1
|
Tamayo E, Nada B, Hafermann I, Benz JP. Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate. Appl Microbiol Biotechnol 2024; 108:83. [PMID: 38189952 PMCID: PMC10774165 DOI: 10.1007/s00253-023-12907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Basant Nada
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Isabell Hafermann
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
3
|
Maini Rekdal V, Villalobos-Escobedo JM, Rodriguez-Valeron N, Olaizola Garcia M, Prado Vásquez D, Rosales A, Sörensen PM, Baidoo EEK, Calheiros de Carvalho A, Riley R, Lipzen A, He G, Yan M, Haridas S, Daum C, Yoshinaga Y, Ng V, Grigoriev IV, Munk R, Wijaya CH, Nuraida L, Damayanti I, Cruz-Morales P, Keasling JD. Neurospora intermedia from a traditional fermented food enables waste-to-food conversion. Nat Microbiol 2024; 9:2666-2683. [PMID: 39209985 PMCID: PMC11445060 DOI: 10.1038/s41564-024-01799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Fungal fermentation of food and agricultural by-products holds promise for improving food sustainability and security. However, the molecular basis of fungal waste-to-food upcycling remains poorly understood. Here we use a multi-omics approach to characterize oncom, a fermented food traditionally produced from soymilk by-products in Java, Indonesia. Metagenomic sequencing of samples from small-scale producers in Western Java indicated that the fungus Neurospora intermedia dominates oncom. Further transcriptomic, metabolomic and phylogenomic analysis revealed that oncom-derived N. intermedia utilizes pectin and cellulose degradation during fermentation and belongs to a genetically distinct subpopulation associated with human-generated by-products. Finally, we found that N. intermedia grew on diverse by-products such as fruit and vegetable pomace and plant-based milk waste, did not encode mycotoxins, and could create foods that were positively perceived by consumers outside Indonesia. These results showcase the traditional significance and future potential of fungal fermentation for creating delicious and nutritious foods from readily available by-products.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
- Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - José Manuel Villalobos-Escobedo
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Tecnológico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo León, Mexico
| | - Nabila Rodriguez-Valeron
- ALCHEMIST Explore, Research and Development, Alchemist Aps, Copenhagen, Denmark
- Basque Culinary Center, Mondragon Universitatea, Donostia, Gipuzkoa, Spain
| | | | - Diego Prado Vásquez
- ALCHEMIST Explore, Research and Development, Alchemist Aps, Copenhagen, Denmark
| | - Alexander Rosales
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Pia M Sörensen
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ana Calheiros de Carvalho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Guifen He
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rasmus Munk
- ALCHEMIST Explore, Research and Development, Alchemist Aps, Copenhagen, Denmark
| | - Christofora Hanny Wijaya
- Department of Food Science and Technology, Faculty of Agricultural Engineering, IPB University (Bogor Agricultural University), Dramaga, Indonesia
| | - Lilis Nuraida
- Department of Food Science and Technology, Faculty of Agricultural Engineering, IPB University (Bogor Agricultural University), Dramaga, Indonesia
| | - Isty Damayanti
- Department of Food Science and Technology, Faculty of Agricultural Engineering, IPB University (Bogor Agricultural University), Dramaga, Indonesia
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
- California Institute of Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Li T, Liu Y, Zhu H, Cao L, Zhou Y, Liu D, Shen Q. Cellular ATP redistribution achieved by deleting Tgparp improves lignocellulose utilization of Trichoderma under heat stress. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:54. [PMID: 38637859 PMCID: PMC11027231 DOI: 10.1186/s13068-024-02502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Thermotolerance is widely acknowledged as a pivotal factor for fungal survival across diverse habitats. Heat stress induces a cascade of disruptions in various life processes, especially in the acquisition of carbon sources, while the mechanisms by which filamentous fungi adapt to heat stress and maintain carbon sources are still not fully understood. RESULTS Using Trichoderma guizhouense, a representative beneficial microorganism for plants, we discover that heat stress severely inhibits the lignocellulases secretion, affecting carbon source utilization efficiency. Proteomic results at different temperatures suggest that proteins involved in the poly ADP-ribosylation pathway (TgPARP and TgADPRase) may play pivotal roles in thermal adaptation and lignocellulose utilization. TgPARP is induced by heat stress, while the deletion of Tgparp significantly improves the lignocellulose utilization capacity and lignocellulases secretion in T. guizhouense. Simultaneously, the absence of Tgparp prevents the excessive depletion of ATP and NAD+, enhances the protective role of mitochondrial membrane potential (MMP), and elevates the expression levels of the unfolded protein response (UPR)-related regulatory factor Tgire. Further investigations reveal that a stable MMP can establish energy homeostasis, allocating more ATP within the endoplasmic reticulum (ER) to reduce protein accumulation in the ER, thereby enhancing the lignocellulases secretion in T. guizhouense under heat stress. CONCLUSIONS Overall, these findings underscored the significance of Tgparp as pivotal regulators in lignocellulose utilization under heat stress and provided further insights into the molecular mechanism of filamentous fungi in utilizing lignocellulose.
Collapse
Affiliation(s)
- Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yihao Zhou
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China.
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
5
|
Xue F, Zhao Z, Gu S, Chen M, Xu J, Luo X, Li J, Tian C. The transcriptional factor Clr-5 is involved in cellulose degradation through regulation of amino acid metabolism in Neurospora crassa. BMC Biotechnol 2023; 23:50. [PMID: 38031036 PMCID: PMC10687990 DOI: 10.1186/s12896-023-00823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Filamentous fungi are efficient degraders of plant biomass and the primary producers of commercial cellulolytic enzymes. While the transcriptional regulation mechanisms of cellulases have been continuously explored in lignocellulolytic fungi, the induction of cellulase production remains a complex multifactorial system, with several aspects still largely elusive. RESULTS In this study, we identified a Zn2Cys6 transcription factor, designated as Clr-5, which regulates the expression of cellulase genes by influencing amino acid metabolism in Neurospora crassa during growth on cellulose. The deletion of clr-5 caused a significant decrease in secreted protein and cellulolytic enzyme activity of N. crassa, which was partially alleviated by supplementing with yeast extract. Transcriptomic profiling revealed downregulation of not only the genes encoding main cellulases but also those related to nitrogen metabolism after disruption of Clr-5 under Avicel condition. Clr-5 played a crucial role in the utilization of multiple amino acids, especially leucine and histidine. When using leucine or histidine as the sole nitrogen source, the Δclr-5 mutant showed significant growth defects on both glucose and Avicel media. Comparative transcriptomic analysis revealed that the transcript levels of most genes encoding carbohydrate-active enzymes and those involved in the catabolism and uptake of histidine, branched-chain amino acids, and aromatic amino acids, were remarkably reduced in strain Δclr-5, compared with the wild-type N. crassa when grown in Avicel medium with leucine or histidine as the sole nitrogen source. These findings underscore the important role of amino acid metabolism in the regulation of cellulase production in N. crassa. Furthermore, the function of Clr-5 in regulating cellulose degradation is conserved among ascomycete fungi. CONCLUSIONS These findings regarding the novel transcription factor Clr-5 enhance our comprehension of the regulatory connections between amino acid metabolism and cellulase production, offering fresh prospects for the development of fungal cell factories dedicated to cellulolytic enzyme production in bio-refineries.
Collapse
Affiliation(s)
- Fanglei Xue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Zhen Zhao
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Shuying Gu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Meixin Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jing Xu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Xuegang Luo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
6
|
Vandermeulen MD, Cullen PJ. Ecological inducers of the yeast filamentous growth pathway reveal environment-dependent roles for pathway components. mSphere 2023; 8:e0028423. [PMID: 37732804 PMCID: PMC10597418 DOI: 10.1128/msphere.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Signaling modules, such as mitogen-activated protein kinase (MAPK) pathways, are evolutionarily conserved drivers of cell differentiation and stress responses. In many fungal species including pathogens, MAPK pathways control filamentous growth, where cells differentiate into an elongated cell type. The convenient model budding yeast Saccharomyces cerevisiae undergoes filamentous growth by the filamentous growth (fMAPK) pathway; however, the inducers of the pathway remain unclear, perhaps because pathway activity has been mainly studied in laboratory conditions. To address this knowledge gap, an ecological framework was used, which uncovered new fMAPK pathway inducers, including pectin, a material found in plants, and the metabolic byproduct ethanol. We also show that induction by a known inducer of the pathway, the non-preferred carbon source galactose, required galactose metabolism and induced the pathway differently than glucose limitation or other non-preferred carbon sources. By exploring fMAPK pathway function in fruit, we found that induction of the pathway led to visible digestion of fruit rind through a known target, PGU1, which encodes a pectolytic enzyme. Combinations of inducers (galactose and ethanol) stimulated the pathway to near-maximal levels, which showed dispensability of several fMAPK pathway components (e.g., mucin sensor, p21-activated kinase), but not others (e.g., adaptor, MAPKKK) and required the Ras2-protein kinase A pathway. This included a difference between the transcription factor binding partners for the pathway, as Tec1p, but not Ste12p, was partly dispensable for fMAPK pathway activity. Thus, by exploring ecologically relevant stimuli, new modes of MAPK pathway signaling were uncovered, perhaps revealing how a pathway can respond differently to specific environments. IMPORTANCE Filamentous growth is a cell differentiation response and important aspect of fungal biology. In plant and animal fungal pathogens, filamentous growth contributes to virulence. One signaling pathway that regulates filamentous growth is an evolutionarily conserved MAPK pathway. The yeast Saccharomyces cerevisiae is a convenient model to study MAPK-dependent regulation of filamentous growth, although the inducers of the pathway are not clear. Here, we exposed yeast cells to ecologically relevant compounds (e.g., plant compounds), which identified new inducers of the MAPK pathway. In combination, the inducers activated the pathway to near-maximal levels but did not cause detrimental phenotypes associated with previously identified hyperactive alleles. This context allowed us to identify conditional bypass for multiple pathway components. Thus, near-maximal induction of a MAPK pathway by ecologically relevant inducers provides a powerful tool to assess cellular signaling during a fungal differentiation response.
