1
|
Moreira LR, Smith BT. Convergent genomic signatures of local adaptation across a continental-scale environmental gradient. SCIENCE ADVANCES 2023; 9:eadd0560. [PMID: 37205757 PMCID: PMC10198635 DOI: 10.1126/sciadv.add0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Convergent local adaptation offers a glimpse into the role of constraint and stochasticity in adaptive evolution, in particular the extent to which similar genetic mechanisms drive adaptation to common selective forces. Here, we investigated the genomics of local adaptation in two nonsister woodpeckers that are codistributed across an entire continent and exhibit remarkably convergent patterns of geographic variation. We sequenced the genomes of 140 individuals of Downy (Dryobates pubescens) and Hairy (Dryobates villosus) woodpeckers and used a suite of genomic approaches to identify loci under selection. We showed evidence that convergent genes have been targeted by selection in response to shared environmental pressures, such as temperature and precipitation. Among candidates, we found multiple genes putatively linked to key phenotypic adaptations to climate, including differences in body size (e.g., IGFPB) and plumage (e.g., MREG). These results are consistent with genetic constraints limiting the pathways of adaptation to broad climatic gradients, even after genetic backgrounds diverge.
Collapse
Affiliation(s)
- Lucas R. Moreira
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
- Department of Ornithology, American Museum of Natural History, New York City, NY, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York City, NY, USA
| |
Collapse
|
2
|
Chaturvedi S, Gompert Z, Feder JL, Osborne OG, Muschick M, Riesch R, Soria-Carrasco V, Nosil P. Climatic similarity and genomic background shape the extent of parallel adaptation in Timema stick insects. Nat Ecol Evol 2022; 6:1952-1964. [PMID: 36280782 PMCID: PMC7613875 DOI: 10.1038/s41559-022-01909-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying similar environments. Moreover, parallel evolution sometimes, but not always, uses the same genes. Two main hypotheses have been put forth to explain the probability and extent of parallel evolution. First, parallel evolution is more likely when shared ecologies result in similar patterns of natural selection in different taxa. Second, parallelism is more likely when genomes are similar because of shared standing variation and similar mutational effects in closely related genomes. Here we combine ecological, genomic, experimental and phenotypic data with Bayesian modelling and randomization tests to quantify the degree of parallelism and its relationship with ecology and genetics. Our results show that the extent to which genomic regions associated with climate are parallel among species of Timema stick insects is shaped collectively by shared ecology and genomic background. Specifically, the extent of genomic parallelism decays with divergence in climatic conditions (that is, habitat or ecological similarity) and genomic similarity. Moreover, we find that climate-associated loci are likely subject to selection in a field experiment, overlap with genetic regions associated with cuticular hydrocarbon traits and are not strongly shaped by introgression between species. Our findings shed light on when evolution is most expected to repeat itself.
Collapse
Affiliation(s)
- Samridhi Chaturvedi
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA.
| | - Zachariah Gompert
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Owen G Osborne
- Molecular Ecology and Evolution Bangor, Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, UK
| | - Moritz Muschick
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Rüdiger Riesch
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | - Patrik Nosil
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
3
|
Wang L, Cai M, Song Y, Bai J, Sun W, Yu J, Du S, Lu J, Fu S. Multidimensional difference analysis in gastric cancer patients between high and low latitude. Front Genet 2022; 13:944492. [PMID: 35957688 PMCID: PMC9360553 DOI: 10.3389/fgene.2022.944492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic variation has been shown to affect tumor growth and progression, and the temperature at different latitudes may promote the evolution of genetic variation. Geographical data with latitudinal information is of importance to understand the interplay between genetic variants and environmental influence, such as the temperature, in gastric cancer (GC). In this study, we classified the GC samples from The Cancer Genome Atlas database into two groups based on the latitudinal information of patients and found that GC samples with low-latitude had better clinical outcomes. Further analyses revealed significant differences in other clinical factors such as disease stage and grade between high and low latitudes GC samples. Then, we analyzed the genomic and transcriptomic differences between the two groups. Furthermore, we evaluated the activity score of metabolic pathways and infiltrating immune cells in GC samples with different latitudes using the single-sample gene set enrichment analysis algorithm. These results showed that GC samples at low-latitude had lower tumor mutation burden and subclones as well as higher DNA repair activities. Meanwhile, we found that most immune cells were associated with the prognosis of low-latitude GC patients. At last, we constructed and validated an immune-related prognostic model to evaluate the prognosis of GC samples at different latitudes. This study has provided a further understanding of the geographical contribution to GC at the multiomic level and may benefit the individualized treatment of GC patients at different latitudes.
