1
|
Du Y, Qian C, Li X, Zheng X, Huang S, Yin Z, Chen T, Pan L. Unveiling intraspecific diversity and evolutionary dynamics of the foodborne pathogen Bacillus paranthracis through high-quality pan-genome analysis. Curr Res Food Sci 2024; 9:100867. [PMID: 39376581 PMCID: PMC11456886 DOI: 10.1016/j.crfs.2024.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Understanding the evolutionary dynamics of foodborne pathogens throughout host-associated habitats is of utmost importance. Bacterial pan-genomes, as dynamic entities, are strongly influenced by ecological lifestyles. As a phenotypically diverse species in the Bacillus cereus group, Bacillus paranthracis is recognized as an emerging foodborne pathogen and a probiotic simultaneously. This poorly understood species is a suitable study model for adaptive pan-genome evolution. In this study, we determined the biogeographic distribution, abundance, genetic diversity, and genotypic profiles of key genetic elements of B. paranthracis. Metagenomic read recruitment analyses demonstrated that B. paranthracis members are globally distributed and abundant in host-associated habitats. A high-quality pan-genome of B. paranthracis was subsequently constructed to analyze the evolutionary dynamics involved in ecological adaptation comprehensively. The open pan-genome indicated a flexible gene repertoire with extensive genetic diversity. Significant divergences in the phylogenetic relationships, functional enrichment, and degree of selective pressure between the different components demonstrated different evolutionary dynamics between the core and accessory genomes driven by ecological forces. Purifying selection and gene loss are the main signatures of evolutionary dynamics in B. paranthracis pan-genome. The plasticity of the accessory genome is characterized by horizontal gene transfer (HGT), massive gene losses, and weak purifying or positive selection, which might contribute to niche-specific adaptation. In contrast, although the core genome dominantly undergoes purifying selection, its association with HGT and positively selected mutations indicates its potential role in ecological diversification. Furthermore, host fitness-related dynamics are characterized by the loss of secondary metabolite biosynthesis gene clusters (BGCs) and CAZyme-encoding genes and the acquisition of antimicrobial resistance (AMR) and virulence genes via HGT. This study offers a case study of pan-genome evolution to investigate the ecological adaptations reflected by biogeographical characteristics, thereby advancing the understanding of intraspecific diversity and evolutionary dynamics of foodborne pathogens.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Chengqian Qian
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xianxin Li
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xinqian Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Shoucong Huang
- Foshan Haitian (Gaoming) Flavouring Food Co., Ltd, Foshan, 52a8000, Guangdong, PR China
| | - Zhiqiu Yin
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, Guangdong, PR China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| |
Collapse
|
2
|
Wang K, Shu C, Bravo A, Soberón M, Zhang H, Crickmore N, Zhang J. Development of an Online Genome Sequence Comparison Resource for Bacillus cereus sensu lato Strains Using the Efficient Composition Vector Method. Toxins (Basel) 2023; 15:393. [PMID: 37368694 DOI: 10.3390/toxins15060393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
An automated method was developed for differentiating closely related B. cereus sensu lato (s.l.) species, especially biopesticide Bacillus thuringiensis, from other human pathogens, B. anthracis and B. cereus sensu stricto (s.s.). In the current research, four typing methods were initially compared, including multi-locus sequence typing (MLST), single-copy core genes phylogenetic analysis (SCCGPA), dispensable genes content pattern analysis (DGCPA) and composition vector tree (CVTree), to analyze the genomic variability of 23 B. thuringiensis strains from aizawai, kurstaki, israelensis, thuringiensis and morrisoni serovars. The CVTree method was the best option to be used for typing B. thuringiensis strains since it proved to be the fastest method, whilst giving high-resolution data about the strains. In addition, CVTree agrees well with ANI-based method, revealing the relationship between B. thuringiensis and other B. cereus s.l. species. Based on these data, an online genome sequence comparison resource was built for Bacillus strains called the Bacillus Typing Bioinformatics Database to facilitate strain identification and characterization.
Collapse
Affiliation(s)
- Kui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Mexico
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Cheng LW, Byadgi OV, Tsai CE, Wang PC, Chen SC. Pathogenicity and Genomic Characterization of a Novel Genospecies, Bacillus shihchuchen, of the Bacillus cereus Group Isolated from Chinese Softshell Turtle ( Pelodiscus sinensis). Int J Mol Sci 2023; 24:ijms24119636. [PMID: 37298593 DOI: 10.3390/ijms24119636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The Chinese softshell turtle (CST; Pelodiscus sinensis) is a freshwater aquaculture species of substantial economic importance that is commercially farmed across Asia, particularly in Taiwan. Although diseases caused by the Bacillus cereus group (Bcg) pose a major threat to commercial CST farming systems, information regarding its pathogenicity and genome remains limited. Here, we investigated the pathogenicity of Bcg strains isolated in a previous study and performed whole-genome sequencing. Pathogenicity analysis indicated that QF108-045 isolated from CSTs caused the highest mortality rate, and whole-genome sequencing revealed that it was an independent group distinct from other known Bcg genospecies. The average nucleotide identity compared to other known Bcg genospecies was below 95%, suggesting that QF108-045 belongs to a new genospecies, which we named Bacillus shihchuchen. Furthermore, genes annotation revealed the presence of anthrax toxins, such as edema factor and protective antigen, in QF108-045. Therefore, the biovar anthracis was assigned, and the full name of QF108-045 was Bacillus shihchuchen biovar anthracis. In addition to possessing multiple drug-resistant genes, QF108-045 demonstrated resistance to various types of antibiotics, including penicillins (amoxicillin and ampicillin), cephalosporins (ceftifour, cephalexin, and cephazolin), and polypeptides, such as vancomycin.
Collapse
Affiliation(s)
- Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Omkar Vijay Byadgi
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chin-En Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
4
|
Xu M, Selvaraj GK, Lu H. Environmental sporobiota: Occurrence, dissemination, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161809. [PMID: 36702282 DOI: 10.1016/j.scitotenv.2023.161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spore-forming bacteria known as sporobiota are widespread in diverse environments from terrestrial and aquatic habitats to industrial and healthcare systems. Studies on sporobiota have been mainly focused on food processing and clinical fields, while a large amount of sporobiota exist in natural environments. Due to their persistence and capabilities of transmitting virulence factors and antibiotic resistant genes, environmental sporobiota could pose significant health risks to humans. These risks could increase as global warming and environmental pollution has altered the life cycle of sporobiota. This review summarizes the current knowledge of environmental sporobiota, including their occurrence, characteristics, and functions. An interaction network among clinical-, food-related, and environment-related sporobiota is constructed. Recent and effective methods for detecting and disinfecting environmental sporobiota are also discussed. Key problems and future research needs for better understanding and reducing the risks of environmental sporobiota and sporobiome are proposed.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ganesh-Kumar Selvaraj
- Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India.
| | - Huijie Lu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang, China.
