1
|
Marsh KJ, Bearhop S, Harrison XA. Linking microbiome temporal dynamics to host ecology in the wild. Trends Microbiol 2024; 32:1060-1071. [PMID: 38797653 DOI: 10.1016/j.tim.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Ignoring the dynamic nature of microbial communities risks underestimating the power of microbes to impact the health of their hosts. Microbiomes are thought to be important for host fitness, yet the coarse temporal scale and population-level focus of many studies precludes the ability to investigate the importance of among-individual variation in stability and identify the ecological contexts in which this variation matters. Here we briefly summarise current knowledge of temporal dynamics in wild host-associated microbial communities. We then discuss the implications of among-individual variation in microbiota stability and suggest analytical approaches for understanding these patterns. One major requirement is for future studies to conduct individual-level longitudinal analyses, with some systems already well set up for answering these questions.
Collapse
Affiliation(s)
- Kirsty J Marsh
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK.
| | - Stuart Bearhop
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - Xavier A Harrison
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, UK.
| |
Collapse
|
2
|
Mourkas E, Valdebenito JO, Marsh H, Hitchings MD, Cooper KK, Parker CT, Székely T, Johansson H, Ellström P, Pascoe B, Waldenström J, Sheppard SK. Proximity to humans is associated with antimicrobial-resistant enteric pathogens in wild bird microbiomes. Curr Biol 2024; 34:3955-3965.e4. [PMID: 39142288 DOI: 10.1016/j.cub.2024.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Humans are radically altering global ecology, and one of the most apparent human-induced effects is urbanization, where high-density human habitats disrupt long-established ecotones. Changes to these transitional areas between organisms, especially enhanced contact among humans and wild animals, provide new opportunities for the spread of zoonotic pathogens. This poses a serious threat to global public health, but little is known about how habitat disruption impacts cross-species pathogen spread. Here, we investigated variation in the zoonotic enteric pathogen Campylobacter jejuni. The ubiquity of C. jejuni in wild bird gut microbiomes makes it an ideal organism for understanding how host behavior and ecology influence pathogen transition and spread. We analyzed 700 C. jejuni isolate genomes from 30 bird species in eight countries using a scalable generalized linear model approach. Comparing multiple behavioral and ecological traits showed that proximity to human habitation promotes lineage diversity and is associated with antimicrobial-resistant (AMR) strains in natural populations. Specifically, wild birds from urban areas harbored up to three times more C. jejuni genotypes and AMR genes. This study provides novel methodology and much-needed quantitative evidence linking urbanization to gene pool spread and zoonoses.
Collapse
Affiliation(s)
- Evangelos Mourkas
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - José O Valdebenito
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, 5110566 Valdivia, Chile; Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Camino Cabo Blanco Alto s/n, 5090000 Valdivia, Chile; HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, 8320000 Santiago, Chile
| | - Hannah Marsh
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew D Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, SA2 8PP Swansea, Wales
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - Craig T Parker
- Produce Safety and Microbiology Unit, Western Region Research Center, USDA, Agricultural Research Service, Albany, CA 94710, USA
| | - Tamás Székely
- HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Patrik Ellström
- Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ben Pascoe
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
3
|
Ochoa-Sánchez M, Acuña-Gómez EP, Moraga CA, Gaete K, Acevedo J, Eguiarte LE, Souza V. The ephemeral microbiota: Ecological context and environmental variability drive the body surface microbiota composition of Magellanic penguins across subantarctic breeding colonies. Mol Ecol 2024; 33:e17472. [PMID: 39077982 DOI: 10.1111/mec.17472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
Environmental microbes routinely colonize wildlife body surface microbiota. However, animals experience dynamic environmental shifts throughout their daily routine. Yet, the effect of ecological shifts in wildlife body surface microbiota has been poorly explored. Here, we sequenced the hypervariable region V3-V4 of the 16S rRNA gene to characterize the body surface microbiota of wild Magellanic penguins (Spheniscus magellanicus) under two ecological contexts: (1) Penguins walking along the coast and (2) Penguins sheltered underground in their nest, across three subantarctic breeding colonies in the Magellan Strait, Chile. Despite ecological contexts, our results revealed that Moraxellaceae bacteria were the most predominant and abundant taxa associated with penguin body surfaces. Nevertheless, we detected colony-specific core bacteria associated with penguin bodies. The most abundant were: Deinococcus in the Contramaestre colony, Fusobacterium in the Tuckers 1 colony, and Clostridium sensu stricto 1 in the Tuckers 2 colony. Our results give a new perspective on the niche environmental hypothesis for wild seabirds. First, the ecological characteristics of each colony were associated with the microbial communities from the nest soil and the body surface of penguins inside the nests. For example, in the colonies with heterogenous vegetation cover (i.e. the Tuckers Islets), there was a similar microbial composition between the nest soil and the body surface of penguins. In contrast, on the more arid colony (Contramaestre), we detected differences in the microbial communities between the nest soil and the body surface of penguins.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Paola Acuña-Gómez
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Claudio A Moraga
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Katherine Gaete
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Jorge Acevedo
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
4
|
Zhang S, Zhou C, Dong Z, Feng K, Peng K, Wang Z, Jiang Y, Jin L, Zhang P, Wu Y. The diet-intestinal microbiota dynamics and adaptation in an elevational migration bird, the Himalayan bluetail ( Tarsiger rufilatus). Ecol Evol 2024; 14:e11617. [PMID: 38952660 PMCID: PMC11214064 DOI: 10.1002/ece3.11617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
Migratory birds experience changes in their environment and diet during seasonal migrations, thus requiring interactions between diet and gut microbes. Understanding the co-evolution of the host and gut microbiota is critical for elucidating the rapid adaptations of avian gut microbiota. However, dynamics of gut microbial adaptations concerning elevational migratory behavior, which is prevalent but understudied in montane birds remain poorly understood. We focused on the Himalayan bluetail (Tarsiger rufilatus) in the montane forests of Mt. Gongga to understand the diet-gut microbial adaptations of elevational migratory birds. Our findings indicate that elevational migratory movements can rapidly alter gut microbial composition and function within a month. There was a significant interaction between an animal-based diet and gut microbiota across migration stages, underscoring the importance of diet in shaping microbial communities. Furthermore, the gut microbial composition of T. rufilatus may be potentially altered by high-altitude acclimatization. An increase in fatty acid and amino acid metabolism was observed in response to low temperatures and limited resources, resulting in enhanced energy extraction and nutrient utilization. Moreover, microbial communities in distinct gut segments varied in relative abundance and responses to environmental changes. While the bird jejunum exhibited greater susceptibility to food and environmental fluctuations, there was no significant difference in metabolic capacity among gut segments. This study provides initial evidence of rapid diet-gut microbial changes in distinct gut segments of elevational migratory birds and highlights the importance of seasonal sample collection. Our findings provide a deeper understanding of the unique high-altitude adaptation patterns of the gut microbiota for montane elevational migratory birds.
Collapse
Affiliation(s)
- Shangmingyu Zhang
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Chuang Zhou
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Zhehan Dong
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Kaize Feng
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Kexin Peng
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Zhengyang Wang
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Yong Jiang
- Administration of Gongga Mountain National Nature ReserveKangdingGanzi Tibetan Autonomous PrefectureChina
| | - Linyu Jin
- Chengdu Tianfu International Airport Branch of Sichuan Airport Group Limited CompanyChengduChina
| | - Ping Zhang
- Chengdu Tianfu International Airport Branch of Sichuan Airport Group Limited CompanyChengduChina
| | - Yongjie Wu
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
5
|
Pearman WS, Duffy GA, Gemmell NJ, Morales SE, Fraser CI. Long-distance movement dynamics shape host microbiome richness and turnover. FEMS Microbiol Ecol 2024; 100:fiae089. [PMID: 38857884 PMCID: PMC11212666 DOI: 10.1093/femsec/fiae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024] Open
Abstract
Host-associated microbial communities are shaped by host migratory movements. These movements can have contrasting impacts on microbiota, and understanding such patterns can provide insight into the ecological processes that contribute to community diversity. Furthermore, long-distance movements to new environments are anticipated to occur with increasing frequency due to host distribution shifts resulting from climate change. Understanding how hosts transport their microbiota with them could be of importance when examining biological invasions. Although microbial community shifts are well-documented, the underlying mechanisms that lead to the restructuring of these communities remain relatively unexplored. Using literature and ecological simulations, we develop a framework to elucidate the major factors that lead to community change. We group host movements into two types-regular (repeated/cyclical migratory movements, as found in many birds and mammals) and irregular (stochastic/infrequent movements that do not occur on a cyclical basis, as found in many insects and plants). Ecological simulations and prior research suggest that movement type and frequency, alongside environmental exposure (e.g. internal/external microbiota) are key considerations for understanding movement-associated community changes. From our framework, we derive a series of testable hypotheses, and suggest means to test them, to facilitate future research into host movement and microbial community dynamics.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
| | - Sergio E Morales
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand
| | - Ceridwen I Fraser
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
| |
Collapse
|
6
|
Dunbar A, Drigo B, Djordjevic SP, Donner E, Hoye BJ. Impacts of coprophagic foraging behaviour on the avian gut microbiome. Biol Rev Camb Philos Soc 2024; 99:582-597. [PMID: 38062990 DOI: 10.1111/brv.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.
