1
|
Huang K, Ostevik KL, Jahani M, Todesco M, Bercovich N, Andrew RL, Owens GL, Rieseberg LH. Inversions contribute disproportionately to parallel genomic divergence in dune sunflowers. Nat Ecol Evol 2024:10.1038/s41559-024-02593-4. [PMID: 39633041 DOI: 10.1038/s41559-024-02593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
The probability of parallel genetic evolution is a function of the strength of selection and constraints imposed by genetic architecture. Inversions capture locally adapted alleles and suppress recombination between them, which limits the range of adaptive responses. In addition, the combined phenotypic effect of alleles within inversions is likely to be greater than that of individual alleles; this should further increase the contributions of inversions to parallel evolution. We tested the hypothesis that inversions contribute disproportionately to parallel genetic evolution in independent dune ecotypes of Helianthus petiolaris. We analysed habitat data and identified variables underlying parallel habitat shifts. Genotype-environment association analyses of these variables indicated parallel responses of inversions to shared selective pressures. We also confirmed larger seed size across the dunes and performed quantitative trait locus mapping with multiple crosses. Quantitative trait loci shared between locations fell into inversions more than expected by chance. We used whole-genome sequencing data to identify selective sweeps in the dune ecotypes and found that the majority of shared swept regions were found within inversions. Phylogenetic analyses of shared regions indicated that within inversions, the same allele typically was found in the dune habitat at both sites. These results confirm predictions that inversions drive parallel divergence in the dune ecotypes.
Collapse
Affiliation(s)
- Kaichi Huang
- School of Ecology, Sun Yat-sen University, Shenzhen, China.
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.
| | - Mojtaba Jahani
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Moran PA, Colgan TJ, Phillips KP, Coughlan J, McGinnity P, Reed TE. Whole-Genome Resequencing Reveals Polygenic Signatures of Directional and Balancing Selection on Alternative Migratory Life Histories. Mol Ecol 2024; 33:e17538. [PMID: 39497337 PMCID: PMC11589691 DOI: 10.1111/mec.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 11/27/2024]
Abstract
Migration in animals and associated adaptations to contrasting environments are underpinned by complex genetic architecture. Here, we explore the genomic basis of facultative anadromy in brown trout (Salmo trutta), wherein some individuals migrate to sea while others remain resident in natal rivers, to better understand how alternative migratory tactics (AMTs) are maintained evolutionarily. To identify genomic variants associated with AMTs, we sequenced whole genomes for 194 individual trout from five anadromous-resident population pairs, situated above and below waterfalls, in five different Irish rivers. These waterfalls act as natural barriers to upstream migration and hence we predicted that loci underpinning AMTs should be under similar divergent selection across these replicate pairs. A sliding windows based analysis revealed a highly polygenic adaptive divergence between anadromous and resident populations, encompassing 329 differentiated genomic regions. These regions were associated with 292 genes involved in various processes crucial for AMTs, including energy homeostasis, reproduction, osmoregulation, immunity, circadian rhythm and neural function. Furthermore, examining patterns of diversity we were able to link specific genes and biological processes to putative AMT trait classes: migratory-propensity, migratory-lifestyle and residency. Importantly, AMT outlier regions possessed higher genetic diversity than the background genome, particularly in the anadromous group, suggesting balancing selection may play a role in maintaining genetic variation. Overall, the results from this study provide important insights into the genetic architecture of migration and the evolutionary mechanisms shaping genomic diversity within and across populations.
Collapse
Affiliation(s)
- Peter A. Moran
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- A‐LIFE, Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Thomas J. Colgan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg, University MainzMainzGermany
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Canadian Rivers Institute, University of New BrunswickFrederictonNew BrunswickCanada
| | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Marine Institute, Furnace, NewportMayoIreland
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| |
Collapse
|
3
|
Jamsandekar M, Ferreira MS, Pettersson ME, Farrell ED, Davis BW, Andersson L. The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring. Nat Commun 2024; 15:9136. [PMID: 39443489 PMCID: PMC11499932 DOI: 10.1038/s41467-024-53079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these questions in one of the most abundant vertebrates on Earth, the Atlantic herring. This species has four megabase-sized inversions associated with ecological adaptation that correlate with water temperature. The S and N inversion alleles at these four loci dominate in the southern and northern parts, respectively, of the species distribution in the North Atlantic Ocean. By determining breakpoint coordinates of the four inversions and the structural variations surrounding them, we hypothesize that these inversions are formed by ectopic recombination between duplicated sequences immediately outside of the inversions. We show that these are old inversions (>1 MY), albeit formed after the split between the Atlantic herring and its sister species, the Pacific herring. There is evidence for extensive gene flux between inversion alleles at all four loci. The large Ne of herring combined with the common occurrence of opposite homozygotes across the species distribution has allowed effective purifying selection to prevent the accumulation of genetic load and repeats within the inversions.
Collapse
Affiliation(s)
- Minal Jamsandekar
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Schaeffer SW, Richards S, Fuller ZL. Genomics of natural populations: gene conversion events reveal selected genes within the inversions of Drosophila pseudoobscura. G3 (BETHESDA, MD.) 2024; 14:jkae176. [PMID: 39073776 PMCID: PMC11457094 DOI: 10.1093/g3journal/jkae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
When adaptive phenotypic variation or quantitative trait loci map within an inverted segment of a chromosome, researchers often despair because the suppression of crossing over will prevent the discovery of selective target genes that established the rearrangement. If an inversion polymorphism is old enough, then the accumulation of gene conversion tracts offers the promise that quantitative trait loci or selected loci within inversions can be mapped. The inversion polymorphism of Drosophila pseudoobscura is a model system to show that gene conversion analysis is a useful tool for mapping selected loci within inversions. D. pseudoobscura has over 30 different chromosomal arrangements on the third chromosome (Muller C) in natural populations and their frequencies vary with changes in environmental habitats. Statistical tests of five D. pseudoobscura gene arrangements identified outlier genes within inverted regions that had potentially heritable variation, either fixed amino acid differences or differential expression patterns. We use genome sequences of the inverted third chromosome (Muller C) to infer 98,443 gene conversion tracts for a total coverage of 142 Mb or 7.2× coverage of the 19.7 Mb chromosome. We estimated gene conversion tract coverage in the 2,668 genes on Muller C and tested whether gene conversion coverage was similar among arrangements for outlier vs non-outlier loci. Outlier genes had lower gene conversion tract coverage among arrangements than the non-outlier genes suggesting that selection removes exchanged DNA in the outlier genes. These data support the hypothesis that the third chromosome in D. pseudoobscura captured locally adapted combinations of alleles prior to inversion mutation events.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University, 208 Erwin W. Mueller Laboratory, University Park, PA 16802-5301, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
5
|
Campbell MA, Hale MC. Genomic structural variation in Barramundi Perch Lates calcarifer and potential roles in speciation and adaptation. G3 (BETHESDA, MD.) 2024; 14:jkae141. [PMID: 38934850 DOI: 10.1093/g3journal/jkae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Advancements in genome sequencing and assembly techniques have increased the documentation of structural variants in wild organisms. Of these variants, chromosomal inversions are especially prominent due to their large size and active recombination suppression between alternative homokaryotypes. This suppression enables the 2 forms of the inversion to be maintained and allows the preservation of locally adapted alleles. The Barramundi Perch (BP; Lates calcarifer) is a widespread species complex with 3 main genetic lineages located in the biogeographic regions of Australia and New Guinea (AUS + NG), Southeast Asia (SEA), and the Indian Subcontinent (IND). BP are typically considered to be a protandrous sequential hermaphrodite species that exhibits catadromy. Freshwater occupancy and intraspecific variation in life history (e.g. partially migratory populations) exist and provide opportunities for strongly divergent selection associated with, for example, salinity tolerance, swimming ability, and marine dispersal. Herein, we utilize genomic data generated from all 3 genetic lineages to identify and describe 3 polymorphic candidate chromosomal inversions. These candidate chromosomal inversions appear to be fixed for ancestral variants in the IND lineage and for inverted versions in the AUS + NG lineage and exhibit variation in all 3 inversions in the SEA lineage. BP have a diverse portfolio of life history options that includes migratory strategy as well as sexual system (i.e. hermaphroditism and gonochorism). We propose that the some of the life history variabilities observed in BP may be linked to inversions and, in doing so, we present genetic data that might be useful in enhancing aquaculture production and population management.