Collapse
Affiliation(s)
- Liqiang Wang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Ying Song
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Bai
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jingcui Yu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuomeng Du
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jianping Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Songbin Fu, ; Jianping Lu,
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- *Correspondence: Songbin Fu, ; Jianping Lu,
| |
Collapse
|
4
|
Clark JD, Benham PM, Maldonado JE, Luther DA, Lim HC. Maintenance of local adaptation despite gene flow in a coastal songbird. Evolution 2022; 76:1481-1494. [PMID: 35700208 PMCID: PMC9545442 DOI: 10.1111/evo.14538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 01/22/2023]
Abstract
Adaptation to local environments is common in widespread species and the basis of ecological speciation. The song sparrow (Melospiza melodia) is a widespread, polytypic passerine that occurs in shrubland habitats throughout North America. We examined the population structure of two parapatric subspecies that inhabit different environments: the Atlantic song sparrow (M. m. atlantica), a coastal specialist, and the eastern song sparrow (M. m. melodia), a shrubland generalist. These populations lacked clear mitochondrial population structure, yet coastal birds formed a distinct nuclear genetic cluster. We found weak overall genomic differentiation between these subspecies, suggesting either recent divergence, extensive gene flow, or a combination thereof. There was a steep genetic cline at the transition to coastal habitats, consistent with isolation by environment, not isolation by distance. A phenotype under divergent selection, bill size, varied with the amount of coastal ancestry in transitional areas, but larger bill size was maintained in coastal habitats regardless of ancestry, further supporting a role for selection in the maintenance of these subspecies. Demographic modeling suggested a divergence history of limited gene flow followed by secondary contact, which has emerged as a common theme in adaptive divergence across taxa.
Collapse
Affiliation(s)
- Jonathan D. Clark
- Department of Environmental Science and PolicyGeorge Mason UniversityFairfaxVirginia22030,Current Address: Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew Hampshire03824
| | - Phred M. Benham
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia94720
| | - Jesus E. Maldonado
- Department of Environmental Science and PolicyGeorge Mason UniversityFairfaxVirginia22030,Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonD.C.20013
| | - David A. Luther
- Department of BiologyGeorge Mason UniversityFairfaxVirginia22030
| | - Haw Chuan Lim
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonD.C.20013,Department of BiologyGeorge Mason UniversityFairfaxVirginia22030
| |
Collapse
|
5
|
Willi Y, Kristensen TN, Sgrò CM, Weeks AR, Ørsted M, Hoffmann AA. Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proc Natl Acad Sci U S A 2022; 119:e2105076119. [PMID: 34930821 PMCID: PMC8740573 DOI: 10.1073/pnas.2105076119] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
About 50 y ago, Crow and Kimura [An Introduction to Population Genetics Theory (1970)] and Ohta and Kimura [Genet. Res. 22, 201-204 (1973)] laid the foundations of conservation genetics by predicting the relationship between population size and genetic marker diversity. This work sparked an enormous research effort investigating the importance of population dynamics, in particular small population size, for population mean performance, population viability, and evolutionary potential. In light of a recent perspective [J. C. Teixeira, C. D. Huber, Proc. Natl. Acad. Sci. U.S.A. 118, 10 (2021)] that challenges some fundamental assumptions in conservation genetics, it is timely to summarize what the field has achieved, what robust patterns have emerged, and worthwhile future research directions. We consider theory and methodological breakthroughs that have helped management, and we outline some fundamental and applied challenges for conservation genetics.
Collapse
Affiliation(s)
- Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Torsten N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Andrew R Weeks
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Cesar Australia, Brunswick, VIC 3056, Australia
| | - Michael Ørsted
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
- Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia;
| |
Collapse
|
6
|
Kahl SM, Kappel C, Joshi J, Lenhard M. Phylogeography of a widely distributed plant species reveals cryptic genetic lineages with parallel phenotypic responses to warming and drought conditions. Ecol Evol 2021; 11:13986-14002. [PMID: 34707833 PMCID: PMC8525116 DOI: 10.1002/ece3.8103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
To predict how widely distributed species will perform under future climate change, it is crucial to understand and reveal their underlying phylogenetics. However, detailed information about plant adaptation and its genetic basis and history remains scarce and especially widely distributed species receive little attention despite their putatively high adaptability. To examine the adaptation potential of a widely distributed species, we sampled the model plant Silene vulgaris across Europe. In a greenhouse experiment, we exposed the offspring of these populations to a climate change scenario for central Europe and revealed the population structure through whole-genome sequencing. Plants were grown under two temperatures (18°C and 21°C) and three precipitation regimes (65, 75, and 90 mm) to measure their response in biomass and fecundity-related traits. To reveal the population genetic structure, ddRAD sequencing was employed for a whole-genome approach. We found three major genetic clusters in S. vulgaris from Europe: one cluster comprising Southern European populations, one cluster of Western European populations, and another cluster containing central European populations. Population genetic diversity decreased with increasing latitude, and a Mantel test revealed significant correlations between F ST and geographic distances as well as between genetic and environmental distances. Our trait analysis showed that the genetic clusters significantly differed in biomass-related traits and in the days to flowering. However, half of the traits showed parallel response patterns to the experimental climate change scenario. Due to the differentiated but parallel response patterns, we assume that phenotypic plasticity plays an important role for the adaptation of the widely distributed species S. vulgaris and its intraspecific genetic lineages.
