1
|
Sharma S, Srivastava S, Dubey RN, Mishra P, Singh J. [SNG2], a prion form of Cut4/Apc1, confers non-Mendelian inheritance of heterochromatin silencing defect in fission yeast. Nucleic Acids Res 2024; 52:13792-13811. [PMID: 39565210 DOI: 10.1093/nar/gkae1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Prions represent epigenetic regulator proteins that can self-propagate their structure and confer their misfolded structure and function on normally folded proteins. Like the mammalian prion PrPSc, prions also occur in fungi. While a few prions, like Swi1, affect gene expression, none are shown to affect heterochromatin structure and function. In fission yeast and metazoans, histone methyltransferase Clr4/Suv39 causes H3-Lys9 methylation, which is bound by the chromodomain protein Swi6/HP1 to assemble heterochromatin. Earlier, we showed that sng2-1 mutation in the Cut4 subunit of anaphase-promoting complex abrogates heterochromatin structure due to defective binding and recruitment of Swi6. Here, we demonstrate that the Cut4p forms a non-canonical prion form, designated as [SNG2], which abrogates heterochromatin silencing. [SNG2] exhibits various prion-like properties, e.g. non-Mendelian inheritance, requirement of Hsp proteins for its propagation, de novo generation upon cut4 overexpression, reversible curing by guanidine, cytoplasmic inheritance and formation of infectious protein aggregates, which are dissolved upon overexpression of hsp genes. Interestingly, [SNG2] prion imparts an enhanced tolerance to stress conditions, supporting its role in promoting cell survival under environmental stress during evolution.
Collapse
Affiliation(s)
- Suman Sharma
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | | | - Poonam Mishra
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Jagmohan Singh
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| |
Collapse
|
2
|
Kell DB, Pretorius E. Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots. Int J Mol Sci 2024; 25:10809. [PMID: 39409138 PMCID: PMC11476703 DOI: 10.3390/ijms251910809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
3
|
Giraldo R. The emergence of bacterial prions. PLoS Pathog 2024; 20:e1012253. [PMID: 38870093 PMCID: PMC11175392 DOI: 10.1371/journal.ppat.1012253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Affiliation(s)
- Rafael Giraldo
- Department of Microbial Biotechnology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Jager K, Orozco-Hidalgo MT, Springstein BL, Joly-Smith E, Papazotos F, McDonough E, Fleming E, McCallum G, Yuan AH, Hilfinger A, Hochschild A, Potvin-Trottier L. Measuring prion propagation in single bacteria elucidates a mechanism of loss. Proc Natl Acad Sci U S A 2023; 120:e2221539120. [PMID: 37738299 PMCID: PMC10523482 DOI: 10.1073/pnas.2221539120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/26/2023] [Indexed: 09/24/2023] Open
Abstract
Prions are self-propagating protein aggregates formed by specific proteins that can adopt alternative folds. Prions were discovered as the cause of the fatal transmissible spongiform encephalopathies in mammals, but prions can also constitute nontoxic protein-based elements of inheritance in fungi and other species. Prion propagation has recently been shown to occur in bacteria for more than a hundred cell divisions, yet a fraction of cells in these lineages lost the prion through an unknown mechanism. Here, we investigate prion propagation in single bacterial cells as they divide using microfluidics and fluorescence microscopy. We show that the propagation occurs in two distinct modes. In a fraction of the population, cells had multiple small visible aggregates and lost the prion through random partitioning of aggregates to one of the two daughter cells at division. In the other subpopulation, cells had a stable large aggregate localized to the pole; upon division the mother cell retained this polar aggregate and a daughter cell was generated that contained small aggregates. Extending our findings to prion domains from two orthologous proteins, we observe similar propagation and loss properties. Our findings also provide support for the suggestion that bacterial prions can form more than one self-propagating state. We implement a stochastic version of the molecular model of prion propagation from yeast and mammals that recapitulates all the observed single-cell properties. This model highlights challenges for prion propagation that are unique to prokaryotes and illustrates the conservation of fundamental characteristics of prion propagation.
Collapse
Affiliation(s)
- Krista Jager
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| | | | | | - Euan Joly-Smith
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
| | - Fotini Papazotos
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| | | | - Eleanor Fleming
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Giselle McCallum
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| | - Andy H. Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Andreas Hilfinger
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
- Department of Mathematics, University of Toronto, Toronto, ONM5S 2E4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ONM5S 3G5, Canada
| | - Ann Hochschild
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Laurent Potvin-Trottier
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
- Department of Physics, Concordia University, Montréal, QCH4B 1R6, Canada
- Center for Applied Synthetic Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| |
Collapse
|
5
|
Guo H, Ryan JC, Song X, Mallet A, Zhang M, Pabst V, Decrulle AL, Ejsmont P, Wintermute EH, Lindner AB. Spatial engineering of E. coli with addressable phase-separated RNAs. Cell 2022; 185:3823-3837.e23. [PMID: 36179672 DOI: 10.1016/j.cell.2022.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
Biochemical processes often require spatial regulation and specific microenvironments. The general lack of organelles in bacteria limits the potential of bioengineering complex intracellular reactions. Here, we demonstrate synthetic membraneless organelles in Escherichia coli termed transcriptionally engineered addressable RNA solvent droplets (TEARS). TEARS are assembled from RNA-binding protein recruiting domains fused to poly-CAG repeats that spontaneously drive liquid-liquid phase separation from the bulk cytoplasm. Targeting TEARS with fluorescent proteins revealed multilayered structures with composition and reaction robustness governed by non-equilibrium dynamics. We show that TEARS provide organelle-like bioprocess isolation for sequestering biochemical pathways, controlling metabolic branch points, buffering mRNA translation rates, and scaffolding protein-protein interactions. We anticipate TEARS to be a simple and versatile tool for spatially controlling E. coli biochemistry. Particularly, the modular design of TEARS enables applications without expression fine-tuning, simplifying the design-build-test cycle of bioengineering.