Collapse
Affiliation(s)
- Matthew A Campbell
- Centre for Carbon, Water and Food, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia
| | - Matthew C Hale
- Department of Biology, Texas Christian University, 2800 S. University Drive, Fort Worth, TX 76129, USA
| |
Collapse
|
6
|
Hale MC, Pearse DE, Campbell MA. Characterization and distribution of a 14-Mb chromosomal inversion in native populations of rainbow trout (Oncorhynchus mykiss). G3 (BETHESDA, MD.) 2024; 14:jkae100. [PMID: 38885060 PMCID: PMC11228831 DOI: 10.1093/g3journal/jkae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
Multiple studies in a range of taxa have found links between structural variants and the development of ecologically important traits. Such variants are becoming easier to find due, in large part, to the increase in the amount of genome-wide sequence data in nonmodel organisms. The salmonids (salmon, trout, and charr) are a taxonomic group with abundant genome-wide datasets due to their importance in aquaculture, fisheries, and variation in multiple ecologically important life-history traits. Previous research on rainbow trout (Oncorhynchus mykiss) has documented a large pericentric (∼55 Mb) chromosomal inversion (CI) on chromosome 5 (Omy05) and a second smaller (∼14 Mb) chromosome inversion on Omy20. While the Omy05 inversion appears to be associated with multiple adaptive traits, the inversion on Omy20 has received far less attention. In this study, we re-analyze RAD-seq and amplicon data from several populations of rainbow trout (O. mykiss) to better document the structure and geographic distribution of variation in the Omy20 CI. Moreover, we utilize phylogenomic techniques to characterize both the age- and the protein-coding gene content of the Omy20 CI. We find that the age of the Omy20 inversion dates to the early stages of O. mykiss speciation and predates the Omy05 inversion by ∼450,000 years. The 2 CIs differ further in terms of the frequency of the homokaryotypes. While both forms of the Omy05 CI are found across the eastern Pacific, the ancestral version of the Omy20 CI is restricted to the southern portion of the species range in California. Furthermore, the Omy20 inverted haplotype is comparable in genetic diversity to the ancestral form, whereas derived CIs typically show substantially reduced genetic diversity. These data contribute to our understanding of the age and distribution of a large CI in rainbow trout and provide a framework for researchers looking to document CIs in other nonmodel species.
Collapse
Affiliation(s)
- Matthew C Hale
- Department of Biology, Texas Christian University, Fort Worth, TX 76109, USA
| | - Devon E Pearse
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95064, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Sjodin BMF, Schmidt DA, Galbreath KE, Russello MA. Putative climate adaptation in American pikas (Ochotona princeps) is associated with copy number variation across environmental gradients. Sci Rep 2024; 14:8568. [PMID: 38609461 PMCID: PMC11014952 DOI: 10.1038/s41598-024-59157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Improved understanding of the genetic basis of adaptation to climate change is necessary for maintaining global biodiversity moving forward. Studies to date have largely focused on sequence variation, yet there is growing evidence that suggests that changes in genome structure may be an even more significant source of adaptive potential. The American pika (Ochotona princeps) is an alpine specialist that shows some evidence of adaptation to climate along elevational gradients, but previous work has been limited to single nucleotide polymorphism based analyses within a fraction of the species range. Here, we investigated the role of copy number variation underlying patterns of local adaptation in the American pika using genome-wide data previously collected across the entire species range. We identified 37-193 putative copy number variants (CNVs) associated with environmental variation (temperature, precipitation, solar radiation) within each of the six major American pika lineages, with patterns of divergence largely following elevational and latitudinal gradients. Genes associated (n = 158) with independent annotations across lineages, variables, and/or CNVs had functions related to mitochondrial structure/function, immune response, hypoxia, olfaction, and DNA repair. Some of these genes have been previously linked to putative high elevation and/or climate adaptation in other species, suggesting they may serve as important targets in future studies.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Danielle A Schmidt
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI, 49855, USA
| | - Michael A Russello
- Department of Biology, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
8
|
Goetz LC, Nuetzel H, Vendrami DLJ, Beulke AK, Anderson EC, Garza JC, Pearse DE. Genetic parentage reveals the (un)natural history of Central Valley hatchery steelhead. Evol Appl 2024; 17:e13681. [PMID: 38516205 PMCID: PMC10956469 DOI: 10.1111/eva.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Populations composed of individuals descended from multiple distinct genetic lineages often feature significant differences in phenotypic frequencies. We considered hatchery production of steelhead, the migratory anadromous form of the salmonid species Oncorhynchus mykiss, and investigated how differences among genetic lineages and environmental variation impacted life history traits. We genotyped 23,670 steelhead returning to the four California Central Valley hatcheries over 9 years from 2011 to 2019, confidently assigning parentage to 13,576 individuals to determine age and date of spawning and rates of iteroparity and repeat spawning within each year. We found steelhead from different genetic lineages showed significant differences in adult life history traits despite inhabiting similar environments. Differences between coastal and Central Valley steelhead lineages contributed to significant differences in age at return, timing of spawning, and rates of iteroparity among programs. In addition, adaptive genomic variation associated with life history development in this species varied among hatchery programs and was associated with the age of steelhead spawners only in the coastal lineage population. Environmental variation likely contributed to variations in phenotypic patterns observed over time, as our study period spanned both a marine heatwave and a serious drought in California. Our results highlight evidence of a strong genetic component underlying known phenotypic differences in life history traits between two steelhead lineages.
Collapse
Affiliation(s)
- Laura C. Goetz
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
| | - Hayley Nuetzel
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
- Present address:
Columbia River Inter‐Tribal Fish CommissionPortlandOregonUSA
| | - David L. J. Vendrami
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
- Present address:
Department of Animal BehaviourUniversity of BielefeldBielefeldGermany
| | - Anne K. Beulke
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Eric C. Anderson
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
| | - John Carlos Garza
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Devon E. Pearse
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
- Fisheries Ecology Division, Southwest Fisheries Science CenterNational Marine Fisheries ServiceSanta CruzCaliforniaUSA
| |
Collapse
|
9
|
Ninua L, Tarkhnishvili D, Anderson CL. Genetic structure of Ponto-Caspian trout populations shows gene flow among river drainages and supports resident Salmo rizeensis as a genetically distinct taxon. Ecol Evol 2023; 13:e10335. [PMID: 37496759 PMCID: PMC10365970 DOI: 10.1002/ece3.10335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
To assess the genetic structure of Ponto-Caspian brown trout (Salmo trutta complex) populations, we analyzed both mitochondrial DNA sequences and genotypes at 10 microsatellite loci of fish caught in the Black Sea and from nine river catchments in Georgia, flowing into either the Black or Caspian seas. The results show that: (1) there is substantial genetic differentiation among Ponto-Caspian trout populations, both among the populations of different nominal species and within those of the same species; (2) the genetic distance between conspecific populations from the Black and Caspian Sea basins exceeds that among the populations within the same basin. Moreover, within drainages, genetic distance correlates with the geographic distance; (3) the Black Sea itself is not a barrier to gene flow among the watersheds draining into the Black Sea; (4) some populations in the headwaters of the rivers draining into the Black Sea Basin fall out of this pattern and likely form a separate, non-anadromous (resident) taxon, previously described from northeastern Turkey as Salmo rizeensis. This hypothesis is supported by mitochondrial DNA phylogeny. The presence of both anadromous and resident populations in a single river basin calls for a substantial re-thinking of speciation patterns and taxonomy of Eurasian brown trout.
Collapse
Affiliation(s)
- Levan Ninua
- Institute of EcologyIlia State UniversityTbilisiGeorgia
| | | | | |
Collapse
|
10
|
Clare CI, Nichols KM, Thrower FP, Berntson EA, Hale MC. Comparative genomics of rainbow trout ( Oncorhynchus mykiss): Is the genetic architecture of migratory behavior conserved among populations? Ecol Evol 2023; 13:e10241. [PMID: 37384247 PMCID: PMC10293719 DOI: 10.1002/ece3.10241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) are a partially migratory species wherein some individuals undergo long-distance anadromous migrations, and others stay as residents in their native freshwater streams. The decision to migrate is known to be highly heritable, and yet, the underlying genes and alleles associated with migration are not fully characterized. Here we used a pooled approach of whole-genome sequence data from migratory and resident trout of two native populations-Sashin Creek, Alaska and Little Sheep Creek, Oregon-to obtain a genome-wide perspective of the genetic architecture of resident and migratory life history. We calculated estimates of genetic differentiation, genetic diversity, and selection between the two phenotypes to locate regions of interest and then compared these associations between populations. We identified numerous genes and alleles associated with life history development in the Sashin Creek population with a notable area on chromosome 8 that may play a critical role in the development of the migratory phenotype. However, very few alleles appeared to be associated with life history development in the Little Sheep Creek system, suggesting population-specific genetic effects are likely important in the development of anadromy. Our results indicate that a migratory life history is not controlled by a singular gene or region but supports the idea that there are many independent ways for a migratory phenotype to emerge in a population. Therefore, conserving and promoting genetic diversity in migratory individuals is paramount to conserving these populations. Ultimately, our data add to a growing body of literature that suggests that population-specific genetic effects, likely mediated through environmental variation, contribute to life history development in rainbow trout.