Collapse
Affiliation(s)
- Alice Dunbar
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- UniSA STEM, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), University of South Australia, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
7
|
Kelly LA, Yost CK, Cooke SJ. Opportunities and challenges with transitioning to non-lethal sampling of wild fish for microbiome research. JOURNAL OF FISH BIOLOGY 2024; 104:912-919. [PMID: 38226503 DOI: 10.1111/jfb.15650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024]
Abstract
The microbial communities of fish are considered an integral part of maintaining the overall health and fitness of their host. Research has shown that resident microbes reside on various mucosal surfaces, such as the gills, skin, and gastrointestinal tract, and play a key role in various host functions, including digestion, immunity, and disease resistance. A second, more transient group of microbes reside in the digesta, or feces, and are primarily influenced by environmental factors such as the host diet. The vast majority of fish microbiome research currently uses lethal sampling to analyse any one of these mucosal and/or digesta microbial communities. The present paper discusses the various opportunities that non-lethal microbiome sampling offers, as well as some inherent challenges, with the ultimate goal of creating a sound argument for future researchers to transition to non-lethal sampling of wild fish in microbiome research. Doing so will reduce animal welfare and population impacts on fish while creating novel opportunities to link host microbial communities to an individual's behavior and survival across space and time (e.g., life-stages, seasons). Current lethal sampling efforts constrain our ability to understand the mechanistic ecological consequences of variation in microbiome communities in the wild. Transitioning to non-lethal sampling will open new frontiers in ecological and microbial research.
Collapse
Affiliation(s)
- Lisa A Kelly
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Christopher K Yost
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Jones I, Marsh K, Handby TM, Hopkins K, Slezacek J, Bearhop S, Harrison XA. The influence of diet on gut microbiome and body mass dynamics in a capital-breeding migratory bird. PeerJ 2023; 11:e16682. [PMID: 38130921 PMCID: PMC10734429 DOI: 10.7717/peerj.16682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Gut-associated microbial communities are known to play a vital role in the health and fitness of their hosts. Though studies investigating the factors associated with among-individual variation in microbiome structure in wild animal species are increasing, knowledge of this variation at the individual level is scarce, despite the clear link between microbiome and nutritional status uncovered in humans and model organisms. Here, we combine detailed observational data on life history and foraging preference with 16S rRNA profiling of the faecal microbiome to investigate the relationship between diet, microbiome stability and rates of body mass gain in a migratory capital-breeding bird, the light-bellied Brent goose (Branta bernicla hrota). Our findings suggest that generalist feeders have microbiomes that are intermediate in diversity and composition between two foraging specialisms, and also show higher within-individual plasticity. We also suggest a link between foraging phenotype and the rates of mass gain during the spring staging of a capital breeder. This study offers rare insight into individual-level temporal dynamics of the gut microbiome of a wild host. Further work is needed to uncover the functional link between individual dietary choices, gut microbiome structure and stability, and the implications this has for the reproductive success of this capital breeder.
Collapse
Affiliation(s)
- Isabelle Jones
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Kirsty Marsh
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Tess M. Handby
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Socety of London, London, United Kingdom
| | - Julia Slezacek
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
9
|
Trevelline BK, Sprockett D, DeLuca WV, Andreadis CR, Moeller AH, Tonra CM. Convergent remodelling of the gut microbiome is associated with host energetic condition over long-distance migration. Funct Ecol 2023; 37:2840-2854. [PMID: 38249446 PMCID: PMC10795773 DOI: 10.1111/1365-2435.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/25/2023] [Indexed: 01/23/2024]
Abstract
The gut microbiome can be thought of as a virtual organ given its immense metabolic capacity and profound effects on host physiology. Migratory birds are capable of adaptively modulating many aspects of their physiology to facilitate long-distance movements, raising the hypothesis that their microbiome may undergo a parallel remodeling process that helps to meet the energetic demands of migration.To test this hypothesis, we investigated changes in gut microbiome composition and function over the fall migration of the Blackpoll Warbler (Setophaga striata), which exhibits one of the longest known autumnal migratory routes of any songbird and rapidly undergoes extensive physiological remodeling during migration.Overall, our results showed that the Blackpoll Warbler microbiome differed significantly across phases of fall migration. This pattern was driven by a dramatic increase in the relative abundance of Proteobacteria, and more specifically a single 16S rRNA gene amplicon sequence variant belonging to the family Enterobacteriaceae. Further, Blackpoll Warblers exhibited a progressive reduction in microbiome diversity and within-group variance over migration, indicating convergence of microbiome composition among individuals during long-distance migration. Metagenomic analysis revealed that the gut microbiome of staging individuals was enriched in bacterial pathways involved in vitamin, amino acid, and fatty acid biosynthesis, as well as carbohydrate metabolism, and that these pathways were in turn positively associated with host body mass and subcutaneous fat deposits.Together, these results provide evidence that the gut microbiome of migratory birds may undergo adaptive remodeling to meet the physiological and energetic demands of long-distance migration.
Collapse
Affiliation(s)
- Brian K. Trevelline
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Daniel Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | | - Catherine R. Andreadis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Christopher M. Tonra
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Functional and Compositional Changes in the Fecal Microbiome of a Shorebird during Migratory Stopover. mSystems 2023; 8:e0112822. [PMID: 36786579 PMCID: PMC10134852 DOI: 10.1128/msystems.01128-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Shorebirds migrate long distances twice annually, which requires intense physiological and morphological adaptations, including the ability to rapidly gain weight via fat deposition at stopover locations. The role of the microbiome in weight gain in avian hosts is unresolved, but there is substantial evidence to support the hypothesis that the microbiome is involved with host weight from mammalian microbiome literature. Here, we collected 100 fecal samples of Ruddy Turnstones to investigate microbiome composition and function during stopover weight gain in Delaware Bay, USA. Using 16S rRNA sequencing on 90 of these samples and metatranscriptomic sequencing on 22, we show that taxonomic composition of the microbiome shifts during weight gain, as do functional aspects of the metatranscriptome. We identified 10 genes that are associated with weight class, and polyunsaturated fatty acid biosynthesis in the microbiota is significantly increasing as birds gain weight. Our results support that the microbiome is a dynamic feature of host biology that interacts with both the host and the environment and may be involved in the rapid weight gain of shorebirds. IMPORTANCE Many animals migrate long distances annually, and these journeys require intense physiological and morphological adaptations. One such adaptation in shorebirds is the ability to rapidly gain weight at stopover locations in the middle of their migrations. The role of the microbiome in weight gain in birds is unresolved but is likely to play a role. Here, we collected 100 fecal samples from Ruddy Turnstones to investigate microbiome composition (who is there) and function (what they are doing) during stopover weight gain in Delaware Bay, USA. Using multiple molecular methods, we show that both taxonomic composition and function of the microbiome shifts during weight gain. We identified 10 genes that are associated with weight class, and polyunsaturated fatty acid biosynthesis in the microbiota is significantly increasing as birds gain weight. Our results support that the microbiome is a dynamic feature of host biology that interacts with both the host and the environment and may be involved in the rapid weight gain of shorebirds.
