1
|
Koroleva AG, Vakhteeva EA, Epifantsev AA, Sukhanova LV, Yakhnenko VM, Glyzina OY, Tolstikova LI, Cherezova VM, Sidorova TV, Potapov SA, Kirilchik SV, Sapozhnikova YP. Acclimation during Embryogenesis Remodulates Telomerase Activity and Gene Expression in Baikal Whitefish Larvae, Mitigating the Effects of Acute Temperature Stress. Animals (Basel) 2024; 14:2839. [PMID: 39409788 PMCID: PMC11476280 DOI: 10.3390/ani14192839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Acclimation through the hormesis effect increases the plasticity of organisms, which has been shown for many ectothermic animals, including fish. We investigated the effect of temperature acclimation in Baikal whitefish Coregonus baicalensis (Dybowski, 1874). Telomere length, telomerase activity, and the expression of genes, whose products are involved in the regulation of telomere length and defense against reactive oxygen species, were selected to assess the state of the larvae. Acclimation and acute temperature stress (+12 °C) had no effect on telomere length, but altered telomerase activity (acclimation decreased it; stress increased it) and the levels of genes expression. Under stress, the expression of superoxide dismutase genes was increased in acclimated larvae and that of glutathione peroxidases in non-acclimated larvae, which may indicate lower reactive oxygen species formation and slower antioxidant responses in acclimated fish. The expression of some telomere-related genes was reduced under temperature stress, but the expression of the tzap and smg genes, whose products improve the control of telomere length by preventing them from lengthening or shortening, was increased in acclimated individuals. The data obtained indicate a positive effect of acclimation on the state of the Baikal whitefish larvae by remodulation of their telomerase activity and the transcriptional profile.
Collapse
Affiliation(s)
- Anastasiya G. Koroleva
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia (L.V.S.)
| | | | | | | | | | | | | | | | | | | | | | - Yulia P. Sapozhnikova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia (L.V.S.)
| |
Collapse
|
2
|
Colominas-Ciuró R, Gray FE, Arikan K, Zahn S, Meier C, Criscuolo F, Bize P. Effects of persistent organic pollutants on telomere dynamics are sex and age-specific in a wild long-lived bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173785. [PMID: 38851349 DOI: 10.1016/j.scitotenv.2024.173785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Chemical pollution is a major man-made environmental threat to ecosystems and natural animal populations. Of concern are persistent organic pollutants (POPs), which can persist in the environment for many years. While bioaccumulating throughout the lives of wild animals, POPs can affect their health, reproduction, and survival. However, measuring long-term effects of POPs in wild populations is challenging, and therefore appropriate biomarkers are required in wildlife ecotoxicology. One potential target is telomere length, since telomere preservation has been associated to survival and longevity, and stressors as chemical pollution can disrupt its maintenance. Here, we investigated the effects of different classes of POPs on relative telomere length (RTL) and its rate of change (TROC) in wild long-lived Alpine swifts (Tachymarptis melba). As both RTL and TROC are often reported to differ between sexes and with chronological age, we tested for sex- and age-specific (pre-senescent vs. senescent, ≥ 9 age of years, individuals) effects of POPs. Our results showed that senescent females presented longer RTL and elongated telomeres over time compared to pre-senescent females and males. These sex- and age-related differences in RTL and TROC were influenced by POPs, but differently depending on whether they were organochlorine pesticides (OCPs) or industrial polychlorinated biphenyls (PCBs). OCPs (particularly drins) were negatively associated with RTL, with the strongest negative effects being found in senescent females. Conversely, PCBs led to slower rates of telomere shortening, especially in females. Our study indicates diametrically opposed effects of OCPs on RTL and PCBs on TROC, and these effects were more pronounced in females and senescent individuals. The mechanisms behind these effects (e.g., increased oxidative stress by OCPs; upregulation of telomerase activity by PCBs) remain unknown. Our results highlight the importance in wildlife ecotoxicology to account for sex- and age-related effects when investigating the health effects of pollutants on biomarkers such as telomeres.
