1
|
Rasaily M, Ngiimei D S, Thaosen RK, Gupta S, Deka S, Tamuli R. Methods for the detection of intracellular calcium in filamentous fungi. MethodsX 2024; 12:102570. [PMID: 38322134 PMCID: PMC10844858 DOI: 10.1016/j.mex.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Calcium (Ca2+), a critical secondary messenger, is also known as the molecule of life and death. The cell responds to a minute change in Ca2+ concentration and tightly maintains Ca2+ homeostasis. Therefore, determining the cell Ca2+ level is critical to understand Ca2+ distribution in the cell and various cell processes. Many techniques have been developed to measure Ca2+ in the cell. We review here different methods used to detect and measure Ca2+ in filamentous fungi. Ca2+-sensitive fluorescent chlortetracycline hydrochloride (CTC), Ca2+-selective microelectrode, Ca2+ isotopes, aequorins, and RGECOs are commonly used to measure the Ca2+ level in filamentous fungi. The use of CTC was one of the earliest methods, developed in 1988, to measure the Ca2+ gradient in the filamentous fungus Neurospora crassa. Subsequently, Ca2+-specific microelectrodes were developed later in the 1990s to identify Ca2+ ion flux variations, and to measure Ca2+ concentration. Another method for quantifying Ca2+ is by using radio-labeled Ca2+ as a tracer. The usage of 45Ca to measure Ca2+ in Saccharomyces cerevisiae was reported previously and the same methodology was also used to detect Ca2+ in N. crassa recently. Subsequently, genetically engineered Ca2+ indicators (GECIs) like aequorins and RGECOs have been developed as Ca2+ indicators to detect and visualize Ca2+ inside the cell. In this review, we summarize various methodologies used to detect and measure Ca2+ in filamentous fungi with their advantages and limitations. •Chlortetracycline (CTC) fluorescence assay is used for visualizing Ca2+ level, whereas microelectrodes technique is used to determine Ca2+ flux in the cell.•Radioactive 45Ca is useful for quantification of Ca2+ in the cellular compartments.•Genetically modified calcium indicators (GECIs) are used to study Ca2+ dynamics in the cell.
Collapse
Affiliation(s)
- Megha Rasaily
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Serena Ngiimei D
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Rahul Kumar Thaosen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Surabhi Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Sangeeta Deka
- Centre for the Environment, Indian Institute of Technology Guwahati, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
- Centre for the Environment, Indian Institute of Technology Guwahati, India
| |
Collapse
|
2
|
Slezina MP, Istomina EA, Korostyleva TV, Odintsova TI. The γ-Core Motif Peptides of Plant AMPs as Novel Antimicrobials for Medicine and Agriculture. Int J Mol Sci 2022; 24:ijms24010483. [PMID: 36613926 PMCID: PMC9820530 DOI: 10.3390/ijms24010483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The γ-core motif is a structural element shared by most host antimicrobial peptides (AMPs), which is supposed to contribute to their antimicrobial properties. In this review, we summarized the available data on the γ-core peptides of plant AMPs. We describe γ-core peptides that have been shown to exhibit inhibitory activity against plant and human bacterial and fungal pathogens that make them attractive scaffolds for the development of novel anti-infective agents. Their advantages include origin from natural AMP sequences, broad-spectrum and potent inhibitory activity, and cost-effective production. In addition, some γ-core peptides combine antimicrobial and immunomodulatory functions, thus broadening the spectrum of practical applications. Some act synergistically with antimycotics and fungicides, so combinations of peptides with conventionally used antifungal agents can be suggested as an effective strategy to reduce the doses of potentially harmful chemicals. The presented information will pave the way for the design of novel antimicrobials on the basis of γ-core motif peptides, which can find application in medicine and the protection of crops from diseases.
Collapse
|
3
|
Hein MJA, Kvansakul M, Lay FT, Phan TK, Hulett MD. Defensin-lipid interactions in membrane targeting: mechanisms of action and opportunities for the development of antimicrobial and anticancer therapeutics. Biochem Soc Trans 2022; 50:423-437. [PMID: 35015081 PMCID: PMC9022979 DOI: 10.1042/bst20200884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
Defensins are a class of host defence peptides (HDPs) that often harbour antimicrobial and anticancer activities, making them attractive candidates as novel therapeutics. In comparison with current antimicrobial and cancer treatments, defensins uniquely target specific membrane lipids via mechanisms distinct from other HDPs. Therefore, defensins could be potentially developed as therapeutics with increased selectivity and reduced susceptibility to the resistance mechanisms of tumour cells and infectious pathogens. In this review, we highlight recent advances in defensin research with a particular focus on membrane lipid-targeting in cancer and infection settings. In doing so, we discuss strategies to harness lipid-binding defensins for anticancer and anti-infective therapies.