Collapse
Affiliation(s)
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
7
|
Wang G, Xie L, Huang Z, Xie J. Recent advances in polysaccharide biomodification by microbial fermentation: production, properties, bioactivities, and mechanisms. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 37740706 DOI: 10.1080/10408398.2023.2259461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Polysaccharides are natural chemical compounds that are extensively employed in the food and pharmaceutical industries. They exhibit a wide range of physical and biological properties. These properties are commonly improved by using chemical and physical methods. However, with the advancement of biotechnology and increased demand for green, clean, and safe products, polysaccharide modification via microbial fermentation has gained importance in improving their physicochemical and biological activities. The physicochemical and structural characteristics, biological activity, and modification mechanisms of microbially fermented polysaccharides were reviewed and summarized in this study. Polysaccharide modifications were categorized and discussed in terms of strains and fermentation techniques. The effects of microbial fermentation on the physicochemical characteristics of polysaccharides were highlighted. The impact of modification of polysaccharides on their antioxidant, immune, hypoglycemic, and other activities, as well as probiotic digestive enhancement, were also discussed. Finally, we investigated a potential enzyme-based process for polysaccharide modification via microbial fermentation. Modification of polysaccharides via microbial fermentation has significant value and application potential.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Zhao Z, Gu S, Liu D, Liu D, Chen B, Li J, Tian C. The putative methyltransferase LaeA regulates mycelium growth and cellulase production in Myceliophthora thermophila. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:58. [PMID: 37013645 PMCID: PMC10071736 DOI: 10.1186/s13068-023-02313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Filamentous fungi with the ability to use complex carbon sources has been developed as platforms for biochemicals production. Myceliophthora thermophila has been developed as the cell factory to produce lignocellulolytic enzymes and plant biomass-based biofuels and biochemicals in biorefinery. However, low fungal growth rate and cellulose utilization efficiency are significant barriers to the satisfactory yield and productivity of target products, which needs our further exploration and improvement. RESULTS In this study, we comprehensively explored the roles of the putative methyltransferase LaeA in regulating mycelium growth, sugar consumption, and cellulases expression. Deletion of laeA in thermophile fungus Myceliophthora thermophila enhanced mycelium growth and glucose consumption significantly. Further exploration of LaeA regulatory network indicated that multiple growth regulatory factors (GRF) Cre-1, Grf-1, Grf-2, and Grf-3, which act as negative repressors of carbon metabolism, were regulated by LaeA in this fungus. We also determined that phosphoenolpyruvate carboxykinase (PCK) is the core node of the metabolic network related to fungal vegetative growth, of which enhancement partially contributed to the elevated sugar consumption and fungal growth of mutant ΔlaeA. Noteworthily, LaeA participated in regulating the expression of cellulase genes and their transcription regulator. ΔlaeA exhibited 30.6% and 5.5% increases in the peak values of extracellular protein and endo-glucanase activity, respectively, as compared to the WT strain. Furthermore, the global histone methylation assays indicated that LaeA is associated with modulating H3K9 methylation levels. The normal function of LaeA on regulating fungal physiology is dependent on methyltransferase activity. CONCLUSIONS The research presented in this study clarified the function and elucidated the regulatory network of LaeA in the regulation of fungal growth and cellulase production, which will significantly deepen our understanding about the regulation mechanism of LaeA in filamentous fungi and provides the new strategy for improvement the fermentation properties of industrial fungal strain by metabolic engineering.
Collapse
Affiliation(s)
- Zhen Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuying Gu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Defei Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Dandan Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Bingchen Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
9
|
Gu S, Zhao Z, Xue F, Liu D, Liu Q, Li J, Tian C. The arabinose transporter MtLat-1 is involved in hemicellulase repression as a pentose transceptor in Myceliophthora thermophila. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:51. [PMID: 36966330 PMCID: PMC10040116 DOI: 10.1186/s13068-023-02305-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Filamentous fungi possess an array of secreted enzymes to depolymerize the structural polysaccharide components of plant biomass. Sugar transporters play an essential role in nutrient uptake and sensing of extracellular signal molecules to inhibit or trigger the induction of lignocellulolytic enzymes. However, the identities and functions of transceptors associated with the induction of hemicellulase genes remain elusive. RESULTS In this study, we reveal that the L-arabinose transporter MtLat-1 is associated with repression of hemicellulase gene expression in the filamentous fungus Myceliophthora thermophila. The absence of Mtlat-1 caused a decrease in L-arabinose uptake and consumption rates. However, mycelium growth, protein production, and hemicellulolytic activities were markedly increased in a ΔMtlat-1 mutant compared with the wild-type (WT) when grown on arabinan. Comparative transcriptomic analysis showed a different expression profile in the ΔMtlat-1 strain from that in the WT in response to arabinan, and demonstrated that MtLat-1 was involved in the repression of the main hemicellulase-encoding genes. A point mutation that abolished the L-arabinose transport activity of MtLat-1 did not impact the repression of hemicellulase gene expression when the mutant protein was expressed in the ΔMtlat-1 strain. Thus, the involvement of MtLat-1 in the expression of hemicellulase genes is independent of its transport activity. The data suggested that MtLat-1 is a transceptor that senses and transduces the molecular signal, resulting in downstream repression of hemicellulolytic gene expression. MtAra-1 protein directly regulated the expression of Mtlat-1 by binding to its promoter region. Transcriptomic profiling indicated that the transcription factor MtAra-1 also plays an important role in expression of arabinanolytic enzyme genes and L-arabinose catabolism. CONCLUSIONS M. thermophila MtLat-1 functions as a transceptor that is involved in L-arabinose transport and signal transduction associated with suppression of the expression of hemicellulolytic enzyme-encoding genes. The data presented in this study add to the models of the regulation of hemicellulases in filamentous fungi.
Collapse
Affiliation(s)
- Shuying Gu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhen Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fanglei Xue
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Defei Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Qian Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
10
|
MtTRC-1, a Novel Transcription Factor, Regulates Cellulase Production via Directly Modulating the Genes Expression of the Mthac-1 and Mtcbh-1 in Myceliophthora thermophila. Appl Environ Microbiol 2022; 88:e0126322. [PMID: 36165620 PMCID: PMC9552611 DOI: 10.1128/aem.01263-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The thermophilic fungus Myceliophthora thermophila has been used to produce industrial enzymes and biobased chemicals. In saprotrophic fungi, the mechanisms regulating cellulase production have been studied, which revealed the involvement of multiple transcription factors. However, in M. thermophila, the transcription factors influencing cellulase gene expression and secretion remain largely unknown. In this study, we identified and characterized a novel cellulase regulator (MtTRC-1) in M. thermophila through a combination of functional genomics and genetic analyses. Deletion of Mttrc-1 resulted in significantly decreased cellulase production and activities. Transcriptome analysis revealed downregulation of not only the encoding genes of main cellulases but also the transcriptional regulator MtHAC-1 of UPR pathway after disruption of MtTRC-1 under cellulolytic induction conditions. Herein, we also characterized the ortholog of the yeast HAC1p in M. thermophila. We show that Mthac-1 mRNA undergoes an endoplasmic reticulum (ER) stress-induced splicing by removing a 23-nucleotide (nt) intron. Notably, the protein secretion on cellulose was dramatically impaired by the deletion of MtHAC-1. Moreover, the colonial growth on various carbon sources was defective in the absence of MtHAC-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays verified MtTRC-1 regulates the transcription of Mthac-1 and the major cellulase gene Mtcbh-1 by binding directly to the promoters in vitro and in vivo. Furthermore, DNase I footprinting assays identified the putative consensus binding site (5′-GNG/C-3′). These results revealed the importance of MtTRC-1 for positively regulating cellulase production. This finding has clarified the complex regulatory pathways involved in cellulolytic enzyme production. IMPORTANCE In the present study, we characterized a novel regulator MtTRC-1 in M. thermophila, which regulated cellulase production through direct transcriptional regulation of the Mthac-1 and Mtcbh-1 genes. Our data demonstrated that MtHAC-1 is a key factor for the cellulase secretion capacity of M. thermophila. Our data indicate that this thermophilic fungus regulates cellulase production through a multilevels network, in which the protein secretory pathway is modulated by MtHAC-1-dependent UPR pathway and the cellulase gene expression is directly regulated in parallel by transcription factors. The conservation of Mttrc1 in filamentous fungi suggests this mechanism may be exploited to engineer filamentous fungal cell factories capable of producing proteins on an industrial scale.