Collapse
Affiliation(s)
| | - Krista M. Nichols
- Conservation Biology Division, Northwest Fisheries Science CenterNational Marine Fisheries Service, National Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | - Frank P. Thrower
- Ted Stevens Marine Research Institute, Alaska Fisheries Science Center, NOAAJuneauAlaskaUSA
| | - Ewann A. Berntson
- Conservation Biology Division, Northwest Fisheries Science CenterNational Marine Fisheries Service, National Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| | - Matthew C. Hale
- Department of BiologyTexas Christian UniversityFort WorthTexasUSA
| |
Collapse
|
11
|
Wenne R. Single Nucleotide Polymorphism Markers with Applications in Conservation and Exploitation of Aquatic Natural Populations. Animals (Basel) 2023; 13:1089. [PMID: 36978629 PMCID: PMC10044284 DOI: 10.3390/ani13061089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
An increasing number of aquatic species have been studied for genetic polymorphism, which extends the knowledge on their natural populations. One type of high-resolution molecular marker suitable for studying the genetic diversity of large numbers of individuals is single nucleotide polymorphism (SNP). This review is an attempt to show the range of applications of SNPs in studies of natural populations of aquatic animals. In recent years, SNPs have been used in the genetic analysis of wild and enhanced fish and invertebrate populations in natural habitats, exploited migratory species in the oceans, migratory anadromous and freshwater fish and demersal species. SNPs have been used for the identification of species and their hybrids in natural environments, to study the genetic consequences of restocking for conservation purposes and the negative effects on natural populations of fish accidentally escaping from culture. SNPs are very useful for identifying genomic regions correlated with phenotypic variants relevant for wildlife protection, management and aquaculture. Experimental size-selective catches of populations created in tanks have caused evolutionary changes in life cycles of fishes. The research results have been discussed to clarify whether the fish populations in natural conditions can undergo changes due to selective harvesting targeting the fastest-growing fishes.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
12
|
Krysanov EY, Nagy B, Watters BR, Sember A, Simanovsky SA. Karyotype differentiation in the Nothobranchiusugandensis species group (Teleostei, Cyprinodontiformes), seasonal fishes from the east African inland plateau, in the context of phylogeny and biogeography. COMPARATIVE CYTOGENETICS 2023; 17:13-29. [PMID: 37305809 PMCID: PMC10252138 DOI: 10.3897/compcytogen.v7.i1.97165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 06/13/2023]
Abstract
The karyotype differentiation of the twelve known members of the Nothobranchiusugandensis Wildekamp, 1994 species group is reviewed and the karyotype composition of seven of its species is described herein for the first time using a conventional cytogenetic protocol. Changes in the architecture of eukaryotic genomes often have a major impact on processes underlying reproductive isolation, adaptation and diversification. African annual killifishes of the genus Nothobranchius Peters, 1868 (Teleostei: Nothobranchiidae), which are adapted to an extreme environment of ephemeral wetland pools in African savannahs, feature extensive karyotype evolution in small, isolated populations and thus are suitable models for studying the interplay between karyotype change and species evolution. The present investigation reveals a highly conserved diploid chromosome number (2n = 36) but a variable number of chromosomal arms (46-64) among members of the N.ugandensis species group, implying a significant role of pericentric inversions and/or other types of centromeric shift in the karyotype evolution of the group. When superimposed onto a phylogenetic tree based on molecular analyses of two mitochondrial genes the cytogenetic characteristics did not show any correlation with the phylogenetic relationships within the lineage. While karyotypes of many other Nothobranchius spp. studied to date diversified mainly via chromosome fusions and fissions, the N.ugandensis species group maintains stable 2n and the karyotype differentiation seems to be constrained to intrachromosomal rearrangements. Possible reasons for this difference in the trajectory of karyotype differentiation are discussed. While genetic drift seems to be a major factor in the fixation of chromosome rearrangements in Nothobranchius, future studies are needed to assess the impact of predicted multiple inversions on the genome evolution and species diversification within the N.ugandensis species group.
Collapse
Affiliation(s)
- Eugene Yu. Krysanov
- Severtsov Institute of Ecology and Evolution, Russian
Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of
SciencesMoscowRussia
| | - Béla Nagy
- 15, voie de la Liberté, 77870, Vulaines sur Seine,
FranceUnaffiliatedVulaines sur SeineFrance
| | - Brian R. Watters
- 6141 Parkwood Drive, Nanaimo, British Columbia V9T 6A2,
Nanaimo, CanadaUnaffiliatedNanaimoCanada
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal
Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721, Liběchov, Czech
RepublicLaboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech
Academy of SciencesLiběchovCzech Republic
| | - Sergey A. Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian
Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of
SciencesMoscowRussia
| |
Collapse
|
13
|
Osmond DR, King RA, Stockley B, Launey S, Stevens JR. A low-density single nucleotide polymorphism panel for brown trout (Salmo trutta L.) suitable for exploring genetic diversity at a range of spatial scales. JOURNAL OF FISH BIOLOGY 2023; 102:258-270. [PMID: 36281821 DOI: 10.1111/jfb.15258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The rivers of southern England and northern France which drain into the English Channel contain several genetically unique groups of trout (Salmo trutta L.) that have suffered dramatic declines in numbers over the past 40 years. Knowledge of levels and patterns of genetic diversity is essential for effective management of these vulnerable populations. Using restriction site-associated DNA sequencing (RADseq) data, we describe the development and characterisation of a panel of 95 single nucleotide polymorphism (SNP) loci for trout from this region and investigate their applicability and variability in both target (i.e., southern English) and non-target trout populations from northern Britain and Ireland. In addition, we present three case studies which demonstrate the utility and resolution of these genetic markers at three levels of spatial separation:(a) between closely related populations in nearby rivers, (b) within a catchment and (c) when determining parentage and familial relationships between fish sampled from a single site, using both empirical and simulated data. The SNP loci will be useful for population genetic and assignment studies on brown trout within the UK and beyond.
Collapse
Affiliation(s)
- Daniel R Osmond
- Department of Biosciences, Faculty of Health and Life Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK
| | - R Andrew King
- Department of Biosciences, Faculty of Health and Life Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK
| | - Bruce Stockley
- Westcountry Rivers Trust, Rain-Charm House, Cornwall, UK
| | - Sophie Launey
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest INRAe, Rennes, France
| | - Jamie R Stevens
- Department of Biosciences, Faculty of Health and Life Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
Que Z, Lu Q, Shen C. Chromosome-level genome assembly of Dongxiang wild rice ( Oryza rufipogon) provides insights into resistance to disease and freezing. Front Genet 2022; 13:1029879. [PMID: 36457753 PMCID: PMC9707695 DOI: 10.3389/fgene.2022.1029879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Dongxiang wild rice (DXWR, Oryza rufipogon Griff.) belongs to common wild rice O. rufipogon, which is the well-known ancestral progenitor of cultivated rice, possessing important gene resources for rice breeding. However, the distribution of DXWR is decreasing rapidly, and no reference genome has been published to date. In this study, we constructed a chromosome-level reference genome of DXWR by Oxford Nanopore Technology (ONT) and High-through chromosome conformation capture (Hi-C). A total of 58.41 Gb clean data from ONT were de novo assembled into 231 contigs with the total length of 413.46 Mb and N50 length of 5.18 Mb. These contigs were clustered and ordered into 12 pseudo-chromosomes covering about 97.39% assembly with Hi-C data, with a scaffold N50 length of 33.47 Mb. Moreover, 54.10% of the genome sequences were identified as repeat sequences. 33,862 (94.21%) genes were functionally annotated from a total of predicted 35,942 protein-coding sequences. Compared with other species of Oryza genus, the genes related to disease and cold resistance in DXWR had undergone a large-scale expansion, which may be one of the reasons for the stronger disease resistance and cold resistance of DXWR. Comparative transcriptome analysis also determined a list of differentially expressed genes under normal and cold treatment, which supported DXWR as a cold-tolerant variety. The collinearity between DXWR and cultivated rice was high, but there were still some significant structural variations, including a specific inversion on chromosome 11, which may be related to the differentiation of DXWR. The high-quality chromosome-level reference genome of DXWR assembled in this study will become a valuable resource for rice molecular breeding and genetic research in the future.
Collapse
Affiliation(s)
| | | | - Chunxiu Shen
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| |
Collapse
|
15
|
Campagna L, Toews DP. The genomics of adaptation in birds. Curr Biol 2022; 32:R1173-R1186. [DOI: 10.1016/j.cub.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Dynamic transcriptome and LC-MS/MS analysis revealed the important roles of taurine and glutamine metabolism in response to environmental salinity changes in gills of rainbow trout (Oncorhynchus mykiss). Int J Biol Macromol 2022; 221:1545-1557. [PMID: 36122778 DOI: 10.1016/j.ijbiomac.2022.09.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Recently, the frequent salinity fluctuation has become a growing threat to fishes. However, the dynamic patterns of gene expression in response to salinity changes remain largely unexplored. In the present study, 18 RNA-Seq datasets were generated from gills of rainbow trout at different salinities, including 0 ‰, 6 ‰, 12 ‰, 18 ‰, 24 ‰ and 30 ‰. Based on the strict thresholds, we have identified 63, 1411, 2096, 1031 and 1041 differentially expressed genes in gills of rainbow trout through pairwise comparisons. Additionally, weighted gene co-expression network analysis was performed to construct 18 independent modules with distinct expression patterns. Of them, green and tan modules were found to be tightly related to salinity changes, several hub genes of which are known as the important regulators in taurine and glutamine metabolism. To further investigate their potential roles in response to salinity changes, taurine, glutamine, and their metabolism-related glutamic acid and α-ketoglutaric acid were accurately quantitated using liquid chromatography-tandem mass spectrometry analysis. Results clearly showed that their concentrations were closely associated with salinity changes. These findings suggested that taurine and glutamine play important roles in response to salinity changes in gills of rainbow trout, providing new insights into the molecular mechanism of fishes in salinity adaptation.
