1
|
Kreiman AN, Yeasmin T, Sutherland MC. Recombinant Biogenesis and Analysis of Cytochrome c Species. Methods Mol Biol 2024; 2839:195-211. [PMID: 39008254 DOI: 10.1007/978-1-0716-4043-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Recombinant expression and biogenesis of cytochrome c species is a simple and efficient method for the production of holocytochrome c species, thus presenting an avenue for the study of cytochrome c or the cytochrome c biogenesis pathways responsible for heme attachment. Here, we describe a method for recombinant E. coli production of holocytochrome c utilizing the System I (CcmABCDEFGH) bacterial cytochrome c biogenesis pathway, followed by analysis of cytochrome c species by cell lysis and heme stain.
Collapse
Affiliation(s)
- Alicia N Kreiman
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Tania Yeasmin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Molly C Sutherland
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
2
|
Grunow AL, Carroll SC, Kreiman AN, Sutherland MC. Structure-function analysis of the heme-binding WWD domain in the bacterial holocytochrome c synthase, CcmFH. mBio 2023; 14:e0150923. [PMID: 37929956 PMCID: PMC10746174 DOI: 10.1128/mbio.01509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Heme is an essential co-factor for proteins involved with critical cellular functions, such as energy production and oxygen transport. Thus, understanding how heme interacts with proteins and is moved through cells is a fundamental biological question. This work studies the System I cytochrome c biogenesis pathway, which in some species (including Escherichia coli) is composed of eight integral membrane or membrane-associated proteins called CcmA-H that are proposed to function in two steps to transport and attach heme to apocytochrome c. Cytochrome c requires this heme attachment to function in electron transport chains to generate cellular energy. A conserved WWD heme-handling domain in CcmFH is analyzed and residues critical for heme interaction and holocytochrome c synthase activity are identified. CcmFH is the third member of the WWD domain-containing heme-handling protein family to undergo a comprehensive structure-function analysis, allowing for comparison of heme interaction across this protein family.
Collapse
Affiliation(s)
- Amber L. Grunow
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Susan C. Carroll
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Alicia N. Kreiman
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Molly C. Sutherland
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Ilcu L, Denkhaus L, Brausemann A, Zhang L, Einsle O. Architecture of the Heme-translocating CcmABCD/E complex required for Cytochrome c maturation. Nat Commun 2023; 14:5190. [PMID: 37626034 PMCID: PMC10457321 DOI: 10.1038/s41467-023-40881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mono- and multiheme cytochromes c are post-translationally matured by the covalent attachment of heme. For this, Escherichia coli employs the most complex type of maturation machineries, the Ccm-system (for cytochrome c maturation). It consists of two membrane protein complexes, one of which shuttles heme across the membrane to a mobile chaperone that then delivers the cofactor to the second complex, an apoprotein:heme lyase, for covalent attachment. Here we report cryo-electron microscopic structures of the heme translocation complex CcmABCD from E. coli, alone and bound to the heme chaperone CcmE. CcmABCD forms a heterooctameric complex centered around the ABC transporter CcmAB that does not by itself transport heme. Our data suggest that the complex flops a heme group from the inner to the outer leaflet at its CcmBC interfaces, driven by ATP hydrolysis at CcmA. A conserved heme-handling motif (WxWD) at the periplasmic side of CcmC rotates the heme by 90° for covalent attachment to the heme chaperone CcmE that we find interacting exclusively with the CcmB subunit.
Collapse
Affiliation(s)
- Lorena Ilcu
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Lukas Denkhaus
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Anton Brausemann
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany.
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany.
| |
Collapse
|
4
|
Gao M, Nakajima An D, Parks JM, Skolnick J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat Commun 2022; 13:1744. [PMID: 35365655 PMCID: PMC8975832 DOI: 10.1038/s41467-022-29394-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
Accurate descriptions of protein-protein interactions are essential for understanding biological systems. Remarkably accurate atomic structures have been recently computed for individual proteins by AlphaFold2 (AF2). Here, we demonstrate that the same neural network models from AF2 developed for single protein sequences can be adapted to predict the structures of multimeric protein complexes without retraining. In contrast to common approaches, our method, AF2Complex, does not require paired multiple sequence alignments. It achieves higher accuracy than some complex protein-protein docking strategies and provides a significant improvement over AF-Multimer, a development of AlphaFold for multimeric proteins. Moreover, we introduce metrics for predicting direct protein-protein interactions between arbitrary protein pairs and validate AF2Complex on some challenging benchmark sets and the E. coli proteome. Lastly, using the cytochrome c biogenesis system I as an example, we present high-confidence models of three sought-after assemblies formed by eight members of this system.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Atlanta, GA, USA.