Collapse
|
11
|
Peng M, de Vries RP. Machine learning prediction of novel pectinolytic enzymes in Aspergillus niger through integrating heterogeneous (post-) genomics data. Microb Genom 2021; 7. [PMID: 34874247 PMCID: PMC8767319 DOI: 10.1099/mgen.0.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pectinolytic enzymes are a variety of enzymes involved in breaking down pectin, a complex and abundant plant cell-wall polysaccharide. In nature, pectinolytic enzymes play an essential role in allowing bacteria and fungi to depolymerize and utilize pectin. In addition, pectinases have been widely applied in various industries, such as the food, wine, textile, paper and pulp industries. Due to their important biological function and increasing industrial potential, discovery of novel pectinolytic enzymes has received global interest. However, traditional enzyme characterization relies heavily on biochemical experiments, which are time consuming, laborious and expensive. To accelerate identification of novel pectinolytic enzymes, an automatic approach is needed. We developed a machine learning (ML) approach for predicting pectinases in the industrial workhorse fungus, Aspergillus niger. The prediction integrated a diverse range of features, including evolutionary profile, gene expression, transcriptional regulation and biochemical characteristics. Results on both the training and the independent testing dataset showed that our method achieved over 90 % accuracy, and recalled over 60 % of pectinolytic genes. Application of the ML model on the A. niger genome led to the identification of 83 pectinases, covering both previously described pectinases and novel pectinases that do not belong to any known pectinolytic enzyme family. Our study demonstrated the tremendous potential of ML in discovery of new industrial enzymes through integrating heterogeneous (post-) genomimcs data.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
- *Correspondence: Mao Peng,
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Aspects of the Neurospora crassa Sulfur Starvation Response Are Revealed by Transcriptional Profiling and DNA Affinity Purification Sequencing. mSphere 2021; 6:e0056421. [PMID: 34523983 PMCID: PMC8550094 DOI: 10.1128/msphere.00564-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accurate nutrient sensing is important for rapid fungal growth and exploitation of available resources. Sulfur is an important nutrient source found in a number of biological macromolecules, including proteins and lipids. The model filamentous fungus Neurospora crassa is capable of utilizing sulfur found in a variety of sources from amino acids to sulfate. During sulfur starvation, the transcription factor CYS-3 is responsible for upregulation of genes involved in sulfur uptake and assimilation. Using a combination of RNA sequencing and DNA affinity purification sequencing, we performed a global survey of the N. crassa sulfur starvation response and the role of CYS-3 in regulating sulfur-responsive genes. The CYS-3 transcription factor bound the promoters and regulated genes involved in sulfur metabolism. Additionally, CYS-3 directly activated the expression of a number of uncharacterized transporter genes, suggesting that regulation of sulfur import is an important aspect of regulation by CYS-3. CYS-3 also directly regulated the expression of genes involved in mitochondrial electron transfer. During sulfur starvation, genes involved in nitrogen metabolism, such as amino acid and nucleic acid metabolic pathways, along with genes encoding proteases and nucleases that are necessary for scavenging nitrogen, were activated. Sulfur starvation also caused changes in the expression of genes involved in carbohydrate metabolism, such as those encoding glycosyl hydrolases. Thus, our data suggest a connection between sulfur metabolism and other aspects of cellular metabolism. IMPORTANCE Identification of nutrients present in the environment is a challenge common to all organisms. Sulfur is an important nutrient source found in proteins, lipids, and electron carriers that are required for the survival of filamentous fungi such as Neurospora crassa. Here, we transcriptionally profiled the response of N. crassa to characterize the global response to sulfur starvation. We also used DNA affinity purification sequencing to identify the direct downstream targets of the transcription factor responsible for regulating genes involved in sulfur uptake and assimilation. Along with genes involved in sulfur metabolism, this transcription factor regulated a number of uncharacterized transporter genes and genes involved in mitochondrial electron transfer. Our data also suggest a connection between sulfur, nitrogen, and carbon metabolism, indicating that the regulation of a number of metabolic pathways is intertwined.
Collapse
|
13
|
Havukainen S, Pujol-Giménez J, Valkonen M, Hediger MA, Landowski CP. Functional characterization of a highly specific L-arabinose transporter from Trichoderma reesei. Microb Cell Fact 2021; 20:177. [PMID: 34496831 PMCID: PMC8425032 DOI: 10.1186/s12934-021-01666-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lignocellulose biomass has been investigated as a feedstock for second generation biofuels and other value-added products. Some of the processes for biofuel production utilize cellulases and hemicellulases to convert the lignocellulosic biomass into a range of soluble sugars before fermentation with microorganisms such as yeast Saccharomyces cerevisiae. One of these sugars is L-arabinose, which cannot be utilized naturally by yeast. The first step in L-arabinose catabolism is its transport into the cells, and yeast lacks a specific transporter, which could perform this task. RESULTS We identified Trire2_104072 of Trichoderma reesei as a potential L-arabinose transporter based on its expression profile. This transporter was described already in 2007 as D-xylose transporter XLT1. Electrophysiology experiments with Xenopus laevis oocytes and heterologous expression in yeast revealed that Trire2_104072 is a high-affinity L-arabinose symporter with a Km value in the range of [Formula: see text] 0.1-0.2 mM. It can also transport D-xylose but with low affinity (Km [Formula: see text] 9 mM). In yeast, L-arabinose transport was inhibited slightly by D-xylose but not by D-glucose in an assay with fivefold excess of the inhibiting sugar. Comparison with known L-arabinose transporters revealed that the expression of Trire2_104072 enabled yeast to uptake L-arabinose at the highest rate in conditions with low extracellular L-arabinose concentration. Despite the high specificity of Trire2_104072 for L-arabinose, the growth of its T. reesei deletion mutant was only affected at low L-arabinose concentrations. CONCLUSIONS Due to its high affinity for L-arabinose and low inhibition by D-glucose or D-xylose, Trire2_104072 could serve as a good candidate for improving the existing pentose-utilizing yeast strains. The discovery of a highly specific L-arabinose transporter also adds to our knowledge of the primary metabolism of T. reesei. The phenotype of the deletion strain suggests the involvement of other transporters in L-arabinose transport in this species.
Collapse
Affiliation(s)
- Sami Havukainen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Mari Valkonen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | | |
Collapse
|
14
|
Wu B, Gaskell J, Held BW, Toapanta C, Vuong TV, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Cullen D, Hibbett DS. Retracted and Republished from: "Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola". Appl Environ Microbiol 2021; 87:e0032921. [PMID: 34313495 PMCID: PMC8353965 DOI: 10.1128/aem.00329-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression was observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species—aspen, pine, and spruce—under various culture conditions. We found that F. pinicola is able to modify gene expression (transcription levels) across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This study provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.
Collapse
Affiliation(s)
- Baojun Wu
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Jill Gaskell
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - Benjamin W. Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Cristina Toapanta
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Thu V. Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Steven Ahrendt
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Anna Lipzen
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Jiwei Zhang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan S. Schilling
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Igor V. Grigoriev
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Dan Cullen
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - David S. Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| |
Collapse
|
15
|
de Vries S, de Vries J, Archibald JM, Slamovits CH. Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression. FEMS Microbiol Ecol 2021; 96:5904760. [PMID: 32918444 PMCID: PMC7585586 DOI: 10.1093/femsec/fiaa184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
Oomycetes include many devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of dead tissue that can serve as informative reference points for understanding the evolution of pathogens. Here, we established Salisapilia sapeloensis as a tractable system for the study of saprotrophic oomycetes. We generated multiple transcriptomes from S. sapeloensis and compared them with (i) 22 oomycete genomes and (ii) the transcriptomes of eight pathogenic oomycetes grown under 13 conditions. We obtained a global perspective on gene expression signatures of oomycete lifestyles. Our data reveal that oomycete saprotrophs and pathogens use similar molecular mechanisms for colonization but exhibit distinct expression patterns. We identify a S. sapeloensis-specific array and expression of carbohydrate-active enzymes and putative regulatory differences, highlighted by distinct expression levels of transcription factors. Salisapilia sapeloensis expresses only a small repertoire of candidates for virulence-associated genes. Our analyses suggest lifestyle-specific gene regulatory signatures and that, in addition to variation in gene content, shifts in gene regulatory networks underpin the evolution of oomycete lifestyles.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada.,Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.,Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany.,Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
16
|
Ameri AJ, Lewis ZA. Shannon entropy as a metric for conditional gene expression in Neurospora crassa. G3-GENES GENOMES GENETICS 2021; 11:6159613. [PMID: 33751112 PMCID: PMC8049430 DOI: 10.1093/g3journal/jkab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/09/2021] [Indexed: 12/04/2022]
Abstract
Neurospora crassa has been an important model organism for molecular biology and genetics for over 60 years. Neurospora crassa has a complex life cycle, with over 28 distinct cell types and is capable of transcriptional responses to many environmental conditions including nutrient availability, temperature, and light. To quantify variation in N. crassa gene expression, we analyzed public expression data from 97 conditions and calculated the Shannon Entropy value for Neurospora’s approximately 11,000 genes. Entropy values can be used to estimate the variability in expression for a single gene over a range of conditions and be used to classify individual genes as constitutive or condition-specific. Shannon entropy has previously been used measure the degree of tissue specificity of multicellular plant or animal genes. We use this metric here to measure variable gene expression in a microbe and provide this information as a resource for the N. crassa research community. Finally, we demonstrate the utility of this approach by using entropy values to identify genes with constitutive expression across a wide range of conditions and to identify genes that are activated exclusively during sexual development.
Collapse
Affiliation(s)
- Abigail J Ameri
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Gao J, Xu X, Huang K, Liang Z. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol 2021; 12:631392. [PMID: 33643259 PMCID: PMC7907439 DOI: 10.3389/fmicb.2021.631392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are transmembrane receptors involved in transducing signals from the external environment inside the cell, which enables fungi to coordinate cell transport, metabolism, and growth to promote their survival, reproduction, and virulence. There are 14 classes of GPCRs in fungi involved in sensing various ligands. In this paper, the synthesis of mycotoxins that are GPCR-mediated is discussed with respect to ligands, environmental stimuli, and intra-/interspecific communication. Despite their apparent importance in fungal biology, very little is known about the role of ochratoxin A (OTA) biosynthesis by Aspergillus ochraceus and the ligands that are involved. Fortunately, increasing evidence shows that the GPCR that involves the AF/ST (sterigmatocystin) pathway in fungi belongs to the same genus. Therefore, we speculate that GPCRs play an important role in a variety of environmental signals and downstream pathways in OTA biosynthesis. The verification of this inference will result in a more controllable GPCR target for control of fungal contamination in the future.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- Beijing Laboratory for Food Quality and Safety, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Bakri Y, Akeed Y, Jawhar M, Arabi M. EVALUATION OF XYLANASE PRODUCTION FROM FILAMENTOUS FUNGI WITH DIFFERENT LIFESTYLES. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.2.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Xylanase plays an important role in the food, feed, and pulp/paper industry. Filamentous fungi have been considered as useful producers of this enzyme from an industrial point of view, due to the fact that they excrete xylanases into the medium. In this study, four fungal species belonging to different genera, i.e. Aspergillus, Cochliobolus, Pyrenophora, and Penicillium were isolated from different sources and compared for their ability to produce xylanase in submerged culture. The fungal species showed enzyme activity as determined by dinitrosalicylic acid (DNS) method. It was found that the two saprophytic Aspergillus strains, i.e A. terreus (Fss 129) and A. niger (SS7) had the highest xylanase activity of 474 and 294 U ml–1 at pH 7 and 8, respectively, in the presence of corn cob hulls after 120 h of incubation. The production of xylanase seemed to be strongly influenced by the interactive effect of initial pH on the fungi. Interestingly, xylanase was better produced by the saprophytic fungi of Aspergillus and Penicillium than by the plant pathogenic ones of Cochliobolus and Pyrenophora. This work provides additional information to support future research on fungi with different lifestyles for food industrial production of xylanase.