Collapse
Affiliation(s)
- Matthew J. A. Hein
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Fung T. Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| |
Collapse
|
4
|
Zhang C, Ren Y, Gu H, Gao L, Zhang Y, Lu L. Calcineurin-mediated intracellular organelle calcium homeostasis is required for the survival of fungal pathogens upon extracellular calcium stimuli. Virulence 2021; 12:1091-1110. [PMID: 33843471 PMCID: PMC8043181 DOI: 10.1080/21505594.2021.1909954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, calcium not only is an essential mineral nutrient but also serves as an intracellular second messenger that is necessary for many physiological processes. Previous studies showed that the protein phosphatase-calcineurin protects fungi from toxicity caused by the extracellular calcium; however, little is known about how calcineurin mediates the cellular physiology process for this function. In this study, by monitoring intracellular calcium, particularly by tracking vacuolar calcium dynamics in living cells through a novel procedure using modified aequorin, we found that calcineurin dysfunction systematically caused abnormal intracellular calcium homeostasis in cytosol, mitochondria, and vacuole, leading to drastic autophagy, global organelle fragmentation accompanied with the increased expression of cell death-related enzymes, and cell death upon extracellular calcium stimuli. Notably, all detectable defective phenotypes seen with calcineurin mutants can be significantly suppressed by alleviating a cytosolic calcium overload or increasing vacuolar calcium storage capacity, suggesting toxicity of exogenous calcium to calcineurin mutants is tightly associated with abnormal cytosolic calcium accumulation and vacuolar calcium storage capacity deficiency. Our findings provide insights into how the original recognized antifungal drug target-calcineurin regulates intracellular calcium homeostasis for cell survival and may have important implications for antifungal therapy and clinical drug administration.
Collapse
Affiliation(s)
- Chi Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yiran Ren
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huiyu Gu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Chen J, Liu Z, Liu Y, Zhang X, Zeng J. Preliminary investigations on the pathogenesis-related protein expression profile of the medicinal herb Macleaya cordata and anti-bacterial properties of recombinant proteins. PHYTOCHEMISTRY 2021; 184:112667. [PMID: 33548769 DOI: 10.1016/j.phytochem.2021.112667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The plant pathogenesis-related (PR) proteins play a crucial role in the defense of plants against pathogens and orchestrate the innate immune system of plants. In this paper, a non-normalized cDNA library of the leaf was constructed to obtain a comprehensive view of PR proteins of Macleaya cordata. Specifically, 511 expressed sequence tags (ESTs) were generated using Sanger sequencing. All ESTs were assembled into 364 non-redundancy sequences, including 78 clusters and 286 singlets. The PR protein expression profile of the medicinal herb M. cordata has been investigated and is represented by defensin, lipid-transfer protein, (S)-norcoclaurine synthase, and major allergen protein, suggesting that the herb contains rich active proteins against pathogens. Furthermore, two defensins were selected for recombinant expression in yeast, and the antimicrobial activities were explored. Since they both present a broad antimicrobial spectrum, they are of particular importance for agricultural and medicinal applications. Our study describes defensins in Papaveraceae for the first time and provides novel insights into the effective components. In addition to the alkaloids, PR proteins (such as defensins, lipid transfer proteins, (S) - norcoclaurine synthase, major allergen protein, and Class IV chitinases) are involved in the antibacterial and anti-inflammatory activities of M. cordata.
Collapse
Affiliation(s)
- Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Zihao Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xuewen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Fernández A, Colombo ML, Curto LM, Gómez GE, Delfino JM, Guzmán F, Bakás L, Malbrán I, Vairo-Cavalli SE. Peptides Derived From the α-Core and γ-Core Regions of a Putative Silybum marianum Flower Defensin Show Antifungal Activity Against Fusarium graminearum. Front Microbiol 2021; 12:632008. [PMID: 33679660 PMCID: PMC7925638 DOI: 10.3389/fmicb.2021.632008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022] Open
Abstract
Fusarium graminearum is the etiological agent of Fusarium head blight (FHB), a disease that produces a significant decrease in wheat crop yield and it is further aggravated by the presence of mycotoxins in the affected grains that may cause health problems to humans and animals. Plant defensins and defensin-like proteins are antimicrobial peptides (AMPs); they are small basic, cysteine-rich peptides (CRPs) ubiquitously expressed in the plant kingdom and mostly involved in host defence. They present a highly variable sequence but a conserved structure. The γ-core located in the C-terminal region of plant defensins has a conserved β-hairpin structure and is a well-known determinant of the antimicrobial activity among disulphide-containing AMPs. Another conserved motif of plant defensins is the α-core located in the N-terminal region, not conserved among the disulphide-containing AMPs, it has not been yet extensively studied. In this report, we have cloned the putative antimicrobial protein DefSm2, expressed in flowers of the wild plant Silybum marianum. The cDNA encodes a protein with two fused basic domains of an N-terminal defensin domain (DefSm2-D) and a C-terminal Arg-rich and Lys-rich domain. To further characterize the DefSm2-D domain, we built a 3D template-based model that will serve to support the design of novel antifungal peptides. We have designed four potential antifungal peptides: two from the DefSm2-D α-core region (SmAPα1-21 and SmAPα10-21) and two from the γ-core region (SmAPγ27-44 and SmAPγ29-35). We have chemically synthesized and purified the peptides and further characterized them by electrospray ionization mass spectrometry (ESI-MS) and Circular dichroism (CD) spectroscopy. SmAPα1-21, SmAPα10-21, and SmAPγ27-44 inhibited the growth of the phytopathogen F. graminearum at low micromolar concentrations. Conidia exposure to the fungicidal concentration of the peptides caused membrane permeabilization to the fluorescent probe propidium iodide (PI), suggesting that this is one of the main contributing factors in fungal cell killing. Furthermore, conidia treated for 0.5h showed cytoplasmic disorganization as observed by transmission electron microscopy (TEM). Remarkably, the peptides derived from the α-core induced morphological changes on the conidia cell wall, which is a promising target since its distinctive biochemical and structural organization is absent in plant and mammalian cells.