Collapse
|
11
|
Schmiedová L, Kreisinger J, Kubovčiak J, Těšický M, Martin JF, Tomášek O, Kauzálová T, Sedláček O, Albrecht T. Gut microbiota variation between climatic zones and due to migration strategy in passerine birds. Front Microbiol 2023; 14:1080017. [PMID: 36819027 PMCID: PMC9928719 DOI: 10.3389/fmicb.2023.1080017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Decreasing biotic diversity with increasing latitude is an almost universal macroecological pattern documented for a broad range of taxa, however, there have been few studies focused on changes in gut microbiota (GM) across climatic zones. Methods Using 16S rRNA amplicon profiling, we analyzed GM variation between temperate (Czechia) and tropical (Cameroon) populations of 99 passerine bird species and assessed GM similarity of temperate species migrating to tropical regions with that of residents/short-distance migrants and tropical residents. Our study also considered the possible influence of diet on GM. Results We observed no consistent GM diversity differences between tropical and temperate species. In the tropics, GM composition varied substantially between dry and rainy seasons and only a few taxa exhibited consistent differential abundance between tropical and temperate zones, irrespective of migration behavior and seasonal GM changes. During the breeding season, trans-Saharan migrant GM diverged little from species not overwintering in the tropics and did not show higher similarity to tropical passerines than temperate residents/short-distance migrants. Interestingly, GM of two temperate-breeding trans-Saharan migrants sampled in the tropical zone matched that of tropical residents and converged with other temperate species during the breeding season. Diet had a slight effect on GM composition of tropical species, but no effect on GM of temperate hosts. Discussion Consequently, our results demonstrate extensive passerine GM plasticity, the dominant role of environmental factors in its composition and limited effect of diet.
Collapse
Affiliation(s)
- Lucie Schmiedová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia,*Correspondence: Jakub Kreisinger,
| | - Jan Kubovčiak
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Oldřich Tomášek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Tereza Kauzálová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Ondřej Sedláček
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
12
|
Zhou T, Liu S, Jiang A. Comparison of gut microbiota between immigrant and native populations of the Silver-eared Mesia ( Leiothrix argentauris) living in mining area. Front Microbiol 2023; 14:1076523. [PMID: 36760498 PMCID: PMC9904241 DOI: 10.3389/fmicb.2023.1076523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The complex gut bacterial communities have a major impact on organismal health. However, knowledge of the effects of habitat change on the gut microbiota of wild birds is limited. In this study, we characterized the gut microbiota of two different subspecies of the Silver-eared Mesia (Leiothrix argentauris), the native subspecies (L. a. rubrogularis) and immigrant subspecies (L. a. vernayi), using 16S rRNA gene high-throughput sequencing. These two subspecies live in a trace metal-contaminated area, and L. a. vernayi was trafficked. They are an excellent system for studying how the gut microbiome of wild animal changes when they move to new habitats. We hypothesized that the immigrant subspecies would develop the same adaptations as the native subspecies in response to habitat changes. The results showed that there were no significant differences in the composition, diversity, or functional metabolism of gut microbiota between native and immigrant subspecies under the combined action of similar influencing factors (the p values of all analyses of variance >0.05). In addition, the composition and functional metabolism of gut microbiota in two subspecies showed adaptation against trace metal damage. Linear discriminant analysis effect size (LEfSe) analysis revealed that Massilia in the intestinal microbiota of immigrant subspecies was significantly higher than that of native subspecies, suggesting that immigrant subspecies suffered habitat change. Finally, we found that these two subspecies living in the mining area had an extremely high proportion of pathogenic bacteria in their gut microbiota (about 90%), much higher than in other species (about 50%) living in wild environment. Our results revealed the adaptation of intestinal microbiota of immigrant Silver-eared Mesias under heavy metals stress, which would provide guidance for biodiversity conservation and pollution management in mining area.
Collapse
|
13
|
Thie N, Corl A, Turjeman S, Efrat R, Kamath PL, Getz WM, Bowie RCK, Nathan R. Linking migration and microbiota at a major stopover site in a long-distance avian migrant. MOVEMENT ECOLOGY 2022; 10:46. [PMID: 36345043 PMCID: PMC9641824 DOI: 10.1186/s40462-022-00347-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Migration is one of the most physical and energetically demanding periods in an individual bird's life. The composition of the bird's gut or cloacal microbiota can temporarily change during migration, likely due to differences in diets, habitats and other environmental conditions experienced en route. However, how physiological condition, migratory patterns, and other drivers interact to affect microbiota composition of migratory birds is still unclear. We sampled the cloacal bacterial microbiota of a long-distance migrant, the steppe buzzard (Buteo buteo vulpinus), at an important spring stopover bottleneck in Eilat, Israel, after crossing the ca. 1800 km Sahara Desert. We examined whether diversity and composition of the cloacal microbiota varied with body condition, sex, movement patterns (i.e., arrival time and migration distance), and survival. Early arrival to Eilat was associated with better body condition, longer post-Eilat spring migration distance, higher microbial α-diversity, and differences in microbiota composition. Specifically, early arrivals had higher abundance of the phylum Synergistota and five genera, including Jonquetella and Peptococcus, whereas the phylum Proteobacteria and genus Escherichia-Shigella (as well as three other genera) were more abundant in later arrivals. While the differences in α-diversity and Escherichia-Shigella seem to be mainly driven by body condition, other compositional differences associated with arrival date could be indicators of longer migratory journeys (e.g., pre-fueling at wintering grounds or stopover habitats along the way) or migratory performance. No significant differences were found between the microbiota of surviving and non-surviving individuals. Overall, our results indicate that variation in steppe buzzard microbiota is linked to variation in migratory patterns (i.e., capture/arrival date) and body condition, highlighting the importance of sampling the microbiota of GPS-tracked individuals on multiple occasions along their migration routes to gain a more detailed understanding of the links between migration, microbiota, and health in birds.
Collapse
Affiliation(s)
- Nikki Thie
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ammon Corl
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Sondra Turjeman
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Efrat
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Wayne M Getz
- Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, CA, USA
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ran Nathan
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Carranco AS, Romo D, de Lourdes Torres M, Wilhelm K, Sommer S, Gillingham MAF. Egg microbiota is the starting point of hatchling gut microbiota in the endangered yellow-spotted Amazon river turtle. Mol Ecol 2022; 31:3917-3933. [PMID: 35621392 DOI: 10.1111/mec.16548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Establishment and development of gut microbiota during vertebrates' early life are likely to be important predictors of health and fitness. Host-parental and host-environment interactions are essential to these processes. In oviparous reptiles whose nests represent a source of the parent's microbial inocula, the relative role of host-selection and stochastic environmental factors during gut microbial assemblage remains unknown. We sampled eggs incubated in artificial nests as well as hatchlings and juveniles (up to 30 days old) of the yellow-spotted Amazon river turtle (Podocnemis unifilis) developing in tubs filled with river water. We examined the relative role of the internal egg microbiota and the abiotic environment on hatchling and juvenile turtle's cloacal microbiota assemblages during the first 30 days of development. A mean of 71% of ASVs in hatched eggs could be traced to the nest environmental microbiota and in turn a mean of 77% of hatchlings' cloacal ASVs were traced to hatched eggs. Between day 5 and 20 of juvenile turtle's development, the river water environment plays a key role in the establishment of the gut microbiota (accounting for a mean of 13%-34.6% of cloacal ASVs) and strongly influences shifts in microbial diversity and abundance. After day 20, shifts in gut microbiota composition were mainly driven by host-selection processes. Therefore, colonization by environmental microbiota is key in the initial stages of establishing the host's gut microbiota which is subsequently shaped by host-selection processes. Our study provides a novel quantitative understanding of the host-environment interactions during gut microbial assemblage of oviparous reptiles.
Collapse
Affiliation(s)
- Ana Sofia Carranco
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - David Romo
- Tiputini Biodiversity Station, Universidad San Francisco de Quito, Cumbaya-, Quito, Ecuador
| | - Maria de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito, Cumbaya-, Quito, Ecuador
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Mark A F Gillingham
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Biodiversity Research Institute (CSIC, Oviedo University, Principality of Asturias), Campus of Mieres, University of Oviedo, 33600, Mieres, Spain
| |
Collapse
|
15
|
Smith HG, Bean DC, Clarke RH, Loyn R, Larkins JA, Hassell C, Greenhill AR. Presence and antimicrobial resistance profiles of Escherichia coli, Enterococcusspp. and Salmonellasp. in 12 species of Australian shorebirds and terns. Zoonoses Public Health 2022; 69:615-624. [PMID: 35460193 PMCID: PMC9544147 DOI: 10.1111/zph.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
Antibiotic resistance is an ongoing threat to both human and animal health. Migratory birds are a potential vector for the spread of novel pathogens and antibiotic resistance genes. To date, there has been no comprehensive study investigating the presence of antibiotic resistance (AMR) in the bacteria of Australian shorebirds or terns. In the current study, 1022 individual birds representing 12 species were sampled across three states of Australia (Victoria, South Australia, and Western Australia) and tested for the presence of phenotypically resistant strains of three bacteria with potential to be zoonotic pathogens; Escherichia coli, Enterococcusspp., and Salmonellasp. In total, 206 E. coli, 266 Enterococcusspp., and 20 Salmonellasp. isolates were recovered, with AMR detected in 42% of E. coli, 85% of Enterococcusspp., and 10% of Salmonellasp. Phenotypic resistance was commonly detected to erythromycin (79% of Enterococcusspp.), ciprofloxacin (31% of Enterococcusspp.) and streptomycin (21% of E. coli). Resident birds were more likely to carry AMR bacteria than migratory birds (p ≤ .001). Bacteria isolated from shorebirds and terns are commonly resistant to at least one antibiotic, suggesting that wild bird populations serve as a potential reservoir and vector for AMR bacteria. However, globally emerging phenotypes of multidrug‐resistant bacteria were not detected in Australian shorebirds. This study provides baseline data of the carriage of AMR bacteria in Australian shorebirds and terns.