Collapse
Affiliation(s)
| | | | - Kalender Arikan
- Department of Biology Education, Faculty of Education, Hacettepe University, Turkey
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, France
| | | | | | - Pierre Bize
- Swiss Ornithological Institute, Switzerland.
| |
Collapse
|
3
|
Monaghan P. Linking telomere dynamics to evolution, life history and environmental change: perspectives, predictions and problems. Biogerontology 2024; 25:301-311. [PMID: 38252370 PMCID: PMC10998769 DOI: 10.1007/s10522-023-10081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024]
Abstract
This perspectives paper considers the value of studying telomere biology outside of a biomedical context. I provide illustrative examples of the kinds of questions that evolutionary ecologists have addressed in studies of telomere dynamics in non-model species, primarily metazoan animals, and what this can contribute to our understanding of their evolution, life histories and health. I also discuss why the predicted relationships between telomere dynamics and life history traits, based on the detailed cellular studies in humans and model organisms, are not always found in studies in other species.
Collapse
Affiliation(s)
- Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
4
|
Prévot D'Alvise N, Ascensio E, Richard S. Influence of EE2 exposure, age and sex on telomere length in European long-snouted seahorse (Hippocampus guttulatus). Gen Comp Endocrinol 2024; 346:114419. [PMID: 38040384 DOI: 10.1016/j.ygcen.2023.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
After a Telomere Lengthening in juvenile stage, a progressive telomere shortening occurs with age despite higher telomerase level. Telomere Length (TL) may also reflect past physiological state such as a chronic chemical stress. Several studies have revealed a correlation between TL, ageing and/or sex in vertebrates, including teleosts; however, the patterns of telomere dynamics with telomerase mRNA expression, sex, lifespan or chemical stress in teleosts are unclear. The first aim of this study is to verify if telomere length is age and sex-dependent. The second aim is to consider if TL is a useful indicator of stress response in European long-snouted seahorse, Hippocampus guttulatus, an ectothermic and non-model system. We showed that after telomere lengthening during the juvenile stage, a telomeric attrition became significant in sexually mature individuals (p = 0.042). TL decreased in older seahorses despite the presence of somatic telomerase mRNA expression at all life stages studied. There was no difference in TL between males and females, but telomerase mRNA expression was consistently higher in females than males. Exposure to EE2 had no effect on TL in young seahorses, but was correlated with a significant increase in telomerase mRNA expression and various physiological disruptions. Here, a growth retardation of -10 % for body length (p = 0.016) and approximately -45 % for mass (p = 0.001) compared to healthy juvenile seahorses was observed. Our data suggest that telomere dynamics alone should not be used as a marker of EE2 exposure in juvenile seahorses.
Collapse
Affiliation(s)
- Nathalie Prévot D'Alvise
- Mediterranean Institute of Oceanography (MIO), UMR 7294, Équipe EMBIO, Université de Toulon, CS 60584 - 83 041 Toulon Cedex 9, France.