Collapse
Affiliation(s)
- Haotian Guo
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France.
| | - Joseph C Ryan
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Xiaohu Song
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Adeline Mallet
- Ultrastructural BioImaging UTechS, C2RT, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Mengmeng Zhang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Victor Pabst
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Antoine L Decrulle
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Paulina Ejsmont
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Edwin H Wintermute
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France.
| |
Collapse
|
6
|
Vendrell-Fernández S, Lozano-Picazo P, Cuadros-Sánchez P, Tejero-Ojeda MM, Giraldo R. Conversion of the OmpF Porin into a Device to Gather Amyloids on the E. coli Outer Membrane. ACS Synth Biol 2022; 11:655-667. [PMID: 34852197 DOI: 10.1021/acssynbio.1c00347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein amyloids are ubiquitous in natural environments. They typically originate from microbial secretions or spillages from mammals infected by prions, currently raising concerns about their infectivity and toxicity in contexts such as gut microbiota or soils. Exploiting the self-assembly potential of amyloids for their scavenging, here, we report the insertion of an amyloidogenic sequence stretch from a bacterial prion-like protein (RepA-WH1) in one of the extracellular loops (L5) of the abundant Escherichia coli outer membrane porin OmpF. The expression of this grafted porin enables bacterial cells to trap on their envelopes the same amyloidogenic sequence when provided as an extracellular free peptide. Conversely, when immobilized on a surface as bait, the full-length prion-like protein including the amyloidogenic peptide can catch bacteria displaying the L5-grafted OmpF. Polyphenolic molecules known to inhibit amyloid assembly interfere with peptide recognition by the engineered OmpF, indicating that this is compatible with the kind of homotypic interactions expected for amyloid assembly. Our study suggests that synthetic porins may provide suitable scaffolds for engineering biosensor and clearance devices to tackle the threat posed by pathogenic amyloids.
Collapse
Affiliation(s)
- Sol Vendrell-Fernández
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - Paloma Lozano-Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Paula Cuadros-Sánchez
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - María M. Tejero-Ojeda
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Rafael Giraldo
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| |
Collapse
|
7
|
Marín J, Aguilera P, Lagos R, Marcoleta A. Assessment of Intracellular Amyloid Formation in Fixed and Live Bacteria Using Fluorescence Microscopy. Methods Mol Biol 2022; 2538:261-273. [PMID: 35951305 DOI: 10.1007/978-1-0716-2529-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although amyloid aggregation has been generally associated with protein misfolding and neurodegenerative diseases in mammals, bacteria and other organisms have harnessed amyloidogenesis to perform diverse biological processes. These functional amyloids, some of them secreted and others intracellular, require that the producing cells keep aggregation under control in the cytoplasm upon protein translation, preventing their inherent toxicity. Thus, it is highly relevant to understand how intracellular amyloid formation occurs and is regulated, its metabolic consequences, and the formation dynamics and fate of the amyloid inclusions upon cell division. This chapter describes methods leveraging fluorescence microscopy and fixed- or live-cell imaging to monitor intracellular amyloid formation in bacterial cells.
Collapse
Affiliation(s)
- Josefina Marín
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paulina Aguilera
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés Marcoleta
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. BIOCHEMISTRY (MOSCOW) 2021; 85:1011-1034. [PMID: 33050849 DOI: 10.1134/s0006297920090035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Active accumulation of the data on new amyloids continuing nowadays dissolves boundaries of the term "amyloid". Currently, it is most often used to designate aggregates with cross-β structure. At the same time, amyloids also exhibit a number of other unusual properties, such as: detergent and protease resistance, interaction with specific dyes, and ability to induce transition of some proteins from a soluble form to an aggregated one. The same features have been also demonstrated for the aggregates lacking cross-β structure, which are commonly called "amyloid-like" and combined into one group, although they are very diverse. We have collected and systematized information on the properties of more than two hundred known amyloids and amyloid-like proteins with emphasis on conflicting examples. In particular, a number of proteins in membraneless organelles form aggregates with cross-β structure that are morphologically indistinguishable from the other amyloids, but they can be dissolved in the presence of detergents, which is not typical for amyloids. Such paradoxes signify the need to clarify the existing definition of the term amyloid. On the other hand, the demonstrated structural diversity of the amyloid-like aggregates shows the necessity of their classification.
Collapse
Affiliation(s)
- A B Matiiv
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - N P Trubitsina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A G Matveenko
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Y A Barbitoff
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Bioinformatics Institute, St. Petersburg, 197342, Russia
| | - G A Zhouravleva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S A Bondarev
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. .,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
9
|
Abstract
Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). In particular, it is focused on RepA-WH1, a functional albeit unconventional natural amyloidogenic protein domain that participates in controlling DNA replication of bacterial plasmids. SynBio approaches, including protein engineering and the design of allosteric effectors such as diverse ligands and an optogenetic module, have enabled the generation in RepA-WH1 of an intracellular cytotoxic prion-like agent in bacteria. The synthetic RepA-WH1 prion has the potential to develop into novel antimicrobials.
Collapse
|
10
|
Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells. mBio 2020; 11:mBio.02937-19. [PMID: 32291306 PMCID: PMC7157824 DOI: 10.1128/mbio.02937-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation. RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.
Collapse
|
11
|
Pantoja-Uceda D, Oroz J, Fernández C, de Alba E, Giraldo R, Laurents DV. Conformational Priming of RepA-WH1 for Functional Amyloid Conversion Detected by NMR Spectroscopy. Structure 2020; 28:336-347.e4. [PMID: 31918960 DOI: 10.1016/j.str.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
How proteins with a stable globular fold acquire the amyloid state is still largely unknown. RepA, a versatile plasmidic DNA binding protein from Pseudomonas savastanoi, is functional as a transcriptional repressor or as an initiator or inhibitor of DNA replication, the latter via assembly of an amyloidogenic oligomer. Its N-terminal domain (WH1) is responsible for discrimination between these functional abilities by undergoing insufficiently understood structural changes. RepA-WH1 is a stable dimer whose conformational dynamics had not been explored. Here, we have studied it through NMR {1H}-15N relaxation and H/D exchange kinetics measurements. The N- and the C-terminal α-helices, and the internal amyloidogenic loop, are partially unfolded in solution. S4-indigo, a small inhibitor of RepA-WH1 amyloidogenesis, binds to and tethers the N-terminal α-helix to a β-hairpin that is involved in dimerization, thus providing evidence for a priming role of fraying ends and dimerization switches in the amyloidogenesis of folded proteins.