Collapse
|
17
|
Schaal SM, Haller BC, Lotterhos KE. Inversion invasions: when the genetic basis of local adaptation is concentrated within inversions in the face of gene flow. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210200. [PMID: 35694752 PMCID: PMC9189506 DOI: 10.1098/rstb.2021.0200] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Across many species where inversions have been implicated in local adaptation, genomes often evolve to contain multiple, large inversions that arise early in divergence. Why this occurs has yet to be resolved. To address this gap, we built forward-time simulations in which inversions have flexible characteristics and can invade a metapopulation undergoing spatially divergent selection for a highly polygenic trait. In our simulations, inversions typically arose early in divergence, captured standing genetic variation upon mutation, and then accumulated many small-effect loci over time. Under special conditions, inversions could also arise late in adaptation and capture locally adapted alleles. Polygenic inversions behaved similarly to a single supergene of large effect and were detectable by genome scans. Our results show that characteristics of adaptive inversions found in empirical studies (e.g. multiple large, old inversions that are FST outliers, sometimes overlapping with other inversions) are consistent with a highly polygenic architecture, and inversions do not need to contain any large-effect genes to play an important role in local adaptation. By combining a population and quantitative genetic framework, our results give a deeper understanding of the specific conditions needed for inversions to be involved in adaptation when the genetic architecture is polygenic. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Sara M. Schaal
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| | - Benjamin C. Haller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Katie E. Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| |
Collapse
|
18
|
Hahlbeck N, Tinniswood WR, Sloat MR, Ortega JD, Wyatt MA, Hereford ME, Ramirez BS, Crook DA, Anlauf-Dunn KJ, Armstrong JB. Contribution of warm habitat to cold-water fisheries. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13857. [PMID: 34766374 DOI: 10.1111/cobi.13857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A central tenet of landscape ecology is that mobile species depend on complementary habitats, which are insufficient in isolation, but combine to support animals through the full annual cycle. However, incorporating the dynamic needs of mobile species into conservation strategies remains a challenge, particularly in the context of climate adaptation planning. For cold-water fishes, it is widely assumed that maximum temperatures are limiting and that summer data alone can predict refugia and population persistence. We tested these assumptions in populations of redband rainbow trout (Oncorhynchus mykiss newberrii) in an arid basin, where the dominance of hot, hyperproductive water in summer emulates threats of climate change predicted for cold-water fish in other basins. We used telemetry to reveal seasonal patterns of movement and habitat use. Then, we compared contributions of hot and cool water to growth with empirical indicators of diet and condition (gut contents, weight-length ratios, electric phase angle, and stable isotope signatures) and a bioenergetics model. During summer, trout occurred only in cool tributaries or springs (<20 °C) and avoided Upper Klamath Lake (>25 °C). During spring and fall, ≥65% of trout migrated to the lake (5-50 km) to forage. Spring and fall growth (mean [SD] 0.58% per day [0.80%] and 0.34 per day [0.55%], respectively) compensated for a net loss of energy in cool summer refuges (-0.56% per day [0.55%]). In winter, ≥90% of trout returned to tributaries (25-150 km) to spawn. Thus, although perennially cool tributaries supported thermal refuge and spawning, foraging opportunities in the seasonally hot lake ultimately fueled these behaviors. Current approaches to climate adaptation would prioritize the tributaries for conservation but would devalue critical foraging habitat because the lake is unsuitable and unoccupied during summer. Our results empirically demonstrate that warm water can fuel cold-water fisheries and challenge the common practice of identifying refugia based only on summer conditions.
Collapse
Affiliation(s)
- Nick Hahlbeck
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| | - William R Tinniswood
- Klamath Watershed District Office, Oregon Department of Fish and Wildlife, Klamath Falls, Oregon, USA
| | | | - Jordan D Ortega
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| | - Matthew A Wyatt
- Klamath Watershed District Office, Oregon Department of Fish and Wildlife, Klamath Falls, Oregon, USA
| | - Mark E Hereford
- Klamath Watershed District Office, Oregon Department of Fish and Wildlife, Klamath Falls, Oregon, USA
| | - Ben S Ramirez
- Klamath Watershed District Office, Oregon Department of Fish and Wildlife, Klamath Falls, Oregon, USA
| | - David A Crook
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Kara J Anlauf-Dunn
- Corvallis Research Lab, Oregon Department of Fish and Wildlife, Corvallis, Oregon, USA
| | - Jonathan B Armstrong
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
19
|
Thorstensen MJ, Euclide PT, Jeffrey JD, Shi Y, Treberg JR, Watkinson DA, Enders EC, Larson WA, Kobayashi Y, Jeffries KM. A chromosomal inversion may facilitate adaptation despite periodic gene flow in a freshwater fish. Ecol Evol 2022; 12:e8898. [PMID: 35571758 PMCID: PMC9077824 DOI: 10.1002/ece3.8898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Matt J. Thorstensen
- Department of Biological Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Peter T. Euclide
- Wisconsin Cooperative Fishery Research Unit College of Natural Resources U.S. Geological Survey University of Wisconsin‐Stevens Point Stevens Point Wisconsin USA
| | - Jennifer D. Jeffrey
- Department of Biological Sciences University of Manitoba Winnipeg Manitoba Canada
- Department of Biology Richardson College University of Winnipeg Winnipeg Manitoba Canada
| | - Yue Shi
- Wisconsin Cooperative Fishery Research Unit College of Natural Resources U.S. Geological Survey University of Wisconsin‐Stevens Point Stevens Point Wisconsin USA
- College of Fisheries and Ocean Sciences University of Alaska Fairbanks Juneau Alaska USA
| | - Jason R. Treberg
- Department of Biological Sciences University of Manitoba Winnipeg Manitoba Canada
| | | | - Eva C. Enders
- Freshwater Institute, Fisheries and Oceans Canada Winnipeg Manitoba Canada
| | - Wesley A. Larson
- Wisconsin Cooperative Fishery Research Unit College of Natural Resources U.S. Geological Survey University of Wisconsin‐Stevens Point Stevens Point Wisconsin USA
- National Oceanographic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center Auke Bay Laboratories Juneau Alaska USA
| | - Yasuhiro Kobayashi
- Department of Biological Sciences Fort Hays State University Hays Kansas USA
- Department of Biology The College of St. Scholastica Duluth Minnesota USA
| | - Ken M. Jeffries
- Department of Biological Sciences University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
20
|
Salisbury S, McCracken GR, Perry R, Keefe D, Layton KKS, Kess T, Nugent CM, Leong JS, Bradbury IR, Koop BF, Ferguson MM, Ruzzante DE. The Genomic Consistency of the Loss of Anadromy in an Arctic Fish (Salvelinus alpinus). Am Nat 2022; 199:617-635. [DOI: 10.1086/719122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Shi Y, Bouska KL, McKinney GJ, Dokai W, Bartels A, McPhee MV, Larson WA. Gene flow influences the genomic architecture of local adaptation in six riverine fish species. Mol Ecol 2021; 32:1549-1566. [PMID: 34878685 DOI: 10.1111/mec.16317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Understanding how gene flow influences adaptive divergence is important for predicting adaptive responses. Theoretical studies suggest that when gene flow is high, clustering of adaptive genes in fewer genomic regions would protect adaptive alleles from recombination and thus be selected for, but few studies have tested it with empirical data. Here, we used restriction site-associated sequencing to generate genomic data for six fish species with contrasting life histories from six reaches of the Upper Mississippi River System, USA. We used four differentiation-based outlier tests and three genotype-environment association analyses to define neutral single nucleotide polymorphisms (SNPs) and outlier SNPs that were putatively under selection. We then examined the distribution of outlier SNPs along the genome and investigated whether these SNPs were found in genomic islands of differentiation and inversions. We found that gene flow varied among species, and outlier SNPs were clustered more tightly in species with higher gene flow. The two species with the highest overall FST (0.0303-0.0720) and therefore lowest gene flow showed little evidence of clusters of outlier SNPs, with outlier SNPs in these species spreading uniformly across the genome. In contrast, nearly all outlier SNPs in the species with the lowest FST (0.0003) were found in a single large putative inversion. Two other species with intermediate gene flow (FST ~ 0.0025-0.0050) also showed clustered genomic architectures, with most islands of differentiation clustered on a few chromosomes. Our results provide important empirical evidence to support the hypothesis that increasingly clustered architecture of local adaptation is associated with high gene flow.