| |
Collapse
|
5
|
Dimitriu T, Souissi W, Morwool P, Darby A, Crickmore N, Raymond B. Selecting for infectivity across metapopulations can increase virulence in the social microbe
Bacillus thuringiensis. Evol Appl 2023; 16:705-720. [PMID: 36969139 PMCID: PMC10033855 DOI: 10.1111/eva.13529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Passage experiments that sequentially infect hosts with parasites have long been used to manipulate virulence. However, for many invertebrate pathogens, passage has been applied naively without a full theoretical understanding of how best to select for increased virulence and this has led to very mixed results. Understanding the evolution of virulence is complex because selection on parasites occurs across multiple spatial scales with potentially different conflicts operating on parasites with different life histories. For example, in social microbes, strong selection on replication rate within hosts can lead to cheating and loss of virulence, because investment in public goods virulence reduces replication rate. In this study, we tested how varying mutation supply and selection for infectivity or pathogen yield (population size in hosts) affected the evolution of virulence against resistant hosts in the specialist insect pathogen Bacillus thuringiensis, aiming to optimize methods for strain improvement against a difficult to kill insect target. We show that selection for infectivity using competition between subpopulations in a metapopulation prevents social cheating, acts to retain key virulence plasmids, and facilitates increased virulence. Increased virulence was associated with reduced efficiency of sporulation, and possible loss of function in putative regulatory genes but not with altered expression of the primary virulence factors. Selection in a metapopulation provides a broadly applicable tool for improving the efficacy of biocontrol agents. Moreover, a structured host population can facilitate artificial selection on infectivity, while selection on life-history traits such as faster replication or larger population sizes can reduce virulence in social microbes.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Centre for Ecology and Conservation University of Exeter Penryn UK
| | - Wided Souissi
- School of Life Sciences University of Sussex Brighton UK
| | - Peter Morwool
- Centre for Ecology and Conservation University of Exeter Penryn UK
| | - Alistair Darby
- Centre for Genomic Research, Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Neil Crickmore
- School of Life Sciences University of Sussex Brighton UK
| | - Ben Raymond
- Centre for Ecology and Conservation University of Exeter Penryn UK
| |
Collapse
|
6
|
Fichant A, Felten A, Gallet A, Firmesse O, Bonis M. Identification of Genetic Markers for the Detection of Bacillus thuringiensis Strains of Interest for Food Safety. Foods 2022; 11:foods11233924. [PMID: 36496733 PMCID: PMC9739007 DOI: 10.3390/foods11233924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Bacillus thuringiensis (Bt), belonging to the Bacillus cereus (Bc) group, is commonly used as a biopesticide worldwide due to its ability to produce insecticidal crystals during sporulation. The use of Bt, especially subspecies aizawai and kurstaki, to control pests such as Lepidoptera, generally involves spraying mixtures containing spores and crystals on crops intended for human consumption. Recent studies have suggested that the consumption of commercial Bt strains may be responsible for foodborne outbreaks (FBOs). However, its genetic proximity to Bc strains has hindered the development of routine tests to discriminate Bt from other Bc, especially Bacillus cereus sensu stricto (Bc ss), well known for its involvement in FBOs. Here, to develop tools for the detection and the discrimination of Bt in food, we carried out a genome-wide association study (GWAS) on 286 complete genomes of Bc group strains to identify and validate in silico new molecular markers specific to different Bt subtypes. The analyses led to the determination and the in silico validation of 128 molecular markers specific to Bt, its subspecies aizawai, kurstaki and four previously described proximity clusters associated with these subspecies. We developed a command line tool based on a 14-marker workflow, to carry out a computational search for Bt-related markers from a putative Bc genome, thereby facilitating the detection of Bt of interest for food safety, especially in the context of FBOs.
Collapse
Affiliation(s)
- Arnaud Fichant
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Arnaud Felten
- Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Olivier Firmesse
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
| | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
7
|
Hinnekens P, Fayad N, Gillis A, Mahillon J. Conjugation across Bacillus cereus and kin: A review. Front Microbiol 2022; 13:1034440. [PMID: 36406448 PMCID: PMC9673590 DOI: 10.3389/fmicb.2022.1034440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major driving force in shaping bacterial communities. Key elements responsible for HGT are conjugation-like events and transmissible plasmids. Conjugative plasmids can promote their own transfer as well as that of co-resident plasmids. Bacillus cereus and relatives harbor a plethora of plasmids, including conjugative plasmids, which are at the heart of the group species differentiation and specification. Since the first report of a conjugation-like event between strains of B. cereus sensu lato (s.l.) 40 years ago, many have studied the potential of plasmid transfer across the group, especially for plasmids encoding major toxins. Over the years, more than 20 plasmids from B. cereus isolates have been reported as conjugative. However, with the increasing number of genomic data available, in silico analyses indicate that more plasmids from B. cereus s.l. genomes present self-transfer potential. B. cereus s.l. bacteria occupy diverse environmental niches, which were mimicked in laboratory conditions to study conjugation-related mechanisms. Laboratory mating conditions remain nonetheless simplistic compared to the complex interactions occurring in natural environments. Given the health, economic and ecological importance of strains of B. cereus s.l., it is of prime importance to consider the impact of conjugation within this bacterial group.
Collapse
Affiliation(s)
- Pauline Hinnekens
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
- *Correspondence: Jacques Mahillon,
| |
Collapse
|
8
|
Takahashi N, Nagai S, Tomimatsu Y, Saito A, Kaneta N, Tsujimoto Y, Tamura H. Simultaneous Discrimination of Cereulide-Producing Bacillus cereus and Psychrotolerant B. cereus Group by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry. J Food Prot 2022; 85:1192-1202. [PMID: 35687734 DOI: 10.4315/jfp-21-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cereulide-producing Bacillus cereus, which causes foodborne illnesses with vomiting, and psychrotolerant B. cereus group strains such as Bacillus mycoides, which can grow at ≥7°C and cause spoilage of refrigerated foods, are significant concerns for the food industry. Rapid and simple methods to discriminate the cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains are needed. We developed a novel, rapid, and simple method with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis for simultaneous discrimination of these two groups from other B. cereus group strains. A potassium adduct of cereulide was used to detect cereulide-producing B. cereus, and three ribosomal subunit proteins (L30, S16, and S20) were used to detect psychrotolerant B. cereus group. A total of 51 B. cereus group strains were analyzed by MALDI-TOF MS. The biomarkers allowed successful discrimination of 16 cereulide-producing B. cereus and 15 psychrotolerant B. cereus group strains from other B. cereus group strains. The results showed that this MALDI-TOF MS analysis allows simultaneous discrimination of cereulide-producing B. cereus and psychrotolerant B. cereus group strains from other B. cereus group strains. This efficient method has the potential to be a valuable tool for ensuring food safety. HIGHLIGHTS
Collapse
Affiliation(s)
- Naomi Takahashi
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Satomi Nagai
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yumiko Tomimatsu
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Ayumi Saito
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Naoko Kaneta
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Yoshinori Tsujimoto
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo, 192-0919, Japan
| | - Hiroto Tamura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
9
|
Biggel M, Jessberger N, Kovac J, Johler S. Recent paradigm shifts in the perception of the role of Bacillus thuringiensis in foodborne disease. Food Microbiol 2022; 105:104025. [DOI: 10.1016/j.fm.2022.104025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
|
10
|
White H, Vos M, Sheppard SK, Pascoe B, Raymond B. Signatures of selection in core and accessory genomes indicate different ecological drivers of diversification among Bacillus cereus clades. Mol Ecol 2022; 31:3584-3597. [PMID: 35510788 PMCID: PMC9324797 DOI: 10.1111/mec.16490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Bacterial clades are often ecologically distinct, despite extensive horizontal gene transfer (HGT). How selection works on different parts of bacterial pan-genomes to drive and maintain the emergence of clades is unclear. Focusing on the three largest clades in the diverse and well-studied Bacillus cereus sensu lato group, we identified clade-specific core genes (present in all clade members) and then used clade-specific allelic diversity to identify genes under purifying and diversifying selection. Clade-specific accessory genes (present in a subset of strains within a clade) were characterized as being under selection using presence/absence in specific clades. Gene ontology analyses of genes under selection revealed that different gene functions were enriched in different clades. Furthermore, some gene functions were enriched only amongst clade-specific core or accessory genomes. Genes under purifying selection were often clade-specific, while genes under diversifying selection showed signs of frequent HGT. These patterns are consistent with different selection pressures acting on both the core and the accessory genomes of different clades and can lead to ecological divergence in both cases. Examining variation in allelic diversity allows us to uncover genes under clade-specific selection, allowing ready identification of strains and their ecological niche.