| | - Davi Nakajima An
- School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Atlanta, GA, USA.
| |
Collapse
|
5
|
Yang J, Cui Y, Zhang X, Yang Z, Lai J, Song W, Liang J, Li X. Maize PPR278 Functions in Mitochondrial RNA Splicing and Editing. Int J Mol Sci 2022; 23:ijms23063035. [PMID: 35328469 PMCID: PMC8949463 DOI: 10.3390/ijms23063035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large protein family in higher plants and play important roles during seed development. Most reported PPR proteins function in mitochondria. However, some PPR proteins localize to more than one organelle; functional characterization of these proteins remains limited in maize (Zea mays L.). Here, we cloned and analyzed the function of a P-subfamily PPR protein, PPR278. Loss-function of PPR278 led to a lower germination rate and other defects at the seedling stage, as well as smaller kernels compared to the wild type. PPR278 was expressed in all investigated tissues. Furthermore, we determined that PPR278 is involved in the splicing of two mitochondrial transcripts (nad2 intron 4 and nad5 introns 1 and 4), as well as RNA editing of C-to-U sites in 10 mitochondrial transcripts. PPR278 localized to the nucleus, implying that it may function as a transcriptional regulator during seed development. Our data indicate that PPR278 is involved in maize seed development via intron splicing and RNA editing in mitochondria and has potential regulatory roles in the nucleus.
Collapse
Affiliation(s)
- Jing Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yang Cui
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xiangbo Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zhijia Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China; (Y.C.); (X.Z.); (Z.Y.); (J.L.); (W.S.)
- National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
- Correspondence: (J.L.); (X.L.)
| | - Xinhai Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence: (J.L.); (X.L.)
| |
Collapse
|
6
|
Mendez DL, Lowder EP, Tillman DE, Sutherland MC, Collier AL, Rau MJ, Fitzpatrick JA, Kranz RG. Cryo-EM of CcsBA reveals the basis for cytochrome c biogenesis and heme transport. Nat Chem Biol 2022; 18:101-108. [PMID: 34931065 PMCID: PMC8712405 DOI: 10.1038/s41589-021-00935-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/22/2021] [Indexed: 01/09/2023]
Abstract
Although the individual structures and respiratory functions of cytochromes are well studied, the structural basis for their assembly, including transport of heme for attachment, are unknown. We describe cryo-electron microscopy (cryo-EM) structures of CcsBA, a bifunctional heme transporter and cytochrome c (cyt c) synthase. Models built from the cryo-EM densities show that CcsBA is trapped with heme in two conformations, herein termed the closed and open states. The closed state has heme located solely at a transmembrane (TM) site, with a large periplasmic domain oriented such that access of heme to the cytochrome acceptor is denied. The open conformation contains two heme moieties, one in the TM-heme site and another in an external site (P-heme site). The presence of heme in the periplasmic site at the base of a chamber induces a large conformational shift that exposes the heme for reaction with apocytochrome c (apocyt c). Consistent with these structures, in vivo and in vitro cyt c synthase studies suggest a mechanism for transfer of the periplasmic heme to cytochrome.