Collapse
Affiliation(s)
- Y. Bakri
- Department of Molecular Biology and Biotechnology, AECS, P. O. Box 6091, Damascus. Syria
| | - Y. Akeed
- Department of Molecular Biology and Biotechnology, AECS, P. O. Box 6091, Damascus. Syria
| | - M. Jawhar
- Department of Molecular Biology and Biotechnology, AECS, P. O. Box 6091, Damascus. Syria
| | - M.I.E Arabi
- Department of Molecular Biology and Biotechnology, AECS, P. O. Box 6091, Damascus. Syria
| |
Collapse
|
19
|
Díaz RD, Larrondo LF. A circadian clock in Neurospora crassa functions during plant cell wall deconstruction. Fungal Biol 2020; 124:501-508. [PMID: 32389313 DOI: 10.1016/j.funbio.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 01/24/2023]
Abstract
Circadian clocks are autonomous timers that are believed to confer organisms a selective advantage by enabling processes to occur at appropriate times of the day. In the model fungus Neurospora crassa, 20-40 % of its genes are reported to be under circadian regulation, as assayed in simple sugar media. Although it has been well-described that Neurospora efficiently deconstructs plant cell wall components, little is known regarding the status of the clock when Neurospora grows on cellulosic material, or whether such a clock has an impact on any of the genes involved in this process. Through luciferase-based reporters and fluorescent detection assays, we show that a clock is functioning when Neurospora grows on cellulose-containing wheat straw as the only carbon and nitrogen source. Additionally, we found that the major cellobiohydrolase encoding gene involved in plant cell wall deconstruction, cbh-1, is rhythmically regulated by the Neurospora clock, in a manner that depends on cellulose concentration and on the transcription factor CRE-1, known as a key player in carbon-catabolite repression in this fungus. Our findings are a step towards a more comprehensive understanding on how clock regulation modulates cellulose degradation, and thus Neurospora's physiology.
Collapse
Affiliation(s)
- Rodrigo D Díaz
- Millennium Institute for Integrative Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Luis F Larrondo
- Millennium Institute for Integrative Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| |
Collapse
|
20
|
van Munster JM, Daly P, Blythe MJ, Ibbett R, Kokolski M, Gaddipati S, Lindquist E, Singan VR, Barry KW, Lipzen A, Ngan CY, Petzold CJ, Chan LJG, Arvas M, Raulo R, Pullan ST, Delmas S, Grigoriev IV, Tucker GA, Simmons BA, Archer DB. Succession of physiological stages hallmarks the transcriptomic response of the fungus Aspergillus niger to lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:69. [PMID: 32313551 PMCID: PMC7155255 DOI: 10.1186/s13068-020-01702-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Understanding how fungi degrade lignocellulose is a cornerstone of improving renewables-based biotechnology, in particular for the production of hydrolytic enzymes. Considerable progress has been made in investigating fungal degradation during time-points where CAZyme expression peaks. However, a robust understanding of the fungal survival strategies over its life time on lignocellulose is thereby missed. Here we aimed to uncover the physiological responses of the biotechnological workhorse and enzyme producer Aspergillus niger over its life time to six substrates important for biofuel production. RESULTS We analysed the response of A. niger to the feedstock Miscanthus and compared it with our previous study on wheat straw, alone or in combination with hydrothermal or ionic liquid feedstock pretreatments. Conserved (substrate-independent) metabolic responses as well as those affected by pretreatment and feedstock were identified via multivariate analysis of genome-wide transcriptomics combined with targeted transcript and protein analyses and mapping to a metabolic model. Initial exposure to all substrates increased fatty acid beta-oxidation and lipid metabolism transcripts. In a strain carrying a deletion of the ortholog of the Aspergillus nidulans fatty acid beta-oxidation transcriptional regulator farA, there was a reduction in expression of selected lignocellulose degradative CAZyme-encoding genes suggesting that beta-oxidation contributes to adaptation to lignocellulose. Mannan degradation expression was wheat straw feedstock-dependent and pectin degradation was higher on the untreated substrates. In the later life stages, known and novel secondary metabolite gene clusters were activated, which are of high interest due to their potential to synthesize bioactive compounds. CONCLUSION In this study, which includes the first transcriptional response of Aspergilli to Miscanthus, we highlighted that life time as well as substrate composition and structure (via variations in pretreatment and feedstock) influence the fungal responses to lignocellulose. We also demonstrated that the fungal response contains physiological stages that are conserved across substrates and are typically found outside of the conditions with high CAZyme expression, as exemplified by the stages that are dominated by lipid and secondary metabolism.
Collapse
Affiliation(s)
- Jolanda M. van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Manchester Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, Manchester, M1 7DN UK
| | - Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Present Address: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Roger Ibbett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Matt Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Sanyasi Gaddipati
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Kerrie W. Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Chew Yee Ngan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | | | | | - Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT Espoo, Finland
| | - Roxane Raulo
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Steven T. Pullan
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Present Address: Public Health England, National Infection Service, Salisbury, UK
| | - Stéphane Delmas
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Present Address: Laboratory of Computational and Quantitative Biology, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, 75005 Paris, France
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598 USA
| | - Gregory A. Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | | | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
21
|
Wu VW, Thieme N, Huberman LB, Dietschmann A, Kowbel DJ, Lee J, Calhoun S, Singan VR, Lipzen A, Xiong Y, Monti R, Blow MJ, O'Malley RC, Grigoriev IV, Benz JP, Glass NL. The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus. Proc Natl Acad Sci U S A 2020; 117:6003-6013. [PMID: 32111691 PMCID: PMC7084071 DOI: 10.1073/pnas.1915611117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.
Collapse
Affiliation(s)
- Vincent W Wu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
| | - Nils Thieme
- Holzforschung München, Technical University of Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Lori B Huberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
| | - Axel Dietschmann
- Holzforschung München, Technical University of Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - David J Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Juna Lee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Vasanth R Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Yi Xiong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
| | - Remo Monti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Matthew J Blow
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ronan C O'Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - J Philipp Benz
- Holzforschung München, Technical University of Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94704
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
22
|
Quantitative trait loci (QTL) underlying phenotypic variation in bioethanol-related processes in Neurospora crassa. PLoS One 2020; 15:e0221737. [PMID: 32017762 PMCID: PMC6999864 DOI: 10.1371/journal.pone.0221737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/09/2020] [Indexed: 11/19/2022] Open
Abstract
Bioethanol production from lignocellulosic biomass has received increasing attention over the past decade. Many attempts have been made to reduce the cost of bioethanol production by combining the separate steps of the process into a single-step process known as consolidated bioprocessing. This requires identification of organisms that can efficiently decompose lignocellulose to simple sugars and ferment the pentose and hexose sugars liberated to ethanol. There have been many attempts in engineering laboratory strains by adding new genes or modifying genes to expand the capacity of an industrial microorganism. There has been less attention in improving bioethanol-related processes utilizing natural variation existing in the natural ecotypes. In this study, we sought to identify genomic loci contributing to variation in saccharification of cellulose and fermentation of glucose in the fermenting cellulolytic fungus Neurospora crassa through quantitative trait loci (QTL) analysis. We identified one major QTL contributing to fermentation of glucose and multiple putative QTL's underlying saccharification. Understanding the natural variation of the major QTL gene would provide new insights in developing industrial microbes for bioethanol production.
Collapse
|
23
|
Genomewide and Enzymatic Analysis Reveals Efficient d-Galacturonic Acid Metabolism in the Basidiomycete Yeast Rhodosporidium toruloides. mSystems 2019; 4:4/6/e00389-19. [PMID: 31848309 PMCID: PMC6918025 DOI: 10.1128/msystems.00389-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biorefining of renewable feedstocks is one of the most promising routes to replace fossil-based products. Since many common fermentation hosts, such as Saccharomyces cerevisiae, are naturally unable to convert many component plant cell wall polysaccharides, the identification of organisms with broad catabolism capabilities represents an opportunity to expand the range of substrates used in fermentation biorefinery approaches. The red basidiomycete yeast Rhodosporidium toruloides is a promising and robust host for lipid- and terpene-derived chemicals. Previous studies demonstrated assimilation of a range of substrates, from C5/C6 sugars to aromatic molecules similar to lignin monomers. In the current study, we analyzed the potential of R. toruloides to assimilate d-galacturonic acid, a major sugar in many pectin-rich agricultural waste streams, including sugar beet pulp and citrus peels. d-Galacturonic acid is not a preferred substrate for many fungi, but its metabolism was found to be on par with those of d-glucose and d-xylose in R. toruloides A genomewide analysis by combined transcriptome sequencing (RNA-seq) and RB-TDNA-seq revealed those genes with high relevance for fitness on d-galacturonic acid. While R. toruloides was found to utilize the nonphosphorylative catabolic pathway known from ascomycetes, the maximal velocities of several enzymes exceeded those previously reported. In addition, an efficient downstream glycerol catabolism and a novel transcription factor were found to be important for d-galacturonic acid utilization. These results set the basis for use of R. toruloides as a potential host for pectin-rich waste conversions and demonstrate its suitability as a model for metabolic studies with basidiomycetes.IMPORTANCE The switch from the traditional fossil-based industry to a green and sustainable bioeconomy demands the complete utilization of renewable feedstocks. Many currently used bioconversion hosts are unable to utilize major components of plant biomass, warranting the identification of microorganisms with broader catabolic capacity and characterization of their unique biochemical pathways. d-Galacturonic acid is a plant component of bioconversion interest and is the major backbone sugar of pectin, a plant cell wall polysaccharide abundant in soft and young plant tissues. The red basidiomycete and oleaginous yeast Rhodosporidium toruloides has been previously shown to utilize a range of sugars and aromatic molecules. Using state-of-the-art functional genomic methods and physiological and biochemical assays, we elucidated the molecular basis underlying the efficient metabolism of d-galacturonic acid. This study identified an efficient pathway for uronic acid conversion to guide future engineering efforts and represents the first detailed metabolic analysis of pectin metabolism in a basidiomycete fungus.
