their relative concentrations were increased in the effluents. While the removal of both bacteria and ARGs was higher during summer compared to winter, the season had no effect on the removal pattern of ARGs. Hence, combination of the serial plantation with substrate having high surface area is a potential strategy that can be used to improve the performance of CWs.
Collapse
Affiliation(s)
- Ammar Abou-Kandil
- The Galilee Society Institute of Applied Research, Shefa-Amr 20200, Israel
| | - Areen Shibli
- The Galilee Society Institute of Applied Research, Shefa-Amr 20200, Israel
| | - Hassan Azaizeh
- The Galilee Society Institute of Applied Research, Shefa-Amr 20200, Israel; Department of Natural Resources & Environmental Management, University of Haifa, Haifa 3498838, Israel; Department of Environmental Science, Tel Hai College, Upper Galilee, 12208, Israel
| | - David Wolff
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), D-56068 Koblenz, Am Mainzer Tor 1, Germany
| | - Jeries Jadoun
- The Galilee Society Institute of Applied Research, Shefa-Amr 20200, Israel; Institute of Evolution, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
44
|
Xue X, Jia J, Yue X, Guan Y, Zhu L, Wang Z. River contamination shapes the microbiome and antibiotic resistance in sharpbelly (Hemiculter leucisculus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115796. [PMID: 33120330 DOI: 10.1016/j.envpol.2020.115796] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Animals living in urban river systems play critical roles in the dissemination of microbiome and antibiotic resistance that poses a strong threat to public health. This study provides a comprehensive profile of microbiota and antibiotic resistance genes (ARGs) of sharpbelly (Hemiculter leucisculus) and the surrounding water from five sites along the Ba River. Results showed Proteobacteria, Firmicutes and Fusobacteria were the dominant bacteria in gut of H. leucisculus. With the aggravation of water pollution, bacterial biomass of fish gut significantly decreased and the proportion of Proteobacteria increased to become the most dominant phylum eventually. To quantify the contributions of influential factors on patterns of gut microbiome with structural equation model (SEM), water bacteria were confirmed to be the most stressors to perturb fish gut microbiome. SourceTracker model indicated that deteriorating living surroundings facilitated the invasion of water pathogens to fish gut eco-environments. Additionally, H. leucisculus gut is an important reservoir of ARGs in Ba River with relative abundance up to 9.86 × 10-1/copies. Among the ARGs, tetracycline and quinolone resistance genes were detected in dominant abundance. Deterioration of external environments elicited the accumulation of ARGs in fish gut. Intestinal class I integron, environmental heavy metal residues and gut bacteria were identified as key drivers of intestinal ARGs profiles in H. leucisculus. Analysis of SEM and co-occurrence patterns between ARGs and bacterial hosts indicated that class I integron and bacterial community played vital roles in ARGs transmission through water-fish pathway. In general, this study highlighted hazards of water contamination to microbiome and ARGs in aquatic animals and provided a new perspective to better understand the bacteria and ARGs dissemination in urban river ecosystems.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoya Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
45
|
Cui G, Lü F, Zhang H, Shao L, He P. Critical insight into the fate of antibiotic resistance genes during biological treatment of typical biowastes. BIORESOURCE TECHNOLOGY 2020; 317:123974. [PMID: 32799078 DOI: 10.1016/j.biortech.2020.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
Antibiotic resistance genes (ARGs) in biowaste, such as livestock manure and excess activated sludge, pose potential threat to human and ecological health when applied to agricultural fields. Biological treatment approaches, such as thermophilic composting/vermicomposting and anaerobic digestion, widely adopted to stabilize biowaste have demonstrated significant effects on the fate of ARGs. However, the influence of these biological treatments on ARGs is not known. This review summarizes the occurrence of ARGs in biowaste and the impact of thermophilic composting, vermicomposting, and anaerobic digestion on the fate of ARGs with discussion on factors, including substrate properties, pretreatments, additives, and operational parameters, associated with ARGs during biological treatment of biowaste. Finally, this review explores the research implications and proposes new avenues in the field of biological treatment of organic waste.