Collapse
Affiliation(s)
- Deanna L. Mendez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ethan P. Lowder
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dustin E. Tillman
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Molly C. Sutherland
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrea L. Collier
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael J. Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A.J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA.,Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert G. Kranz
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA,Corresponding author is Robert G. Kranz:
| |
Collapse
|
7
|
Sun W, Lin Z, Yu Q, Cheng S, Gao H. Promoting Extracellular Electron Transfer of Shewanella oneidensis MR-1 by Optimizing the Periplasmic Cytochrome c Network. Front Microbiol 2021; 12:727709. [PMID: 34675900 PMCID: PMC8524038 DOI: 10.3389/fmicb.2021.727709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The low efficiency of extracellular electron transfer (EET) is a major bottleneck for Shewanella oneidensis MR-1 acting as an electroactive biocatalyst in bioelectrochemical systems. Although it is well established that a periplasmic c-type cytochrome (c-Cyt) network plays a critical role in regulating EET efficiency, the understanding of the network in terms of structure and electron transfer activity is obscure and partial. In this work, we attempted to systematically investigate the impacts of the network components on EET in their absence and overproduction individually in microbial fuel cell (MFC). We found that overexpression of c-Cyt CctA leads to accelerated electron transfer between CymA and the Mtr system, which function as the primary quinol oxidase and the outer-membrane (OM) electron hub in EET. In contrast, NapB, FccA, and TsdB in excess severely impaired EET, reducing EET capacity in MFC by more than 50%. Based on the results from both strategies, a series of engineered strains lacking FccA, NapB, and TsdB in combination while overproducing CctA were tested for a maximally optimized c-Cyt network. A strain depleted of all NapB, FccA, and TsdB with CctA overproduction achieved the highest maximum power density in MFCs (436.5 mW/m2), ∼3.62-fold higher than that of wild type (WT). By revealing that optimization of periplasmic c-Cyt composition is a practical strategy for improving EET efficiency, our work underscores the importance in understanding physiological and electrochemical characteristics of c-Cyts involved in EET.
Collapse
Affiliation(s)
- Weining Sun
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhufan Lin
- Department of Energy Engineering, State Key Laboratory of Clean Energy, Zhejiang University, Hangzhou, China
| | - Qingzi Yu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shaoan Cheng
- Department of Energy Engineering, State Key Laboratory of Clean Energy, Zhejiang University, Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Brausemann A, Zhang L, Ilcu L, Einsle O. Architecture of the membrane-bound cytochrome c heme lyase CcmF. Nat Chem Biol 2021; 17:800-805. [PMID: 33958791 PMCID: PMC7611092 DOI: 10.1038/s41589-021-00793-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023]
Abstract
The covalent attachment of one or multiple heme cofactors to cytochrome c protein chains enables cytochrome c proteins to be used in electron transfer and redox catalysis in extracytoplasmic environments. A dedicated heme maturation machinery, whose core component is a heme lyase, scans nascent peptides after Sec-dependent translocation for CXnCH-binding motifs. Here we report the three-dimensional (3D) structure of the heme lyase CcmF, a 643-amino acid integral membrane protein, from Thermus thermophilus. CcmF contains a heme b cofactor at the bottom of a large cavity that opens toward the extracellular side to receive heme groups from the heme chaperone CcmE for cytochrome maturation. A surface groove on CcmF may guide the extended apoprotein to heme attachment at or near a loop containing the functionally essential WXWD motif, which is situated above the putative cofactor binding pocket. The structure suggests heme delivery from within the membrane, redefining the role of the chaperone CcmE.
Collapse
|
9
|
Liu R, Cao SK, Sayyed A, Yang HH, Zhao J, Wang X, Jia RX, Sun F, Tan BC. The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5495-5505. [PMID: 32531050 DOI: 10.1093/jxb/eraa273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/09/2020] [Indexed: 05/02/2023]
Abstract