Collapse
Affiliation(s)
- Hannah G Smith
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, Australia
| | - David C Bean
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, Australia
| | - Rohan H Clarke
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Richard Loyn
- School of Life Sciences, Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Victoria, Australia.,Institute for Land, Water and Society, Charles Sturt University, Albury, New South Wales, Australia
| | - Jo-Ann Larkins
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, Australia.,School of Science, Engineering and Information Technology, Federation University, Ballarat, Victoria, Australia
| | - Chris Hassell
- Global Flyway Network, Broome, Western Australia, Australia.,Australasian Wader Studies Group, Broome, Western Australia, Australia
| | - Andrew R Greenhill
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, Australia
| |
Collapse
|
16
|
Weinhold A. Bowel Movement: Integrating Host Mobility and Microbial Transmission Across Host Taxa. Front Microbiol 2022; 13:826364. [PMID: 35242121 PMCID: PMC8886138 DOI: 10.3389/fmicb.2022.826364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
The gut microbiota of animals displays a high degree of plasticity with respect to environmental or dietary adaptations and is shaped by factors like social interactions, diet diversity or the local environment. But the contribution of these drivers varies across host taxa and our ability to explain microbiome variability within wild populations remains limited. Terrestrial animals have divergent mobility ranges and can either crawl, walk or fly, from a couple of centimeters toward thousands of kilometers. Animal movement has been little regarded in host microbiota frameworks, though it can directly influence major drivers of the host microbiota: (1) Aggregation movement can enhance social transmissions, (2) foraging movement can extend range of diet diversity, and (3) dispersal movement determines the local environment of a host. Here, I would like to outline how movement behaviors of different host taxa matter for microbial acquisition across mammals, birds as well as insects. Host movement can have contrasting effects and either reduce or enlarge spatial scale. Increased dispersal movement could dissolve local effects of sampling location, while aggregation could enhance inter-host transmissions and uniformity among social groups. Host movement can also extend the boundaries of microbial dispersal limitations and connect habitat patches across plant-pollinator networks, while the microbiota of wild populations could converge toward a uniform pattern when mobility is interrupted in captivity or laboratory settings. Hence, the implementation of host movement would be a valuable addition to the metacommunity concept, to comprehend microbial dispersal within and across trophic levels.
Collapse
Affiliation(s)
- Arne Weinhold
- Faculty of Biology, Cellular and Organismic Networks, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
17
|
Obrochta S, Savo Sardaro ML, Amato KR, Murray MH. Relationships Between Migration and Microbiome Composition and Diversity in Urban Canada Geese. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.742369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbiome analysis presents an opportunity to understand how urban environments affect avian physiology. For example, habitat use can affect microbiome diversity and composition, and hosts with more diverse gut microbiota are thought to be more resistant to pathogens and have increased fitness. However, the microbiome is an understudied aspect of avian ecology, particularly in the context of migration and urbanization in wild birds. For this study, we hypothesized that, within urban birds, migrants would exhibit greater microbial diversity and inter-individual variation in microbiome composition than residents because they are exposed to more diverse habitats. We focused on Canada geese (Branta canadensis), one of many migratory species that exhibit increasingly more year-round residency in cities. We used 16S rRNA gene amplicon sequencing to quantify microbiome taxonomic composition in fecal samples from 32 GPS-tracked Canada geese, 22 of which were year-round residents of the Chicago area and 10 of which were migrants. Similar to recent studies on wild species feeding near human habitation, urban resident geese had higher gut microbial diversity than migrants. They also had increased inter-individual variation in microbiome composition and, on average, lower relative abundances of bacteria in the phylum Firmicutes, and the genera Terrisporobacter, Turicibacter, and Cellulosilyticum, which all have metabolic functions that may aid in goose digestion. Therefore, the gut microbiome of resident geese may provide fewer potential health benefits. These patterns may be a result of anthropogenic influences on aspects of resident goose ecology, such as diet, as well the influence of migration on migrant goose ecology and biology. Overall, our results suggest that reduced migration for urban-adapted wildlife species may have important consequences for physiology and health.
Collapse
|
18
|
A Faithful Gut: Core Features of Gastrointestinal Microbiota of Long-Distance Migratory Bats Remain Stable despite Dietary Shifts Driving Differences in Specific Bacterial Taxa. Microbiol Spectr 2021; 9:e0152521. [PMID: 34817279 PMCID: PMC8612142 DOI: 10.1128/spectrum.01525-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Migratory animals live in a world of constant change. Animals undergo many physiological changes preparing themselves for the migration. Although this field has been studied extensively over the last decades, we know relatively little about the seasonal changes that occur in the microbial communities that these animals carry in their guts. Here, we assessed the V4 region of the 16S rRNA high-throughput sequencing data as a proxy to estimate microbiome diversity of tequila bats from fecal pellets and evaluate how the natural process of migration shapes the microbiome composition and diversity. We collected samples from individual bats at two localities in the dry forest biome (Chamela and Coquimatlán) and one site at the endpoint of the migration in the Sonoran Desert (Pinacate). We found that the gut microbiome of the tequila bats is dominated largely by Firmicutes and Proteobacteria. Our data also provide insights on how microbiome diversity shifts at the same site in consecutive years. Our study has demonstrated that both locality and year-to-year variation contribute to shaping the composition, overall diversity, and “uniqueness” of the gut microbiome of migratory nectar-feeding female bats, with localities from the dry forest biome looking more like each other compared to those from the desert biome. In terms of beta diversity, our data show a stratified effect in which the samples’ locality was the strongest factor influencing the gut microbiome but with significant variation between consecutive years at the same locality. IMPORTANCE Migratory animals live in a world of constant change. The whole-body ecosystem needs a strong adapting capacity to thrive despite the changes. Our study used next-generation sequencing to determine how gut microbial change along the migratory path of the nectar-feeding tequila bats. The study of the gut microbiome is a great tool that can provide important insights that are relevant not just for management and conservation but also an initial investigation of the extent of the adaptation and preparedness of the individual animals, with respect not just to their current environment but also to all the environments involved in their yearly cycle.
Collapse
|
19
|
Skeen HR, Cooper NW, Hackett SJ, Bates JM, Marra PP. Repeated sampling of individuals reveals impact of tropical and temperate habitats on microbiota of a migratory bird. Mol Ecol 2021; 30:5900-5916. [PMID: 34580952 DOI: 10.1111/mec.16170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 01/04/2023]
Abstract
Migratory animals experiencing substantial change in diet and habitat across the annual cycle may have corresponding shifts in host-associated microbial diversity. Using automated telemetry and radio tags to recapture birds, we examined gut microbiota structure in the same population and often same individual of Kirtland's Warblers (Setophaga kirtlandii) initially sampled on their wintering grounds in The Bahamas and subsequently resampled within their breeding territories in Michigan, USA. Initial sampling occurred in March and April and resampling occurred in May, June and early July. The composition of the most abundant phyla and classes of the warblers' microbiota is similar to that of other migratory birds. However, we detected notable variation in abundance and diversity of numerous bacterial taxa, including a decrease in microbial richness and significant differences in microbial communities when comparing the microbiota of birds first captured in The Bahamas to that of birds recaptured in Michigan. This is observed at the individual and population level. Furthermore, we found that 22 bacterial genera exhibit heightened abundance within specific sampling periods and are probably associated with diet and environmental change. Finally, we described a small, species-specific shared microbial profile that spans multiple time periods and environments within the migratory cycle. Our research highlights that the avian gut microbiota is dynamic over time, most significantly impacted by changing environments associated with migration. These results support the need for full annual cycle monitoring of migratory bird microbiota to improve understanding of seasonal host movement ecologies and response to recurrent physiological stressors.