Collapse
Affiliation(s)
- Yue Shi
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA.,Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Kristen L Bouska
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, USA
| | - Garrett J McKinney
- NRC Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - William Dokai
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA.,Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Andrew Bartels
- Long Term Resource Monitoring Program, Wisconsin Department of Natural Resources, La Crosse, Wisconsin, USA
| | - Megan V McPhee
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Wesley A Larson
- National Oceanographic and Atmospheric Administration, Auke Bay Laboratories, National Marine Fisheries Service, Alaska Fisheries Science Center, Juneau, Alaska, USA.,U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| |
Collapse
|
22
|
Guzmán NV, Kemppainen P, Monti D, Castillo ERD, Rodriguero MS, Sánchez-Restrepo AF, Cigliano MM, Confalonieri VA. Stable inversion clines in a grasshopper species group despite complex geographical history. Mol Ecol 2021; 31:1196-1215. [PMID: 34862997 DOI: 10.1111/mec.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Chromosomal inversions are known to play roles in adaptation and differentiation in many species. They involve clusters of correlated genes (i.e., loci in linkage disequilibrium, LD) possibly associated with environmental variables. The grasshopper "species complex" Trimerotropis pallidipennis comprises several genetic lineages distributed from North to South America in arid and semi-arid high-altitude environments. The southernmost lineage, Trimerotropis sp., segregates for four to seven putative inversions that display clinal variation, possibly through adaptation to temperate environments. We analysed chromosomal, mitochondrial and genome-wide single nucleotide polymorphism data in 19 Trimerotropis sp. populations mainly distributed along two altitudinal gradients (MS and Ju). Populations across Argentina comprise two main chromosomally and genetically differentiated lineages: one distributed across the southernmost border of the "Andes Centrales," adding evidence for a differentiation hotspot in this area; and the other widely distributed in Argentina. Within the latter, network analytical approaches to LD found three clusters of correlated loci (LD-clusters), with inversion karyotypes explaining >79% of the genetic variation. Outlier loci associated with environmental variables mapped to two of these LD-clusters. Furthermore, despite the complex geographical history indicated by population genetic analyses, the clines in inversion karyotypes have remained stable for more than 20 generations, implicating their role in adaptation and differentiation within this lineage. We hypothesize that these clines could be the consequence of a coupling between extrinsic postzygotic barriers and spatially varying selection along environmental gradients resulting in a hybrid zone. These results provide a framework for future investigations about candidate genes implicated in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Noelia V Guzmán
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Petri Kemppainen
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniela Monti
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Elio R D Castillo
- Laboratorio de Genética Evolutiva "Dr. Claudio J. Bidau", FCEQyN, Universidad Nacional de Misiones (UNaM), Instituto de Biología Subtropical (IBS) (CONICET/UNaM), LQH, Posadas, Misiones, Argentina
| | - Marcela S Rodriguero
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Andrés F Sánchez-Restrepo
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
| | - Maria Marta Cigliano
- Museo de La Plata, Centro de Estudios Parasitológicos y de Vectores (CEPAVE- CONICET/UNLP), Universidad Nacional de la Plata, Buenos Aires, Argentina
| | - Viviana A Confalonieri
- Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires (UBA), IEGEBA (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/UBA), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
23
|
Salisbury SJ, Ruzzante DE. Genetic Causes and Consequences of Sympatric Morph Divergence in Salmonidae: A Search for Mechanisms. Annu Rev Anim Biosci 2021; 10:81-106. [PMID: 34758272 DOI: 10.1146/annurev-animal-051021-080709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeatedly and recently evolved sympatric morphs exhibiting consistent phenotypic differences provide natural experimental replicates of speciation. Because such morphs are observed frequently in Salmonidae, this clade provides a rare opportunity to uncover the genomic mechanisms underpinning speciation. Such insight is also critical for conserving salmonid diversity, the loss of which could have significant ecological and economic consequences. Our review suggests that genetic differentiation among sympatric morphs is largely nonparallel apart from a few key genes that may be critical for consistently driving morph differentiation. We discuss alternative levels of parallelism likely underlying consistent morph differentiation and identify several factors that may temper this incipient speciation between sympatric morphs, including glacial history and contemporary selective pressures. Our synthesis demonstrates that salmonids are useful for studying speciation and poses additional research questions to be answered by future study of this family. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S J Salisbury
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada; ,
| | - D E Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada; ,
| |
Collapse
|
24
|
Hale MC, Campbell MA, McKinney GJ. A candidate chromosome inversion in Arctic charr (Salvelinus alpinus) identified by population genetic analysis techniques. G3 (BETHESDA, MD.) 2021; 11:jkab267. [PMID: 34568922 PMCID: PMC8473973 DOI: 10.1093/g3journal/jkab267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022]
Abstract
The "genomics era" has allowed questions to be asked about genome organization and genome architecture of non-model species at a rate not previously seen. Analyses of these genome-wide datasets have documented many examples of novel structural variants (SVs) such as chromosomal inversions, copy number variants, and chromosomal translocations, many of which have been linked to adaptation. The salmonids are a taxonomic group with abundant genome-wide datasets due to their importance in aquaculture and fisheries. However, the number of documented SVs in salmonids is surprisingly low and is most likely due to removing loci in high linkage disequilibrium when analyzing structure and gene flow. Here we re-analyze RAD-seq data from several populations of Arctic charr (Salvelinus alpinus) and document a novel ∼1.2 MB SV at the distal end of LG12. This variant contains 15 protein-coding genes connected to a wide-range of functions including cell adhesion and signal transduction. Interestingly, we studied the frequency of this polymorphism in four disjointed populations of charr-one each from Nunavut, Newfoundland, Eastern Russia, and Scotland-and found evidence of the variant only in Nunavut, Canada, suggesting the polymorphism is novel and recently evolved.
Collapse
Affiliation(s)
- Matthew C Hale
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Garrett J McKinney
- National Research Council Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| |
Collapse
|
25
|
Campbell MA, Anderson EC, Garza JC, Pearse DE. Polygenic basis and the role of genome duplication in adaptation to similar selective environments. J Hered 2021; 112:614-625. [PMID: 34420047 DOI: 10.1093/jhered/esab049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023] Open
Abstract
Genetic changes underlying adaptation vary greatly in terms of complexity and, within the same species, genetic responses to similar selective pressures may or may not be the same. We examine both complex (supergene) and simple (SNP) genetic variants occurring in populations of rainbow trout (Oncorhynchus mykiss) independently isolated from ocean access and compared them to each other and to an anadromous below-barrier population representing their ancestral source to search for signatures of both parallel and non-parallel adaptation. All landlocked populations displayed an increased frequency of a large inversion on chromosome Omy05, while three of the four populations exhibited elevated frequencies of another inversion located on chromosome Omy20. In addition, we identified numerous regions outside these two inversions that also show significant shifts in allele frequencies consistent with adaptive evolution. However, there was little concordance among above-barrier populations in these specific genomic regions under selection. In part, the lack of concordance appears to arise from ancestral autopolyploidy in rainbow trout that provides duplicate genomic regions of similar functional composition for selection to act upon. Thus, while selection acting on landlocked populations universally favors the resident ecotype, outside of the major chromosomal inversions, the resulting genetic changes are largely distinct among populations. Our results indicate that selection on standing genetic variation is likely the primary mode of rapid adaptation, and that both supergene complexes and individual loci contribute to adaptive evolution, further highlighting the diversity of adaptive genomic variation involved in complex phenotypic evolution.
Collapse
Affiliation(s)
- Matthew A Campbell
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Eric C Anderson
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| | - John Carlos Garza
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| | - Devon E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| |
Collapse
|
26
|
Clemens BJ, Schreck CB. An assessment of terminology for intraspecific diversity in fishes, with a focus on "ecotypes" and "life histories". Ecol Evol 2021; 11:10772-10793. [PMID: 34429881 PMCID: PMC8366897 DOI: 10.1002/ece3.7884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding and preserving intraspecific diversity (ISD) is important for species conservation. However, ISD units do not have taxonomic standards and are not universally recognized. The terminology used to describe ISD is varied and often used ambiguously. We compared definitions of terms used to describe ISD with use in recent studies of three fish taxa: sticklebacks (Gasterosteidae), Pacific salmon and trout (Oncorhynchus spp., "PST"), and lampreys (Petromyzontiformes). Life history describes the phenotypic responses of organisms to environments and includes biological parameters that affect population growth or decline. Life-history pathway(s) are the result of different organismal routes of development that can result in different life histories. These terms can be used to describe recognizable life-history traits. Life history is generally used in organismal- and ecology-based journals. The terms paired species/species pairs have been used to describe two different phenotypes, whereas in some species and situations a continuum of phenotypes may be expressed. Our review revealed overlapping definitions for race and subspecies, and subspecies and ecotypes. Ecotypes are genotypic adaptations to particular environments, and this term is often used in genetic- and evolution-based journals. "Satellite species" is used for situations in which a parasitic lamprey yields two or more derived, nonparasitic lamprey species. Designatable Units, Evolutionary Significant Units (ESUs), and Distinct Population Segments (DPS) are used by some governments to classify ISD of vertebrate species within distinct and evolutionary significant criteria. In situations where the genetic or life-history components of ISD are not well understood, a conservative approach would be to call them phenotypes.