| | - Eliette Ascensio
- Mediterranean Institute of Oceanography (MIO), UMR 7294, Équipe EMBIO, Université de Toulon, CS 60584 - 83 041 Toulon Cedex 9, France
| | - Simone Richard
- Mediterranean Institute of Oceanography (MIO), UMR 7294, Équipe EMBIO, Université de Toulon, CS 60584 - 83 041 Toulon Cedex 9, France
| |
Collapse
|
5
|
Zamora-Camacho FJ, Burraco P, Zambrano-Fernández S, Aragón P. Ammonium effects on oxidative stress, telomere length, and locomotion across life stages of an anuran from habitats with contrasting land-use histories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160924. [PMID: 36526187 DOI: 10.1016/j.scitotenv.2022.160924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Understanding the mechanistic implications behind wildlife responses to global changes is a central topic in eco-evolutionary research. In particular, anthropic pollution is known to impact wild populations across the globe, which may have even stronger consequences for species with complex life cycles. Among vertebrates, amphibians represent a paradigmatic example of metamorphosis, and their characteristics make them highly vulnerable to pollution. Here, we tested for differences in the redox status, telomere length, and locomotor performance across life stages of green frogs (Pelophylax perezi) from agrosystem and natural habitats, both constitutively and in response to an experimental ammonium exposure (10 mg/L). We found that larvae from the agrosystem constitutively showed an enhanced redox status (better antioxidant balance against H2O2, lower lipid peroxidation) but shorter telomeres as compared to larvae from the natural environment. The larval redox response to ammonium was, overall, similar in both habitats. In contrast, after metamorphosis, the redox status of individuals from the natural habitat seemed to cope better with ammonium exposure (denoted by lower lipid peroxidation), and differences between habitats in telomere length were no longer present. Intriguingly, while the swimming performance of larvae did not correlate with individual's physiology, metamorphs with lower glutathione reductase activity and longer telomeres had a better jumping performance. This may suggest that locomotor performance is both traded off with the production of reactive oxygen species and potentiated directly by longer telomeres or indirectly by the mechanisms that buffer their shortening. Overall, our study suggests that contrasting land-use histories can drive divergence in physiological pathways linked to individual health and lifespan. Since this pattern was life-stage dependent, divergent habitat conditions can have contrasting implications across the ontogenetic development of species with complex life cycles.
Collapse
Affiliation(s)
- Francisco Javier Zamora-Camacho
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| | - Pablo Burraco
- Department of Wetland Ecology, Doñana Biological Station, Avda. Américo Vespucio 26, 41092 Seville, Spain
| | | | - Pedro Aragón
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
6
|
Burraco P, Hernandez-Gonzalez M, Metcalfe NB, Monaghan P. Ageing across the great divide: tissue transformation, organismal growth and temperature shape telomere dynamics through the metamorphic transition. Proc Biol Sci 2023; 290:20222448. [PMID: 36750187 PMCID: PMC9904946 DOI: 10.1098/rspb.2022.2448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
Telomere attrition is considered a useful indicator of cellular and whole-organism ageing rate. While approximately 80% of animal species undergo metamorphosis that includes extensive tissue transformations (involving cell division, apoptosis, de-differentiation and de novo formation of stem cells), the effect on telomere dynamics is unknown. We measured telomeres in Xenopus laevis developing from larvae to adults under contrasting environmental temperatures. Telomere dynamics were linked to the degree of tissue transformation during development. Average telomere length in gut tissue increased dramatically during metamorphosis, when the gut shortens by 75% and epithelial cells de-differentiate into stem cells. In the liver (retained from larva) and hindlimb muscle (newly formed before metamorphosis), telomeres gradually shortened until adulthood, likely due to extensive cell division. Tail muscle telomere lengths were constant until tail resorption, and those in heart (retained from larva) showed no change over time. Telomere lengths negatively correlated with larval growth, but for a given growth rate, telomeres were shorter in cooler conditions, suggesting that growing in the cold is more costly. Telomere lengths were not related to post-metamorphic growth rate. Further research is now needed to understand whether telomere dynamics are a good indicator of ageing rate in species undergoing metamorphosis.