Collapse
Affiliation(s)
- David Pantoja-Uceda
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Javier Oroz
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Cristina Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Eva de Alba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
12
|
Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev 2020; 44:54-72. [PMID: 31633151 PMCID: PMC7053576 DOI: 10.1093/femsre/fuz026] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation occurs as a consequence of perturbations in protein homeostasis that can be triggered by environmental and cellular stresses. The accumulation of protein aggregates has been associated with aging and other pathologies in eukaryotes, and in bacteria with changes in growth rate, stress resistance and virulence. Numerous past studies, mostly performed in Escherichia coli, have led to a detailed understanding of the functions of the bacterial protein quality control machinery in preventing and reversing protein aggregation. However, more recent research points toward unexpected diversity in how phylogenetically different bacteria utilize components of this machinery to cope with protein aggregation. Furthermore, how persistent protein aggregates localize and are passed on to progeny during cell division and how their presence impacts reproduction and the fitness of bacterial populations remains a controversial field of research. Finally, although protein aggregation is generally seen as a symptom of stress, recent work suggests that aggregation of specific proteins under certain conditions can regulate gene expression and cellular resource allocation. This review discusses recent advances in understanding the consequences of protein aggregation and how this process is dealt with in bacteria, with focus on highlighting the differences and similarities observed between phylogenetically different groups of bacteria.
Collapse
Affiliation(s)
- Frederic D Schramm
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristen Schroeder
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| |
Collapse
|
13
|
In Situ Characterization of Hfq Bacterial Amyloid: A Fourier-Transform Infrared Spectroscopy Study. Pathogens 2019; 8:pathogens8010036. [PMID: 30889801 PMCID: PMC6471401 DOI: 10.3390/pathogens8010036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Hfq is a bacterial protein that regulates gene expression at the post-transcriptional level in Gram-negative bacteria. We have previously shown that Escherichia coli Hfq protein, and more precisely its C-terminal region (CTR), self-assembles into an amyloid-like structure in vitro. In the present work, we present evidence that Hfq unambiguously forms amyloid structures also in vivo. Taking into account the role of this protein in bacterial adaptation and virulence, our work opens possibilities to target Hfq amyloid self-assembly and cell location, with important potential to block bacterial adaptation and treat infections.
Collapse
|
14
|
Steiner UK, Lenart A, Ni M, Chen P, Song X, Taddei F, Vaupel JW, Lindner AB. Two stochastic processes shape diverse senescence patterns in a single-cell organism. Evolution 2019; 73:847-857. [PMID: 30816556 DOI: 10.1111/evo.13708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/07/2019] [Indexed: 12/24/2022]
Abstract
Despite advances in aging research, a multitude of aging models, and empirical evidence for diverse senescence patterns, understanding of the biological processes that shape senescence is lacking. We show that senescence of an isogenic Escherichia coli bacterial population results from two stochastic processes. The first process is a random deterioration process within the cell, such as generated by random accumulation of damage. This primary process leads to an exponential increase in mortality early in life followed by a late age mortality plateau. The second process relates to the stochastic asymmetric transmission at cell fission of an unknown factor that influences mortality. This secondary process explains the difference between the classical mortality plateaus detected for young mothers' offspring and the near nonsenescence of old mothers' offspring as well as the lack of a mother-offspring correlation in age at death. We observed that lifespan is predominantly determined by underlying stochastic stage dynamics. Surprisingly, our findings support models developed for metazoans that base their arguments on stage-specific actions of alleles to understand the evolution of senescence. We call for exploration of similar stochastic influences that shape aging patterns beyond simple organisms.
Collapse
Affiliation(s)
- Ulrich K Steiner
- Center on Population Dynamics, Syddansk Universitet, Odense, 5230, Denmark.,Biology Department, University of Southern Denmark, Odense, 5230, Denmark.,Center for Research and Interdisciplinarity, Paris Descartes University, Paris, 75014, France.,INSERM U1001, Paris, 75014, France
| | - Adam Lenart
- Center on Population Dynamics, Syddansk Universitet, Odense, 5230, Denmark
| | - Ming Ni
- Center for Research and Interdisciplinarity, Paris Descartes University, Paris, 75014, France.,INSERM U1001, Paris, 75014, France.,Current Address: BGI Shenzhen, Shenzhen, China
| | - Peipei Chen
- Center for Research and Interdisciplinarity, Paris Descartes University, Paris, 75014, France.,Current Address: National Center for Nanoscience and Technology, Beijing, China
| | - Xiaohu Song
- Center for Research and Interdisciplinarity, Paris Descartes University, Paris, 75014, France
| | - François Taddei
- Center for Research and Interdisciplinarity, Paris Descartes University, Paris, 75014, France.,INSERM U1001, Paris, 75014, France
| | - James W Vaupel
- Center on Population Dynamics, Syddansk Universitet, Odense, 5230, Denmark
| | - Ariel B Lindner
- Center for Research and Interdisciplinarity, Paris Descartes University, Paris, 75014, France.,INSERM U1001, Paris, 75014, France
| |
Collapse
|
15
|
Stress-induced protein aggregates shape population heterogeneity in bacteria. Curr Genet 2019; 65:865-869. [PMID: 30820637 DOI: 10.1007/s00294-019-00947-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 02/07/2023]
Abstract
The concept of phenotypic heterogeneity preparing a subpopulation of isogenic cells to better cope with anticipated stresses has been well established. However, less is known about how stress itself can drive subsequent cellular individualization in clonal populations. In this perspective, we focus on the impact of stress-induced cellular protein aggregates, and how their segregation and disaggregation can act as a deterministic incentive for heterogeneity in the population emerging from a stressed ancestor.
Collapse
|
16
|
Optogenetic Navigation of Routes Leading to Protein Amyloidogenesis in Bacteria. J Mol Biol 2019; 431:1186-1202. [PMID: 30721672 DOI: 10.1016/j.jmb.2019.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/10/2023]
Abstract
Modulation of liquid-liquid and liquid-hydrogel phase transitions is central to avoid the cytotoxic aggregation of proteins in eukaryotic cells, but knowledge on its relevance in bacteria is limited. Here the power of optogenetics to engineer proteins as light-responsive switches has been used to control the balance between solubility and aggregation for LOV2-WH1, a chimera between the plant blue light-responsive domain LOV2 and the bacterial prion-like protein RepA-WH1. These proteins were first linked by fusing, as a continuous α-helix, the C-terminal photo-transducer Jα helix in LOV2 with the N-terminal domain-closure α1 helix in RepA-WH1, and then improved for light-responsiveness by including mutations in the Jα moiety. In the darkness and in a crowded solution in vitro, LOV2-WH1 nucleates the irreversible assembly of amyloid fibers into a hydrogel. However, under blue light illumination, LOV2-WH1 assembles as soluble oligomers. When expressed in Escherichia coli, LOV2-WH1 forms in the darkness large intracellular amyloid inclusions compatible with bacterial proliferation. Strikingly, under blue light, LOV2-WH1 aggregates decrease in size, while they become detrimental for bacterial growth. LOV2-WH1 optogenetics governs the assembly of mutually exclusive inert amyloid fibers or cytotoxic oligomers, thus enabling the navigation of the conformational landscape of protein amyloidogenesis to generate potential photo-activated anti-bacterial devices (optobiotics).