Collapse
Affiliation(s)
- Hugh White
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Michiel Vos
- European Centre for Environment and Human HealthUniversity of Exeter Medical SchoolEnvironment and Sustainability InstitutePenryn CampusUK
| | - Samuel K. Sheppard
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Pascoe
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Raymond
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
11
|
Differentiation of Bacillus cereus and Bacillus thuringiensis Using Genome-Guided MALDI-TOF MS Based on Variations in Ribosomal Proteins. Microorganisms 2022; 10:microorganisms10050918. [PMID: 35630362 PMCID: PMC9146703 DOI: 10.3390/microorganisms10050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Bacillus cereus and B. thuringiensis are closely related species that are relevant to foodborne diseases and biopesticides, respectively. Unambiguous differentiation of these two species is crucial for bacterial taxonomy. As genome analysis offers an objective but time-consuming classification of B. cereus and B. thuringiensis, in the present study, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to accelerate this process. By combining in silico genome analysis and MALDI-TOF MS measurements, four species-specific peaks of B. cereus and B. thuringiensis were screened and identified. The species-specific peaks of B. cereus were m/z 3211, 6427, 9188, and 9214, and the species-specific peaks of B. thuringiensis were m/z 3218, 6441, 9160, and 9229. All the above peaks represent ribosomal proteins, which are conserved and consistent with the phylogenetic relationship between B. cereus and B. thuringiensis. The specificity of the peaks was robustly verified using common foodborne pathogens. Thus, we concluded that genome-guided MALDI-TOF MS allows high-throughput differentiation of B. cereus and B. thuringiensis and provides a framework for differentiating other closely related species.
Collapse
|
12
|
Lee IPA, Eldakar OT, Gogarten JP, Andam CP. Bacterial cooperation through horizontal gene transfer. Trends Ecol Evol 2021; 37:223-232. [PMID: 34815098 DOI: 10.1016/j.tree.2021.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Cooperation exists across all scales of biological organization, from genetic elements to complex human societies. Bacteria cooperate by secreting molecules that benefit all individuals in the population (i.e., public goods). Genes associated with cooperation can spread among strains through horizontal gene transfer (HGT). We discuss recent findings on how HGT mediated by mobile genetic elements promotes bacterial cooperation, how cooperation in turn can facilitate more frequent HGT, and how the act of HGT itself may be considered as a form of cooperation. We propose that HGT is an important enforcement mechanism in bacterial populations, thus creating a positive feedback loop that further maintains cooperation. To enforce cooperation, HGT serves as a homogenizing force by transferring the cooperative trait, effectively eliminating cheaters.
Collapse
Affiliation(s)
- Isaiah Paolo A Lee
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Omar Tonsi Eldakar
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
13
|
Kaze M, Brooks L, Sistrom M. Antimicrobial resistance in Bacillus-based biopesticide products. MICROBIOLOGY-SGM 2021; 167. [PMID: 34351257 DOI: 10.1099/mic.0.001074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The crisis of antimicrobial resistant bacterial infections is one of the most pressing public health issues. Common agricultural practices have been implicated in the generation of antimicrobial resistant bacteria. Biopesticides, live bacteria used for pest control, are non-pathogenic and considered safe for consumption. Application of bacteria-based pesticides to crops in high concentrations raises the possibility of unintentional contributions to the movement and generation of antimicrobial resistance genes in the environment. However, the presence of clinically relevant antimicrobial resistance genes and their resistance phenotypes are currently unknown. Here we use a combination of multiple bioinformatic and microbiological techniques to define resistomes of widely used biopesticides and determine how the presence of suspected antimicrobial resistance genes translates to observable resistance phenotypes in several biopesticide products. Our results demonstrate that biopesticide products are reservoirs of clinically relevant antimicrobial resistance genes and bear resistance to multiple drug classes.
Collapse
Affiliation(s)
- Mo Kaze
- Department of Quantitative and Systems Biology, School of Natural Sciences, University of California Merced, Merced, USA
| | - Lauren Brooks
- Department of Biology, Utah Valley University, Orem, USA
| | - Mark Sistrom
- Department of Quantitative and Systems Biology, School of Natural Sciences, University of California Merced, Merced, USA
| |
Collapse
|
14
|
Dvorkina T, Bankevich A, Sorokin A, Yang F, Adu-Oppong B, Williams R, Turner K, Pevzner PA. ORFograph: search for novel insecticidal protein genes in genomic and metagenomic assembly graphs. MICROBIOME 2021; 9:149. [PMID: 34183047 PMCID: PMC8240309 DOI: 10.1186/s40168-021-01092-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/11/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Since the prolonged use of insecticidal proteins has led to toxin resistance, it is important to search for novel insecticidal protein genes (IPGs) that are effective in controlling resistant insect populations. IPGs are usually encoded in the genomes of entomopathogenic bacteria, especially in large plasmids in strains of the ubiquitous soil bacteria, Bacillus thuringiensis (Bt). Since there are often multiple similar IPGs encoded by such plasmids, their assemblies are typically fragmented and many IPGs are scattered through multiple contigs. As a result, existing gene prediction tools (that analyze individual contigs) typically predict partial rather than complete IPGs, making it difficult to conduct downstream IPG engineering efforts in agricultural genomics. METHODS Although it is difficult to assemble IPGs in a single contig, the structure of the genome assembly graph often provides clues on how to combine multiple contigs into segments encoding a single IPG. RESULTS We describe ORFograph, a pipeline for predicting IPGs in assembly graphs, benchmark it on (meta)genomic datasets, and discover nearly a hundred novel IPGs. This work shows that graph-aware gene prediction tools enable the discovery of greater diversity of IPGs from (meta)genomes. CONCLUSIONS We demonstrated that analysis of the assembly graphs reveals novel candidate IPGs. ORFograph identified both already known genes "hidden" in assembly graphs and potential novel IPGs that evaded existing tools for IPG identification. As ORFograph is fast, one could imagine a pipeline that processes many (meta)genomic assembly graphs to identify even more novel IPGs for phenotypic testing than would previously be inaccessible by traditional gene-finding methods. While here we demonstrated the results of ORFograph only for IPGs, the proposed approach can be generalized to any class of genes. Video abstract.