C-to-U RNA editing in plant mitochondria requires the participation of many nucleus-encoded factors, most of which are pentatricopeptide repeat (PPR) proteins. There is a large number of PPR proteins and the functions many of them are unknown. Here, we report a mitochondrion-localized DYW-subgroup PPR protein, PPR27, which functions in the editing of multiple mitochondrial transcripts in maize. The ppr27 mutant is completely deficient in C-to-U editing at the ccmFN-1357 and rps3-707 sites, and editing at six other sites is substantially reduced. The lack of editing at ccmFN-1357 causes a deficiency of CcmFN protein. As CcmFN functions in the maturation pathway of cytochrome proteins that are subunits of mitochondrial complex III, its deficiency results in an absence of cytochrome c1 and cytochrome c proteins. Consequently, the assembly of mitochondrial complex III and super-complex I+III2 is decreased, which impairs the electron transport chain and respiration, leading to arrests in embryogenesis and endosperm development in ppr27. In addition, PPR27 was found to physically interact with ZmMORF1, which interacts with ZmMORF8, suggesting that these three proteins may facilitate C-to-U RNA editing via the formation of a complex in maize mitochondria. This RNA editing is essential for complex III assembly and seed development in maize.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huan-Huan Yang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiao Zhao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ru-Xue Jia
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Abstract
While the bottom-up design of enzymes appears to be an intractably complex problem, a minimal approach that combines elementary, de novo-designed proteins with intrinsically reactive cofactors offers a simple means to rapidly access sophisticated catalytic mechanisms. Not only is this method proven in the reproduction of powerful oxidative chemistry of the natural peroxidase enzymes, but we show here that it extends to the efficient, abiological—and often asymmetric—formation of strained cyclopropane rings, nitrogen–carbon and carbon–carbon bonds, and the ring expansion of a simple cyclic molecule to form a precursor for NAD+, a fundamentally important biological cofactor. That the enzyme also functions in vivo paves the way for its incorporation into engineered biosynthetic pathways within living organisms. By constructing an in vivo-assembled, catalytically proficient peroxidase, C45, we have recently demonstrated the catalytic potential of simple, de novo-designed heme proteins. Here, we show that C45’s enzymatic activity extends to the efficient and stereoselective intermolecular transfer of carbenes to olefins, heterocycles, aldehydes, and amines. Not only is this a report of carbene transferase activity in a completely de novo protein, but also of enzyme-catalyzed ring expansion of aromatic heterocycles via carbene transfer by any enzyme.
Collapse
|
11
|
Gupta D, Sutherland MC, Rengasamy K, Meacham JM, Kranz RG, Bose A. Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake. mBio 2019; 10:e02668-19. [PMID: 31690680 PMCID: PMC6831781 DOI: 10.1128/mbio.02668-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 11/20/2022] Open
Abstract
Photoferrotrophy is a form of anoxygenic photosynthesis whereby bacteria utilize soluble or insoluble forms of ferrous iron as an electron donor to fix carbon dioxide using light energy. They can also use poised electrodes as their electron donor via phototrophic extracellular electron uptake (phototrophic EEU). The electron uptake mechanisms underlying these processes are not well understood. Using Rhodopseudomonas palustris TIE-1 as a model, we show that a single periplasmic decaheme cytochrome c, PioA, and an outer membrane porin, PioB, form a complex allowing extracellular electron uptake across the outer membrane from both soluble iron and poised electrodes. We observe that PioA undergoes postsecretory proteolysis of its N terminus to produce a shorter heme-attached PioA (holo-PioAC, where PioAC represents the C terminus of PioA), which can exist both freely in the periplasm and in a complex with PioB. The extended N-terminal peptide controls heme attachment, and its processing is required to produce wild-type levels of holo-PioAC and holo-PioACB complex. It is also conserved in PioA homologs from other phototrophs. The presence of PioAB in these organisms correlate with their ability to perform photoferrotrophy and phototrophic EEU.IMPORTANCE Some anoxygenic phototrophs use soluble iron, insoluble iron minerals (such as rust), or their proxies (poised electrodes) as electron donors for photosynthesis. However, the underlying electron uptake mechanisms are not well established. Here, we show that these phototrophs use a protein complex made of an outer membrane porin and a periplasmic decaheme cytochrome (electron transfer protein) to harvest electrons from both soluble iron and poised electrodes. This complex has two unique characteristics: (i) it lacks an extracellular cytochrome c, and (ii) the periplasmic decaheme cytochrome c undergoes proteolytic cleavage to produce a functional electron transfer protein. These characteristics are conserved in phototrophs harboring homologous proteins.
Collapse
Affiliation(s)
- Dinesh Gupta
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Molly C Sutherland
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - J Mark Meacham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert G Kranz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. A brief survey of the "cytochromome". Adv Microb Physiol 2019; 75:69-135. [PMID: 31655743 DOI: 10.1016/bs.ampbs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.