Collapse
Affiliation(s)
- Agustina Fernández
- CIPROVE-Centro Asociado CIC, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Laura Colombo
- CIPROVE-Centro Asociado CIC, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucrecia M Curto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Gabriela E Gómez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - José M Delfino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Laura Bakás
- CIPROVE-Centro Asociado CIC, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Buenos Aires, Argentina
| | - Ismael Malbrán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Centro de Investigaciones de Fitopatología (CIDEFI-UNLP-CIC), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sandra E Vairo-Cavalli
- CIPROVE-Centro Asociado CIC, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Toledo EB, Lucas DR, Simão TLBV, Calixto SD, Lassounskaia E, Muzitano MF, Damica FZ, Gomes VM, de Oliveira Carvalho A. Design of improved synthetic antifungal peptides with targeted variations in charge, hydrophobicity and chirality based on a correlation study between biological activity and primary structure of plant defensin γ-cores. Amino Acids 2021; 53:219-237. [PMID: 33483849 DOI: 10.1007/s00726-020-02929-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
Abstract
Microbial resistance to available drugs is a growing health threat imposing the need for the development of new drugs. The scaffold of plant defensins, including their γ-cores, are particularly good candidates for drug design. This work aimed to improve the antifungal activity of a previous design peptide, named A36,42,44γ32-46VuDef (for short DD) against yeasts by altering its biochemical parameters. We explore the correlation of the biological activity and structure of plant defensins and compared their primary structures by superimposition with VuDef1 and DD which indicated us the favorable position and the amino acid to be changed. Three new peptides with modifications in charge, hydrophobicity (RR and WR) and chirality (D-RR) were designed and tested against pathogenic yeasts. Inhibition was determined by absorbance. Viability of mammalian cells was determined by MTT. The three designed peptides had better inhibitory activity against the yeasts with better potency and spectrum of yeast species inhibition, with low toxicity to mammalian cells. WR, the most hydrophobic and cationic, exhibited better antifungal activity and lower toxicity. Our study provides experimental evidence that targeted changes in the primary structure of peptides based on plant defensins γ-core primary structures prove to be a good tool for the synthesis of new compounds that may be useful as alternative antifungal drugs. The method described did not have the drawback of synthesis of several peptides, because alterations are guided. When compared to other methods, the design process described is efficient and viable to those with scarce resources.
Collapse
Affiliation(s)
- Estefany Braz Toledo
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil
| | - Douglas Ribeiro Lucas
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil
| | - Thatiana Lopes Biá Ventura Simão
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Sanderson Dias Calixto
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Elena Lassounskaia
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Michele Frazão Muzitano
- Laboratório de Produtos Bioativos, Curso de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Pólo Novo Cavaleiro-IMMT, Macaé, RJ, 27933-378, Brazil
| | - Filipe Zanirati Damica
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil.
| |
Collapse
|
9
|
Plant Defensins from a Structural Perspective. Int J Mol Sci 2020; 21:ijms21155307. [PMID: 32722628 PMCID: PMC7432377 DOI: 10.3390/ijms21155307] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023] Open
Abstract
Plant defensins form a family of proteins with a broad spectrum of protective activities against fungi, bacteria, and insects. Furthermore, some plant defensins have revealed anticancer activity. In general, plant defensins are non-toxic to plant and mammalian cells, and interest in using them for biotechnological and medicinal purposes is growing. Recent studies provided significant insights into the mechanisms of action of plant defensins. In this review, we focus on structural and dynamics aspects and discuss structure-dynamics-function relations of plant defensins.