Collapse
Affiliation(s)
- Tatiana Dvorkina
- Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anton Bankevich
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA USA
| | - Alexei Sorokin
- Université Paris-Saclay, INRAE, Micalis Institute, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Fan Yang
- Data Science & Analytics, Bayer U.S. - Crop Science, Chesterfield, MO USA
- Ascus Biosciences, San Diego, CA USA
| | - Boahemaa Adu-Oppong
- Data Science & Analytics, Bayer U.S. - Crop Science, Chesterfield, MO USA
- Thermo Fisher Scientific, Carlsbad, CA USA
| | - Ryan Williams
- Data Science & Analytics, Bayer U.S. - Crop Science, Chesterfield, MO USA
| | - Keith Turner
- Data Science & Analytics, Bayer U.S. - Crop Science, Chesterfield, MO USA
| | - Pavel A. Pevzner
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA USA
| |
Collapse
|
15
|
Gillis A, Hock L, Mahillon J. Comparative Genomics of Prophages Sato and Sole Expands the Genetic Diversity Found in the Genus Betatectivirus. Microorganisms 2021; 9:1335. [PMID: 34205474 PMCID: PMC8234876 DOI: 10.3390/microorganisms9061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Tectiviruses infecting the Bacillus cereus group represent part of the bacterial "plasmid repertoire" as they behave as linear plasmids during their lysogenic cycle. Several novel tectiviruses have been recently found infecting diverse strains belonging the B. cereus lineage. Here, we report and analyze the complete genome sequences of phages Sato and Sole. The linear dsDNA genome of Sato spans 14,852 bp with 32 coding DNA sequences (CDSs), whereas the one of Sole has 14,444 bp comprising 30 CDSs. Both phage genomes contain inverted terminal repeats and no tRNAs. Genomic comparisons and phylogenetic analyses placed these two phages within the genus Betatectivirus in the family Tectiviridae. Additional comparative genomic analyses indicated that the "gene regulation-genome replication" module of phages Sato and Sole is more diverse than previously observed among other fully sequenced betatectiviruses, displaying very low sequence similarities and containing some ORFans. Interestingly, the ssDNA binding protein encoded in this genomic module in phages Sato and Sole has very little amino acid similarity with those of reference betatectiviruses. Phylogenetic analyses showed that both Sato and Sole represent novel tectivirus species, thus we propose to include them as two novel species in the genus Betatectivirus.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium;
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
16
|
Sitter TL, Vaughan AL, Schoof M, Jackson SA, Glare TR, Cox MP, Fineran PC, Gardner PP, Hurst MRH. Evolution of virulence in a novel family of transmissible mega-plasmids. Environ Microbiol 2021; 23:5289-5304. [PMID: 33989447 DOI: 10.1111/1462-2920.15595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
Some Serratia entomophila isolates have been successfully exploited in biopesticides due to their ability to cause amber disease in larvae of the Aotearoa (New Zealand) endemic pasture pest, Costelytra giveni. Anti-feeding prophage and ABC toxin complex virulence determinants are encoded by a 153-kb single-copy conjugative plasmid (pADAP; amber disease-associated plasmid). Despite growing understanding of the S. entomophila pADAP model plasmid, little is known about the wider plasmid family. Here, we sequence and analyse mega-plasmids from 50 Serratia isolates that induce variable disease phenotypes in the C. giveni insect host. Mega-plasmids are highly conserved within S. entomophila, but show considerable divergence in Serratia proteamaculans with other variants in S. liquefaciens and S. marcescens, likely reflecting niche adaption. In this study to reconstruct ancestral relationships for a complex mega-plasmid system, strong co-evolution between Serratia species and their plasmids were found. We identify 12 distinct mega-plasmid genotypes, all sharing a conserved gene backbone, but encoding highly variable accessory regions including virulence factors, secondary metabolite biosynthesis, Nitrogen fixation genes and toxin-antitoxin systems. We show that the variable pathogenicity of Serratia isolates is largely caused by presence/absence of virulence clusters on the mega-plasmids, but notably, is augmented by external chromosomally encoded factors.
Collapse
Affiliation(s)
- Thomas L Sitter
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Amy L Vaughan
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Marion Schoof
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Murray P Cox
- Bio-Protection Research Centre, Lincoln, New Zealand.,Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Peter C Fineran
- Bio-Protection Research Centre, Lincoln, New Zealand.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul P Gardner
- Bio-Protection Research Centre, Lincoln, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Mark R H Hurst
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
17
|
Shikov AE, Malovichko YV, Lobov AA, Belousova ME, Nizhnikov AA, Antonets KS. The Distribution of Several Genomic Virulence Determinants Does Not Corroborate the Established Serotyping Classification of Bacillus thuringiensis. Int J Mol Sci 2021; 22:2244. [PMID: 33668147 PMCID: PMC7956386 DOI: 10.3390/ijms22052244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Bacillus thuringiensis, commonly referred to as Bt, is an object of the lasting interest of microbiologists due to its highly effective insecticidal properties, which make Bt a prominent source of biologicals. To categorize the exuberance of Bt strains discovered, serotyping assays are utilized in which flagellin serves as a primary seroreactive molecule. Despite its convenience, this approach is not indicative of Bt strains' phenotypes, neither it reflects actual phylogenetic relationships within the species. In this respect, comparative genomic and proteomic techniques appear more informative, but their use in Bt strain classification remains limited. In the present work, we used a bottom-up proteomic approach based on fluorescent two-dimensional difference gel electrophoresis (2D-DIGE) coupled with liquid chromatography/tandem mass spectrometry(LC-MS/MS) protein identification to assess which stage of Bt culture, vegetative or spore, would be more informative for strain characterization. To this end, the proteomic differences for the israelensis-attributed strains were assessed to compare sporulating cultures of the virulent derivative to the avirulent one as well as to the vegetative stage virulent bacteria. Using the same approach, virulent spores of the israelensis strain were also compared to the spores of strains belonging to two other major Bt serovars, namely darmstadiensis and thuringiensis. The identified proteins were analyzed regarding the presence of the respective genes in the 104 Bt genome assemblies available at open access with serovar attributions specified. Of 21 proteins identified, 15 were found to be encoded in all the present assemblies at 67% identity threshold, including several virulence factors. Notable, individual phylogenies of these core genes conferred neither the serotyping nor the flagellin-based phylogeny but corroborated the reconstruction based on phylogenomics approaches in terms of tree topology similarity. In its turn, the distribution of accessory protein genes was not confined to the existing serovars. The obtained results indicate that neither gene presence nor the core gene sequence may serve as distinctive bases for the serovar attribution, undermining the notion that the serotyping system reflects strains' phenotypic or genetic similarity. We also provide a set of loci, which fit in with the phylogenomics data plausibly and thus may serve for draft phylogeny estimation of the novel strains.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
| | - Arseniy A. Lobov
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (M.E.B.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia;
| |
Collapse
|
18
|
Mageiros L, Méric G, Bayliss SC, Pensar J, Pascoe B, Mourkas E, Calland JK, Yahara K, Murray S, Wilkinson TS, Williams LK, Hitchings MD, Porter J, Kemmett K, Feil EJ, Jolley KA, Williams NJ, Corander J, Sheppard SK. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat Commun 2021; 12:765. [PMID: 33536414 PMCID: PMC7858641 DOI: 10.1038/s41467-021-20988-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Chickens are the most common birds on Earth and colibacillosis is among the most common diseases affecting them. This major threat to animal welfare and safe sustainable food production is difficult to combat because the etiological agent, avian pathogenic Escherichia coli (APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene present in all disease-causing isolates. Here, we address the underlying evolutionary mechanisms of extraintestinal spread and systemic infection in poultry. Combining population scale comparative genomics and pangenome-wide association studies, we compare E. coli from commensal carriage and systemic infections. We identify phylogroup-specific and species-wide genetic elements that are enriched in APEC, including pathogenicity-associated variation in 143 genes that have diverse functions, including genes involved in metabolism, lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs. disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with 73% accuracy, demonstrating the potential for early identification of emergent APEC in healthy flocks.