Collapse
|
17
|
Fernández C, Giraldo R. Modulation of the Aggregation of the Prion-like Protein RepA-WH1 by Chaperones in a Cell-Free Expression System and in Cytomimetic Lipid Vesicles. ACS Synth Biol 2018; 7:2087-2093. [PMID: 30125497 DOI: 10.1021/acssynbio.8b00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The accumulation of aggregated forms of proteins as toxic species is associated with fatal diseases such as amyloid proteinopathies. With the purpose of deconstructing the molecular mechanisms of these type of diseases through a Synthetic Biology approach, we are working with a model bacterial prion-like protein, RepA-WH1, expressed in a cell-free system. Our findings show that the Hsp70 chaperone from Escherichia coli, together with its Hsp40 and nucleotide exchange factor cochaperones, modulates the aggregation of the prion-like protein in the cell-free system. Moreover, we observe the same effect by reconstructing the aggregation process inside lipid vesicles. Chaperones reduce the number of aggregates formed, matching previous findings in vivo. We expect that the in vitro approach reported here will help to achieve better understanding and control of amyloid proteinopathies.
Collapse
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology , Centro de Investigaciones Biológicas-CSIC , Madrid, E28040 , Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology , Centro de Investigaciones Biológicas-CSIC , Madrid, E28040 , Spain
| |
Collapse
|
18
|
Potential Applications of the Escherichia coli Heat Shock Response in Synthetic Biology. Trends Biotechnol 2018; 36:186-198. [DOI: 10.1016/j.tibtech.2017.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023]
|
19
|
Molina-García L, Gasset-Rosa F, Álamo MMD, de la Espina SMD, Giraldo R. Addressing Intracellular Amyloidosis in Bacteria with RepA-WH1, a Prion-Like Protein. Methods Mol Biol 2018; 1779:289-312. [PMID: 29886540 DOI: 10.1007/978-1-4939-7816-8_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacteria are the simplest cellular model in which amyloidosis has been addressed. It is well documented that bacterial consortia (biofilms) assemble their extracellular matrix on an amyloid scaffold, yet very few intracellular amyloids are known in bacteria. Here, we describe the methods we have resorted to characterize in Escherichia coli cells the amyloidogenesis, propagation, and dynamics of the RepA-WH1 prionoid. This prion-like protein, a manifold domain from the plasmid replication protein RepA, itself capable of assembling a functional amyloid, causes when expressed in E. coli a synthetic amyloid proteinopathy, the first model for an amyloid disease with a purely bacterial origin. These protocols are useful to study other intracellular amyloids in bacteria.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Fátima Gasset-Rosa
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Department of Neurosciences, Ludwig Institute for Cancer Research, University of California in San Diego, La Jolla, CA, USA
| | - María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), Madrid, Spain
| | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
20
|
Enabling stop codon read-through translation in bacteria as a probe for amyloid aggregation. Sci Rep 2017; 7:11908. [PMID: 28928456 PMCID: PMC5605706 DOI: 10.1038/s41598-017-12174-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022] Open
Abstract
Amyloid aggregation of the eukaryotic translation terminator eRF3/Sup35p, the [PSI+] prion, empowers yeast ribosomes to read-through UGA stop codons. No similar functional prion, skipping a stop codon, has been found in Escherichia coli, a fact possibly due to the efficient back-up systems found in bacteria to rescue non-stop complexes. Here we report that engineering hydrophobic amyloidogenic repeats from a synthetic bacterial prion-like protein (RepA-WH1) into the E. coli releasing factor RF1 promotes its aggregation and enables ribosomes to continue with translation through a premature UAG stop codon located in a β-galactosidase reporter. To our knowledge, intended aggregation of a termination factor is a way to overcome the bacterial translation quality checkpoint that had not been reported so far. We also show the feasibility of using the amyloidogenic RF1 chimeras as a reliable, rapid and cost-effective system to screen for molecules inhibiting intracellular protein amyloidogenesis in vivo, by testing the effect on the chimeras of natural polyphenols with known anti-amyloidogenic properties. Resveratrol exhibits a clear amyloid-solubilizing effect in this assay, showing no toxicity to bacteria or interference with the enzymatic activity of β-galactosidase.