Collapse
|
24
|
Beier S, Hinterdobler W, Bazafkan H, Schillinger L, Schmoll M. CLR1 and CLR2 are light dependent regulators of xylanase and pectinase genes in Trichoderma reesei. Fungal Genet Biol 2019; 136:103315. [PMID: 31816399 DOI: 10.1016/j.fgb.2019.103315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 11/28/2022]
Abstract
Regulation of plant cell wall degradation is of utmost importance for understanding the carbon cycle in nature, but also to improve industrial processes aimed at enzyme production for next generation biofuels. Thereby, the transcription factor networks in different fungi show conservation as well as striking differences, particularly between Trichoderma reesei and Neurospora crassa. Here, we aimed to gain insight into the function of the transcription factors CLR1 and CLR2 in T. reesei, which are crucial for cellulase gene expression in N. crassa. We studied impacts on gene regulation with cellulose, xylan, pectin and chitin, growth on 95 different carbon sources as well as an involvement in regulation of secondary metabolism or development. We found that CLR1 is present in the genome of T. reesei and other Trichoderma spp., albeit with considerably lower homology compared to other ascomycetes. CLR1 and CLR2 regulate pectinase transcript levels upon growth on pectin, no major function was detected on chitin. CLR1 and CLR2 form a positive feedback cycle on xylan and were found to be responsible for balancing co-regulation of xylanase genes in light and darkness with distinct and in part opposite regulatory effects of up to 8fold difference. Our data suggest that CLR1 and CLR2 have evolved differently in T. reesei compared to other fungi. We propose a model in which their main function is in adjustment of regulation of xylanase gene expression to different light conditions and to balance transcript levels of genes involved in plant cell wall degradation according to their individual relevance for this process.
Collapse
Affiliation(s)
- Sabrina Beier
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| | - Wolfgang Hinterdobler
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| | - Hoda Bazafkan
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| | - Lukas Schillinger
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| |
Collapse
|
25
|
Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnol Adv 2019; 37:107392. [PMID: 31034961 DOI: 10.1016/j.biotechadv.2019.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
Abstract
Filamentous fungi respond to hundreds of nutritional, chemical and environmental signals that affect expression of primary metabolism and biosynthesis of secondary metabolites. These signals are sensed at the membrane level by G protein coupled receptors (GPCRs). GPCRs contain usually seven transmembrane domains, an external amino terminal fragment that interacts with the ligand, and an internal carboxy terminal end interacting with the intracellular G protein. There is a great variety of GPCRs in filamentous fungi involved in sensing of sugars, amino acids, cellulose, cell-wall components, sex pheromones, oxylipins, calcium ions and other ligands. Mechanisms of signal transduction at the membrane level by GPCRs are discussed, including the internalization and compartmentalisation of these sensor proteins. We have identified and analysed the GPCRs in the genome of Penicillium chrysogenum and compared them with GPCRs of several other filamentous fungi. We have found 66 GPCRs classified into 14 classes, depending on the ligand recognized by these proteins, including most previously proposed classes of GPCRs. We have found 66 putative GPCRs, representatives of twelve of the fourteen previously proposed classes of GPCRs, depending on the ligand recognized by these proteins. A staggering fortytwo putative members of the new GPCR class XIV, the so-called Pth11 sensors of cellulosic material as reported for Neurospora crassa and some other fungi, were identified. Several GPCRs sensing sex pheromones, known in yeast and in several fungi, were also identified in P. chrysogenum, confirming the recent unravelling of the hidden sexual capacity of this species. Other sensing mechanisms do not involve GPCRs, including the two-component systems (HKRR), the HOG signalling system and the PalH mediated pH transduction sensor. GPCR sensor proteins transmit their signals by interacting with intracellular heterotrimeric G proteins, that are well known in several fungi, including P. chrysogenum. These G proteins are inactive in the GDP containing heterotrimeric state, and become active by nucleotide exchange, allowing the separation of the heterotrimeric protein in active Gα and Gβγ dimer subunits. The conversion of GTP in GDP is mediated by the endogenous GTPase activity of the G proteins. Downstream of the ligand interaction, the activated Gα protein and also the Gβ/Gγ dimer, transduce the signals through at least three different cascades: adenylate cyclase/cAMP, MAPK kinase, and phospholipase C mediated pathways.
Collapse
|
26
|
Pinter N, Hach CA, Hampel M, Rekhter D, Zienkiewicz K, Feussner I, Poehlein A, Daniel R, Finkernagel F, Heimel K. Signal peptide peptidase activity connects the unfolded protein response to plant defense suppression by Ustilago maydis. PLoS Pathog 2019; 15:e1007734. [PMID: 30998787 PMCID: PMC6490947 DOI: 10.1371/journal.ppat.1007734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/30/2019] [Accepted: 03/27/2019] [Indexed: 11/18/2022] Open
Abstract
The corn smut fungus Ustilago maydis requires the unfolded protein response (UPR) to maintain homeostasis of the endoplasmic reticulum (ER) during the biotrophic interaction with its host plant Zea mays (maize). Crosstalk between the UPR and pathways controlling pathogenic development is mediated by protein-protein interactions between the UPR regulator Cib1 and the developmental regulator Clp1. Cib1/Clp1 complex formation results in mutual modification of the connected regulatory networks thereby aligning fungal proliferation in planta, efficient effector secretion with increased ER stress tolerance and long-term UPR activation in planta. Here we address UPR-dependent gene expression and its modulation by Clp1 using combinatorial RNAseq/ChIPseq analyses. We show that increased ER stress resistance is connected to Clp1-dependent alterations of Cib1 phosphorylation, protein stability and UPR gene expression. Importantly, we identify by deletion screening of UPR core genes the signal peptide peptidase Spp1 as a novel key factor that is required for establishing a compatible biotrophic interaction between U. maydis and its host plant maize. Spp1 is dispensable for ER stress resistance and vegetative growth but requires catalytic activity to interfere with the plant defense, revealing a novel virulence specific function for signal peptide peptidases in a biotrophic fungal/plant interaction. Biotrophic pathogens establish compatible interactions with their host to cause disease. A critical step in this process is the suppression of plant defense responses by secreted effector proteins. In the maize infecting fungus Ustilago maydis expression of effector encoding genes is coordinately upregulated at defined stages of pathogenic development in so-called effector waves. Efficient secretion of the multitude of effectors relies on the unfolded protein response (UPR) to maintain homeostasis of the endoplasmic reticulum. Activation of the UPR is connected to the control of fungal proliferation through direct protein-protein interactions between the UPR regulator Cib1 and the developmental regulator Clp1. Here, we show that this interaction leads to functional modification of Cib1 and modulation of UPR gene expression to adapt the UPR for long-term activity in the plant. Within a core set of UPR regulated genes we identify the signal peptide peptidase Spp1 as a key factor for fungal virulence. We show that Spp1 requires its conserved catalytic activity to suppress the plant defense and cause disease. The virulence specific function of Spp1 does not involve pathways previously known to be associated with Spp1-like proteins or plant defense suppression, suggesting a novel role for Spp1 substrates in biotrophic interactions.
Collapse
Affiliation(s)
- Niko Pinter
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Christina Andrea Hach
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Martin Hampel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Dmitrij Rekhter
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology (ZTI), Institute of Molecular Biology and Tumor Research (IMT), Marburg, Germany
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
27
|
Schmitz K, Protzko R, Zhang L, Benz JP. Spotlight on fungal pectin utilization-from phytopathogenicity to molecular recognition and industrial applications. Appl Microbiol Biotechnol 2019; 103:2507-2524. [PMID: 30694345 DOI: 10.1007/s00253-019-09622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Pectin is a complex polysaccharide with D-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20-25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.
Collapse
Affiliation(s)
- Kevin Schmitz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Ryan Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
28
|
Gao M, Ploessl D, Shao Z. Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts. Front Microbiol 2019; 9:3264. [PMID: 30723464 PMCID: PMC6349770 DOI: 10.3389/fmicb.2018.03264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Plant biomass is a promising carbon source for producing value-added chemicals, including transportation biofuels, polymer precursors, and various additives. Most engineered microbial hosts and a select group of wild-type species can metabolize mixed sugars including oligosaccharides, hexoses, and pentoses that are hydrolyzed from plant biomass. However, most of these microorganisms consume glucose preferentially to non-glucose sugars through mechanisms generally defined as carbon catabolite repression. The current lack of simultaneous mixed-sugar utilization limits achievable titers, yields, and productivities. Therefore, the development of microbial platforms capable of fermenting mixed sugars simultaneously from biomass hydrolysates is essential for economical industry-scale production, particularly for compounds with marginal profits. This review aims to summarize recent discoveries and breakthroughs in the engineering of yeast cell factories for improved mixed-sugar co-utilization based on various metabolic engineering approaches. Emphasis is placed on enhanced non-glucose utilization, discovery of novel sugar transporters free from glucose repression, native xylose-utilizing microbes, consolidated bioprocessing (CBP), improved cellulase secretion, and creation of microbial consortia for improving mixed-sugar utilization. Perspectives on the future development of biorenewables industry are provided in the end.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,The Ames Laboratory, Iowa State University, Ames, IA, United States.,The Interdisciplinary Microbiology Program, Biorenewables Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
29
|
Tuveng TR, Eijsink VGH, Arntzen MØ. Proteomic Detection of Carbohydrate-Active Enzymes (CAZymes) in Microbial Secretomes. Methods Mol Biol 2019; 1871:159-177. [PMID: 30276740 DOI: 10.1007/978-1-4939-8814-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secretomes from microorganisms growing on biomass contain carbohydrate-active enzymes (CAZymes) of potential biotechnological interest. By analyzing such secretomes, we may discover key enzymes involved in degradation processes and potentially infer the mode-of-action of biomass conversion. Some of these enzymes may have predicted functions in carbohydrate degradation, while others may not, while yet exhibiting a similar expression pattern; these latter enzymes constitute potential novel enzymes involved in the degradation process and provide a basis for further biochemical exploration. Hence, secretomes represent an important source for the study of both predicted and novel CAZymes. Here we describe a plate-based culturing technique that allows for collection of protein fractions that are highly enriched for secreted proteins, bound or unbound to the substrate, and which minimizes contamination by intracellular proteins trough unwanted cell lysis.