Collapse
Affiliation(s)
- Heather R Skeen
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Nathan W Cooper
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Department of Biology and McCourt School of Public Policy, Georgetown University, Washington, District of Columbia, USA
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - John M Bates
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
20
|
Zhang Z, Yang Z, Zhu L. Gut microbiome of migratory shorebirds: Current status and future perspectives. Ecol Evol 2021; 11:3737-3745. [PMID: 33976772 PMCID: PMC8093701 DOI: 10.1002/ece3.7390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 01/26/2023] Open
Abstract
Migratory shorebirds have many unique life history characteristics, such as long-distance travel between breeding sites, stopover sites, and wintering sites. The physiological challenges for migrant energy requirement and immunity may affect their gut microbiome community. Here, we reviewed the specific features (e.g., relatively high proportion of Corynebacterium and Fusobacterium) in the gut microbiome of 18 migratory shorebirds, and the factors (e.g., diet, migration, environment, and phylogeny) affecting the gut microbiome. We discussed possible future studies of the gut microbiome in migratory shorebirds, including the composition and function of the spatial-temporal gut microbiome, and the potential contributions made by the gut microbiome to energy requirement during migration.
Collapse
Affiliation(s)
- Zheng Zhang
- Colleges of Life SciencesNanjing Normal UniversityNanjingChina
| | | | - Lifeng Zhu
- Colleges of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
21
|
Gillingham MAF, Borghesi F, Montero BK, Migani F, Béchet A, Rendón-Martos M, Amat JA, Dinelli E, Sommer S. Bioaccumulation of trace elements affects chick body condition and gut microbiome in greater flamingos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143250. [PMID: 33248770 DOI: 10.1016/j.scitotenv.2020.143250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Elevated concentrations of trace elements represent a major concern to wetland ecosystems, since river estuaries are geochemical endpoints that accumulate pollution. Although the negative impact of environmental exposure of highly toxic elements such as Pb and Hg has received substantial attention, we still lack a comprehensive understanding of the effects that these and other common trace elements have on natural populations. We used greater flamingos as a study system within three sites that represent a gradient of pollution. Controlling for environmental sediment exposure, we assessed if signatures of bioaccumulation in feathers for ten trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn and Zn) are associated with two known proxies of health: body condition and the gut bacterial microbiome. We found evidence of an adverse effect of Se, Hg, and Pb bioaccumulation on body condition. Furthermore, bioaccumulation of the elements As, Cu, Se, Pb and Zn influenced different aspects of the gut microbiome. Bioaccumulation of Se led to a shift in the microbiome composition, largely driven by an enrichment of Bacteroides plebeius, which is linked to the breakdown of sulphated polysaccharides of algae. Bacteroides plebeius was negatively associated with chick body condition, suggesting an adverse effect of a microalgae diet rich in Se. Pb bioaccumulation was linked with a decrease in microbial diversity (adjusted-R2 = 10.4%) and an increase in heterogeneity of the microbial community (adjusted-R2 = 10.5%), an indication of impaired gut homeostasis. As, Cu and Zn had more nuanced effects on gut microbiome heterogeneity according to breeding site and bioaccumulation concentration. Our results therefore suggest that in addition to well-studied elements, bioaccumulation of poorly studied elements also adversely affect health of natural populations.
Collapse
Affiliation(s)
- Mark A F Gillingham
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein Allee 11, D-89069 Ulm, Germany.
| | - Fabrizio Borghesi
- Bologna University, Department of Biological, Geological and Environmental Sciences (BiGeA), Operative Unit of Ravenna, Via Sant'Alberto, 163, 48123 Ravenna, Italy
| | - B Karina Montero
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein Allee 11, D-89069 Ulm, Germany; Animal Ecology and Conservation, Hamburg University, Hamburg, Germany.
| | | | - Arnaud Béchet
- Institut de Recherche de la Tour du Valat, Le Sambuc, 13200 Arles, France.
| | - Manuel Rendón-Martos
- R.N. Laguna de Fuente de Piedra, Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Apartado 1, E-29520 Fuente de Piedra, Málaga, Spain.
| | - Juan A Amat
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), calle Américo Vespucio s/n, E-41092 Sevilla, Spain.
| | - Enrico Dinelli
- Bologna University, Department of Biological, Geological and Environmental Sciences (BiGeA), Operative Unit of Ravenna, Via Sant'Alberto, 163, 48123 Ravenna, Italy.
| | - Simone Sommer
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein Allee 11, D-89069 Ulm, Germany.
| |
Collapse
|
22
|
Turjeman S, Corl A, Wolfenden A, Tsalyuk M, Lublin A, Choi O, Kamath PL, Getz WM, Bowie RCK, Nathan R. Migration, pathogens and the avian microbiome: A comparative study in sympatric migrants and residents. Mol Ecol 2020; 29:4706-4720. [PMID: 33001530 DOI: 10.1111/mec.15660] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Animals generally benefit from their gastrointestinal microbiome, but the factors that influence the composition and dynamics of their microbiota remain poorly understood. Studies of nonmodel host species can illuminate how microbiota and their hosts interact in natural environments. We investigated the role of migratory behaviour in shaping the gut microbiota of free-ranging barn swallows (Hirundo rustica) by studying co-occurring migrant and resident subspecies sampled during the autumn migration at a migratory bottleneck. We found that within-host microbial richness (α-diversity) was similar between migrant and resident microbial communities. In contrast, we found that microbial communities (β-diversity) were significantly different between groups regarding both microbes present and their relative abundances. Compositional differences were found for 36 bacterial genera, with 27 exhibiting greater abundance in migrants and nine exhibiting greater abundance in residents. There was heightened abundance of Mycoplasma spp. and Corynebacterium spp. in migrants, a pattern shared by other studies of migratory species. Screens for key regional pathogens revealed that neither residents nor migrants carried avian influenza viruses and Newcastle disease virus, suggesting that the status of these diseases did not underlie observed differences in microbiome composition. Furthermore, the prevalence and abundance of Salmonella spp., as determined from microbiome data and cultural assays, were both low and similar across the groups. Overall, our results indicate that microbial composition differs between migratory and resident barn swallows, even when they are conspecific and sympatrically occurring. Differences in host origins (breeding sites) may result in microbial community divergence, and varied behaviours throughout the annual cycle (e.g., migration) could further differentiate compositional structure as it relates to functional needs.
Collapse
Affiliation(s)
- Sondra Turjeman
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ammon Corl
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Wolfenden
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Tsalyuk
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Lublin
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Olivia Choi
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Wayne M Getz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.,School Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
van Veelen HPJ, Falcão Salles J, Matson KD, van der Velde M, Tieleman BI. Microbial environment shapes immune function and cloacal microbiota dynamics in zebra finches Taeniopygia guttata. Anim Microbiome 2020; 2:21. [PMID: 33499970 PMCID: PMC7807698 DOI: 10.1186/s42523-020-00039-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background The relevance of the host microbiota to host ecology and evolution is well acknowledged. However, the effect of the microbial environment on host immune function and host microbiota dynamics is understudied in terrestrial vertebrates. Using a novel experimental approach centered on the manipulation of the microbial environment of zebra finches Taeniopygia guttata, we carried out a study to investigate effects of the host’s microbial environment on: 1) constitutive immune function, 2) the resilience of the host cloacal microbiota; and 3) the degree to which immune function and host microbiota covary in microbial environments that differ in diversity. Results We explored immune indices (hemagglutination, hemolysis, IgY levels and haptoglobin concentration) and host-associated microbiota (diversity and composition) in birds exposed to two experimental microbial environments differing in microbial diversity. According to our expectations, exposure to experimental microbial environments led to differences related to specific antibodies: IgY levels were elevated in the high diversity treatment, whereas we found no effects for the other immune indices. Furthermore, according to predictions, we found significantly increased richness of dominant OTUs for cloacal microbiota of birds of the high diversity compared with the low diversity group. In addition, cloacal microbiota of individual females approached their baseline state sooner in the low diversity environment than females in the high diversity environment. This result supported a direct phenotypically plastic response of host microbiota, and suggests that its resilience depends on environmental microbial diversity. Finally, immune indices and cloacal microbiota composition tend to covary within treatment groups, while at the same time, individuals exhibited consistent differences of immune indices and microbiota characteristics. Conclusion We show that microbes in the surroundings of terrestrial vertebrates can influence immune function and host-associated microbiota dynamics over relatively short time scales. We suggest that covariation between immune indices and cloacal microbiota, in addition to large and consistent differences among individuals, provides potential for evolutionary adaptation. Ultimately, our study highlights that linking environmental and host microbiotas may help unravelling immunological variation within and potentially among species, and together these efforts will advance the integration of microbial ecology and ecological immunology.