Collapse
Affiliation(s)
- Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- Ecology, Evolution and Development Group, Doñana Biological Station (CSIC), 41092, Seville, Spain
| | - Miguel Hernandez-Gonzalez
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B. Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
7
|
Carravieri A, Lorioux S, Angelier F, Chastel O, Albert C, Bråthen VS, Brisson-Curadeau É, Clairbaux M, Delord K, Giraudeau M, Perret S, Poupart T, Ribout C, Viricel-Pante A, Grémillet D, Bustamante P, Fort J. Carryover effects of winter mercury contamination on summer concentrations and reproductive performance in little auks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120774. [PMID: 36496068 DOI: 10.1016/j.envpol.2022.120774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Many animals migrate after reproduction to respond to seasonal environmental changes. Environmental conditions experienced on non-breeding sites can have carryover effects on fitness. Exposure to harmful chemicals can vary widely between breeding and non-breeding grounds, but its carryover effects are poorly studied. Mercury (Hg) contamination is a major concern in the Arctic. Here, we quantified winter Hg contamination and its carryover effects in the most abundant Arctic seabird, the little auk Alle alle. Winter Hg contamination of birds from an East Greenland population was inferred from head feather concentrations. Birds tracked with Global Location Sensors (GLS, N = 28 of the total 92) spent the winter in western and central North Atlantic waters and had increasing head feather Hg concentrations with increasing longitude (i.e., eastward). This spatial pattern was not predicted by environmental variables such as bathymetry, sea-surface temperature or productivity, and needs further investigation. Hg concentrations in head feathers and blood were strongly correlated, suggesting a carryover effect of adult winter contamination on the consequent summer concentrations. Head feather Hg concentrations had no clear association with telomere length, a robust fitness indicator. In contrast, carryover negative effects were detected on chick health, as parental Hg contamination in winter was associated with decreasing growth rate of chicks in summer. Head feather Hg concentrations of females were not associated with egg membrane Hg concentrations, or with egg volume. In addition, parental winter Hg contamination was not related to Hg burdens in chicks' body feathers. Therefore, we hypothesise that the association between parental winter Hg exposure and the growth of their chick results from an Hg-related decrease in parental care, and needs further empirical evidence. Our results stress the need of considering parental contamination on non-breeding sites to understand Hg trans-generational effects in migrating seabirds, even at low concentrations.
Collapse
Affiliation(s)
- Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Rte de Prissé la Charrière, 79360, Villiers-en-Bois, France.
| | - Sophie Lorioux
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Rte de Prissé la Charrière, 79360, Villiers-en-Bois, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Rte de Prissé la Charrière, 79360, Villiers-en-Bois, France
| | - Céline Albert
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Vegard Sandøy Bråthen
- Norwegian Institute for Nature Research (NINA), Postboks 5685, Torgarden 7485 Trondheim, Norway
| | - Émile Brisson-Curadeau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Rte de Prissé la Charrière, 79360, Villiers-en-Bois, France; Université McGill, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Manon Clairbaux
- MaREI, the SFI Research Centre for Energy, Climate and Marine, Beaufort Building, Environmental Research Institute, University College Cork, Ringaskiddy, Co. Cork, P43 C573, Ireland; School of Biological, Environmental and Earth Sciences, University College Cork, Cork, T23 N73K, Ireland
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Rte de Prissé la Charrière, 79360, Villiers-en-Bois, France
| | - Mathieu Giraudeau
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Samuel Perret
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Timothée Poupart
- Patrimoine Naturel Joint Unit (OFB-CNRS-MNHN), Muséum national d'Histoire naturelle, Station marine de Concarneau, Quai de la Croix, 29900 Concarneau, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Rte de Prissé la Charrière, 79360, Villiers-en-Bois, France
| | - Amélia Viricel-Pante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France; LEMAR (UMR 6539 UBO, CNRS, IRD, Ifremer) IUEM, Technopole Brest-Iroise, rue Dumont d'Urville, 29280 Plouzané, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes 75005, Paris, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS- La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
8
|
Rieseberg L, Warschefsky E, Ortiz-Barrientos D, Kane NC, Thresher K, Sibbett B. Editorial 2023. Mol Ecol 2023; 32:1-25. [PMID: 36573261 DOI: 10.1111/mec.16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
|
9
|