Collapse
Affiliation(s)
- Tina R Tuveng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
30
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
31
|
Liu Q, Li J, Gao R, Li J, Ma G, Tian C. CLR-4, a novel conserved transcription factor for cellulase gene expression in ascomycete fungi. Mol Microbiol 2018; 111:373-394. [DOI: 10.1111/mmi.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 China
| | - Ranran Gao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 China
| | - Jinyang Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 China
| | - Guoli Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 China
| |
Collapse
|
32
|
Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa. Appl Microbiol Biotechnol 2018; 102:9577-9584. [DOI: 10.1007/s00253-018-9362-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/13/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022]
|
33
|
Gazoni VF, Balogun SO, Arunachalam K, Oliveira DM, Filho VC, Lima SR, Colodel EM, Soares IM, Ascêncio SD, Martins DTDO. Assessment of toxicity and differential antimicrobial activity of methanol extract of rhizome of Simaba ferruginea A. St.-Hil. and its isolate canthin-6-one. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:122-134. [PMID: 29772356 DOI: 10.1016/j.jep.2018.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/20/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simaba ferruginea A. St.-Hil., Simaroubaceae, popularly known as "calunga" is a typical subtropical shrub used in Central Brazil mainly for infection, anti-inflammatory, analgesic and gastric duodenal-ulcers. It presents in its composition the alkaloid canthin-6-one, an alkaloid indole β-carboxylic. AIM This study aims to investigate the toxicity, antimicrobial activities of methanol extract of Simaba ferruginea (MESf) and canthin-6-one by using different experimental models. METHODS The present study evaluated the phytochemical analysis by high performance liquid chromatography (HPLC), toxicological potential of MESf and canthin-6-one, using the cytotoxicity, genotoxicity assays with CHO-K1 cells and in vivo acute test in mice. Antimicrobial activity was evaluated by the broth microdilution assays, while the antimicrobial mechanism of action was also assessed using different in vitro bacterial and fungal models. RESULTS The HPLC analysis of MESf revealed the presence of canthin-6-one, kaempferol and morin. Differential in vitro toxicities were observed between MESf and canthin-6-one. In the cytotoxicity assay, MESf presented toxicity against CHO-K1, while canthin-6-one did not. In the case of in vitro genotoxicity, both showed to be potentially genotoxic. In the in vivo toxicity study, both MESf (up to 1000 mg/kg) and cantin-6-one (up to 100 mg/kg) caused no toxicologically relevant alterations and are thus considered not to be toxic. MESf was shown to be relatively safe with NOAEL (100 mg/kg) when administrate in mice. Both MESf and canthin-6-one also showed differential antimicrobial activities. On one hand, MESf demonstrated good spectrum of antibacterial action against Staphylococcus aureus (MIC 12.5 μg/mL) and Escherichia coli (MIC 25 μg/mL) and moderate activity against Enterococcus faecalis and Shigella flexneri (MIC 200 μg/mL) but no antifungal effect. On the hand, canthin-6-one showed no antibacterial activity, except against Staphylococcus aureus (100 μg/mL), but potent in vitro fungicidal activity against clinically important Aspergillus niger and Candida species at MFC intervals ranging from 3.12 to 25 μg/mL. Both MESf and canthin-6-one were bacteriostatic in action. MESf antimicrobial mechanism of actions are associated with changes in the permeability of bacterial membranes, evidenced by the increased entry of hydrophobic antibiotic in Shigella flexneri, intense K+ efflux (Shigella flexneri, Staphylococcus aureus) and nucleotides leakage (Staphylococcus aureus). In the antifungal mode of action, canthin-6-one inhibited Saccharomyces cerevisiae growth and including alteration in the cell membrane of Neurospora crassa. CONCLUSION The results of this work demonstrated the differential antimicrobial activities of MESf and its alkaloid isolate, canthin-6-one with antibacterial and antifungal activities, respectively. The present study support the popular use of Simaba ferruginea in combatting afflictions related to bacterial infections, and demonstrate that canthin-6-one as a promising antifungal agent. Both MESf and canthin-6-one are considered non-toxic based on the in vitro toxicological study.
Collapse
Affiliation(s)
- Vanessa Fátima Gazoni
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil
| | - Sikiru Olaitan Balogun
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil; Faculdade Noroeste do Mato Grosso - AJES, 78320-000 Juína, Mato Grosso, Brazil
| | - Karuppusamy Arunachalam
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil
| | - Darley Maria Oliveira
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil
| | - Valdir Cechinel Filho
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade de Vale do Itajaí, 78020-400 Itajaí, SC, Brazil
| | - Samara Rosolem Lima
- Faculdade de Medicina Veterinaria, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, no. 2367, Boa Esperança, 78060-900 Cuiabá, MT, Brazil
| | - Edson Moleta Colodel
- Faculdade de Medicina Veterinaria, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, no. 2367, Boa Esperança, 78060-900 Cuiabá, MT, Brazil
| | - Ilsamar Mendes Soares
- Laboratório de Pesquisa em Produtos Naturais, Faculdade de Medicina, Universidade Federal de Tocantis, 77020-210 Palmas, Tocantins, Brazil
| | - Sérgio Donizeti Ascêncio
- Laboratório de Pesquisa em Produtos Naturais, Faculdade de Medicina, Universidade Federal de Tocantis, 77020-210 Palmas, Tocantins, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
34
|
Wang Z, Gudibanda A, Ugwuowo U, Trail F, Townsend JP. Using evolutionary genomics, transcriptomics, and systems biology to reveal gene networks underlying fungal development. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Wu B, Gaskell J, Held BW, Toapanta C, Vuong T, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Cullen D, Hibbett DS. Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola. Appl Environ Microbiol 2018; 84:e00991-18. [PMID: 29884757 PMCID: PMC6070754 DOI: 10.1128/aem.00991-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/03/2018] [Indexed: 12/20/2022] Open
Abstract
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi.IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that enable fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine, and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (posttranscriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.
Collapse
Affiliation(s)
- Baojun Wu
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Jill Gaskell
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - Benjamin W Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Cristina Toapanta
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Thu Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Steven Ahrendt
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Jiwei Zhang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Robert A Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Dan Cullen
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - David S Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| |
Collapse
|
36
|
Balabanova L, Slepchenko L, Son O, Tekutyeva L. Biotechnology Potential of Marine Fungi Degrading Plant and Algae Polymeric Substrates. Front Microbiol 2018; 9:1527. [PMID: 30050513 PMCID: PMC6052901 DOI: 10.3389/fmicb.2018.01527] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungi possess the metabolic capacity to degrade environment organic matter, much of which is the plant and algae material enriched with the cell wall carbohydrates and polyphenol complexes that frequently can be assimilated by only marine fungi. As the most renewable energy feedstock on the Earth, the plant or algae polymeric substrates induce an expression of microbial extracellular enzymes that catalyze their cleaving up to the component sugars. However, the question of what the marine fungi contributes to the plant and algae material biotransformation processes has yet to be highlighted sufficiently. In this review, we summarized the potential of marine fungi alternatively to terrestrial fungi to produce the biotechnologically valuable extracellular enzymes in response to the plant and macroalgae polymeric substrates as sources of carbon for their bioconversion used for industries and bioremediation.