Collapse
|
21
|
Molina-García L, Moreno-Del Álamo M, Botias P, Martín-Moldes Z, Fernández M, Sánchez-Gorostiaga A, Alonso-Del Valle A, Nogales J, García-Cantalejo J, Giraldo R. Outlining Core Pathways of Amyloid Toxicity in Bacteria with the RepA-WH1 Prionoid. Front Microbiol 2017; 8:539. [PMID: 28421043 PMCID: PMC5378768 DOI: 10.3389/fmicb.2017.00539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
The synthetic bacterial prionoid RepA-WH1 causes a vertically transmissible amyloid proteinopathy in Escherichia coli that inhibits growth and eventually kills the cells. Recent in vitro studies show that RepA-WH1 builds pores through model lipid membranes, suggesting a possible mechanism for bacterial cell death. By comparing acutely (A31V) and mildly (ΔN37) cytotoxic mutant variants of the protein, we report here that RepA-WH1(A31V) expression decreases the intracellular osmotic pressure and compromise bacterial viability under either aerobic or anaerobic conditions. Both are effects expected from threatening membrane integrity and are in agreement with findings on the impairment by RepA-WH1(A31V) of the proton motive force (PMF)-dependent transport of ions (Fe3+) and ATP synthesis. Systems approaches reveal that, in aerobiosis, the PMF-independent respiratory dehydrogenase NdhII is induced in response to the reduction in intracellular levels of iron. While NdhII is known to generate H2O2 as a by-product of the autoxidation of its FAD cofactor, key proteins in the defense against oxidative stress (OxyR, KatE), together with other stress-resistance factors, are sequestered by co-aggregation with the RepA-WH1(A31V) amyloid. Our findings suggest a route for RepA-WH1 toxicity in bacteria: a primary hit of damage to the membrane, compromising bionergetics, triggers a stroke of oxidative stress, which is exacerbated due to the aggregation-dependent inactivation of enzymes and transcription factors that enable the cellular response to such injury. The proteinopathy caused by the prion-like protein RepA-WH1 in bacteria recapitulates some of the core hallmarks of human amyloid diseases.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Pedro Botias
- Genomics Unit, Complutense UniversityMadrid, Spain
| | - Zaira Martín-Moldes
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Fernández
- Proteomics Facility, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Department of Microbial Biotechnology, National Centre for Biotechnology, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Aída Alonso-Del Valle
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Juan Nogales
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
22
|
Giraldo R, Fernández C, Moreno-del Álamo M, Molina-García L, Revilla-García A, Sánchez-Martínez MC, Giménez-Abián JF, Moreno-Díaz de la Espina S. RepA-WH1 prionoid: Clues from bacteria on factors governing phase transitions in amyloidogenesis. Prion 2017; 10:41-9. [PMID: 27040981 PMCID: PMC4981189 DOI: 10.1080/19336896.2015.1129479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In bacterial plasmids, Rep proteins initiate DNA replication by undergoing a structural transformation coupled to dimer dissociation. Amyloidogenesis of the ‘winged-helix’ N-terminal domain of RepA (WH1) is triggered in vitro upon binding to plasmid-specific DNA sequences, and occurs at the bacterial nucleoid in vivo. Amyloid fibers are made of distorted RepA-WH1 monomers that assemble as single or double intertwined tubular protofilaments. RepA-WH1 causes in E. coli an amyloid proteinopathy, which is transmissible from mother to daughter cells, but not infectious, and enables conformational imprinting in vitro and in vivo; i.e. RepA-WH1 is a ‘prionoid’. Microfluidics allow the assessment of the intracellular dynamics of RepA-WH1: bacterial lineages maintain two types (strains-like) of RepA-WH1 amyloids, either multiple compact cytotoxic particles or a single aggregate with the appearance of a fluidized hydrogel that it is mildly detrimental to growth. The Hsp70 chaperone DnaK governs the phase transition between both types of RepA-WH1 aggregates in vivo, thus modulating the vertical propagation of the prionoid. Engineering chimeras between the Sup35p/[PSI+] prion and RepA-WH1 generates [REP-PSI+], a synthetic prion exhibiting strong and weak phenotypic variants in yeast. These recent findings on a synthetic, self-contained bacterial prionoid illuminate central issues of protein amyloidogenesis.
Collapse
Affiliation(s)
- Rafael Giraldo
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | - Cristina Fernández
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | - María Moreno-del Álamo
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | - Laura Molina-García
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | - Aída Revilla-García
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | | | - Juan F Giménez-Abián
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | | |
Collapse
|
23
|
Fernández C, González-Rubio G, Langer J, Tardajos G, Liz-Marzán LM, Giraldo R, Guerrero-Martínez A. Nucleation of Amyloid Oligomers by RepA-WH1-Prionoid-Functionalized Gold Nanorods. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas-CSIC; 28040 Madrid Spain
| | - Guillermo González-Rubio
- Departamento de Química Física I; Universidad Complutense de Madrid; Avda. Complutense s/n 28040 Madrid Spain
- BioNanoPlasmonics Laboratory; CIC biomaGUNE; Donostia- 20009 San Sebastián Spain
| | - Judith Langer
- BioNanoPlasmonics Laboratory; CIC biomaGUNE; Donostia- 20009 San Sebastián Spain
| | - Gloria Tardajos
- Departamento de Química Física I; Universidad Complutense de Madrid; Avda. Complutense s/n 28040 Madrid Spain
| | - Luis M. Liz-Marzán
- BioNanoPlasmonics Laboratory; CIC biomaGUNE; Donostia- 20009 San Sebastián Spain
- Ikerbasque; Basque Foundation for Science; 48013 Bilbao Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN; Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas-CSIC; 28040 Madrid Spain
| | - Andrés Guerrero-Martínez
- Departamento de Química Física I; Universidad Complutense de Madrid; Avda. Complutense s/n 28040 Madrid Spain
| |
Collapse
|
24
|
Fernández C, González-Rubio G, Langer J, Tardajos G, Liz-Marzán LM, Giraldo R, Guerrero-Martínez A. Nucleation of Amyloid Oligomers by RepA-WH1-Prionoid-Functionalized Gold Nanorods. Angew Chem Int Ed Engl 2016; 55:11237-41. [PMID: 27489029 DOI: 10.1002/anie.201604970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Understanding protein amyloidogenesis is an important topic in protein science, fueled by the role of amyloid aggregates, especially oligomers, in the etiology of a number of devastating human degenerative diseases. However, the mechanisms that determine the formation of amyloid oligomers remain elusive due to the high complexity of the amyloidogenesis process. For instance, gold nanoparticles promote or inhibit amyloid fibrillation. We have functionalized gold nanorods with a metal-chelating group to selectively immobilize soluble RepA-WH1, a model synthetic bacterial prionoid, using a hexa-histidine tag (H6). H6-RepA-WH1 undergoes stable amyloid oligomerization in the presence of catalytic concentrations of anisotropic nanoparticles. Then, in a physically separated event, such oligomers promote the growth of amyloid fibers of untagged RepA-WH1. SERS spectral changes of H6-RepA-WH1 on spherical citrate-AuNP substrates provide evidence for structural modifications in the protein, which are compatible with a gradual increase in β-sheet structure, as expected in amyloid oligomerization.