Hope SF, Angelier F, Ribout C, Groffen J, Kennamer RA, Hopkins WA. Warmer incubation temperatures and later lay-orders lead to shorter telomere lengths in wood duck (Aix sponsa) ducklings. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:101-111. [PMID: 36214364 DOI: 10.1002/jez.2659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/27/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
The environment that animals experience during development shapes phenotypic expression. In birds, two important aspects of the early-developmental environment are lay-order sequence and incubation. Later-laid eggs tend to produce weaker offspring, sometimes with compensatory mechanisms to accelerate their growth rate to catch-up to their siblings. Further, small decreases in incubation temperature slow down embryonic growth rates and lead to wide-ranging negative effects on many posthatch traits. Recently, telomeres, noncoding DNA sequences at the end of chromosomes, have been recognized as a potential proxy for fitness because longer telomeres are positively related to lifespan and individual quality in many animals, including birds. Although telomeres appear to be mechanistically linked to growth rate, little is known about how incubation temperature and lay-order may influence telomere length. We incubated wood duck (Aix sponsa) eggs at two ecologically-relevant temperatures (34.9°C and 36.2°C) and measured telomere length at hatch and 1 week after. We found that ducklings incubated at the lower temperature had longer telomeres than those incubated at the higher temperature both at hatch and 1 week later. Further, we found that later-laid eggs produced ducklings with shorter telomeres than those laid early in the lay-sequence, although lay-order was not related to embryonic developmental rate. This study contributes to our broader understanding of how parental effects can affect telomere length early in life. More work is needed to determine if these effects on telomere length persist until adulthood, and if they are associated with effects on fitness in this precocial species.
Collapse
Affiliation(s)
- Sydney F Hope
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA.,Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Jordy Groffen
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Robert A Kennamer
- Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, USA
| | - William A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
10
|
Monaghan P, Olsson M, Richardson DS, Verhulst S, Rogers SM. Integrating telomere biology into the ecology and evolution of natural populations: Progress and prospects. Mol Ecol 2022; 31:5909-5916. [PMID: 36330668 DOI: 10.1111/mec.16768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pat Monaghan
- Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, University of Glasgow, Glasgow, UK
| | - Mats Olsson
- Department of BioEnv - Zoologen, University of Gothenburg, Gothenburg, Sweden
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| |
Collapse
|
11
|
Bauch C, Gatt MC, Verhulst S, Granadeiro JP, Catry P. Higher mercury contamination is associated with shorter telomeres in a long-lived seabird - A direct effect or a consequence of among-individual variation in phenotypic quality? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156359. [PMID: 35654175 DOI: 10.1016/j.scitotenv.2022.156359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Mercury is a heavy metal, which is pervasive and persistent in the marine environment. It bioaccumulates within organisms and biomagnifies in the marine food chain. Due to its high toxicity, mercury contamination is a major concern for wildlife and human health. Telomere length is a biomarker of aging and health, because it predicts survival, making it a potential tool to investigate sublethal effects of mercury contamination. However, the relationship between telomeres and mercury contamination is unclear. We measured feather mercury concentration in Cory's Shearwaters Calonectris borealis, long-lived seabirds and top predators, between 9 and 35 years of age and related it to telomere length in erythrocytes. Cory's Shearwaters with higher mercury concentrations had shorter telomeres and the effect was sex-dependent, reaching significance in males only. This may be explained by the fact that males have longer telomeres and higher and more variable mercury concentrations than females in this population. The mercury effect on telomere length was stronger on longer telomeres in the genome within individuals. We discuss the hypotheses that the negative correlation could either be a direct effect of mercury on telomere shortening and/or a consequence of variation in phenotypic quality among individuals that results in a covariation between mercury contamination and telomere length.
Collapse
Affiliation(s)
- Christina Bauch
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands.
| | - Marie Claire Gatt
- CESAM-Centre for Environmental and Marine Studies, Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - José Pedro Granadeiro
- CESAM-Centre for Environmental and Marine Studies, Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Paulo Catry
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal
| |
Collapse
|