Collapse
Affiliation(s)
| | - Carl B. Schreck
- Department of Fisheries and WildlifeOregon State UniversityCorvallisORUSA
| |
Collapse
|
27
|
Hale MC, McLaughlin R, Wilson C, Mackereth R, Nichols KM. Differential gene expression associated with behavioral variation in ecotypes of Lake Superior brook trout (Salvelinus fontinalis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100884. [PMID: 34303261 DOI: 10.1016/j.cbd.2021.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/06/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022]
Abstract
Associations between behaviors and the development of different life history tactics have been documented in several species of salmon, trout, and charr. While it is well known that such behaviors are heritable the genes and molecular pathways connected to these behaviors remain unknown. We used an RNA-seq approach to identify genes and molecular pathways differentially regulated in brain tissue between "shy" and "bold" brook trout (Salvelinus fontinalis). A small number of genes were differentially expressed between the behavioral types at several months after hatching and two years of age. Pathway analysis revealed that EIF2 signaling differed consistently between shy and bold individuals suggesting large-scale differences in protein synthesis between behavioral types in the brain. Additionally, the RNA-seq data were used to find polymorphisms within the brook trout genome and a GWAS approach was used to test for statistical associations between genetic variants and behavior type. One allele located in a transcription factor (TSHZ3) contained a protein-coding non-synonymous SNP suggesting that functional variation within TSHZ3 is connected to the development of different behaviors. These results suggest that the molecular basis of behavioral development is complex and due to the differential expression of many genes involved in a wide-range of different molecular pathways.
Collapse
Affiliation(s)
- Matthew C Hale
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, United States of America.
| | - Robert McLaughlin
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Chris Wilson
- Aquatic Biodiversity and Conservation Unit, Ontario Ministry of Natural Resources, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Robert Mackereth
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, United States of America
| |
Collapse
|
28
|
Waters JM, McCulloch GA. Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Mol Ecol 2021; 30:4162-4172. [PMID: 34133810 DOI: 10.1111/mec.16018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Biologists have long been intrigued by apparently predictable and repetitive evolutionary trajectories inferred across a variety of lineages and systems. In recent years, high-throughput sequencing analyses have started to transform our understanding of such repetitive shifts. While researchers have traditionally categorized such shifts as either "convergent" or "parallel," based on relatedness of the lineages involved, emerging genomic insights provide an opportunity to better describe the actual evolutionary mechanisms at play. A synthesis of recent genomic analyses confirms that convergence is the predominant driver of repetitive evolution among species, whereas repeated sorting of standing variation is the major driver of repeated shifts within species. However, emerging data reveal numerous notable exceptions to these expectations, with recent examples of de novo mutations underpinning convergent shifts among even very closely related lineages, while repetitive sorting processes have occurred among even deeply divergent taxa, sometimes via introgression. A number of very recent analyses have found evidence for both processes occurring on different scales within taxa. We suggest that the relative importance of convergent versus sorting processes depends on the interplay between gene flow among populations, and phylogenetic relatedness of the lineages involved.
Collapse
|
29
|
Wynne R, Archer LC, Hutton SA, Harman L, Gargan P, Moran PA, Dillane E, Coughlan J, Cross TF, McGinnity P, Colgan TJ, Reed TE. Alternative migratory tactics in brown trout ( Salmo trutta) are underpinned by divergent regulation of metabolic but not neurological genes. Ecol Evol 2021; 11:8347-8362. [PMID: 34188891 PMCID: PMC8216917 DOI: 10.1002/ece3.7664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/03/2022] Open
Abstract
The occurrence of alternative morphs within populations is common, but the underlying molecular mechanisms remain poorly understood. Many animals, for example, exhibit facultative migration, where two or more alternative migratory tactics (AMTs) coexist within populations. In certain salmonid species, some individuals remain in natal rivers all their lives, while others (in particular, females) migrate to sea for a period of marine growth. Here, we performed transcriptional profiling ("RNA-seq") of the brain and liver of male and female brown trout to understand the genes and processes that differentiate between migratory and residency morphs (AMT-associated genes) and how they may differ in expression between the sexes. We found tissue-specific differences with a greater number of genes expressed differentially in the liver (n = 867 genes) compared with the brain (n = 10) between the morphs. Genes with increased expression in resident livers were enriched for Gene Ontology terms associated with metabolic processes, highlighting key molecular-genetic pathways underlying the energetic requirements associated with divergent migratory tactics. In contrast, smolt-biased genes were enriched for biological processes such as response to cytokines, suggestive of possible immune function differences between smolts and residents. Finally, we identified evidence of sex-biased gene expression for AMT-associated genes in the liver (n = 12) but not the brain. Collectively, our results provide insights into tissue-specific gene expression underlying the production of alternative life histories within and between the sexes, and point toward a key role for metabolic processes in the liver in mediating divergent physiological trajectories of migrants versus residents.
Collapse
Affiliation(s)
- Robert Wynne
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Louise C. Archer
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Stephen A. Hutton
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Luke Harman
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | | | - Peter A. Moran
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Present address:
Department of Ecological Science – Animal EcologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eileen Dillane
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Thomas F. Cross
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Marine InstituteNewportIreland
| | - Thomas J. Colgan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Present address:
Institute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzMainzGermany
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| |
Collapse
|
30
|
Quinn TP. Differential migration in Pacific salmon and trout: Patterns and hypotheses. ANIMAL MIGRATION 2021. [DOI: 10.1515/ami-2021-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Migrations affect the population dynamics, life history, evolution, and connections of animals to natural ecosystems and humans. Many species and populations display partial migration (some individuals migrate and some do not), and differential migration (migration distance varies). Partial migration is widely distributed in fishes but the term differential migration is much less commonly applied, despite the occurrence of this phenomenon. This paper briefly reviews the extent of differential migration in Pacific salmon and trout (genus Oncorhynchus), a very extensively studied group. Three hypotheses are presented to explain the patterns among species: 1) phylogenetic relationships, 2) the prevalence of partial migration (i.e., variation in anadromy), and 3) life history patterns (iteroparous or semelparous, and duration spent feeding at sea prior to maturation). Each hypothesis has some support but none is consistent with all patterns. The prevalence of differential migration, ranging from essentially non-existent to common within a species, reflects phylogeny and life history, interacting with the geographic features of the region where juvenile salmon enter the ocean. Notwithstanding the uncertain evolution of this behavior, it has very clear implications for salmon conservation, as it strongly affects exposure to predators, patterns of fishery exploitation and also uptake of toxic contaminants.
Collapse
Affiliation(s)
- Thomas P. Quinn
- School of Aquatic and Fishery Sciences , University of Washington , Seattle , WA 98195, USA
| |
Collapse
|
31
|
The Impacts of Dam Construction and Removal on the Genetics of Recovering Steelhead ( Oncorhynchus mykiss) Populations across the Elwha River Watershed. Genes (Basel) 2021; 12:genes12010089. [PMID: 33450806 PMCID: PMC7828262 DOI: 10.3390/genes12010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Dam construction and longitudinal river habitat fragmentation disrupt important life histories and movement of aquatic species. This is especially true for Oncorhynchus mykiss that exhibits both migratory (steelhead) and non-migratory (resident rainbow) forms. While the negative effects of dams on salmonids have been extensively documented, few studies have had the opportunity to compare population genetic diversity and structure prior to and following dam removal. Here we examine the impacts of the removal of two dams on the Elwha River on the population genetics of O. mykiss. Genetic data were produced from >1200 samples collected prior to dam removal from both life history forms, and post-dam removal from steelhead. We identified three genetic clusters prior to dam removal primarily explained by isolation due to dams and natural barriers. Following dam removal, genetic structure decreased and admixture increased. Despite large O. mykiss population declines after dam construction, we did not detect shifts in population genetic diversity or allele frequencies of loci putatively involved in migratory phenotypic variation. Steelhead descendants from formerly below and above dammed populations recolonized the river rapidly after dam removal, suggesting that dam construction did not significantly reduce genetic diversity underlying O. mykiss life history strategies. These results have significant evolutionary implications for the conservation of migratory adaptive potential in O. mykiss populations above current anthropogenic barriers.
Collapse
|
32
|
Abstract
Diadromy, the predictable movements of individuals between marine and freshwater environments, is biogeographically and phylogenetically widespread across fishes. Thus, despite the high energetic and potential fitness costs involved in moving between distinct environments, diadromy appears to be an effective life history strategy. Yet, the origin and molecular mechanisms that underpin this migratory behavior are not fully understood. In this review, we aim first to summarize what is known about diadromy in fishes; this includes the phylogenetic relationship among diadromous species, a description of the main hypotheses regarding its origin, and a discussion of the presence of non-migratory populations within diadromous species. Second, we discuss how recent research based on -omics approaches (chiefly genomics, transcriptomics, and epigenomics) is beginning to provide answers to questions on the genetic bases and origin(s) of diadromy. Finally, we suggest future directions for -omics research that can help tackle questions on the evolution of diadromy.