Collapse
Affiliation(s)
- Guangyu Cui
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fan Lü
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Pinjing He
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
46
|
Liang Z, Zhang Y, He T, Yu Y, Liao W, Li G, An T. The formation mechanism of antibiotic-resistance genes associated with bacterial communities during biological decomposition of household garbage. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122973. [PMID: 32492618 DOI: 10.1016/j.jhazmat.2020.122973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Food wastes are significant reservoir of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) available for exchange with clinical pathogens. However, food wastes-related changes of antibiotic resistance in long-period decomposition have been overlooked. Here, we evaluated the comprehensive ARG profile and its association with microbial communities, explained how this might vary with household garbage decomposition. Average of 128, 150 and 91 ARGs were detected in meat, vegetable and fruit wastes, respectively, with multidrug and tetracycline as the predominant ARG types. ARG abundance significantly increased at initial stage of waste fermentation and then decreased. High abundance of Eubacterium-coprostanoligenes, Sporanaerobacter, Peptoniphilus, Peptostreptococcus might be explained for the high relative abundance of ARGs in meat, while high abundance of Advenella, Prevotella, Solobacterium was attributed to the high diversity of ARGs in vegetables. Significant correlations were observed among volatile organic compounds, mobile genetic elements and ARGs, implying that they might contribute to transfer and transport of ARGs. Network analysis revealed that aph(2')-Id-01, acrA-05, tetO-1 were potential ARG indicators, while Hathewaya, Paraclostridium and Prevotellaceae were possible hosts of ARGs. Our work might unveil underlining mechanism of the effects of food wastes decomposition on development and spread of ARGs in environment and also clues to ARG mitigation.
Collapse
Affiliation(s)
- Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuna Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yun Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wen Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
47
|
Ding C, Yang D, Ma J, Jin M, Shen Z, Shi D, Tian Z, Kang M, Li J, Qiu Z. Effects of free antibiotic resistance genes in the environment on intestinal microecology of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111119. [PMID: 32798757 DOI: 10.1016/j.ecoenv.2020.111119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The rapid spread of antibiotic resistance genes (ARGs) is a great challenge to the ecological safety and human health. The intestine of humans and animals is an important site for the increase and spread of ARGs due to the great diversity and abundance of microorganisms in the intestinal microecology. ARGs, including the intracellular (iARGs) and the extracellular (eARGs) ARGs, are usually introduced into the intestinal tract through the diet, and the iARGs are colonized and spread in the intestinal microbiota with the help of the host bacteria. However, whether the eARGs can enter the intestinal microorganisms in the absence of host bacteria is not known. Here, we show the transformation and the diffusion of the ampramycin resistance gene (Ap) carried by the free plasmid RK2 in the intestinal microbiota of mice. After two days of consecutive gavage with free RK2, the intracellular Ap gene increases from days 0-8 in the feces of mice, and has remained constant. Bacterial transformation happens in the small intestine, including proximal and distal jejuna and proximal and distal ilea, at the early stage (first two days), and the intracellular RK2 is diffused into the intestinal microbiota of mice by conjugation on days 2-8 day, which is based on the distribution of eARG and iARG and the mRNA expression levels of trbBp, trfAp, korA, korB, and trbA. The characteristics of ARGs susceptible microbiota for transformation are analyzed using 16s rRNA gene sequencing, transmission electron microscopy, and flow cytometric. The ingestion of RK2 affects the composition of intestinal microbiota especially for Proteobacteria, and the antibiotic residue promotes the increase in Escherichia coli. These findings are important to assess the risk of ARGs, especially the eARGs in the intestinal microecology.
Collapse
Affiliation(s)
- Chengshi Ding
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China; College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Dong Yang
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Min Jin
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China
| | - Danyang Shi
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China
| | - Zhongjing Tian
- College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Meiling Kang
- College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Junwen Li
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China.
| | - Zhigang Qiu
- Tianjin Institute of Environmental Medicine and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
48
|
Zhou M, Xu Y, Ouyang P, Ling J, Cai Q, Du Q, Zheng L. Spread of resistance genes from duck manure to fish intestine in simulated fish-duck pond and the promotion of cefotaxime and As. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138693. [PMID: 32408202 DOI: 10.1016/j.scitotenv.2020.138693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Integrated culture is a widespread culture mode in South China, in which resistance genes (RGs) also spread in the circulation system with nutrients. Accordingly, the aim of the present study was to investigate the spread of RGs in a fish-duck pond and the RGs and bacterial community of fish intestines. Five fish tanks, including a control tank and four experimental tanks (duck manure, duck manure + cefotaxime, duck manure + As, and duck manure + cefotaxime + As), were tested for 100 days. The results showed that duck manure increased both the diversity and relative abundance of RGs in fish intestines, and the addition of stress factors (cefotaxime, As) increased the relative abundance of RGs by one to two orders of magnitude. The stress-inducing effect of cefotaxime was greater than that of As. Tetracycline resistance genes were more sensitive to stress factors and were the predominant RGs in fish intestines. RGs in duck manure preferentially spread from the water to biofilm and then to fish intestines, whereas co-stress of cefotaxime and As obviously promoted the spread of RGs to fish intestines. In comparison to the control tank, duck manure and stress factors significantly changed the bacterial community of fish intestines. Correlation analysis also revealed that arsB, MOX, tetA and sul1 were significantly correlated with intI1 (P < 0.01), which hinted a potentially dissemination risk of RGs in fish intestines. These findings provide a theoretical basis for further investigating the dissemination of RGs in integrated culture systems and for evaluating the ecological risk of antibiotic and As use in aquaculture.