Collapse
|
10
|
Ochiai A, Ogawa K, Fukuda M, Suzuki M, Ito K, Tanaka T, Sagehashi Y, Taniguchi M. Crystal structure of rice defensin OsAFP1 and molecular insight into lipid-binding. J Biosci Bioeng 2020; 130:6-13. [PMID: 32192842 DOI: 10.1016/j.jbiosc.2020.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Defensins are antibacterial peptides that function in the innate immune system. OsAFP1, a defensin identified from Oryza sativa (rice), exhibits antimicrobial activity against rice pathogens. Intriguingly, OsAFP1 was also shown to demonstrate potent antifungal activity against the human pathogenic fungus Candida albicans by inducing apoptosis in target cells, suggesting that OsAFP1 represents a potential new antibiotic candidate; however, further analyses, particularly at the structural level, are required to elucidate the mechanistic underpinnings of OsAFP1 antifungal activity. Here, we determined the three-dimensional structure of OsAFP1 using X-ray crystallography. OsAFP1 features the cysteine-stabilized αβ structure highly conserved in plant defensins and presents a dimeric structure that appears necessary for antifungal activity. Superimposition of the OsAFP1 structure with that of Nicotiana alata NaD1 complexed with phosphatidic acid indicated that the target molecule is likely trapped between the S2-S3 loops of each OsAFP1 dimer. In lipid-binding analyses performed using nitrocellulose membranes immobilized with various membrane lipid components, OsAFP1 was found to bind to phosphatidylinositols (PIPs) harboring phosphate groups, particularly PI(3)P. These results indicate that OsAFP1 exerts antifungal activity by binding to PI(3)P contained in the C. albicans cell membrane, thereby applying cellular stress and inducing apoptosis. Furthermore, the OsAFP1 structure and site-specific-mutation analyses revealed that Arg1, His2, Leu4, Arg9, and Phe10 play critical roles in OsAFP1 dimer formation. Thus, our study provides novel insights into the antifungal mechanism of OsAFP1.
Collapse
Affiliation(s)
- Akihito Ochiai
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan; Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Kodai Ogawa
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Minami Fukuda
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Masami Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kosuke Ito
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan; Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Yoshiyuki Sagehashi
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hokkaido 062-8555, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan; Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
11
|
Screening the Saccharomyces cerevisiae Nonessential Gene Deletion Library Reveals Diverse Mechanisms of Action for Antifungal Plant Defensins. Antimicrob Agents Chemother 2019; 63:AAC.01097-19. [PMID: 31451498 DOI: 10.1128/aac.01097-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
Plant defensins are a large family of proteins, most of which have antifungal activity against a broad spectrum of fungi. However, little is known about how they exert their activity. The mechanisms of action of only a few members of the family have been investigated and, in most cases, there are still a number of unknowns. To gain a better understanding of the antifungal mechanisms of a set of four defensins, NaD1, DmAMP1, NbD6, and SBI6, we screened a pooled collection of the nonessential gene deletion set of Saccharomyces cerevisiae Strains with increased or decreased ability to survive defensin treatment were identified based on the relative abundance of the strain-specific barcode as determined by MiSeq next-generation sequencing. Analysis of the functions of genes that are deleted in strains with differential growth in the presence of defensin provides insight into the mechanism of action. The screen identified a novel role for the vacuole in the mechanisms of action for defensins NbD6 and SBI6. The effect of these defensins on vacuoles was further confirmed by using confocal microscopy in both S. cerevisiae and the cereal pathogen Fusarium graminearum These results demonstrate the utility of this screening method to identify novel mechanisms of action for plant defensins.
Collapse
|
12
|
Metabolism and Development during Conidial Germination in Response to a Carbon-Nitrogen-Rich Synthetic or a Natural Source of Nutrition in Neurospora crassa. mBio 2019; 10:mBio.00192-19. [PMID: 30914504 PMCID: PMC6437048 DOI: 10.1128/mbio.00192-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fungal spores germinate and undergo vegetative growth, leading to either asexual or sexual reproductive dispersal. Previous research has indicated that among developmental regulatory genes, expression is conserved across nutritional environments, whereas pathways for carbon and nitrogen metabolism appear highly responsive-perhaps to accommodate differential nutritive processing. To comprehensively investigate conidial germination and the adaptive life history decision-making underlying these two modes of reproduction, we profiled transcription of Neurospora crassa germinating on two media: synthetic Bird medium, designed to promote asexual reproduction; and a natural maple sap medium, on which both asexual reproduction and sexual reproduction manifest. A later start to germination but faster development was observed on synthetic medium. Metabolic genes exhibited altered expression in response to nutrients-at least 34% of the genes in the genome were significantly downregulated during the first two stages of conidial germination on synthetic medium. Knockouts of genes exhibiting differential expression across development altered germination and growth rates, as well as in one case causing abnormal germination. A consensus Bayesian network of these genes indicated especially tight integration of environmental sensing, asexual and sexual development, and nitrogen metabolism on a natural medium, suggesting that in natural environments, a more dynamic and tentative balance of asexual and sexual development may be typical of N. crassa colonies.IMPORTANCE One of the most remarkable successes of life is its ability to flourish in response to temporally and spatially varying environments. Fungi occupy diverse ecosystems, and their sensitivity to these environmental changes often drives major fungal life history decisions, including the major switch from vegetative growth to asexual or sexual reproduction. Spore germination comprises the first and simplest stage of vegetative growth. We examined the dependence of this early life history on the nutritional environment using genome-wide transcriptomics. We demonstrated that for developmental regulatory genes, expression was generally conserved across nutritional environments, whereas metabolic gene expression was highly labile. The level of activation of developmental genes did depend on current nutrient conditions, as did the modularity of metabolic and developmental response network interactions. This knowledge is critical to the development of future technologies that could manipulate fungal growth for medical, agricultural, or industrial purposes.