Collapse
Affiliation(s)
- H Pieter J van Veelen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands. .,Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 9811 MA, Leeuwarden, The Netherlands.
| | - Joana Falcão Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Kevin D Matson
- Resource Ecology Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Marco van der Velde
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
24
|
Cho H, Lee WY. Interspecific comparison of the fecal microbiota structure in three Arctic migratory bird species. Ecol Evol 2020; 10:5582-5594. [PMID: 32607176 PMCID: PMC7319242 DOI: 10.1002/ece3.6299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota of birds is known to be characterized for different species, although it may change with feeding items. In this study, we compared the gut microbiota of birds with different feeding behaviors in the same habitat. We collected fecal samples from three Arctic species, snow buntings Plectrophenax nivalis, sanderlings Calidris alba, and pink-footed geese Anser brachyrhynchus that are phylogenetically quite distant in different families to evaluate effects of diet on gut microbiota. Also, we characterized the prevalence of fecal bacteria using the Illumina MiSeq platform to sequence bacterial 16S rRNA genes. Our NMDS results showed that fecal bacteria of snow buntings and sanderlings were significantly distant from those of pink-footed geese. Although all three birds were occupied by three bacterial phyla, Proteobacteria, Firmicutes, and Bacteroidetes, dominant taxa still varied among the species. Our bacterial sequences showed that snow buntings and sanderlings were dominated by Firmicutes and Bacteroidetes, while pink-footed geese were dominated by Proteobacteria. In addition, the bacterial diversity in snow buntings and sanderlings was significantly higher than that in pink-footed geese. Our results suggest that insectivorous feeding diet of snow buntings and sanderlings could be responsible for the similar bacterial communities between the two species despite the distant phylogenetic relationship. The distinctive bacterial community in pink-footed geese was discussed to be related with their herbivorous diet.
Collapse
Affiliation(s)
- Hyunjun Cho
- Division of Polar Life Sciences Korea Polar Research Institute Incheon Korea
| | - Won Young Lee
- Division of Polar Life Sciences Korea Polar Research Institute Incheon Korea
| |
Collapse
|
25
|
Structure and membership of gut microbial communities in multiple fish cryptic species under potential migratory effects. Sci Rep 2020; 10:7547. [PMID: 32372020 PMCID: PMC7200715 DOI: 10.1038/s41598-020-64570-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
The animal gut microbiota evolves quickly towards a complex community and plays crucial roles in its host’s health and development. Factors such as host genetics and environmental changes are regarded as important for controlling the dynamics of animal gut microbiota. Migratory animals are an important group for studying how these factors influence gut microbiota because they experience strong environmental perturbations during migration. The commercially important grey mullet, Mugil cephalus, is a cosmopolitan species complex that display reproductive migration behaviour. There are three cryptic species of M. cephalus fish distributed across the Northwest Pacific, and their spawning sites overlap in the Taiwan Strait. This extraordinary natural occurrence makes the grey mullet an ideal model organism for exploring the nature of wild animal-gut microbiota relationships and interactions. This study investigates the diversity and structure of the gut microbial community in three cryptic M. cephalus species using 16S rRNA amplicon sequencing. Gut microbial compositions from adult and juvenile fish samples were analysed. Our results indicate that gut microbial communities within the grey mullet share a core microbiome dominated by Proteobacteria, Firmicutes and Actinobacteria. However, the structures of gut microbial communities were more distinct between adult mullet groups than they were between juvenile ones. Intriguingly, we found that adult fish that migrate to different geographical tracts harbour gut microbiota similar to historical records of seawater microflora, along their respective migration routes. This observation provides new insights into the interaction between aquatic animal gut microbial communities and the environments along their hosts’ migratory routes, and thus warrants future study.
Collapse
|
26
|
Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME JOURNAL 2020; 14:1768-1782. [PMID: 32286545 PMCID: PMC7305176 DOI: 10.1038/s41396-020-0643-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Despite its isolation and extreme climate, Antarctica is home to diverse fauna and associated microorganisms. It has been proposed that the most iconic Antarctic animal, the penguin, experiences low pathogen pressure, accounting for their disease susceptibility in foreign environments. There is, however, a limited understanding of virome diversity in Antarctic species, the extent of in situ virus evolution, or how it relates to that in other geographic regions. To assess whether penguins have limited microbial diversity we determined the RNA viromes of three species of penguins and their ticks sampled on the Antarctic peninsula. Using total RNA sequencing we identified 107 viral species, comprising likely penguin associated viruses (n = 13), penguin diet and microbiome associated viruses (n = 82), and tick viruses (n = 8), two of which may have the potential to infect penguins. Notably, the level of virome diversity revealed in penguins is comparable to that seen in Australian waterbirds, including many of the same viral families. These data run counter to the idea that penguins are subject to lower pathogen pressure. The repeated detection of specific viruses in Antarctic penguins also suggests that rather than being simply spill-over hosts, these animals may act as key virus reservoirs.
Collapse
|
27
|
Torrontegi O, Alvarez V, Hurtado A, Sevilla IA, Höfle U, Barral M. Naturally Avian Influenza Virus-Infected Wild Birds Are More Likely to Test Positive for Mycobacterium spp. and Salmonella spp. Avian Dis 2020; 63:131-137. [PMID: 31131569 DOI: 10.1637/11866-042518-reg.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/20/2018] [Indexed: 11/05/2022]
Abstract
Wild birds often harbor infectious microorganisms. Some of these infectious microorganisms may present a risk to domestic animals and humans through spillover events. Detections of certain microorganisms have been shown to increase host susceptibility to infections by other microorganisms, leading to coinfections and altered host-to-host transmission patterns. However, little is known about the frequency of coinfections and its impact on wild bird populations. In order to verify whether avian influenza virus (AIV) natural infection in wild waterbirds was related to the excretion of other microorganisms, 73 AIV-positive samples (feces and cloacal swabs) were coupled with 73 AIV-negative samples of the same sampling characteristics and tested by real-time PCR specific for the following microorganisms: West Nile virus, avian avulavirus 1, Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis, Mycobacterium avium subspecies, Mycobacterium tuberculosis complex, and Mycobacterium spp. Concurrent detections were found in 47.9% (35/73) of the AIV-positive samples and in 23.3% (17/73) of the AIV-negative samples (P = 0.003). Mycobacterium spp. and Salmonella spp. were found to be significantly more prevalent among the AIV-positive samples than among the AIV-negative samples (42.9% vs. 22.8%; P = 0.024 and 15.2% vs. 0.0%; P = 0.0015, respectively). Prevalence of concurrent detections differed significantly among sampling years (P = 0.001), host families (P = 0.002), host species (P = 0.003), AIV subtypes (P = 0.003), and type of sample (P = 0.009). Multiple concurrent detections (more than one of the tested microorganisms excluding AIV) were found in 9.6% (7/73) of all the AIV-positive samples, accounting for 20% (7/35) of the concurrent detection cases. In contrast, in AIV-negative samples we never detected more than one of the selected microorganisms. These results show that AIV detection was associated with the detection of the monitored microorganisms. Further studies of a larger field sample set or under experimental conditions are necessary to infer causality in these trends.