Collapse
Affiliation(s)
- Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Lubov Slepchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Oksana Son
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| | - Liudmila Tekutyeva
- Innovative Technology Center, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
37
|
The NcZrg-17 gene of Neurospora crassa encodes a cation diffusion facilitator transporter required for vegetative development, tolerance to endoplasmic reticulum stress and cellulose degradation under low zinc conditions. Curr Genet 2017; 64:811-819. [DOI: 10.1007/s00294-017-0794-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
|
38
|
Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger. BMC Genomics 2017; 18:900. [PMID: 29169319 PMCID: PMC5701360 DOI: 10.1186/s12864-017-4164-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022] Open
Abstract
Background The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds. Results The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Conclusions Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In addition, the data provides additional evidence in favor of and against the similarity-based functions assigned to uncharacterized genes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4164-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Birgit S Gruben
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | - Joanna E Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: ATGM, Avans University of Applied Sciences, Lovensdijkstraat 61-63, 4818, AJ, Breda, The Netherlands
| | - Isabelle Benoit-Gelber
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Ronald P De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands. .,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands. .,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| |
Collapse
|
39
|
Hassan L, Reppke MJ, Thieme N, Schweizer SA, Mueller CW, Benz JP. Comparing the physiochemical parameters of three celluloses reveals new insights into substrate suitability for fungal enzyme production. Fungal Biol Biotechnol 2017; 4:10. [PMID: 29119000 PMCID: PMC5669031 DOI: 10.1186/s40694-017-0039-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022] Open
Abstract
Background The industrial applications of cellulases are mostly limited by the costs associated with their production. Optimized production pathways are therefore desirable. Based on their enzyme inducing capacity, celluloses are commonly used in fermentation media. However, the influence of their physiochemical characteristics on the production process is not well understood. In this study, we examined how physical, structural and chemical properties of celluloses influence cellulase and hemicellulase production in an industrially-optimized and a non-engineered filamentous fungus: Trichoderma reesei RUT-C30 and Neurospora crassa. The performance was evaluated by quantifying gene induction, protein secretion and enzymatic activities. Results Among the three investigated substrates, the powdered cellulose was found to be the most impure, and the residual hemicellulosic content was efficiently perceived by the fungi. It was furthermore found to be the least crystalline substrate and consequently was the most readily digested cellulose in vitro. In vivo however, only RUT-C30 was able to take full advantage of these factors. When comparing carbon catabolite repressed and de-repressed strains of T. reesei and N. crassa, we found that cre1/cre-1 is at least partially responsible for this observation, but that the different wiring of the molecular signaling networks is also relevant. Conclusions Our findings indicate that crystallinity and hemicellulose content are major determinants of performance. Moreover, the genetic background between WT and modified strains greatly affects the ability to utilize the cellulosic substrate. By highlighting key factors to consider when choosing the optimal cellulosic product for enzyme production, this study has relevance for the optimization of a critical step in the biotechnological (hemi-) cellulase production process. Electronic supplementary material The online version of this article (10.1186/s40694-017-0039-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lara Hassan
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manfred J Reppke
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Nils Thieme
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Steffen A Schweizer
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Carsten W Mueller
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
40
|
Kowalczyk JE, Lubbers RJM, Peng M, Battaglia E, Visser J, de Vries RP. Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin. Sci Rep 2017; 7:12356. [PMID: 28955038 PMCID: PMC5617896 DOI: 10.1038/s41598-017-12362-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/07/2017] [Indexed: 01/06/2023] Open
Abstract
Aspergillus niger produces an arsenal of extracellular enzymes that allow synergistic degradation of plant biomass found in its environment. Pectin is a heteropolymer abundantly present in the primary cell wall of plants. The complex structure of pectin requires multiple enzymes to act together. Production of pectinolytic enzymes in A. niger is highly regulated, which allows flexible and efficient capture of nutrients. So far, three transcriptional activators have been linked to regulation of pectin degradation in A. niger. The L-rhamnose-responsive regulator RhaR controls the production of enzymes that degrade rhamnogalacturonan-I. The L-arabinose-responsive regulator AraR controls the production of enzymes that decompose the arabinan and arabinogalactan side chains of rhamnogalacturonan-II. The D-galacturonic acid-responsive regulator GaaR controls the production of enzymes that act on the polygalacturonic acid backbone of pectin. This project aims to better understand how RhaR, AraR and GaaR co-regulate pectin degradation. For that reason, we constructed single, double and triple disruptant strains of these regulators and analyzed their growth phenotype and pectinolytic gene expression in A. niger grown on sugar beet pectin.
Collapse
Affiliation(s)
- Joanna E Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
41
|
A-to-I RNA editing is developmentally regulated and generally adaptive for sexual reproduction in Neurospora crassa. Proc Natl Acad Sci U S A 2017; 114:E7756-E7765. [PMID: 28847945 DOI: 10.1073/pnas.1702591114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although fungi lack adenosine deaminase acting on RNA (ADAR) enzymes, adenosine to inosine (A-to-I) RNA editing was reported recently in Fusarium graminearum during sexual reproduction. In this study, we profiled the A-to-I editing landscape and characterized its functional and adaptive properties in the model filamentous fungus Neurospora crassa A total of 40,677 A-to-I editing sites were identified, and approximately half of them displayed stage-specific editing or editing levels at different sexual stages. RNA-sequencing analysis with the Δstc-1 and Δsad-1 mutants confirmed A-to-I editing occurred before ascus development but became more prevalent during ascosporogenesis. Besides fungal-specific sequence and secondary structure preference, 63.5% of A-to-I editing sites were in the coding regions and 81.3% of them resulted in nonsynonymous recoding, resulting in a significant increase in the proteome complexity. Many genes involved in RNA silencing, DNA methylation, and histone modifications had extensive recoding, including sad-1, sms-3, qde-1, and dim-2. Fifty pseudogenes harbor premature stop codons that require A-to-I editing to encode full-length proteins. Unlike in humans, nonsynonymous editing events in N. crassa are generally beneficial and favored by positive selection. Almost half of the nonsynonymous editing sites in N. crassa are conserved and edited in Neurospora tetrasperma Furthermore, hundreds of them are conserved in F. graminearum and had higher editing levels. Two unknown genes with editing sites conserved between Neurospora and Fusarium were experimentally shown to be important for ascosporogenesis. This study comprehensively analyzed A-to-I editing in N. crassa and showed that RNA editing is stage-specific and generally adaptive, and may be functionally related to repeat induced point mutation and meiotic silencing by unpaired DNA.
Collapse
|
42
|
Xu X, Li G, Li L, Su Z, Chen C. Genome-wide comparative analysis of putative Pth11-related G protein-coupled receptors in fungi belonging to Pezizomycotina. BMC Microbiol 2017; 17:166. [PMID: 28743231 PMCID: PMC5526305 DOI: 10.1186/s12866-017-1076-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023] Open
Abstract
Background G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi, where they play important roles in signal transduction. Among them, the Pth11-related GPCRs form a large and divergent protein family, and are only found in fungi in Pezizomycotina. However, the evolutionary process and potential functions of Pth11-related GPCRs remain largely unknown. Results Twenty genomes of fungi in Pezizomycotina covering different nutritional strategies were mined for putative Pth11-related GPCRs. Phytopathogens encode much more putative Pth11-related GPCRs than symbionts, saprophytes, or entomopathogens. Based on the phylogenetic tree, these GPCRs can be divided into nine clades, with each clade containing fungi in different taxonomic orders. Instead of fungi from the same order, those fungi with similar nutritional strategies were inclined to share orthologs of putative Pth11-related GPCRs. Most of the CFEM domain-containing Pth11-related GPCRs, which were only included in two clades, were detected in phytopathogens. Furthermore, many putative Pth11-related GPCR genes of phytopathogens were upregulated during invasive plant infection, but downregulated under biotic stress. The expressions of putative Pth11-related GPCR genes of saprophytes and entomopathogens could be affected by nutrient conditions, especially the carbon source. The gene expressions revealed that Pth11-related GPCRs could respond to biotic/abiotic stress and invasive plant infection with different expression patterns. Conclusion Our results indicated that the Pth11-related GPCRs existed before the diversification of Pezizomycotina and have been gained and/or lost several times during the evolutionary process. Tandem duplications and trophic variations have been important factors in this evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guopeng Li
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, China
| | - Lu Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenzhu Su
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
43
|
Trail F, Wang Z, Stefanko K, Cubba C, Townsend JP. The ancestral levels of transcription and the evolution of sexual phenotypes in filamentous fungi. PLoS Genet 2017; 13:e1006867. [PMID: 28704372 PMCID: PMC5509106 DOI: 10.1371/journal.pgen.1006867] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
Changes in gene expression have been hypothesized to play an important role in the evolution of divergent morphologies. To test this hypothesis in a model system, we examined differences in fruiting body morphology of five filamentous fungi in the Sordariomycetes, culturing them in a common garden environment and profiling genome-wide gene expression at five developmental stages. We reconstructed ancestral gene expression phenotypes, identifying genes with the largest evolved increases in gene expression across development. Conducting knockouts and performing phenotypic analysis in two divergent species typically demonstrated altered fruiting body development in the species that had evolved increased expression. Our evolutionary approach to finding relevant genes proved far more efficient than other gene deletion studies targeting whole genomes or gene families. Combining gene expression measurements with knockout phenotypes facilitated the refinement of Bayesian networks of the genes underlying fruiting body development, regulation of which is one of the least understood processes of multicellular development.
Collapse
Affiliation(s)
- Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Kayla Stefanko
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Caitlyn Cubba
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States of America
| |
Collapse
|
44
|
Analysis of Light- and Carbon-Specific Transcriptomes Implicates a Class of G-Protein-Coupled Receptors in Cellulose Sensing. mSphere 2017; 2:mSphere00089-17. [PMID: 28497120 PMCID: PMC5425790 DOI: 10.1128/msphere.00089-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/14/2017] [Indexed: 01/16/2023] Open
Abstract
In fungi, most metabolic processes are subject to regulation by light. For Trichoderma reesei, light-dependent regulation of cellulase gene expression is specifically shown. Therefore, we intended to unravel the relationship between regulation of enzymes by the carbon source and regulation of enzymes by light. Our two-dimensional analysis included inducing and repressing carbon sources which we used to compare light-specific regulation to dark-specific regulation and to rule out effects specific for a single carbon source. We found close connections with respect to gene regulation as well as significant differences in dealing with carbon in the environment in light and darkness. Moreover, our analyses showed an intricate regulation mechanism for substrate degradation potentially involving surface sensing and provide a basis for knowledge-based screening for strain improvement. In fungi, most metabolic processes are subject to regulation by light. Trichoderma reesei is adapted to degradation of plant cell walls and regulates production of the required enzymes in a manner dependent on the nutrient source and the light status. Here we investigated the interrelated relevance of two regulation levels of the transcriptome of T. reesei: light regulation and carbon source-dependent control. We show that the carbon source (cellulose, lactose, sophorose, glucose, or glycerol) is the major source of variation, with light having a modulating effect on transcript regulation. A total of 907 genes were regulated under cellulase-inducing conditions in light, and 947 genes were regulated in darkness, with 530 genes overlapping (1,324 in total). Only 218 of the 1,324 induction-specific genes were independent of light and not regulated by the BLR1, BLR2, and ENV1 photoreceptors. Analysis of the genomic distribution of genes regulated by light upon growth on cellulose revealed considerable overlap of light-regulated clusters with induction-specific clusters and carbohydrate-active enzyme (CAZyme) clusters. Further, we found evidence for the operation of a sensing mechanism for solid cellulosic substrates, with regulation of genes such as swo1, cip1, and cip2 or of genes encoding hydrophobins which is related to the cyclic AMP (cAMP)-dependent regulatory output of ENV1. We identified class XIII G-protein-coupled receptors (GPCRs) CSG1 and CSG2 in T. reesei as putative cellulose/glucose-sensing GPCRs. Our data indicate that the cellulase regulation pathway is bipartite, comprising a section corresponding to transcriptional regulation and one corresponding to posttranscriptional regulation, with the two connected by the function of CSG1. IMPORTANCE In fungi, most metabolic processes are subject to regulation by light. For Trichoderma reesei, light-dependent regulation of cellulase gene expression is specifically shown. Therefore, we intended to unravel the relationship between regulation of enzymes by the carbon source and regulation of enzymes by light. Our two-dimensional analysis included inducing and repressing carbon sources which we used to compare light-specific regulation to dark-specific regulation and to rule out effects specific for a single carbon source. We found close connections with respect to gene regulation as well as significant differences in dealing with carbon in the environment in light and darkness. Moreover, our analyses showed an intricate regulation mechanism for substrate degradation potentially involving surface sensing and provide a basis for knowledge-based screening for strain improvement.