Collapse
|
13
|
Sathoff AE, Velivelli S, Shah DM, Samac DA. Plant Defensin Peptides have Antifungal and Antibacterial Activity Against Human and Plant Pathogens. PHYTOPATHOLOGY 2019; 109:402-408. [PMID: 30252607 DOI: 10.1094/phyto-09-18-0331-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant defensins are small, cysteine-rich antimicrobial peptides. These peptides have previously been shown to primarily inhibit the growth of fungal plant pathogens. Plant defensins have a γ-core motif, defined as GXCX3-9C, which is required for their antifungal activity. To evaluate plant defensins as a potential control for a problematic agricultural disease (alfalfa crown rot), short, chemically synthesized peptides containing γ-core motif sequences were screened for activity against numerous crown rot pathogens. These peptides showed both antifungal and, surprisingly, antibacterial activity. Core motif peptides from Medicago truncatula defensins (MtDef4 and MtDef5) displayed high activity against both plant and human bacterial pathogens in vitro. Full-length defensins had higher antimicrobial activity compared with the peptides containing their predictive γ-core motifs. These results show the future promise for controlling a wide array of economically important fungal and bacterial plant pathogens through the transgenic expression of a plant defensin. They also suggest that plant defensins may be an untapped reservoir for development of therapeutic compounds for combating human and animal pathogens.
Collapse
Affiliation(s)
- Andrew E Sathoff
- 1 Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN 55108
| | - Siva Velivelli
- 2 Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132; and
| | - Dilip M Shah
- 2 Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132; and
| | - Deborah A Samac
- 1 Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN 55108
- 3 United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108
| |
Collapse
|
14
|
Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int J Mol Sci 2019; 20:E332. [PMID: 30650540 PMCID: PMC6359256 DOI: 10.3390/ijms20020332] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chitosan is a versatile compound with multiple biotechnological applications. This polymer inhibits clinically important human fungal pathogens under the same carbon and nitrogen status as in blood. Chitosan permeabilises their high-fluidity plasma membrane and increases production of intracellular oxygen species (ROS). Conversely, chitosan is compatible with mammalian cell lines as well as with biocontrol fungi (BCF). BCF resistant to chitosan have low-fluidity membranes and high glucan/chitin ratios in their cell walls. Recent studies illustrate molecular and physiological basis of chitosan-root interactions. Chitosan induces auxin accumulation in Arabidopsis roots. This polymer causes overexpression of tryptophan-dependent auxin biosynthesis pathway. It also blocks auxin translocation in roots. Chitosan is a plant defense modulator. Endophytes and fungal pathogens evade plant immunity converting chitin into chitosan. LysM effectors shield chitin and protect fungal cell walls from plant chitinases. These enzymes together with fungal chitin deacetylases, chitosanases and effectors play determinant roles during fungal colonization of plants. This review describes chitosan mode of action (cell and gene targets) in fungi and plants. This knowledge will help to develop chitosan for agrobiotechnological and medical applications.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| |
Collapse
|
15
|
Kim S, Lee DG. Role of calcium in reactive oxygen species-induced apoptosis in Candida albicans: an antifungal mechanism of antimicrobial peptide, PMAP-23. Free Radic Res 2019; 53:8-17. [DOI: 10.1080/10715762.2018.1511052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Suhyun Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
16
|
de Oliveira Mello É, Taveira GB, de Oliveira Carvalho A, Gomes VM. Improved smallest peptides based on positive charge increase of the γ-core motif from PνD 1 and their mechanism of action against Candida species. Int J Nanomedicine 2019; 14:407-420. [PMID: 30666103 PMCID: PMC6331069 DOI: 10.2147/ijn.s187957] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Plant defensins have a hallmark γ-core motif (GXCX3-9C) that is related to their antimicrobial properties. The aim of this work was to design synthetic peptides based on the region corresponding to the PvD1 defensin γ-core that are the smallest amino acid sequences that bear the strongest biological activity. METHODS We made rational substitutions of negatively charged amino acid residues with positively charged ones, and the reduction in length in the selected PvD1 γ-core sequence to verify whether the increased net positive charges and shortened length are related to the increase in antifungal activity. Herein, we opted to evaluate the action mechanism of γ33-41 PvD1 ++ peptide due to its significant inhibitory effect on tested yeasts. In addition, it is the smallest construct comprising only nine amino acid residues, giving it a better possibility to be a prototype for designing a new antifungal drug, with lower costs to the pharmaceutical industry while still maintaining the strongest antimicrobial properties. RESULTS The γ33-41 PvD1 ++ peptide caused the most toxic effects in the yeast Candida buinensis, leading to membrane permeabilization, viability loss, endogenous reactive oxygen species increase, the activation of metacaspase, and the loss of mitochondrial functionality, suggesting that this peptide triggers cell death via apoptosis. CONCLUSION We observed that the antifungal activity of PvD1 is not strictly localized in the structural domain, which comprises the γ-core region and that the increase in the net positive charge is directly related to the increase in antifungal activity.