Collapse
Affiliation(s)
- Sandra M. Kahl
- Biodiversity Research/Systematic BotanyInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Christian Kappel
- GeneticsInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Jasmin Joshi
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Institute for Landscape and Open SpaceEastern Switzerland University of Applied SciencesRapperswilSwitzerland
| | - Michael Lenhard
- GeneticsInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
7
|
Dikaya V, El Arbi N, Rojas-Murcia N, Nardeli SM, Goretti D, Schmid M. Insights into the role of alternative splicing in plant temperature response. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab234. [PMID: 34105719 DOI: 10.1093/jxb/erab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 05/21/2023]
Abstract
Alternative splicing occurs in all eukaryotic organisms. Since the first description of multiexon genes and the splicing machinery, the field has expanded rapidly, especially in animals and yeast. However, our knowledge about splicing in plants is still quite fragmented. Though eukaryotes show some similarity in the composition and dynamics of the splicing machinery, observations of unique plant traits are only starting to emerge. For instance, plant alternative splicing is closely linked to their ability to perceive various environmental stimuli. Due to their sessile lifestyle, temperature is a central source of information allowing plants to adjust their development to match current growth conditions. Hence, seasonal temperature fluctuations and day-night cycles can strongly influence plant morphology across developmental stages. Here we discuss the available data about temperature-dependent alternative splicing in plants. Given its fragmented state it is not always possible to fit specific observations into a coherent picture, yet it is sufficient to estimate the complexity of this field and the need of further research. Better understanding of alternative splicing as a part of plant temperature response and adaptation may also prove to be a powerful tool for both, fundamental and applied sciences.
Collapse
Affiliation(s)
- Varvara Dikaya
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nabila El Arbi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nelson Rojas-Murcia
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Perkovich C, Ward D. Herbivore-induced defenses are not under phylogenetic constraints in the genus Quercus (oak): Phylogenetic patterns of growth, defense, and storage. Ecol Evol 2021; 11:5187-5203. [PMID: 34026000 PMCID: PMC8131805 DOI: 10.1002/ece3.7409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
The evolution of plant defenses is often constrained by phylogeny. Many of the differences between competing plant defense theories hinge upon the differences in the location of meristem damage (apical versus auxiliary) and the amount of tissue removed. We analyzed the growth and defense responses of 12 Quercus (oak) species from a well-resolved molecular phylogeny using phylogenetically independent contrasts. Access to light is paramount for forest-dwelling tree species, such as many members of the genus Quercus. We therefore predicted a greater investment in defense when apical meristem tissue was removed. We also predicted a greater investment in defense when large amounts of tissue were removed and a greater investment in growth when less tissues were removed. We conducted five simulated herbivory treatments including a control with no damage and alterations of the location of meristem damage (apical versus auxiliary shoots) and intensity (25% versus 75% tissue removal). We measured growth, defense, and nutrient re-allocation traits in response to simulated herbivory. Phylomorphospace models were used to demonstrate the phylogenetic nature of trade-offs between characteristics of growth, chemical defenses, and nutrient re-allocation. We found that growth-defense trade-offs in control treatments were under phylogenetic constraints, but phylogenetic constraints and growth-defense trade-offs were not common in the simulated herbivory treatments. Growth-defense constraints exist within the Quercus genus, although there are adaptations to herbivory that vary among species.
Collapse
Affiliation(s)
| | - David Ward
- Department of Biological SciencesKent State UniversityKentOHUSA
| |
Collapse
|
9
|
Burns R, Novikova PY. Parallel adaptation to climate above the 35th parallel. Mol Ecol 2020; 29:1399-1401. [DOI: 10.1111/mec.15391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Robin Burns
- Austrian Academy of Sciences Gregor Mendel Institute of Plant Biology Vienna Austria
| | - Polina Yu. Novikova
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|