Collapse
|
45
|
Waters JC, Nixon A, Dwyer M, Biffinger JC, Lee K. Developing elite Neurospora crassa strains for cellulosic ethanol production using fungal breeding. J Ind Microbiol Biotechnol 2017; 44:1137-1144. [PMID: 28429154 PMCID: PMC5511601 DOI: 10.1007/s10295-017-1941-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/27/2017] [Indexed: 01/14/2023]
Abstract
The demand for renewable and sustainable energy has generated considerable interest in the conversion of cellulosic biomass into liquid fuels such as ethanol using a filamentous fungus. While attempts have been made to study cellulose metabolism through the use of knock-out mutants, there have been no systematic effort to characterize natural variation for cellulose metabolism in ecotypes adapted to different habitats. Here, we characterized natural variation in saccharification of cellulose and fermentation in 73 ecotypes and 89 laboratory strains of the model fungus Neurospora crassa. We observed significant variation in both traits among natural and laboratory generated populations, with some elite strains performing better than the reference strain. In the F1 population N345, 15% of the population outperformed both parents with the top performing strain having 10% improvement in ethanol production. These results suggest that natural alleles can be exploited through fungal breeding for developing elite industrial strains for bioethanol production.
Collapse
Affiliation(s)
- Joshua C Waters
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA
| | - Andrew Nixon
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA
| | - Morgan Dwyer
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA
| | - Justin C Biffinger
- Chemistry Department, US Naval Research Laboratory, Washington D.C., 20375, USA
| | - Kwangwon Lee
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA.
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA.
| |
Collapse
|
46
|
Deciphering the Regulatory Network between the SREBP Pathway and Protein Secretion in Neurospora crassa. mBio 2017; 8:mBio.00233-17. [PMID: 28420736 PMCID: PMC5395666 DOI: 10.1128/mbio.00233-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sterol regulatory element binding proteins (SREBPs) are conserved from yeast to mammalian cells and function in the regulation of sterol homeostasis. In fungi, the SREBP pathway has been implicated in the adaptation to hypoxia and in virulence. In Neurospora crassa and Trichoderma reesei, the SREBP pathway also negatively regulates protein secretion under lignocellulolytic conditions. Here we utilized global transcriptional profiling combined with genetic and physiological analyses to address the regulatory link between the SREBP pathway and protein secretion in N. crassa. Our results demonstrated that the function of the SREBP pathway in ergosterol biosynthesis and adaptation to hypoxia was conserved in N. crassa. Under lignocellulolytic conditions, the SREBP pathway was highly activated, resulting in the reduced expression of lytic polysaccharide monooxygenases, which require molecular oxygen for catalytic activity. Additionally, activation of the SREBP pathway under lignocellulolytic conditions repressed a set of genes predicted to be involved in the endoplasmic reticulum stress response. Here we show that the inability of a hac-1 mutant, which bears a deletion of the major regulator of the unfolded protein response (UPR), to efficiently produce cellulases and utilize cellulose was suppressed by mutations in the SREBP pathway. The analyses presented here demonstrated new SREBP pathway functions, including linkages to the UPR, and provide new clues for genetic engineering of filamentous fungi to improve their production of extracellular proteins. The role of SREBP transcription factors in the regulation of sterol biosynthesis is conserved from humans to yeast. In filamentous fungi, this pathway regulates the secretion of lignocellulolytic enzymes during plant biomass deconstruction. Here we show that the SREBP pathway in Neurospora crassa regulates the production of specific cellulases, lytic polysaccharide monooxygenases that utilize molecular oxygen. Via global transcriptional profile and genetic analyses, a relationship between the SREBP pathway and the unfolded protein response (UPR) pathway was revealed, suggesting a regulatory interplay of these two pathways in the trafficking of plant biomass-degrading enzymes. These findings have implications for our understanding of the cross talk of the SREBP and UPR pathways in other organisms and will guide the rational engineering of fungal strains to improve cellulolytic enzyme production.
Collapse
|
47
|
Daly P, van Munster JM, Blythe MJ, Ibbett R, Kokolski M, Gaddipati S, Lindquist E, Singan VR, Barry KW, Lipzen A, Ngan CY, Petzold CJ, Chan LJG, Pullan ST, Delmas S, Waldron PR, Grigoriev IV, Tucker GA, Simmons BA, Archer DB. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:35. [PMID: 28184248 PMCID: PMC5294722 DOI: 10.1186/s13068-017-0700-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/05/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. RESULTS We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. CONCLUSIONS The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.
Collapse
Affiliation(s)
- Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jolanda M. van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Roger Ibbett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Matt Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Sanyasi Gaddipati
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kerrie W. Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Chew Yee Ngan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | | | | | - Steven T. Pullan
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- TB Programme, Microbiology Services, Public Health England, Salisbury, UK
| | - Stéphane Delmas
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- UPMC, Univ. Paris 06, CNRS UMR7238, Sorbonne Universités, 15 rue de l’Ecole de Médecine, 75270 Paris, France
| | - Paul R. Waldron
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Gregory A. Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | | | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
48
|
Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes. mBio 2017; 8:mBio.02231-16. [PMID: 28096492 PMCID: PMC5241404 DOI: 10.1128/mbio.02231-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. Pyroglutamate modification is the post-translational conversion of N-terminal glutamine or glutamate into a cyclized amino acid derivative. This modification is well studied in animal systems but poorly explored in fungal systems. In Neurospora crassa, we show that this modification takes place in the ER and is catalyzed by two well-conserved enzymes, ubiquitously conserved throughout the fungal kingdom. We demonstrate that the modification is important for the structural stability and aminopeptidase resistance of CBH-1 and GH5-1, two important cellulase enzymes utilized in industrial plant cell wall deconstruction. Many additional fungal proteins predicted in the genome of N. crassa and other filamentous fungi are predicted to carry an N-terminal pyroglutamate modification. Pyroglutamate addition may also be a useful way to stabilize secreted proteins and peptides, which can be easily produced in fungal production systems.
Collapse
|
49
|
Thieme N, Wu VW, Dietschmann A, Salamov AA, Wang M, Johnson J, Singan VR, Grigoriev IV, Glass NL, Somerville CR, Benz JP. The transcription factor PDR-1 is a multi-functional regulator and key component of pectin deconstruction and catabolism in Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:149. [PMID: 28616073 PMCID: PMC5469009 DOI: 10.1186/s13068-017-0807-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/29/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Pectin is an abundant component in many fruit and vegetable wastes and could therefore be an excellent resource for biorefinery, but is currently underutilized. Fungal pectinases already play a crucial role for industrial purposes, such as for foodstuff processing. However, the regulation of pectinase gene expression is still poorly understood. For an optimal utilization of plant biomass for biorefinery and biofuel production, a detailed analysis of the underlying regulatory mechanisms is warranted. In this study, we applied the genetic resources of the filamentous ascomycete species Neurospora crassa to screen for transcription factors that play a major role in pectinase induction. RESULTS The pectin degradation regulator-1 (PDR-1) was identified through a transcription factor mutant screen in N. crassa. The Δpdr-1 mutant exhibited a severe growth defect on pectin and all tested pectin-related poly- and monosaccharides. Biochemical as well as transcriptional analyses of WT and the Δpdr-1 mutant revealed that while PDR-1-mediated gene induction was dependent on the presence of l-rhamnose, it also strongly affected the degradation of the homogalacturonan backbone. The expression of the endo-polygalacturonase gh28-1 was greatly reduced in the Δpdr-1 mutant, while the expression levels of all pectate lyase genes increased. Moreover, a pdr-1 overexpression strain displayed substantially increased pectinase production. Promoter analysis of the PDR-1 regulon allowed refinement of the putative PDR-1 DNA-binding motif. CONCLUSIONS PDR-1 is highly conserved in filamentous ascomycete fungi and is present in many pathogenic and industrially important fungi. Our data demonstrate that the function of PDR-1 in N. crassa combines features of two recently described transcription factors in Aspergillus niger (RhaR) and Botrytis cinerea (GaaR). The results presented in this study contribute to a broader understanding of how pectin degradation is orchestrated in filamentous fungi and how it could be manipulated for optimized pectinase production.
Collapse
Affiliation(s)
- Nils Thieme
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Vincent W. Wu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
| | - Axel Dietschmann
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department of Infection Biology, Institute for Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität, Erlangen-Nuremberg, Germany
| | - Asaf A. Salamov
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Jenifer Johnson
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - Igor V. Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA USA
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
- Environmental Genomics and System Biology, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Chris R. Somerville
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA USA
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA USA
| | - J. Philipp Benz
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
50
|
Samal A, Craig JP, Coradetti ST, Benz JP, Eddy JA, Price ND, Glass NL. Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:225. [PMID: 28947916 PMCID: PMC5609067 DOI: 10.1186/s13068-017-0901-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. RESULTS To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa. To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa. CONCLUSIONS Here we built a network that serves as a scaffold for integration of diverse experimental datasets. This approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer industrially relevant hyper-production strains.
Collapse
Affiliation(s)
- Areejit Samal
- Institute for Systems Biology, Seattle, WA 98109 USA
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- The Institute of Mathematical Sciences, Homi Bhabha National Institute, Chennai, 600113 India
- The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - James P. Craig
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Samuel T. Coradetti
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - J. Philipp Benz
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - James A. Eddy
- Institute for Systems Biology, Seattle, WA 98109 USA
| | | | - N. Louise Glass
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|