Collapse
Affiliation(s)
- Olalla Torrontegi
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Vega Alvarez
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Ana Hurtado
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Iker A Sevilla
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Ursula Höfle
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 13005 Ciudad Real, Spain.,Escuela de Ingenieros Agrónomos, Ronda de Calatrava, 13071 Ciudad Real, Spain
| | - Marta Barral
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain,
| |
Collapse
|
28
|
Bodawatta KH, Puzejova K, Sam K, Poulsen M, Jønsson KA. Cloacal swabs and alcohol bird specimens are good proxies for compositional analyses of gut microbial communities of Great tits (Parus major). Anim Microbiome 2020; 2:9. [PMID: 33499943 PMCID: PMC7807456 DOI: 10.1186/s42523-020-00026-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Comprehensive studies of wild bird microbiomes are often limited by difficulties of sample acquisition. However, widely used non-invasive cloacal swab methods and under-explored museum specimens preserved in alcohol provide promising avenues to increase our understanding of wild bird microbiomes, provided that they accurately portray natural microbial community compositions. To investigate this assertion, we used 16S rRNA amplicon sequencing of Great tit (Parus major) gut microbiomes to compare 1) microbial communities obtained from dissected digestive tract regions and cloacal swabs, and 2) microbial communities obtained from freshly dissected gut regions and from samples preserved in alcohol for 2 weeks or 2 months, respectively. RESULTS We found no significant differences in alpha diversities in communities of different gut regions and cloacal swabs (except in OTU richness between the dissected cloacal region and the cloacal swabs), or between fresh and alcohol preserved samples. However, we did find significant differences in beta diversity and community composition of cloacal swab samples compared to different gut regions. Despite these community-level differences, swab samples qualitatively captured the majority of the bacterial diversity throughout the gut better than any single compartment. Bacterial community compositions of alcohol-preserved specimens did not differ significantly from freshly dissected samples, although some low-abundant taxa were lost in the alcohol preserved specimens. CONCLUSIONS Our findings suggest that cloacal swabs, similar to non-invasive fecal sampling, qualitatively depict the gut microbiota composition without having to collect birds to extract the full digestive tract. The satisfactory depiction of gut microbial communities in alcohol preserved samples opens up for the possibility of using an enormous resource readily available through museum collections to characterize bird gut microbiomes. The use of extensive museum specimen collections of birds for microbial gut analyses would allow for investigations of temporal patterns of wild bird gut microbiomes, including the potential effects of climate change and anthropogenic impacts. Overall, the utilization of cloacal swabs and museum alcohol specimens can positively impact bird gut microbiome research to help increase our understanding of the role and evolution of wild bird hosts and gut microbial communities.
Collapse
Affiliation(s)
- Kasun H. Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Puzejova
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branisovska 31, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 1760, Ceske Budejovice, Czech Republic
| | - Katerina Sam
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branisovska 31, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 1760, Ceske Budejovice, Czech Republic
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Grond K, Santo Domingo JW, Lanctot RB, Jumpponen A, Bentzen RL, Boldenow ML, Brown SC, Casler B, Cunningham JA, Doll AC, Freeman S, Hill BL, Kendall SJ, Kwon E, Liebezeit JR, Pirie-Dominix L, Rausch J, Sandercock BK. Composition and Drivers of Gut Microbial Communities in Arctic-Breeding Shorebirds. Front Microbiol 2019; 10:2258. [PMID: 31649627 PMCID: PMC6795060 DOI: 10.3389/fmicb.2019.02258] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R2 = 11.6%), followed by shorebird host species (R2 = 1.8%), and sampling year (R2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.
Collapse
Affiliation(s)
- Kirsten Grond
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | | - Richard B Lanctot
- Migratory Bird Management, U.S. Fish & Wildlife Service, Anchorage, AK, United States
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | | - Megan L Boldenow
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | | | - Bruce Casler
- Independent Researcher, Nehalem, OR, United States
| | - Jenny A Cunningham
- Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, MO, United States
| | - Andrew C Doll
- Denver Museum of Nature & Science, Denver, CO, United States
| | - Scott Freeman
- Arctic National Wildlife Refuge, U.S. Fish & Wildlife Service, Fairbanks, AK, United States
| | - Brooke L Hill
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Steven J Kendall
- Arctic National Wildlife Refuge, U.S. Fish & Wildlife Service, Fairbanks, AK, United States
| | - Eunbi Kwon
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | | | | | - Jennie Rausch
- Environment and Climate Change Canada, Yellowknife, NT, Canada
| | - Brett K Sandercock
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
30
|
Marcelino VR, Wille M, Hurt AC, González-Acuña D, Klaassen M, Schlub TE, Eden JS, Shi M, Iredell JR, Sorrell TC, Holmes EC. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biol 2019; 17:31. [PMID: 30961590 PMCID: PMC6454771 DOI: 10.1186/s12915-019-0649-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Antibiotic resistance is rendering common bacterial infections untreatable. Wildlife can incorporate and disperse antibiotic-resistant bacteria in the environment, such as water systems, which in turn serve as reservoirs of resistance genes for human pathogens. Anthropogenic activity may contribute to the spread of bacterial resistance cycling through natural environments, including through the release of human waste, as sewage treatment only partially removes antibiotic-resistant bacteria. However, empirical data supporting these effects are currently limited. Here we used bulk RNA-sequencing (meta-transcriptomics) to assess the diversity and expression levels of functionally viable resistance genes in the gut microbiome of birds with aquatic habits in diverse locations. RESULTS We found antibiotic resistance genes in birds from all localities, from penguins in Antarctica to ducks in a wastewater treatment plant in Australia. Comparative analysis revealed that birds feeding at the wastewater treatment plant carried the greatest resistance gene burden, including genes typically associated with multidrug resistance plasmids as the aac(6)-Ib-cr gene. Differences in resistance gene burden also reflected aspects of bird ecology, taxonomy, and microbial function. Notably, ducks, which feed by dabbling, carried a higher abundance and diversity of resistance genes than turnstones, avocets, and penguins, which usually prey on more pristine waters. CONCLUSIONS These transcriptome data suggest that human waste, even if it undergoes treatment, might contribute to the spread of antibiotic resistance genes to the wild. Differences in microbiome functioning across different bird lineages may also play a role in the antibiotic resistance burden carried by wild birds. In summary, we reveal the complex factors explaining the distribution of resistance genes and their exchange routes between humans and wildlife, and show that meta-transcriptomics is a valuable tool to access functional resistance genes in whole microbial communities.
Collapse
Affiliation(s)
- Vanessa R Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia. .,Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, 3349001, Concepción, Chile
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Timothy E Schlub
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia.,School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jonathan R Iredell
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
31
|
Xiong J, Xuan L, Yu W, Zhu J, Qiu Q, Chen J. Spatiotemporal successions of shrimp gut microbial colonization: high consistency despite distinct species pool. Environ Microbiol 2019; 21:1383-1394. [PMID: 30828926 DOI: 10.1111/1462-2920.14578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
Aquatic animals encounter suites of novel planktonic microbes during their development. Although hosts have been shown to exert strong selection on their gut microbiota from surrounding environment, to what extent and the generality that the gut microbiota and the underlying ecological processes are affected by biotic and abiotic variations are largely unclear. Here, these concerns were explored by coupling spatiotemporal data on gut and rearing water bacterial communities with environmental variables over shrimp life stages at spatially distant locations. Shrimp gut microbiotas significantly changed mirroring their development, as evidenced by gut bacterial signatures of shrimp life stage contributing 95.5% stratification accuracy. Shrimp sourced little (2.6%-15.8%) of their gut microbiota from their rearing water. This microbial resistance was reflected by weak compositional differences between shrimp farming spatially distinct locations where species pools were distinct. Consistently, the assembly of shrimp gut microbiota was not adequately explained by the rearing water variables and bacterial community, but rather by host-age-associated biotic features. The successions of shrimp gut microbiota were droved by replacement (βsim), rather than by nestedness (βnes), while those of bacterioplankton communities were equally governed by replacement and nestedness. Our study highlights how shrimp gut bacterial community assembly is coupled to their development, rearing species pool, and that the successional pattern of host-associated communities is differed from that of free-living bacteria.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Lixia Xuan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Weina Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| |
Collapse
|
32
|
Faber-Hammond JJ, Coyle KP, Bacheller SK, Roberts CG, Mellies JL, Roberts RB, Renn SCP. The intestinal environment as an evolutionary adaptation to mouthbrooding in the Astatotilapia burtoni cichlid. FEMS Microbiol Ecol 2019; 95:5315751. [PMID: 30753545 DOI: 10.1093/femsec/fiz016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Many of the various parental care strategies displayed by animals are accompanied by a significant reduction in food intake that imposes a substantial energy trade-off. Mouthbrooding, as seen in several species of fish in which the parent holds the developing eggs and fry in the buccal cavity, represents an extreme example of reduced food intake during parental investment and is accompanied by a range of physiological adaptations. In this study we use 16S sequencing to characterize the gut microbiota of female Astatotilapia burtoni cichlid fish throughout the obligatory phase of self-induced starvation during the brooding cycle in comparison to stage-matched females that have been denied food for the same duration. In addition to a reduction of gut epithelial turnover, we find a dramatic reduction in species diversity in brooding stages that recovers upon release of fry and refeeding that is not seen in females that are simply starved. Based on overall species diversity as well as differential abundance of specific bacterial taxa, we suggest that rather than reflecting a simple deprivation of caloric intake, the gut microbiota is more strongly influenced by physiological changes specific to mouthbrooding including the reduced epithelial turnover and possible production of antimicrobial agents.