Collapse
Affiliation(s)
- Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK
| | - Johan Pensar
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Koji Yahara
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
| | - Susan Murray
- Uppsala University, Department for medical biochemistry and microbiology, Uppsala University, Uppsala, Sweden
| | - Thomas S Wilkinson
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Lisa K Williams
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Jonathan Porter
- National Laboratory Service, Environment Agency, Starcross, UK
| | - Kirsty Kemmett
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Keith A Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK.
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
19
|
Lai S, Jia L, Subramanian B, Pan S, Zhang J, Dong Y, Chen WH, Zhao XM. mMGE: a database for human metagenomic extrachromosomal mobile genetic elements. Nucleic Acids Res 2021; 49:D783-D791. [PMID: 33074335 PMCID: PMC7778953 DOI: 10.1093/nar/gkaa869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Extrachromosomal mobile genetic elements (eMGEs), including phages and plasmids, that can move across different microbes, play important roles in genome evolution and shaping the structure of microbial communities. However, we still know very little about eMGEs, especially their abundances, distributions and putative functions in microbiomes. Thus, a comprehensive description of eMGEs is of great utility. Here we present mMGE, a comprehensive catalog of 517 251 non-redundant eMGEs, including 92 492 plasmids and 424 759 phages, derived from diverse body sites of 66 425 human metagenomic samples. About half the eMGEs could be further grouped into 70 074 clusters using relaxed criteria (referred as to eMGE clusters below). We provide extensive annotations of the identified eMGEs including sequence characteristics, taxonomy affiliation, gene contents and their prokaryotic hosts. We also calculate the prevalence, both within and across samples for each eMGE and eMGE cluster, enabling users to see putative associations of eMGEs with human phenotypes or their distribution preferences. All eMGE records can be browsed or queried in multiple ways, such as eMGE clusters, metagenomic samples and associated hosts. The mMGE is equipped with a user-friendly interface and a BLAST server, facilitating easy access/queries to all its contents easily. mMGE is freely available for academic use at: https://mgedb.comp-sysbio.org.
Collapse
Affiliation(s)
- Senying Lai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Longhao Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Balakrishnan Subramanian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaojun Pan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Jinglong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yanqi Dong
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China
- Research Institute of Intelligent Complex System, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Manktelow CJ, White H, Crickmore N, Raymond B. Divergence in environmental adaptation between terrestrial clades of the Bacillus cereus group. FEMS Microbiol Ecol 2020; 97:5974271. [PMID: 33175127 DOI: 10.1093/femsec/fiaa228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
The Bacillus cereus group encompasses beneficial and harmful species in diverse niches and has a much debated taxonomy. Investigating whether selection has led to ecological divergence between phylogenetic clades can help understand the basis of speciation, and has implications for predicting biological safety across this group. Using three most terrestrial species in this group (B. cereus, Bacillus thuringiensis and Bacillus mycoides) we charactererized ecological specialization in terms of resource use, thermal adaptation and fitness in different environmental conditions and tested whether taxonomic species or phylogenetic clade best explained phenotypic variation. All isolates grew vigorously in protein rich media and insect cadavers, but exploitation of soil or plant derived nutrients was similarly weak for all. For B. thuringiensis and B. mycoides, clade and taxonomic species were important predictors of relative fitness in insect infections. Fully psychrotolerant isolates could outcompete B. thuringiensis in insects at low temperature, although psychrotolerance predicted growth in artificial media better than clade. In contrast to predictions, isolates in the Bacillus anthracis clade had sub-optimal growth at 37°C. The common ecological niche in these terrestrial B. cereus species is the ability to exploit protein rich resources such as cadavers. However, selection has led to different phylogenetic groups developing different strategies for accessing this resource. Thus, clades, as well as traditional taxonomic phenotypes, predict biologically important traits.
Collapse
Affiliation(s)
- C James Manktelow
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Hugh White
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| |
Collapse
|
21
|
Torres Manno MA, Repizo GD, Magni C, Dunlap CA, Espariz M. The assessment of leading traits in the taxonomy of the Bacillus cereus group. Antonie van Leeuwenhoek 2020; 113:2223-2242. [PMID: 33179199 DOI: 10.1007/s10482-020-01494-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Bacillus cereus sensu lato strains (B. cereus group) are widely distributed in nature and have received interest for decades due to their importance in insect pest management, food production and their positive and negative repercussions in human health. Consideration of practical uses such as virulence, physiology, morphology, or ill-defined features have been applied to describe and classify species of the group. However, current comparative studies have exposed inconsistencies between evolutionary relatedness and biological significance among genomospecies of the B. cereus group. Here, the combined analyses of core-based phylogeny and all versus all Average Nucleotide Identity values based on 2116 strains were conducted to update the genomospecies circumscriptions within B. cereus group. These analyses suggested the existence of 57 genomospecies, 37 of which are novel, thus indicating that the taxonomic identities of more than 39% of the analyzed strains should be revised or updated. In addition, we found that whole-genome in silico analyses were suitable to differentiate genomospecies such as B. anthracis, B. cereus and B. thuringiensis. The prevalence of toxin and virulence factors coding genes in each of the genomospecies of the B. cereus group was also examined, using phylogeny-aware methods at wide-genome scale. Remarkably, Cry and emetic toxins, commonly assumed to be associated with B. thuringiensis and emetic B. paranthracis, respectively, did not show a positive correlation with those genomospecies. On the other hand, anthrax-like toxin and capsule-biosynthesis coding genes were positively correlated with B. anthracis genomospecies, despite not being present in all strains, and with presumably non-pathogenic genomospecies. Hence, despite these features have been so far considered relevant for industrial or medical classification of related species of the B. cereus group, they were inappropriate for their circumscription. In this study, genomospecies of the group were accurately affiliated and representative strains defined, generating a rational framework that will allow comparative analysis in epidemiological or ecological studies. Based on this classification the role of specific markers such as Type VII secretion system, cytolysin, bacillolysin, and siderophores such as petrobactin were pointed out for further analysis.