Collapse
Affiliation(s)
- Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| |
Collapse
|
17
|
Zhao C, Mendive-Tapia L, Vendrell M. Fluorescent peptides for imaging of fungal cells. Arch Biochem Biophys 2018; 661:187-195. [PMID: 30465736 DOI: 10.1016/j.abb.2018.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022]
Abstract
Fungal infections, especially with the advent of antimicrobial resistance, represent a major burden to our society. As a result, there has been an increasing interest in the development of new probes that accelerate the study of fungi-related biological processes and facilitate novel clinical diagnostic and treatment strategies. Fluorescence-based reporters can provide dynamic information at the molecular level with high spatial resolution. However, conventional fluorescent probes for microbes often suffer from low specificity. In the last decade, numerous studies have been reported on the chemical design and application of fluorescent peptides for both in vitro and in vivo imaging of fungal cells. In this article, we review different strategies used in the preparation of fluorescent peptides for pathogenic fungi as well as some of their applications in medical imaging and in mode-of-action mechanistic studies.
Collapse
Affiliation(s)
- Can Zhao
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, M13 9NT, United Kingdom
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom.
| |
Collapse
|
18
|
Fizil Á, Sonderegger C, Czajlik A, Fekete A, Komáromi I, Hajdu D, Marx F, Batta G. Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations. PLoS One 2018; 13:e0204825. [PMID: 30321182 PMCID: PMC6188699 DOI: 10.1371/journal.pone.0204825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Calcium ions (Ca2+) play an important role in the toxicity of the cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum: high extracellular Ca2+ levels reduce the toxicity of PAF in the sensitive model fungus Neurospora crassa in a concentration dependent way. However, little is known about the mechanistic details of the Ca2+ ion impact and the Ca2+ binding capabilities of PAF outside the fungal cell, which might be the reason for the activity loss. Using nuclear magnetic resonance (NMR), isothermal titration calorimetry and molecular dynamics (MD) simulations we demonstrated that PAF weakly, but specifically binds Ca2+ ions. MD simulations of PAF predicted one major Ca2+ binding site at the C-terminus involving Asp53 and Asp55, while Asp19 was considered as putative Ca2+ binding site. The exchange of Asp19 to serine had little impact on the Ca2+ binding, however caused the loss of antifungal activity, as was shown in our recent study. Now we replaced the C-terminal aspartates and expressed the serine variant PAFD53S/D55S. The specific Ca2+ binding affinity of PAFD53S/D55S decreased significantly if compared to PAF, whereas the antifungal activity was retained. To understand more details of Ca2+ interactions, we investigated the NMR and MD structure/dynamics of the free and Ca2+-bound PAF and PAFD53S/D55S. Though we found some differences between these protein variants and the Ca2+ complexes, these effects cannot explain the observed Ca2+ influence. In conclusion, PAF binds Ca2+ ions selectively at the C-terminus; however, this Ca2+ binding does not seem to play a direct role in the previously documented modulation of the antifungal activity of PAF.