Collapse
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas-CSIC, 28040, Madrid, Spain
| | - Guillermo González-Rubio
- Departamento de Química Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.,BioNanoPlasmonics Laboratory, CIC biomaGUNE, Donostia-, 20009, San Sebastián, Spain
| | - Judith Langer
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Donostia-, 20009, San Sebastián, Spain
| | - Gloria Tardajos
- Departamento de Química Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Luis M Liz-Marzán
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Donostia-, 20009, San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas-CSIC, 28040, Madrid, Spain.
| | - Andrés Guerrero-Martínez
- Departamento de Química Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
25
|
Molina-García L, Gasset-Rosa F, Moreno-del Álamo M, Fernández-Tresguerres ME, Moreno-Díaz de la Espina S, Lurz R, Giraldo R. Functional amyloids as inhibitors of plasmid DNA replication. Sci Rep 2016; 6:25425. [PMID: 27147472 PMCID: PMC4857107 DOI: 10.1038/srep25425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 12/24/2022] Open
Abstract
DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is 'handcuffing', i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Fátima Gasset-Rosa
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | | | | | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, D14195 Berlin, Germany
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| |
Collapse
|
26
|
Fernández C, Núñez-Ramírez R, Jiménez M, Rivas G, Giraldo R. RepA-WH1, the agent of an amyloid proteinopathy in bacteria, builds oligomeric pores through lipid vesicles. Sci Rep 2016; 6:23144. [PMID: 26984374 PMCID: PMC4794723 DOI: 10.1038/srep23144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022] Open
Abstract
RepA-WH1 is a disease-unrelated protein that recapitulates in bacteria key aspects of human amyloid proteinopathies: i) It undergoes ligand-promoted amyloidogenesis in vitro; ii) its aggregates are able to seed/template amyloidosis on soluble protein molecules; iii) its conformation is modulated by Hsp70 chaperones in vivo, generating transmissible amyloid strains; and iv) causes proliferative senescence. Membrane disruption by amyloidogenic oligomers has been found for most proteins causing human neurodegenerative diseases. Here we report that, as for PrP prion and α-synuclein, acidic phospholipids also promote RepA-WH1 amyloidogenesis in vitro. RepA-WH1 molecules bind to liposomes, where the protein assembles oligomeric membrane pores. Fluorescent tracer molecules entrapped in the lumen of the vesicles leak through these pores and RepA-WH1 can then form large aggregates on the surface of the vesicles without inducing their lysis. These findings prove that it is feasible to generate in vitro a synthetic proteinopathy with a minimal set of cytomimetic components and support the view that cell membranes are primary targets in protein amyloidoses.
Collapse
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| | - Rafael Núñez-Ramírez
- Electron Microscopy Facility, Centro de Investigaciones Biológicas–CSIC, E28040 Madrid, Spain
| | - Mercedes Jiménez
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| | - Germán Rivas
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| |
Collapse
|
27
|
Aguilera P, Marcoleta A, Lobos-Ruiz P, Arranz R, Valpuesta JM, Monasterio O, Lagos R. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation. Front Microbiol 2016; 7:35. [PMID: 26858708 PMCID: PMC4729943 DOI: 10.3389/fmicb.2016.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril's morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4'-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although with different efficiency, all formed fibrils morphologically similar to wild-type MccE492. The physiological implication of MccE492 intracellular amyloid formation is probably similar to the inactivation process observed for extracellular amyloids, and could be used as a mean of sequestering potentially toxic species inside the cell when this bacteriocin is produced in large amounts.
Collapse
Affiliation(s)
- Paulina Aguilera
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Andrés Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Pablo Lobos-Ruiz
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rocío Arranz
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José M Valpuesta
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
28
|
Mechanistic and Structural Insights into the Prion-Disaggregase Activity of Hsp104. J Mol Biol 2015; 428:1870-85. [PMID: 26608812 DOI: 10.1016/j.jmb.2015.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022]
Abstract
Hsp104 is a dynamic ring translocase and hexameric AAA+ protein found in yeast, which couples ATP hydrolysis to disassembly and reactivation of proteins trapped in soluble preamyloid oligomers, disordered protein aggregates, and stable amyloid or prion conformers. Here, we highlight advances in our structural understanding of Hsp104 and how Hsp104 deconstructs Sup35 prions. Although the atomic structure of Hsp104 hexamers remains uncertain, volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (ATP hydrolysis transition-state mimic), and ADP via small-angle x-ray scattering has revealed a peristaltic pumping motion upon ATP hydrolysis. This pumping motion likely drives directional substrate translocation across the central Hsp104 channel. Hsp104 initially engages Sup35 prions immediately C-terminal to their cross-β structure. Directional pulling by Hsp104 then resolves N-terminal cross-β structure in a stepwise manner. First, Hsp104 fragments the prion. Second, Hsp104 unfolds cross-β structure. Third, Hsp104 releases soluble Sup35. Deletion of the Hsp104 N-terminal domain yields a hypomorphic disaggregase, Hsp104(∆N), with an altered pumping mechanism. Hsp104(∆N) fragments Sup35 prions without unfolding cross-β structure or releasing soluble Sup35. Moreover, Hsp104(∆N) activity cannot be enhanced by mutations in the middle domain that potentiate disaggregase activity. Thus, the N-terminal domain is critical for the full repertoire of Hsp104 activities.
Collapse
|
29
|
Izard J, Gomez Balderas CDC, Ropers D, Lacour S, Song X, Yang Y, Lindner AB, Geiselmann J, de Jong H. A synthetic growth switch based on controlled expression of RNA polymerase. Mol Syst Biol 2015; 11:840. [PMID: 26596932 PMCID: PMC4670729 DOI: 10.15252/msb.20156382] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability to control growth is essential for fundamental studies of bacterial physiology and biotechnological applications. We have engineered an Escherichia coli strain in which the transcription of a key component of the gene expression machinery, RNA polymerase, is under the control of an inducible promoter. By changing the inducer concentration in the medium, we can adjust the RNA polymerase concentration and thereby switch bacterial growth between zero and the maximal growth rate supported by the medium. We show that our synthetic growth switch functions in a medium-independent and reversible way, and we provide evidence that the switching phenotype arises from the ultrasensitive response of the growth rate to the concentration of RNA polymerase. We present an application of the growth switch in which both the wild-type E. coli strain and our modified strain are endowed with the capacity to produce glycerol when growing on glucose. Cells in which growth has been switched off continue to be metabolically active and harness the energy gain to produce glycerol at a twofold higher yield than in cells with natural control of RNA polymerase expression. Remarkably, without any further optimization, the improved yield is close to the theoretical maximum computed from a flux balance model of E. coli metabolism. The proposed synthetic growth switch is a promising tool for gaining a better understanding of bacterial physiology and for applications in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Jérôme Izard