Collapse
Affiliation(s)
- Mariano A Torres Manno
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF - UNR, Rosario, Santa Fe, Argentina
- Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo D Repizo
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Laboratorio de Resistencia bacteriana a antimicrobianos, Instituto de Biología Molecular y Celular de Rosario (IBR), sede FCByF - UNR, Rosario, Santa Fe, Argentina
| | - Christian Magni
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF - UNR, Rosario, Santa Fe, Argentina
| | - Christopher A Dunlap
- United States Department of Agriculture, Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, 1815 North University Street, Peoria, IL, 61604, USA
| | - Martín Espariz
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina.
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF - UNR, Rosario, Santa Fe, Argentina.
- Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
22
|
Strong Environment-Genotype Interactions Determine the Fitness Costs of Antibiotic Resistance In Vitro and in an Insect Model of Infection. Antimicrob Agents Chemother 2020; 64:AAC.01033-20. [PMID: 32661001 DOI: 10.1128/aac.01033-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
The acquisition of antibiotic resistance commonly imposes fitness costs, a reduction in the fitness of bacteria in the absence of drugs. These costs have been quantified primarily using in vitro experiments and a small number of in vivo studies in mice, and it is commonly assumed that these diverse methods are consistent. Here, we used an insect model of infection to compare the fitness costs of antibiotic resistance in vivo to those in vitro Experiments explored diverse mechanisms of resistance in a Gram-positive pathogen, Bacillus thuringiensis, and a Gram-negative intestinal symbiont, Enterobacter cloacae Rifampin resistance in B. thuringiensis showed fitness costs that were typically elevated in vivo, although these were modulated by genotype-environment interactions. In contrast, resistance to cefotaxime via derepression of AmpC β-lactamase in E. cloacae resulted in no detectable costs in vivo or in vitro, while spontaneous resistance to nalidixic acid, and carriage of the IncP plasmid RP4, imposed costs that increased in vivo Overall, fitness costs in vitro were a poor predictor of fitness costs in vivo because of strong genotype-environment interactions throughout this study. Insect infections provide a cheap and accessible means of assessing the fitness consequences of resistance mutations, data that are important for understanding the evolution and spread of resistance. This study emphasizes that the fitness costs imposed by particular mutations or different modes of resistance are extremely variable and that only a subset of these mutations is likely to be prevalent outside the laboratory.
Collapse
|
23
|
Completed Genomic Sequence of Bacillus thuringiensis HER1410 Reveals a Cry-Containing Chromosome, Two Megaplasmids, and an Integrative Plasmidial Prophage. G3-GENES GENOMES GENETICS 2020; 10:2927-2939. [PMID: 32690586 PMCID: PMC7466992 DOI: 10.1534/g3.120.401361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacillus thuringiensis is the most used biopesticide in agriculture. Its entomopathogenic capacity stems from the possession of plasmid-borne insecticidal crystal genes (cry), traditionally used as discriminant taxonomic feature for that species. As such, crystal and plasmid identification are key to the characterization of this species. To date, about 600 B. thuringiensis genomes have been reported, but less than 5% have been completed, while the other draft genomes are incomplete, hindering full plasmid delineation. Here we present the complete genome of Bacillus thuringiensis HER1410, a strain closely related to B. thuringiensis entomocidus and a known host for a variety of Bacillus phages. The combination of short and long-read techniques allowed fully resolving the genome and delineation of three plasmids. This enabled the accurate detection of an unusual location of a unique cry gene, cry1Ba4, located in a genomic island near the chromosome replication origin. Two megaplasmids, pLUSID1 and pLUSID2 could be delineated: pLUSID1 (368 kb), a likely conjugative plasmid involved in virulence, and pLUSID2 (156 kb) potentially related to the sporulation process. A smaller plasmidial prophage pLUSID3, with a dual lifestyle whose integration within the chromosome causes the disruption of a flagellar key component. Finally, phylogenetic analysis placed this strain within a clade comprising members from the B. thuringiensis serovar thuringiensis and other serovars and with B. cereus s. s. in agreement with the intermingled taxonomy of B. cereus sensu lato group.
Collapse
|
24
|
Takahashi N, Nagai S, Fujita A, Ido Y, Kato K, Saito A, Moriya Y, Tomimatsu Y, Kaneta N, Tsujimoto Y, Tamura H. Discrimination of psychrotolerant Bacillus cereus group based on MALDI-TOF MS analysis of ribosomal subunit proteins. Food Microbiol 2020; 91:103542. [PMID: 32539947 DOI: 10.1016/j.fm.2020.103542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023]
Abstract
Psychrotolerant species of the Bacillus cereus group, Bacillus mycoides and Bacillus weihenstephanensis, can grow at ≥ 7 °C and are significant concerns for the food industry due to their ability to cause spoilage of refrigerated food. In addition to that, some strains of B. weihenstephanensis can produce emetic toxin, namely cereulide, which is known to cause vomiting. Therefore, rapid and simple methods to discriminate psychrotolerant B. cereus group species are crucial. Here, matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) method were used to discriminate psychrotolerant species of the B. cereus group based on a set of four ribosomal subunit proteins (S10, S16, S20 and L30). A total of 36 strains of B. cereus group were cultured on LB agar, and analyzed by MALDI-TOF MS. The four biomarkers successfully discriminated 12 strains of psychrotolerant species from mesophilic species of the B. cereus group. Furthermore, the four biomarkers also classified some Bacillus thuringiensis strains. MALDI-TOF MS analysis using the S10-GERMS method allowed simple and rapid discrimination of psychrotolerant species of the B. cereus group from other mesophilic species. This method has a possibility to enable manufacturers and distributors of refrigerated foods to control psychrotolerant species of the B. cereus group effectively.
Collapse
Affiliation(s)
- Naomi Takahashi
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan.