Collapse
Affiliation(s)
- Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Christoph Sonderegger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - András Czajlik
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila Fekete
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Komáromi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dorottya Hajdu
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail: (GB); (FM)
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- * E-mail: (GB); (FM)
| |
Collapse
|
19
|
Campos ML, de Souza CM, de Oliveira KBS, Dias SC, Franco OL. The role of antimicrobial peptides in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4997-5011. [PMID: 30099553 DOI: 10.1093/jxb/ery294] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Selective pressure imposed by millions of years of relentless biological attack has led to the development of an extraordinary array of defense strategies in plants. Among these, antimicrobial peptides (AMPs) stand out as one of the most prominent components of the plant immune system. These small and usually basic peptides are deployed as a generalist defense strategy that grants direct and durable resistance against biotic stress. Even though their name implies a function against microbes, the range of plant-associated organisms affected by these peptides is much broader. In this review, we highlight the advances in our understanding on the role of AMPs in plant immunity. We demonstrate that the capacity of plant AMPs to act against a large spectrum of enemies relies on their diverse mechanism of action and remarkable structural stability. The efficacy of AMPs as a defense strategy is evidenced by their widespread occurrence in the plant kingdom, an astonishing heterogeneity in host peptide composition, and the extent to which plant enemies have evolved effective counter-measures to evade AMP action. Plant AMPs are becoming an important topic of research due to their significance in allowing plants to thrive and for their enormous potential in agronomical and pharmaceutical fields.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá/MT, Brazil
| | - Camila Maurmann de Souza
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
| | | | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Universidade de Brasilia, Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Brasilia/DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande/MS, Brazil
| |
Collapse
|
20
|
Ochiai A, Ogawa K, Fukuda M, Ohori M, Kanaoka T, Tanaka T, Taniguchi M, Sagehashi Y. Rice Defensin OsAFP1 is a New Drug Candidate against Human Pathogenic Fungi. Sci Rep 2018; 8:11434. [PMID: 30061724 PMCID: PMC6065317 DOI: 10.1038/s41598-018-29715-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
Fungal infections, such as candidiasis and aspergillosis, are some of the most frequent infections in humans. Although antifungal drugs are available for the treatment of these infections, antifungal agents with new mechanisms of action should be developed because of the increasing incidence of drug-resistant pathogens in recent years. In this study, a basic functional analysis of rice defensin OsAFP1, a novel antifungal drug candidate, was conducted. OsAFP1 exerted fungicidal activity against Candida albicans, the most common pathogenic fungus in humans, at 4 μM concentration, but it did not inhibit the growth of human pathogenic bacteria. In addition, OsAFP1 retained structural stability after heat treatment at 100 °C for 10 min and after serum treatment at 37 °C for 24 h. A propidium iodide (PI) uptake assay and mutational analysis revealed that amino acid residues within the C-terminal γ-core motif of OsAFP1, particularly Leu-39 and Lys-41, play an important role in its antifungal activity. Further, PI uptake and apoptosis assays suggested that OsAFP1 exerts its antifungal activity by inducing apoptosis of target cells. Immunohistochemistry showed that the OsAFP1 target molecule was located in the cell wall. These findings indicate that OsAFP1 may be developed into a potent antifungal drug.
Collapse
Affiliation(s)
- Akihito Ochiai
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan.
| | - Kodai Ogawa
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Minami Fukuda
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Masahiro Ohori
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Takumi Kanaoka
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, Niigata, Japan
| | - Yoshiyuki Sagehashi
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hokkaido, Japan.
| |
Collapse
|
21
|
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2018; 8:46635-46651. [PMID: 28422728 PMCID: PMC5542299 DOI: 10.18632/oncotarget.16743] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Parisi K, Shafee TMA, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA. The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 2018; 88:107-118. [PMID: 29432955 DOI: 10.1016/j.semcdb.2018.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Pedro Quimbar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia.
| |
Collapse
|
23
|
Optimisation of the antifungal potency of the amidated peptide H-Orn-Orn-Trp-Trp-NH2 against food contaminants. Int J Food Microbiol 2018; 265:40-48. [DOI: 10.1016/j.ijfoodmicro.2017.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/03/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022]
|
24
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
25
|
Guillén-Chable F, Arenas-Sosa I, Islas-Flores I, Corzo G, Martinez-Liu C, Estrada G. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus. Protein Expr Purif 2017. [PMID: 28624494 DOI: 10.1016/j.pep.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gene of the four disulfide-bridged defensin J1-1 from Capsicum was cloned into the expression vector pQE30 containing a 6His-tag as fusion protein. This construct was transfected into Origami strain of Escherichia coli and expressed after induction with isopropyl thiogalactoside (IPTG). The level of expression was 4 mg/L of culture medium, and the His-tagged recombinant defensin (HisXarJ1-1) was expressed exclusively into inclusion bodies. After solubilization, HisXarJ1-1 was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisXarJ1-1 product obtained from the affinity chromatography step showed single main peptide fraction of molecular masses of 7050.6 Da and after treatment with DTT a single fraction of 7, 042.6 Da corresponding to the reduced peptide was observed. An in vitro folding step of the HisXarJ1-1 generated a distinct profile of oxidized forms of the peptide this oxidized peptide was capable of binding phosphatidic acid in vitro. Possible dimer and oligomer of HisXarJ1-1 were visible in gel electrophoresis and immunodetected with anti-His antibodies. Pure recombinant defensin HisXarJ1-1 exhibited antibacterial activity against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Francisco Guillén-Chable
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México
| | - Iván Arenas-Sosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Apartado Postal 510-3, Cuernavaca, Morelos, 61500, México
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM. Apartado Postal 510-3, Cuernavaca, Morelos, 61500, México
| | - Cynthia Martinez-Liu
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México
| | - Georgina Estrada
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, México.