Collapse
Affiliation(s)
- Min Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Pengqian Ouyang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qiujie Cai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
49
|
Khurana H, Singh DN, Singh A, Singh Y, Lal R, Negi RK. Gut microbiome of endangered Tor putitora (Ham.) as a reservoir of antibiotic resistance genes and pathogens associated with fish health. BMC Microbiol 2020; 20:249. [PMID: 32787773 PMCID: PMC7425606 DOI: 10.1186/s12866-020-01911-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/19/2020] [Indexed: 01/16/2023] Open
Abstract
Background Tor putitora, the largest freshwater fish of the Indian subcontinent, is an endangered species. Several factors have been attributed towards its continuous population decrease, but very little is known about the gut microbiome of this fish. Also, the fish gut microbiome serves as a reservoir of virulence factors and antibiotic resistance determinants. Therefore, the shotgun metagenomic approach was employed to investigate the taxonomic composition and functional potential of microbial communities present in the gut of Tor putitora, as well as the detection of virulence and antibiotic resistance genes in the microbiome. Results The analysis of bacterial diversity showed that Proteobacteria was predominant phylum, followed by Chloroflexi, Bacteroidetes, and Actinobacteria. Within Proteobacteria, Aeromonas and Caulobacter were chiefly present; also, Klebsiella, Escherichia, and plant symbionts were noticeably detected. Functional characterization of gut microbes endowed the virulence determinants, while surveillance of antibiotic resistance genes showed the dominance of β-lactamase variants. The antibiotic-resistant Klebsiella pneumoniae and Escherichia coli pathovars were also detected. Microbial genome reconstruction and comparative genomics confirmed the presence of Aeromonads, the predominant fish pathogens. Conclusions Gut microbiome of endangered Tor putitora consisted of both commensals and opportunistic pathogens, implying that factors adversely affecting the non-pathogenic population would allow colonization and proliferation of pathogens causing diseased state in asymptomatic Tor putitora. The presence of virulence factors and antibiotic resistance genes suggested the potential risk of dissemination to other bacteria due to horizontal gene transfer, thereby posing a threat to fish and human health. The preservation of healthy gut microflora and limited use of antibiotics are some of the prerequisites for the conservation of this imperilled species.
Collapse
Affiliation(s)
- Himani Khurana
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.,Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Durgesh Narain Singh
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.,Laboratory of Microbial Pathogenesis, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anoop Singh
- Laboratory of Microbial Pathogenesis, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Yogendra Singh
- Laboratory of Microbial Pathogenesis, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India. .,Present address: The Energy and Resources Institute Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India.
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
50
|
Iwu CD, Korsten L, Okoh AI. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen 2020; 9:e1035. [PMID: 32710495 PMCID: PMC7520999 DOI: 10.1002/mbo3.1035] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
The agricultural ecosystem creates a platform for the development and dissemination of antimicrobial resistance, which is promoted by the indiscriminate use of antibiotics in the veterinary, agricultural, and medical sectors. This results in the selective pressure for the intrinsic and extrinsic development of the antimicrobial resistance phenomenon, especially within the aquaculture‐animal‐manure‐soil‐water‐plant nexus. The existence of antimicrobial resistance in the environment has been well documented in the literature. However, the possible transmission routes of antimicrobial agents, their resistance genes, and naturally selected antibiotic‐resistant bacteria within and between the various niches of the agricultural environment and humans remain poorly understood. This study, therefore, outlines an overview of the discovery and development of commonly used antibiotics; the timeline of resistance development; transmission routes of antimicrobial resistance in the agro‐ecosystem; detection methods of environmental antimicrobial resistance determinants; factors involved in the evolution and transmission of antibiotic resistance in the environment and the agro‐ecosystem; and possible ways to curtail the menace of antimicrobial resistance.
Collapse
Affiliation(s)
- Chidozie D Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|