Collapse
Affiliation(s)
- M. Lisette Delgado
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
33
|
Delgado ML, Manosalva A, Urbina MA, Habit E, Link O, Ruzzante DE. Genomic basis of the loss of diadromy in Galaxias maculatus: Insights from reciprocal transplant experiments. Mol Ecol 2020; 29:4857-4870. [PMID: 33048403 DOI: 10.1111/mec.15686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Diadromy is known for having major effects on the distribution and richness of aquatic species, and so does its loss. The loss of diadromy has led to the diversification of many species, yet research focusing on understanding its molecular basis and consequences are limited. This is particularly true for amphidromous species despite being the most abundant group of diadromous species. Galaxias maculatus, an amphidromous species and one of the most widely distributed fishes in the Southern Hemisphere, exhibits many instances of nonmigratory or resident populations. The existence of naturally replicated resident populations in Patagonia can serve as an ideal system for the study of the mechanisms that lead to the loss of the diadromy and its ecological and evolutionary consequences. Here, we studied two adjacent river systems in which resident populations are genetically differentiated yet derived from the same diadromous population. By combining a reciprocal transplant experiment with genomic data, we showed that the two resident populations followed different evolutionary pathways by exhibiting a differential response in their capacity to survive in salt water. While one resident population was able to survive salt water, the other was not. Genomic analyses provided insights into the genes that distinguished (a) migratory from nonmigratory populations; (b) populations that can vs those that cannot survive a saltwater environment; and (c) between these resident populations. This study demonstrates that the loss of diadromy can be achieved by different pathways and that environmental (selection) and random (genetic drift) forces shape this dynamic evolutionary process.
Collapse
Affiliation(s)
| | - Aliro Manosalva
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, Concepción, Chile
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | - Evelyn Habit
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, Concepción, Chile
| | - Oscar Link
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
34
|
Kannry SH, O'Rourke SM, Kelson SJ, Miller MR. On the Ecology and Distribution of Steelhead (Oncorhynchus mykiss) in California's Eel River. J Hered 2020; 111:548-563. [PMID: 33125465 DOI: 10.1093/jhered/esaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
The preservation of life history and other phenotypic complexity is central to the resilience of Pacific salmon stocks. Steelhead (Oncorhynchus mykiss) express a diversity of life-history strategies such as the propensity to migrate (anadromy/residency) and the timing and state of maturation upon return to freshwater (run-timing), providing an opportunity to study adaptive phenotypic complexity. Historically, the Eel River supported upwards of 1 million salmon and steelhead, but the past century has seen dramatic declines of all salmonids in the watershed. Here we investigate life-history variation in Eel River steelhead by using Rapture sequencing, on thousands of individuals, to genotype the region diagnostic for run-timing (GREB1L) and the region strongly associated with residency/anadromy (OMY5) in the Eel River and other locations, as well as determine patterns of overall genetic differentiation. Our results provide insight into many conservation-related issues. For example, we found that distinct segregation between winter and summer-run steelhead correlated with flow-dependent barriers in major forks of the Eel, that summer-run steelhead inhabited the upper Eel prior to construction of an impassable dam, and that both life history and overall genetic diversity have been maintained in the resident trout population above; and we found no evidence of the summer-run allele in the South Fork Eel, indicating that summer run-timing cannot be expected to arise from standing genetic variation in this and other populations that lack the summer-run phenotype. The results presented in this study provide valuable information for designing future restoration and management strategies for O. mykiss in Northern California and beyond.
Collapse
|
35
|
Sillero N, Huey RB, Gilchrist G, Rissler L, Pascual M. Distribution modelling of an introduced species: do adaptive genetic markers affect potential range? Proc Biol Sci 2020; 287:20201791. [PMID: 32933443 DOI: 10.1098/rspb.2020.1791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biological invasions have increased in the last few decades mostly due to anthropogenic causes such as globalization of trade. Because invaders sometimes cause large economic losses and ecological disturbances, estimating their origin and potential geographical ranges is useful. Drosophila subobscura is native to the Old World but was introduced in the New World in the late 1970s and spread widely. We incorporate information on adaptive genetic markers into ecological niche modelling and then estimate the most probable geographical source of colonizers; evaluate whether the genetic bottleneck experienced by founders affects their potential distribution; and finally test whether this species has spread to all its potential suitable habitats worldwide. We find the environmental space occupied by this species in its native and introduced distributions are notably the same, although the introduced niche has shifted slightly towards higher temperature and lower precipitation. The genetic bottleneck of founding individuals was a key factor limiting the spread of this introduced species. We also find that regions in the Mediterranean and north-central Portugal show the highest probability of being the origin of the colonizers. Using genetically informed environmental niche modelling can enhance our understanding of the initial colonization and spread of invasive species, and also elucidate potential areas of future expansions worldwide.
Collapse
Affiliation(s)
- Neftalí Sillero
- CICGE Centro de Investigação em Ciências Geo-Espaciais, Faculdade de Ciências da Universidade do Porto (FCUP), Observatório Astronómico Prof. Manuel de Barros, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal
| | - Raymond B Huey
- Department of Biology, University of Washington, Seattle, WA, USA
| | - George Gilchrist
- Division of Environmental Biology, National Science Foundation, Alexandria, VA, USA.,Department of Biology, The College of William and Mary, Williamsburg, VA, USA
| | - Leslie Rissler
- Division of Environmental Biology, National Science Foundation, Alexandria, VA, USA
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística and IRBio, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
36
|
Makhrov AA, Artamonova VS. Instability Stabilized: Mechanisms of Evolutionary Stasis and Genetic Diversity Accumulation in Fishes and Lampreys from Environments with Unstable Abiotic Factors. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s1995425520040083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Oomen RA, Kuparinen A, Hutchings JA. Consequences of Single-Locus and Tightly Linked Genomic Architectures for Evolutionary Responses to Environmental Change. J Hered 2020; 111:319-332. [PMID: 32620014 PMCID: PMC7423069 DOI: 10.1093/jhered/esaa020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
Genetic and genomic architectures of traits under selection are key factors influencing evolutionary responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing and eco-evolutionary modeling are unlocking the potential for integrating genomic information into predictions of population responses to environmental change. Using eco-evolutionary simulations, we demonstrate that hypothetical single-locus control of a life history trait produces highly variable and unpredictable harvesting-induced evolution relative to the classically applied multilocus model. Single-locus control of complex traits is thought to be uncommon, yet blocks of linked genes, such as those associated with some types of structural genomic variation, have emerged as taxonomically widespread phenomena. Inheritance of linked architectures resembles that of single loci, thus enabling single-locus-like modeling of polygenic adaptation. Yet, the number of loci, their effect sizes, and the degree of linkage among them all occur along a continuum. We review how linked architectures are often associated, directly or indirectly, with traits expected to be under selection from anthropogenic stressors and are likely to play a large role in adaptation to environmental disturbance. We suggest using single-locus models to explore evolutionary extremes and uncertainties when the trait architecture is unknown, refining parameters as genomic information becomes available, and explicitly incorporating linkage among loci when possible. By overestimating the complexity (e.g., number of independent loci) of the genomic architecture of traits under selection, we risk underestimating the complexity (e.g., nonlinearity) of their evolutionary dynamics.
Collapse
Affiliation(s)
- Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
| | - Anna Kuparinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jeffrey A Hutchings
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute of Marine Research, Flødevigen Marine Research Station, His, Norway
| |
Collapse
|
38
|
Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 2020; 584:602-607. [PMID: 32641831 DOI: 10.1038/s41586-020-2467-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/16/2020] [Indexed: 12/22/2022]
Abstract
Species often include multiple ecotypes that are adapted to different environments1. However, it is unclear how ecotypes arise and how their distinctive combinations of adaptive alleles are maintained despite hybridization with non-adapted populations2-4. Here, by resequencing 1,506 wild sunflowers from 3 species (Helianthus annuus, Helianthus petiolaris and Helianthus argophyllus), we identify 37 large (1-100 Mbp in size), non-recombining haplotype blocks that are associated with numerous ecologically relevant traits, as well as soil and climate characteristics. Limited recombination in these haplotype blocks keeps adaptive alleles together, and these regions differentiate sunflower ecotypes. For example, haplotype blocks control a 77-day difference in flowering between ecotypes of the silverleaf sunflower H. argophyllus (probably through deletion of a homologue of FLOWERING LOCUS T (FT)), and are associated with seed size, flowering time and soil fertility in dune-adapted sunflowers. These haplotypes are highly divergent, frequently associated with structural variants and often appear to represent introgressions from other-possibly now-extinct-congeners. These results highlight a pervasive role of structural variation in ecotypic adaptation.
Collapse
|
39
|
McKinney G, McPhee MV, Pascal C, Seeb JE, Seeb LW. Network Analysis of Linkage Disequilibrium Reveals Genome Architecture in Chum Salmon. G3 (BETHESDA, MD.) 2020; 10:1553-1561. [PMID: 32165371 PMCID: PMC7202013 DOI: 10.1534/g3.119.400972] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 11/26/2022]
Abstract
Many studies exclude loci that exhibit linkage disequilibrium (LD); however, high LD can signal reduced recombination around genomic features such as chromosome inversions or sex-determining regions. Chromosome inversions and sex-determining regions are often involved in adaptation, allowing for the inheritance of co-adapted gene complexes and for the resolution of sexually antagonistic selection through sex-specific partitioning of genetic variants. Genomic features such as these can escape detection when loci with LD are removed; in addition, failing to account for these features can introduce bias to analyses. We examined patterns of LD using network analysis to identify an overlapping chromosome inversion and sex-determining region in chum salmon. The signal of the inversion was strong enough to show up as false population substructure when the entire dataset was analyzed, while the effect of the sex-determining region on population structure was only obvious after restricting analysis to the sex chromosome. Understanding the extent and geographic distribution of inversions is now a critically important part of genetic analyses of natural populations. Our results highlight the importance of analyzing and understanding patterns of LD in genomic dataset and the perils of excluding or ignoring loci exhibiting LD. Blindly excluding loci in LD would have prevented detection of the sex-determining region and chromosome inversion while failing to understand the genomic features leading to high-LD could have resulted in false interpretations of population structure.