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d'Hères, France INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Cindy D C Gomez Balderas
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d'Hères, France INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Delphine Ropers
- INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Stephan Lacour
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d'Hères, France INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Xiaohu Song
- Center for Research and Interdisciplinarity, INSERM U1001, Medicine Faculty, Site Cochin Port-Royal, University Paris Descartes, Paris, France
| | - Yifan Yang
- Center for Research and Interdisciplinarity, INSERM U1001, Medicine Faculty, Site Cochin Port-Royal, University Paris Descartes, Paris, France
| | - Ariel B Lindner
- Center for Research and Interdisciplinarity, INSERM U1001, Medicine Faculty, Site Cochin Port-Royal, University Paris Descartes, Paris, France
| | - Johannes Geiselmann
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d'Hères, France INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| | - Hidde de Jong
- INRIA, Grenoble - Rhône-Alpes research center, Saint Ismier, France
| |
Collapse
|
30
|
Moreno-Del Álamo M, de la Espina SMD, Fernández-Tresguerres ME, Giraldo R. Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Sci Rep 2015; 5:14669. [PMID: 26423724 PMCID: PMC4589793 DOI: 10.1038/srep14669] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022] Open
Abstract
Upon binding to short specific dsDNA sequences in vitro, the N-terminal WH1 domain of the plasmid DNA replication initiator RepA assembles as amyloid fibres. These are bundles of single or double twisted tubular filaments in which distorted RepA-WH1 monomers are the building blocks. When expressed in Escherichia coli, RepA-WH1 triggers the first synthetic amyloid proteinopathy in bacteria, recapitulating some of the features of mammalian prion diseases: it is vertically transmissible, albeit non-infectious, showing up in at least two phenotypically distinct and interconvertible strains. Here we report B3h7, a monoclonal antibody specific for oligomers of RepA-WH1, but which does not recognize the mature amyloid fibres. Unlike a control polyclonal antibody generated against the soluble protein, B3h7 interferes in vitro with DNA-promoted or amyloid-seeded assembly of RepA-WH1 fibres, thus the targeted oligomers are on-pathway amyloidogenic intermediates. Immuno-electron microscopy with B3h7 on thin sections of E. coli cells expressing RepA-WH1 consistently labels the bacterial nucleoid, but not the large cytoplasmic aggregates of the protein. This observation points to the nucleoid as the place where oligomeric amyloid precursors of RepA-WH1 are generated, and suggests that, once nucleated by DNA, further growth must continue in the cytoplasm due to entropic exclusion.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, Madrid E28040, Spain
| | | | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, Madrid E28040, Spain
| |
Collapse
|
31
|
Gasset-Rosa F, Giraldo R. Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI (+)]. Front Microbiol 2015; 6:311. [PMID: 25954252 PMCID: PMC4404881 DOI: 10.3389/fmicb.2015.00311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/29/2015] [Indexed: 11/25/2022] Open
Abstract
The yeast translation termination factor Sup35p, by aggregating as the [PSI (+)] prion, enables ribosomes to read-through stop codons, thus expanding the diversity of the Saccharomyces cerevisiae proteome. Yeast prions are functional amyloids that replicate by templating their conformation on native protein molecules, then assembling as large aggregates and fibers. Prions propagate epigenetically from mother to daughter cells by fragmentation of such assemblies. In the N-terminal prion-forming domain, Sup35p has glutamine/asparagine-rich oligopeptide repeats (OPRs), which enable propagation through chaperone-elicited shearing. We have engineered chimeras by replacing the polar OPRs in Sup35p by up to five repeats of a hydrophobic amyloidogenic sequence from the synthetic bacterial prionoid RepA-WH1. The resulting hybrid, [REP-PSI (+)], (i) was functional in a stop codon read-through assay in S. cerevisiae; (ii) generates weak phenotypic variants upon both its expression or transformation into [psi (-)] cells; (iii) these variants correlated with high molecular weight aggregates resistant to SDS during electrophoresis; and (iv) according to fluorescence microscopy, the fusion of the prion domains from the engineered chimeras to the reporter protein mCherry generated perivacuolar aggregate foci in yeast cells. All these are signatures of bona fide yeast prions. As assessed through biophysical approaches, the chimeras assembled as oligomers rather than as the fibers characteristic of [PSI (+)]. These results suggest that it is the balance between polar and hydrophobic residues in OPRs what determines prion conformational dynamics. In addition, our findings illustrate the feasibility of enabling new propagation traits in yeast prions by engineering OPRs with heterologous amyloidogenic sequence repeats.
Collapse
Affiliation(s)
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
32
|
Torreira E, Moreno-Del Álamo M, Fuentes-Perez ME, Fernández C, Martín-Benito J, Moreno-Herrero F, Giraldo R, Llorca O. Amyloidogenesis of bacterial prionoid RepA-WH1 recapitulates dimer to monomer transitions of RepA in DNA replication initiation. Structure 2014; 23:183-189. [PMID: 25543255 DOI: 10.1016/j.str.2014.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023]
Abstract
Most available structures of amyloids correspond to peptide fragments that self-assemble in extended cross β sheets. However, structures in which a whole protein domain acts as building block of an amyloid fiber are scarce, in spite of their relevance to understand amyloidogenesis. Here, we use electron microscopy (EM) and atomic force microscopy (AFM) to analyze the structure of amyloid filaments assembled by RepA-WH1, a winged-helix domain from a DNA replication initiator in bacterial plasmids. RepA-WH1 functions as a cytotoxic bacterial prionoid that recapitulates features of mammalian amyloid proteinopathies. RepA are dimers that monomerize at the origin to initiate replication, and we find that RepA-WH1 reproduces this transition to form amyloids. RepA-WH1 assembles double helical filaments by lateral association of a single-stranded precursor built by monomers. Double filaments then associate in mature fibers. The intracellular and cytotoxic RepA-WH1 aggregates might reproduce the hierarchical assembly of human amyloidogenic proteins.