| | - Satomi Nagai
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Akane Fujita
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yousuke Ido
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Kenji Kato
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Ayumi Saito
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Yuka Moriya
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Yumiko Tomimatsu
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Naoko Kaneta
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Yoshinori Tsujimoto
- Food Quality and Safety Research Laboratories, Meiji Co., Ltd., 1-29-1, Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Hiroto Tamura
- Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
25
|
Heini N, Stephan R, Filter M, Plaza-Rodriguez C, Frentzel H, Ehling-Schulz M, Johler S. Temperature-Dependent Growth Characteristics of Bacillus thuringiensis in a Ratatouille Food Model. J Food Prot 2020; 83:816-820. [PMID: 32318723 DOI: 10.4315/0362-028x.jfp-19-358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/26/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT In contrast to Bacillus cereus, the role of Bacillus thuringiensis in foodborne illness has been controversially discussed. As B. thuringiensis-based biopesticides containing a mixture of crystal toxins and viable spores are widely used, a current European Food Safety Authority opinion underlines the need for additional data to enable risk assessment. However, it is currently poorly understood if B. thuringiensis is able to multiply in food, which is crucial to sound risk assessment. Therefore, the aim of this study was to investigate growth of selected B. thuringiensis strains from food and insecticides in a ratatouille food model. To this end, the growth parameters of three B. thuringiensis strains were determined: insecticide strain ABTS-351 (CH_119, B. thuringiensis serovar kurstaki), insecticide strain ABTS-1857 (CH_121, B. thuringiensis serovar aizawai), and CH_48 (wild-type B. thuringiensis isolated from rosemary), producing extremely high levels of enterotoxins. After an initial drop in colony counts, we observed a statistically significant growth for the tested B. thuringiensis strains between 6 and 24 h at 22, 30, and 37°C, conditions mimicking prolonged holding times. We were also able to show that the enterotoxin overproducer CH_48 can grow up to 108 CFU/g in the ratatouille matrix within 24 h at 37°C. The two midlevel enterotoxin formers ABTS-351 (CH_119) and ABTS-1857 (CH_121) isolated from biopesticides exhibited growth between 6 and 24 h, with one of the strains growing to 107 CFU/g. To our knowledge, this is the first study providing evidence of B. thuringiensis growth in a food model with intact competitive flora. Our findings suggest strain-specific variation and stress the complexity of assessing the risk related to B. thuringiensis in food, indicating that some strains can represent a risk to consumer health when vegetable-based foods are stored under conditions of prolonged temperature abuse. HIGHLIGHTS
Collapse
Affiliation(s)
- Nicole Heini
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Matthias Filter
- German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; and
| | | | - Hendrik Frentzel
- German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; and
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Carroll LM, Wiedmann M, Kovac J. Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. mBio 2020; 11:e00034-20. [PMID: 32098810 PMCID: PMC7042689 DOI: 10.1128/mbio.00034-20] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
The Bacillus cereus group comprises numerous closely related species, including bioterrorism agent B. anthracis, foodborne pathogen B. cereus, and biopesticide B. thuringiensis Differentiating organisms capable of causing illness or death from those used in industry is essential for risk assessment and outbreak preparedness. However, current species definitions facilitate species-phenotype incongruences, particularly when horizontally acquired genes are responsible for a phenotype. Using all publicly available B. cereus group genomes (n = 2,231), we show that current species definitions lead to overlapping genomospecies clusters, in which 66.2% of genomes belong to multiple genomospecies at a conventional 95 average nucleotide identity (ANI) genomospecies threshold. A genomospecies threshold of ≈92.5 ANI is shown to reflect a natural gap in genome similarity for the B. cereus group, and medoid genomes identified at this threshold are shown to yield resolvable genomospecies clusters with minimal overlap (six of 2,231 genomes assigned to multiple genomospecies; 0.269%). We thus propose a nomenclatural framework for the B. cereus group which accounts for (i) genomospecies using resolvable genomospecies clusters obtained at ≈92.5 ANI, (ii) established lineages of medical importance using a formal collection of subspecies names, and (iii) heterogeneity of clinically and industrially important phenotypes using a formalized and extended collection of biovar terms. We anticipate that the proposed nomenclature will remain interpretable to clinicians, without sacrificing genomic species definitions, which can in turn aid in pathogen surveillance; early detection of emerging, high-risk genotypes; and outbreak preparedness.IMPORTANCE Historical species definitions for many prokaryotes, including pathogens, have relied on phenotypic characteristics that are inconsistent with genome evolution. This scenario forces microbiologists and clinicians to face a tradeoff between taxonomic rigor and clinical interpretability. Using the Bacillus cereus group as a model, a conceptual framework for the taxonomic delineation of prokaryotes which reconciles genomic definitions of species with clinically and industrially relevant phenotypes is presented. The nomenclatural framework outlined here serves as a model for genomics-based bacterial taxonomy that moves beyond arbitrarily set genomospecies thresholds while maintaining congruence with phenotypes and historically important species names.
Collapse
Affiliation(s)
- Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
27
|
Dimitriu T, Marchant L, Buckling A, Raymond B. Bacteria from natural populations transfer plasmids mostly towards their kin. Proc Biol Sci 2019; 286:20191110. [PMID: 31238848 PMCID: PMC6599995 DOI: 10.1098/rspb.2019.1110] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasmids play a key role in microbial ecology and evolution, yet the determinants of plasmid transfer rates are poorly understood. Particularly, interactions between donor hosts and potential recipients are understudied. Here, we investigate the importance of genetic similarity between naturally co-occurring Escherichia coli isolates in plasmid transfer. We uncover extensive variability, spanning over five orders of magnitude, in the ability of isolates to donate and receive two different plasmids, R1 and RP4. Overall, transfer is strongly biased towards clone-mates, but not correlated to genetic distance when donors and recipients are not clone-mates. Transfer is limited by the presence of a functional restriction-modification system in recipients, suggesting sharing of strain-specific defence systems contributes to bias towards kin. Such restriction of transfer to kin sets the stage for longer-term coevolutionary interactions leading to mutualism between plasmids and bacterial hosts in natural communities.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Lauren Marchant
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Angus Buckling
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Ben Raymond
- Department of Biosciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| |
Collapse
|
28
|
Cardoso PDF, Perchat S, Vilas-Boas LA, Lereclus D, Vilas-Bôas GT. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group. Curr Genet 2019; 65:1367-1381. [PMID: 31104082 DOI: 10.1007/s00294-019-00993-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
Bacteria of the Bacillus cereus group colonize several ecological niches and infect different hosts. Bacillus cereus, a ubiquitous species causing food poisoning, Bacillus thuringiensis, an entomopathogen, and Bacillus anthracis, which is highly pathogenic to mammals, are the most important species of this group. These species are closely related genetically, and their specific toxins are encoded by plasmids. The infectious cycle of B. thuringiensis in its insect host is regulated by quorum-sensing systems from the RNPP family. Among them, the Rap-Phr systems, which are well-described in Bacillus subtilis, regulate essential processes, such as sporulation. Given the importance of these systems, we performed a global in silico analysis to investigate their prevalence, distribution, diversity and their role in sporulation in B. cereus group species. The rap-phr genes were identified in all selected strains with 30% located on plasmids, predominantly in B. thuringiensis. Despite a high variability in their sequences, there is a remarkable association between closely related strains and their Rap-Phr profile. Based on the key residues involved in RapH phosphatase activity, we predicted that 32% of the Rap proteins could regulate sporulation by preventing the phosphorylation of Spo0F. These Rap are preferentially located on plasmids and mostly related to B. thuringiensis. The predictions were partially validated by in vivo sporulation experiments suggesting that the residues linked to the phosphatase function are necessary but not sufficient to predict this activity. The wide distribution and diversity of Rap-Phr systems could strictly control the commitment to sporulation and then improve the adaptation capacities of the bacteria to environmental changes.