Collapse
Affiliation(s)
- Garrett McKinney
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK, 99801
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle WA 98195
| | - Megan V McPhee
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK, 99801
| | - Carita Pascal
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle WA 98195
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle WA 98195
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle WA 98195
| |
Collapse
|
40
|
Huang K, Andrew RL, Owens GL, Ostevik KL, Rieseberg LH. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol Ecol 2020; 29:2535-2549. [PMID: 32246540 DOI: 10.1111/mec.15428] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Both models and case studies suggest that chromosomal inversions can facilitate adaptation and speciation in the presence of gene flow by suppressing recombination between locally adapted alleles. Until recently, however, it has been laborious and time-consuming to identify and genotype inversions in natural populations. Here we apply RAD sequencing data and newly developed population genomic approaches to identify putative inversions that differentiate a sand dune ecotype of the prairie sunflower (Helianthus petiolaris) from populations found on the adjacent sand sheet. We detected seven large genomic regions that exhibit a different population structure than the rest of the genome and that vary in frequency between dune and nondune populations. These regions also show high linkage disequilibrium and high heterozygosity between, but not within, arrangements, consistent with the behaviour of large inversions, an inference subsequently validated in part by comparative genetic mapping. Genome-environment association analyses show that key environmental variables, including vegetation cover and soil nitrogen, are significantly associated with inversions. The inversions colocate with previously described "islands of differentiation," and appear to play an important role in adaptive divergence and incipient speciation within H. petiolaris.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Rose L Andrew
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, Duke University, Durham, NC, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Rieseberg L, Geraldes A, Taberlet P. Editorial 2020. Mol Ecol 2020; 29:1-19. [DOI: 10.1111/mec.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/27/2022]
|
42
|
Wellenreuther M, Mérot C, Berdan E, Bernatchez L. Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification. Mol Ecol 2019; 28:1203-1209. [PMID: 30834648 DOI: 10.1111/mec.15066] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Emma Berdan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
43
|
Arostegui MC, Quinn TP. Ontogenetic and ecotypic variation in the coloration and morphology of rainbow trout (Oncorhynchus mykiss) in a stream–lake system. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Alternative ecotypes of diverse animal taxa exhibit distinct, habitat-specific phenotypes. Rainbow trout (Oncorhynchus mykiss), a salmonid fish, exhibits stream-resident (fluvial), lake-migrant (adfluvial) and ocean-migrant (anadromous) ecotypes throughout its range. We investigated the coloration, and morphology associated with swimming performance of wild, native non-anadromous rainbow trout in connected stream and lake habitats of a south-west Alaskan watershed to assess if they exhibited phenotypic diversity consistent with the presence of alternative fluvial and adfluvial ecotypes. Colour differences among rainbow trout of different size classes and habitats (stream or lake) indicated ecotype-specific pathways, diverging at the same point in ontogeny and resulting in different terminal coloration patterns. Specifically, lake-caught fish exhibited distinct silvering of the body, whereas stream-caught fish displayed banded coloration when small and bronze colour when larger. The morphology of lake-caught rainbow trout also differed from that of stream-caught fish in features associated with swimming performance, and they exhibited both shared and unique morphological patterns compared to sympatric Salvelinus species in those habitats [Dolly Varden (S. malma) in streams, and Arctic char (S. alpinus) in the lake]. Greater morphological variation within stream- than lake-caught rainbow trout, and their limited overlap in morphology, suggested population-specific partial migration. This study highlights the intraspecific diversity of migratory behaviour and how conservation of particular phenotypes depends on managing both for genotypes and for habitats.
Collapse
Affiliation(s)
- M C Arostegui
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - T P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
44
|
Weinstein SY, Thrower FP, Nichols KM, Hale MC. A large-scale chromosomal inversion is not associated with life history development in rainbow trout from Southeast Alaska. PLoS One 2019; 14:e0223018. [PMID: 31539414 PMCID: PMC6754156 DOI: 10.1371/journal.pone.0223018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
In studying the causative mechanisms behind migration and life history, the salmonids-salmon, trout, and charr-are an exemplary taxonomic group, as life history development is known to have a strong genetic component. A double inversion located on chromosome 5 in rainbow trout (Oncorhynchus mykiss) is associated with life history development in multiple populations, but the importance of this inversion has not been thoroughly tested in conjunction with other polymorphisms in the genome. To that end, we used a high-density SNP chip to genotype 192 F1 migratory and resident rainbow trout and focused our analyses to determine whether this inversion is important in life history development in a well-studied population of rainbow trout from Southeast Alaska. We identified 4,994 and 436 SNPs-predominantly outside of the inversion region-associated with life history development in the migrant and resident familial lines, respectively. Although F1 samples showed genomic patterns consistent with the double inversion on chromosome 5 (reduced observed and expected heterozygosity and an increase in linkage disequilibrium), we found no statistical association between the inversion and life history development. Progeny produced by crossing resident trout and progeny produced by crossing migrant trout both consisted of a mix of migrant and resident individuals, irrespective of the individuals' inversion haplotype on chromosome 5. This suggests that although the inversion is present at a low frequency, it is not strongly associated with migration as it is in populations of Oncorhynchus mykiss from lower latitudes.
Collapse
Affiliation(s)
- Spencer Y. Weinstein
- Department of Biology, Texas Christian University, Fort Worth, United States of America
| | - Frank P. Thrower
- Ted Stevens Marine Research Institute, Alaska Fisheries Center, NOAA, Juneau, AK, United States of America
| | - Krista M. Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, Seattle, WA, United States of America
| | - Matthew C. Hale
- Department of Biology, Texas Christian University, Fort Worth, United States of America
| |
Collapse
|
45
|
Ferguson A, Reed TE, Cross TF, McGinnity P, Prodöhl PA. Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment. JOURNAL OF FISH BIOLOGY 2019; 95:692-718. [PMID: 31197849 PMCID: PMC6771713 DOI: 10.1111/jfb.14005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/09/2019] [Indexed: 05/10/2023]
Abstract
Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Africa; it is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river-resident, lake-resident) and three main facultative migratory life histories (downstream-upstream within a river system, fluvial-adfluvial potamodromous; to and from a lake, lacustrine-adfluvial (inlet) or allacustrine (outlet) potamodromous; to and from the sea, anadromous). River-residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial-adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine-adfluvial or allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold-trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non-genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river-resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr-smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonines. Identification of genetic markers linked to migration components and especially to the migration-residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes.
Collapse
Affiliation(s)
- Andrew Ferguson
- School of Biological SciencesQueen's University BelfastBelfastUK
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Tom F. Cross
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Paulo A. Prodöhl
- School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
46
|
Larson WA, Dann TH, Limborg MT, McKinney GJ, Seeb JE, Seeb LW. Parallel signatures of selection at genomic islands of divergence and the major histocompatibility complex in ecotypes of sockeye salmon across Alaska. Mol Ecol 2019; 28:2254-2271. [DOI: 10.1111/mec.15082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wesley A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Tyler H. Dann
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
- Gene Conservation Laboratory Alaska Department of Fish and Game Anchorage Alaska
| | - Morten T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Garrett J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - James E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| |
Collapse
|
47
|
Anadromy Redux? Genetic Analysis to Inform Development of an Indigenous American River Steelhead Broodstock. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2019. [DOI: 10.3996/072018-jfwm-063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
The construction of dams and water diversions has severely limited access to spawning habitat for anadromous fishes. To mitigate for these impacts, hatchery programs rear and release millions of juvenile salmonids, including steelhead, the anadromous ecotype of the species Oncorhynchus mykiss. These programs sometimes use nonindigenous broodstock sources that may have negative effects on wild populations. In California, however, only one anadromous fish hatchery program currently uses nonnative broodstock: the steelhead program at Nimbus Fish Hatchery on the American River, a tributary of the Sacramento River in the California Central Valley. The goal of this study was to determine if potentially appropriate sources to replace the broodstock for the Nimbus Hatchery steelhead program exist in the Upper American River, above Nimbus and Folsom dams. We show that all Upper American River O. mykiss sampled share ancestry with other populations in the Central Valley steelhead distinct population segment, with limited introgression from out-of-basin sources in some areas. Furthermore, some Upper American River populations retain adaptive genomic variation associated with a migratory life history, supporting the hypothesis that these populations display adfluvial migratory behavior. Together, these results provide insights into the evolution of trout populations above barrier dams. We conclude that some Upper American River O. mykiss populations represent genetically appropriate sources from which fisheries managers could potentially develop a new broodstock for the Nimbus Hatchery steelhead program to reestablish a native anadromous population in the Lower American River and contribute to recovery of the threatened Central Valley steelhead distinct population segment.
Collapse
|