Collapse
|
13
|
Abstract
Although many putative heme transporters have been discovered, it has been challenging to prove that these proteins are directly involved with heme trafficking in vivo and to identify their heme binding domains. The prokaryotic pathways for cytochrome c biogenesis, Systems I and II, transport heme from inside the cell to outside for stereochemical attachment to cytochrome c, making them excellent models to study heme trafficking. System I is composed of eight integral membrane proteins (CcmA-H) and is proposed to transport heme via CcmC to an external "WWD" domain for presentation to the membrane-tethered heme chaperone, CcmE. Herein, we develop a new cysteine/heme crosslinking approach to trap and map endogenous heme in CcmC (WWD domain) and CcmE (defining "2-vinyl" and "4-vinyl" pockets for heme). Crosslinking occurs when either of the two vinyl groups of heme localize near a thiol of an engineered cysteine residue. Double crosslinking, whereby both vinyls crosslink to two engineered cysteines, facilitated a more detailed structural mapping of the heme binding sites, including stereospecificity. Using heme crosslinking results, heme ligand identification, and genomic coevolution data, we model the structure of the CcmCDE complex, including the WWD heme binding domain. We conclude that CcmC trafficks heme via its WWD domain and propose the structural basis for stereochemical attachment of heme.
Collapse
|
14
|
Verissimo AF, Khalfaoui-Hassani B, Hwang J, Steimle S, Selamoglu N, Sanders C, Khatchikian CE, Daldal F. The thioreduction component CcmG confers efficiency and the heme ligation component CcmH ensures stereo-specificity during cytochrome c maturation. J Biol Chem 2017. [PMID: 28634234 DOI: 10.1074/jbc.m117.794586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In many Gram-negative bacteria, including Rhodobacter capsulatus, cytochrome c maturation (Ccm) is carried out by a membrane-integral machinery composed of nine proteins (CcmA to I). During this process, the periplasmic thiol-disulfide oxidoreductase DsbA is thought to catalyze the formation of a disulfide bond between the Cys residues at the apocytochrome c heme-binding site (CXXCH). Subsequently, a Ccm-specific thioreductive pathway involving CcmG and CcmH reduces this disulfide bond to allow covalent heme ligation. Currently, the sequence of thioredox reactions occurring between these components and apocytochrome c and the identity of their active Cys residues are unknown. In this work, we first investigated protein-protein interactions among the apocytochrome c, CcmG, and the heme-ligation components CcmF, CcmH, and CcmI. We found that they all interact with each other, forming a CcmFGHI-apocytochrome c complex. Using purified wild-type CcmG, CcmH, and apocytochrome c, as well as their respective Cys mutant variants, we determined the rates of thiol-disulfide exchange reactions between selected pairs of Cys residues from these proteins. We established that CcmG can efficiently reduce the disulfide bond of apocytochrome c and also resolve a mixed disulfide bond formed between apocytochrome c and CcmH. We further show that Cys-45 of CcmH and Cys-34 of apocytochrome c are most likely to form this mixed disulfide bond, which is consistent with the stereo-specificity of the heme-apocytochrome c ligation reaction. We conclude that CcmG confers efficiency, and CcmH ensures stereo-specificity during Ccm and present a comprehensive model for thioreduction reactions that lead to heme-apocytochrome c ligation.
Collapse
Affiliation(s)
- Andreia F Verissimo
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Bahia Khalfaoui-Hassani
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Josephine Hwang
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Stefan Steimle
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Nur Selamoglu
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Carsten Sanders
- the Department of Physical Sciences, University of Kutztown, Kutztown, Pennsylvania 19530, and
| | - Camilo E Khatchikian
- the Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968
| | - Fevzi Daldal
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019,
| |
Collapse
|
15
|
Abstract
A small number of physiologically important ATP-binding cassette (ABC) transporters are found in mitochondria. Most are half transporters of the B group forming homodimers and their topology suggests they function as exporters. The results of mutant studies point towards involvement in iron cofactor biosynthesis. In particular, ABC subfamily B member 7 (ABCB7) and its homologues in yeast and plants are required for iron-sulfur (Fe-S) cluster biosynthesis outside of the mitochondria, whereas ABCB10 is involved in haem biosynthesis. They also play a role in preventing oxidative stress. Mutations in ABCB6 and ABCB7 have been linked to human disease. Recent crystal structures of yeast Atm1 and human ABCB10 have been key to identifying substrate-binding sites and transport mechanisms. Combined with in vitro and in vivo studies, progress is being made to find the physiological substrates of the different mitochondrial ABC transporters.