Collapse
Affiliation(s)
| | - Kaitlin P Coyle
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, 3510 Thomas Hall, 112 Derieux Place, North Carolina State University, Raleigh, NC, USA
| | | | | | - Jay L Mellies
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Reade B Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, 3510 Thomas Hall, 112 Derieux Place, North Carolina State University, Raleigh, NC, USA
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, Oregon, USA
| |
Collapse
|
33
|
Tormoehlen K, Johnson-Walker YJ, Lankau EW, Myint MS, Herrmann JA. Considerations for studying transmission of antimicrobial resistant enteric bacteria between wild birds and the environment on intensive dairy and beef cattle operations. PeerJ 2019; 7:e6460. [PMID: 30834183 PMCID: PMC6397636 DOI: 10.7717/peerj.6460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/15/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Wild birds using livestock facilities for food and shelter may contribute to dissemination of enteric pathogens or antimicrobial resistant bacteria. However, drivers of microbial exchange among wildlife and livestock are not well characterized. Predisposition for acquiring and retaining environmental bacteria may vary among species because of physiologic or behavioral differences, complicating selection of a bacterial model that can accurately characterize microbial connections among hosts of interest. This study compares the prevalence and antibiotic resistance phenotypes of two potential model bacterial organisms isolated from wild birds and their environments. METHODS We compared prevalence and resistance profiles of Escherichia coli and Enterococcus species isolated from environmental swabs and bird feces on a residential control site, a confinement dairy, a pasture-based beef farm, and a confinement beef farm. RESULTS Bird feces at all sites had low-to-moderate prevalence of Escherichia coli (range: 17-47%), despite potential for exposure on farms (range: 63-97%). Few Escherichia coli were isolated from the control environment. Enterococcus faecalis was dominant in birds at both beef farms (62% and 81% of Enterococcus isolates) and low-to-moderately prevalent at the dairy and control sites (29% and 23% of isolates, respectively). Antimicrobial resistance prevalence was higher in farm samples compared to those from the residential control, but distribution of resistant isolates varied between the bacterial genera. Birds on all farms carried resistant Enterococcus at similar rates to that of the environment, but resistance was less common in bird-associated Escherichia coli despite presence of resistant isolates in the farm environment. DISCUSSION Bacterial species studied may affect how readily bacterial exchange among populations is detected. Selection of microbial models must carefully consider both the questions being posed and how findings might influence resulting management decisions.
Collapse
Affiliation(s)
- Kristin Tormoehlen
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yvette J. Johnson-Walker
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emily W. Lankau
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Ronin Institute, Montclair, NJ, USA
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Maung San Myint
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A. Herrmann
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
34
|
Gillingham MAF, Béchet A, Cézilly F, Wilhelm K, Rendón-Martos M, Borghesi F, Nissardi S, Baccetti N, Azafzaf H, Menke S, Kayser Y, Sommer S. Offspring Microbiomes Differ Across Breeding Sites in a Panmictic Species. Front Microbiol 2019; 10:35. [PMID: 30787910 PMCID: PMC6372503 DOI: 10.3389/fmicb.2019.00035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/10/2019] [Indexed: 01/20/2023] Open
Abstract
High dispersal rates are known to homogenize host’s population genetic structure in panmictic species and to disrupt host local adaptation to the environment. Long-distance dispersal might also spread micro-organisms across large geographical areas. However, so far, to which extent selection mechanisms that shape host’s population genetics are mirrored in the population structure of the enteric microbiome remains unclear. High dispersal rates and horizontal parental transfer may homogenize bacterial communities between breeding sites (homogeneous hypothesis). Alternatively, strong selection from the local environment may differentiate bacterial communities between breeding sites (heterogeneous hypothesis). Furthermore, selection from age-specific environmental or physiological factors may differentiate the microbiome between juveniles and adults. Here, we analyzed the cloacal bacterial 16S rRNA gene of fledgling greater flamingos, Phoenicopterus roseus, across nine western Mediterranean breeding sites and four breeding seasons (n = 731) and adult birds (n = 27) from a single site. We found that fledgling cloacal microbiome, as measured by alpha diversity, beta diversity, the relative abundance of assigned sequence variants (ASVs) belonging to a phylum and genus composition within phylum, varied significantly between sampling sites and across time within site despite high adult dispersal rates. The spatio-temporal effects were stronger on individual ASV absence/presence than on ASV abundance (i.e., than on core microbiome composition). Spatial effects had a stronger effect than temporal effects, particularly on ASV abundance. Our study supports the heterogeneous hypothesis whereby local environmental conditions select and differentiate bacterial communities, thus countering the homogenizing effects of high-dispersing host species. In addition, differences in core microbiome between adult vs. fledgling samples suggests that differences in age-specific environmental and/or physiological factors result in differential selection pressure of core enteric microbiome between age classes, even within the same environment. In particular, the genus Corynebacterium, associated with both seasonal fat uptake and migration in previous studies, was much more abundant in high-dispersing fledglings than in more resident adults. To conclude, selection mechanisms that shape the host’s genetic structure cannot be extended to the genetic structure of the enteric microbiome, which has important implications regarding our understanding of both host local adaptation mechanisms and enteric microbiome population genetics.
Collapse
Affiliation(s)
| | - Arnaud Béchet
- Institut de Recherche de la Tour du Valat, Arles, France
| | - Frank Cézilly
- Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Manuel Rendón-Martos
- Consejería de Medio Ambiente y Ordenación del Territorio, R.N. Laguna de Fuente de Piedra, Fuente de Piedra, Spain
| | - Fabrizio Borghesi
- Department of Biological Sciences, Geological and Environmental, University of Bologna, Ravenna, Italy
| | | | - Nicola Baccetti
- Istituto Superiore per la Protezione e Ricerca Ambientale, Rome, Italy
| | - Hichem Azafzaf
- Association "Les Amis des Oiseaux" (AAO/BirdLife Tunisie), Ariana Center, Ariana, Tunisia
| | - Sebastian Menke
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Yves Kayser
- Institut de Recherche de la Tour du Valat, Arles, France
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
35
|
Liao Y, Peng Z, Chen L, Zhang Y, Cheng Q, Nüssler AK, Bao W, Liu L, Yang W. Prospective Views for Whey Protein and/or Resistance Training Against Age-related Sarcopenia. Aging Dis 2019; 10:157-173. [PMID: 30705776 PMCID: PMC6345331 DOI: 10.14336/ad.2018.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle aging is characterized by decline in skeletal muscle mass and function along with growing age, which consequently leads to age-related sarcopenia, if without any preventive timely treatment. Moreover, age-related sarcopenia in elder people would contribute to falls and fractures, disability, poor quality of life, increased use of hospital services and even mortality. Whey protein (WP) and/or resistance training (RT) has shown promise in preventing and treating age-related sarcopenia. It seems that sex hormones could be potential contributors for gender differences in skeletal muscle and age-related sarcopenia. In addition, skeletal muscle and the development of sarcopenia are influenced by gut microbiota, which in turn is affected by WP or RT. Gut microbiota may be a key factor for WP and/or RT against age-related sarcopenia. Therefore, focusing on sex hormones and gut microbiota may do great help for preventing, treating and better understanding age-related sarcopenia.
Collapse
Affiliation(s)
- Yuxiao Liao
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Peng
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Cheng
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas K Nüssler
- 3Department of Traumatology, BG Trauma center, University of Tübingen, Tübingen, Germany
| | - Wei Bao
- 4Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA
| | - Liegang Liu
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- 1Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Risely A, Waite DW, Ujvari B, Hoye BJ, Klaassen M. Active migration is associated with specific and consistent changes to gut microbiota in
Calidris
shorebirds. J Anim Ecol 2017; 87:428-437. [DOI: 10.1111/1365-2656.12784] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/21/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Alice Risely
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia
| | - David W. Waite
- Australian Centre for Ecogenomics University of Queensland Brisbane Qld Australia
| | - Beata Ujvari
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia
| | - Bethany J. Hoye
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia
- School of Biological Sciences University of Wollongong Wollongong NSW Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology Deakin University Geelong Vic. Australia
| |
Collapse
|