Collapse
Affiliation(s)
- Eva Torreira
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Moreno-Del Álamo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria Eugenia Fuentes-Perez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Cristina Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jaime Martín-Benito
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Fernando Moreno-Herrero
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
33
|
Navarro S, Ventura S. Fluorescent dye ProteoStat to detect and discriminate intracellular amyloid-like aggregates in Escherichia coli. Biotechnol J 2014; 9:1259-66. [PMID: 25112199 DOI: 10.1002/biot.201400291] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022]
Abstract
The formation of amyloid aggregates is linked to the onset of an increasing number of human disorders. Thus, there is an increasing need for methodologies able to provide insights into protein deposition and its modulation. Many approaches exist to study amyloids in vitro, but the techniques available for the study of amyloid aggregation in cells are still limited and non-specific. In this study we developed a methodology for the detection of amyloid-like aggregates inside cells that discriminates these ordered assemblies from other intracellular aggregates. We chose bacteria as model system, since the inclusion bodies formed by amyloid proteins in the cytosol of bacteria resemble toxic amyloids both structurally and functionally. Using confocal microscopy, fluorescence spectroscopy, and flow cytometry, we show that the recently developed red fluorescent dye ProteoStat can detect the presence of intracellular amyloid-like deposits in living bacterial cells with high specificity, even when the target proteins are expressed at low levels. This methodology allows quantitation of the intracellular amyloid content, shows the potential to replace in vitro screenings in the search for therapeutic anti-amyloidogenic compounds, and might be useful for identifying conditions that prevent the aggregation of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
34
|
Yuan AH, Garrity SJ, Nako E, Hochschild A. Prion propagation can occur in a prokaryote and requires the ClpB chaperone. eLife 2014; 3:e02949. [PMID: 25122461 PMCID: PMC4150125 DOI: 10.7554/elife.02949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prions are self-propagating protein aggregates that are characteristically transmissible. In mammals, the PrP protein can form a prion that causes the fatal transmissible spongiform encephalopathies. Prions have also been uncovered in fungi, where they act as heritable, protein-based genetic elements. We previously showed that the yeast prion protein Sup35 can access the prion conformation in Escherichia coli. Here, we demonstrate that E. coli can propagate the Sup35 prion under conditions that do not permit its de novo formation. Furthermore, we show that propagation requires the disaggregase activity of the ClpB chaperone. Prion propagation in yeast requires Hsp104 (a ClpB ortholog), and prior studies have come to conflicting conclusions about ClpB's ability to participate in this process. Our demonstration of ClpB-dependent prion propagation in E. coli suggests that the cytoplasmic milieu in general and a molecular machine in particular are poised to support protein-based heredity in the bacterial domain of life. DOI:http://dx.doi.org/10.7554/eLife.02949.001 Unlike most infectious agents—such as viruses or bacteria—that contain genetic material in the form of DNA or RNA, a prion is simply an aggregate of misfolded proteins. Although they are not living organisms, these prion aggregates can self-propagate; when they enter a healthy organism, they cause existing, correctly folded proteins to adopt the prion fold. Within the aggregate, the prion proteins have a corrugated structure that allows them to stack together tightly, which in turn makes the aggregates very stable. As more prions are formed, they then trigger other protein molecules to misfold and join the aggregates, and the aggregates continue to grow and spread within the infected organism causing tissue damage and cell death. Prion diseases are well known in mammals, where the prion aggregates typically destroy tissue within the brain or nervous system. Bovine spongiform encephalopathy (also commonly known as BSE or ‘mad cow disease’) is an example of a prion disease that affects cattle and can be transmitted to humans by eating infected meat. Prions also form in yeast and other fungi. These prions, however, do not cause disease or cell death; instead, yeast prions act as protein-based elements that can be inherited over multiple generations and which provide the yeast with new traits or characteristics. Although prions can form spontaneously in yeast cells, their stable propagation depends on so-called chaperone proteins that help to remodel the prion aggregates. Previous work has shown that bacterial cells can also support the formation of prion-like aggregates. The bacteria were engineered to produce two yeast prion proteins—one of which spontaneously formed aggregates that were needed to trigger the conversion of the other to its prion form. However, it was not known if bacterial cells could support the stable propagation of prions if the initial trigger for prion conversion was removed. Yuan et al. now reveal that the bacterium Escherichia coli can propagate a yeast prion for over a hundred generations, even when the cells can no longer make the protein that serves as the trigger for the initial conversion. This propagation depends on a bacterial chaperone protein called ClpB, which is related to another chaperone protein that is required for stable prion propagation in yeast. As such, the findings of Yuan et al. raise the possibility that, even though a prion specific to bacteria has yet to be identified, prions or prion-like proteins might also contribute to the diversity of traits found in bacteria. Furthermore, since both yeast and bacteria form and propagate prions in similar ways, such protein-based inheritance might have evolved in these organisms' common ancestor over two billion years ago. DOI:http://dx.doi.org/10.7554/eLife.02949.002
Collapse
Affiliation(s)
- Andy H Yuan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Sean J Garrity
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Entela Nako
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
35
|
Chen P, Xu L, Liu J, Hol FJH, Keymer JE, Taddei F, Han D, Lindner AB. Nanoscale probing the kinetics of oriented bacterial cell growth using atomic force microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3018-3025. [PMID: 24706390 DOI: 10.1002/smll.201303724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Probing oriented bacterial cell growth on the nanoscale: A novel open-top micro-channel is developed to facilitate the AFM imaging of physically trapped but freely growing bacteria. The growth curves of individual Escherichia coli cells with nanometer resolution and their kinetic nano-mechanical properties are quantitatively measured.
Collapse
Affiliation(s)
- Peipei Chen
- Institut National de la Santé et de la Recherche Medicale, U1001; Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Aggregation interplay between variants of the RepA-WH1 prionoid in Escherichia coli. J Bacteriol 2014; 196:2536-42. [PMID: 24794561 DOI: 10.1128/jb.01527-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal domain (winged-helix domain, or WH1) of the Pseudomonas pPS10 plasmid DNA replication protein RepA can assemble into amyloid fibers in vitro and, when expressed in Escherichia coli, leads to a unique intracellular amyloid proteinopathy by hampering bacterial proliferation. RepA-WH1 amyloidosis propagates along generations through the transmission of aggregated particles across the progeny, but it is unable to propagate horizontally as an infectious agent and is thus the first synthetic bacterial prionoid. RepA-WH1 amyloidosis is promoted by binding to double-stranded DNA (dsDNA) in vitro, and it is modulated by the Hsp70 chaperone DnaK in vivo. Different mutations in the repA-WH1 gene result in variants of the protein with distinct amyloidogenic properties. Here, we report that intracellular aggregates of the hyperamyloidogenic RepA with an A31V change in WH1 [RepA-WH1(A31V)] are able to induce and enhance the growth in vivo of new amyloid particles from molecules of wild-type RepA-WH1 [RepA-WH1(WT)], which otherwise would remain soluble in the cytoplasm. In contrast, RepA-WH1(ΔN37), a variant lacking a clear amyloidogenic sequence stretch that aggregates as conventional inclusion bodies (IBs), can drive the aggregation of the soluble protein into IBs only if expressed at high molar ratios over RepA-WH1(WT). The cytotoxic bacterial intracellular prionoid RepA-WH1 thus exhibits a hallmark feature of amyloids, as characterized in eukaryotes: cross-aggregation between variants of the same protein.
Collapse
|