Collapse
|
16
|
Sutherland MC, Rankin JA, Kranz RG. Heme Trafficking and Modifications during System I Cytochrome c Biogenesis: Insights from Heme Redox Potentials of Ccm Proteins. Biochemistry 2016; 55:3150-6. [PMID: 27198710 DOI: 10.1021/acs.biochem.6b00427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochromes c require covalent attachment of heme via two thioether bonds at conserved CXXCH motifs, a process accomplished in prokaryotes by eight integral membrane proteins (CcmABCDEFGH), termed System I. Heme is trafficked from inside the cell to outside (via CcmABCD) and chaperoned (holoCcmE) to the cytochrome c synthetase (CcmF/H). Purification of key System I pathway intermediates allowed the determination of heme redox potentials. The data support a model whereby heme is oxidized to form holoCcmE and subsequently reduced by CcmF/H for thioether formation, with Fe(2+) being required for attachment to CXXCH. Results provide insight into mechanisms for the oxidation and reduction of heme in vivo.
Collapse
Affiliation(s)
- Molly C Sutherland
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | - Joel A Rankin
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | - Robert G Kranz
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| |
Collapse
|
17
|
Khalfaoui-Hassani B, Verissimo AF, Shroff NP, Ekici S, Trasnea PI, Utz M, Koch HG, Daldal F. Biogenesis of Cytochrome c Complexes: From Insertion of Redox Cofactors to Assembly of Different Subunits. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Sun F, Wang X, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan BC. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:283-95. [PMID: 26303363 DOI: 10.1111/tpj.12993] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 05/02/2023]
Abstract
RNA editing, converting cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, plays a critical role in organelle gene expression in land plants. Recently pentatricopeptide repeat (PPR) proteins were identified as site-specific recognition factors for RNA editing. In this study, we characterized an empty pericarp7 mutant (emp7) in Zea mays (maize), which confers an embryo-lethal phenotype. In emp7 mutants, mitochondrial functions are seriously perturbed, resulting in a strikingly reduced respiration rate. Emp7 encodes an E-subgroup PPR protein that is localized exclusively in the mitochondrion. Null mutation of Emp7 abolishes the C → U editing of ccmF(N) transcript solely at position 1553. CcmF(N) is coding for a subunit of heme lyase complex in the cytochrome c maturation pathway. The resulting Phe → Ser substitution in CcmF(N) leads to the loss of CcmF(N) protein and a strikingly reduced c-type cytochrome. Consequently, the mitochondrial cytochrome-linked respiratory chain is impaired as a result of the disassembly of complex III in the emp7 mutant. These results indicate that the PPR-E subgroup protein EMP7 is required for C → U editing of ccmF(N) -1553 at a position essential for cytochrome c maturation and mitochondrial oxidative phosphorylation, and hence is essential to embryo and endosperm development in maize.
Collapse
Affiliation(s)
- Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Géraldine Bonnard
- Institut de biologie moléculaire des plantes CNRS, Associé à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Yun Shen
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Zhihui Xiu
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Xiaojie Li
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Dahai Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhonghang Zhang
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
19
|
Babbitt SE, Sutherland MC, San Francisco B, Mendez DL, Kranz RG. Mitochondrial cytochrome c biogenesis: no longer an enigma. Trends Biochem Sci 2015; 40:446-55. [PMID: 26073510 DOI: 10.1016/j.tibs.2015.05.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
Cytochromes c (cyt c) and c1 are heme proteins that are essential for aerobic respiration. Release of cyt c from mitochondria is an important signal in apoptosis initiation. Biogenesis of c-type cytochromes involves covalent attachment of heme to two cysteines (at a conserved CXXCH sequence) in the apocytochrome. Heme attachment is catalyzed in most mitochondria by holocytochrome c synthase (HCCS), which is also necessary for the import of apocytochrome c (apocyt c). Thus, HCCS affects cellular levels of cyt c, impacting mitochondrial physiology and cell death. Here, we review the mechanisms of HCCS function and the roles of heme and residues in the CXXCH motif. Additionally, we consider concepts emerging within the two prokaryotic cytochrome c biogenesis pathways.
Collapse
Affiliation(s)
- Shalon E Babbitt
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | - Deanna L Mendez
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | - Robert G Kranz
- Department of Biology, Washington University, St Louis, MO 63130, USA.
| |
Collapse
|