Collapse
Affiliation(s)
- Priscilla de F Cardoso
- Depto. Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
29
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
30
|
Lazarte JN, Lopez RP, Ghiringhelli PD, Berón CM. Bacillus wiedmannii biovar thuringiensis: A Specialized Mosquitocidal Pathogen with Plasmids from Diverse Origins. Genome Biol Evol 2018; 10:2823-2833. [PMID: 30285095 PMCID: PMC6203079 DOI: 10.1093/gbe/evy211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2018] [Indexed: 11/12/2022] Open
Abstract
Bacillus cereus sensu lato also known as B. cereus group is composed of an ecologically diverse bacterial group with an increasing number of related species, some of which are medically or agriculturally important. Numerous efforts have been undertaken to allow presumptive differentiation of B. cereus group species from one another. FCC41 is a Bacillus sp. strain toxic against mosquito species like Aedes aegypti, Aedes (Ochlerotatus) albifasciatus, Culex pipiens, Culex quinquefasciatus, and Culex apicinus, some of them responsible for the transmission of vector-borne diseases. Here, we report the complete genome sequence of FCC41 strain, which consists of one circular chromosome and eight circular plasmids ranging in size from 8 to 490 kb. This strain harbors six crystal protein genes, including cry24Ca, two cry4-like and two cry52-like, a cry41-like parasporin gene and multiple virulence factors. The phylogenetic analysis of the whole-genome sequence of this strain with molecular approaches places this strain into the Bacillus wiedmannii cluster. However, according with phenotypical characteristics such as the mosquitocidal activity due to the presence of Cry proteins found in the parasporal body and cry genes encoded in plasmids of different sizes, indicate that this strain could be renamed as B. wiedmannii biovar thuringiensis strain FCC41.
Collapse
Affiliation(s)
- J Nicolás Lazarte
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - CONICET, FIBA, Mar del Plata, Argentina
| | - Rocio P Lopez
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - CONICET, FIBA, Mar del Plata, Argentina
| | - P Daniel Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular (LIGBCM), Area Virosis de Insectos (AVI), Departamento Ciencia y Tecnología, Universidad Nacional de Quilmes and CONICET, Bernal, Argentina
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - CONICET, FIBA, Mar del Plata, Argentina
| |
Collapse
|
31
|
Johler S, Kalbhenn EM, Heini N, Brodmann P, Gautsch S, Bağcioğlu M, Contzen M, Stephan R, Ehling-Schulz M. Enterotoxin Production of Bacillus thuringiensis Isolates From Biopesticides, Foods, and Outbreaks. Front Microbiol 2018; 9:1915. [PMID: 30190709 PMCID: PMC6115515 DOI: 10.3389/fmicb.2018.01915] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022] Open
Abstract
While the relevance of Bacillus (B.) cereus as a major cause of gastroenteritis is undisputed, the role of the closely related B. thuringiensis in foodborne disease is unclear. B. thuringiensis strains frequently harbor enterotoxin genes. However, the organism has only very rarely been associated with foodborne outbreaks, possibly due to the fact that during outbreak investigations, B. cereus is routinely not differentiated from B. thuringiensis. A recent EFSA scientific opinion stresses the urgent need for further data allowing for improved risk assessment, in particular as B. thuringiensis is a commonly used biopesticide. Therefore, the aim of this study was to gain further insights into the hazardous potential of B. thuringiensis. To this end, 39 B. thuringiensis isolates obtained from commercially used biopesticides, various food sources, as well as from foodborne outbreaks were characterized by panC typing, panC-based SplitsTree analysis, toxin gene profiling, FTIR spectroscopic analysis, a cytotoxicity assay screening for enterotoxic activity, and a sphingomyelinase assay. The majority of the tested B. thuringiensis isolates exhibited low (23%, n = 9) or mid level enterotoxicity (74%, n = 29), and produced either no (59%, n = 23) or low levels (33%, n = 13) of sphingomyelinase, which is reported to act synergistically with enterotoxins Nhe and Hbl. One strain isolated from rosemary was however classified as highly enterotoxic surpassing the cytotoxic activity of the high-level reference strain by a factor of 1.5. This strain also produced vast amounts of sphingomyelinase. Combining all results obtained in this study into a fingerprint pattern, several enterotoxic biopesticide strains were indistinguishable from those of isolates from foods or collected in association with outbreaks. Our study shows that many B. thuringiensis biopesticide strains exhibit mid-level cytotoxicity in a Vero cell assay and that some of these strains cannot be differentiated from isolates collected from foods or in association with outbreaks. Thus, we demonstrate that the use of B. thuringiensis strains as biopesticides can represent a food safety risk, underpinning the importance of assessing the hazardous potential of each strain and formulation used.
Collapse
Affiliation(s)
- Sophia Johler
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Eva M. Kalbhenn
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nicole Heini
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | | | | | - Murat Bağcioğlu
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Matthias Contzen
- Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach, Germany
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
32
|
Méric G, Mageiros L, Pascoe B, Woodcock DJ, Mourkas E, Lamble S, Bowden R, Jolley KA, Raymond B, Sheppard SK. Lineage-specific plasmid acquisition and the evolution of specialized pathogens in Bacillus thuringiensis and the Bacillus cereus group. Mol Ecol 2018; 27:1524-1540. [PMID: 29509989 PMCID: PMC5947300 DOI: 10.1111/mec.14546] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Bacterial plasmids can vary from small selfish genetic elements to large autonomous replicons that constitute a significant proportion of total cellular DNA. By conferring novel function to the cell, plasmids may facilitate evolution but their mobility may be opposed by co-evolutionary relationships with chromosomes or encouraged via the infectious sharing of genes encoding public goods. Here, we explore these hypotheses through large-scale examination of the association between plasmids and chromosomal DNA in the phenotypically diverse Bacillus cereus group. This complex group is rich in plasmids, many of which encode essential virulence factors (Cry toxins) that are known public goods. We characterized population genomic structure, gene content and plasmid distribution to investigate the role of mobile elements in diversification. We analysed coding sequence within the core and accessory genome of 190 B. cereus group isolates, including 23 novel sequences and genes from 410 reference plasmid genomes. While cry genes were widely distributed, those with invertebrate toxicity were predominantly associated with one sequence cluster (clade 2) and phenotypically defined Bacillus thuringiensis. Cry toxin plasmids in clade 2 showed evidence of recent horizontal transfer and variable gene content, a pattern of plasmid segregation consistent with transfer during infectious cooperation. Nevertheless, comparison between clades suggests that co-evolutionary interactions may drive association between plasmids and chromosomes and limit wider transfer of key virulence traits. Proliferation of successful plasmid and chromosome combinations is a feature of specialized pathogens with characteristic niches (Bacillus anthracis, B. thuringiensis) and has occurred multiple times in the B. cereus group.
Collapse
Affiliation(s)
- Guillaume Méric
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
| | | | - Ben Pascoe
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
| | - Dan J. Woodcock
- Mathematics Institute and Zeeman Institute for Systems Biology and Infectious Epidemiology ResearchUniversity of WarwickCoventryUK
| | - Evangelos Mourkas
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
| | - Sarah Lamble
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Rory Bowden
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | | | - Ben Raymond
- Department of Life SciencesFaculty of Natural SciencesImperial College LondonAscotUK
- Department of BiosciencesUniversity of ExeterExeterUK
| | - Samuel K. Sheppard
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
- Department of ZoologyUniversity of OxfordOxfordUK
| |
Collapse
|