| |
Collapse
|
26
|
Structural determinants of Neosartorya fischeri antifungal protein (NFAP) for folding, stability and antifungal activity. Sci Rep 2017; 7:1963. [PMID: 28512317 PMCID: PMC5434006 DOI: 10.1038/s41598-017-02234-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
The recent global challenges to prevent and treat fungal infections strongly demand for the development of new antifungal strategies. The structurally very similar cysteine-rich antifungal proteins from ascomycetes provide a feasible basis for designing new antifungal molecules. The main structural elements responsible for folding, stability and antifungal activity are not fully understood, although this is an essential prerequisite for rational protein design. In this study, we used the Neosartorya fischeri antifungal protein (NFAP) to investigate the role of the disulphide bridges, the hydrophobic core, and the N-terminal amino acids in the formation of a highly stable, folded, and antifungal active protein. NFAP and its mutants carrying cysteine deletion (NFAPΔC), hydrophobic core deletion (NFAPΔh), and N-terminal amino acids exchanges (NFAPΔN) were produced in Pichia pastoris. The recombinant NFAP showed the same features in structure, folding, stability and activity as the native protein. The data acquired with mass spectrometry, structural analyses and antifungal activity assays of NFAP and its mutants proved the importance of the disulphide bonding, the hydrophobic core and the correct N-terminus for folding, stability and full antifungal function. Our findings provide further support to the comprehensive understanding of the structure-function relationship in members of this protein group.
Collapse
|
27
|
Garrigues S, Gandía M, Borics A, Marx F, Manzanares P, Marcos JF. Mapping and Identification of Antifungal Peptides in the Putative Antifungal Protein AfpB from the Filamentous Fungus Penicillium digitatum. Front Microbiol 2017; 8:592. [PMID: 28428776 PMCID: PMC5382200 DOI: 10.3389/fmicb.2017.00592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Antifungal proteins (AFPs) from Ascomycetes are small cysteine-rich proteins that are abundantly secreted and show antifungal activity against non-producer fungi. A gene coding for a class B AFP (AfpB) was previously identified in the genome of the plant pathogen Penicillium digitatum. However, previous attempts to detect the AfpB protein were not successful despite the high expression of the corresponding afpB gene. In this work, the structure of the putative AfpB was modeled. Based on this model, four synthetic cysteine-containing peptides, PAF109, PAF112, PAF118, and PAF119, were designed and their antimicrobial activity was tested and characterized. PAF109 that corresponds to the γ-core motif present in defensin-like antimicrobial proteins did not show antimicrobial activity. On the contrary, PAF112 and PAF118, which are cationic peptides derived from two surface-exposed loops in AfpB, showed moderate antifungal activity against P. digitatum and other filamentous fungi. It was also confirmed that cyclization through a disulfide bridge prevented peptide degradation. PAF116, which is a peptide analogous to PAF112 but derived from the Penicillium chrysogenum antifungal protein PAF, showed activity against P. digitatum similar to PAF112, but was less active than the native PAF protein. The two AfpB-derived antifungal peptides PAF112 and PAF118 showed positive synergistic interaction when combined against P. digitatum. Furthermore, the synthetic hexapeptide PAF26 previously described in our laboratory also exhibited synergistic interaction with the peptides PAF112, PAF118, and PAF116, as well as with the PAF protein. This study is an important contribution to the mapping of antifungal motifs within the AfpB and other AFPs, and opens up new strategies for the rational design and application of antifungal peptides and proteins.
Collapse
Affiliation(s)
- Sandra Garrigues
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Mónica Gandía
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of SciencesSzeged, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of InnsbruckInnsbruck, Austria
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Jose F Marcos
- Institute of Biochemistry, Biological Research Centre of Hungarian Academy of SciencesSzeged, Hungary
| |
Collapse
|
28
|
Cools TL, Struyfs C, Cammue BPA, Thevissen K. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol 2017; 12:441-454. [DOI: 10.2217/fmb-2016-0181] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plant defensins are small, cationic peptides with a highly conserved 3D structure. They have been studied extensively in the past decades. Various biological activities have been attributed to plant defensins, such as anti-insect and antimicrobial activities, but they are also known to affect ion channels and display antitumor activity. This review focuses on the structure, biological activity and antifungal mode of action of some well-characterized plant defensins, with particular attention to their fungal membrane target(s), their induced cell death mechanisms as well as their antibiofilm activity. As plant defensins are, in general, not toxic to human cells, show in vivo efficacy and have low frequencies of resistance occurrence, they are of particular interest in the fight against fungal infections.
Collapse
Affiliation(s)
- Tanne L Cools
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Bruno PA Cammue
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
29
|
Shafee TMA, Lay FT, Phan TK, Anderson MA, Hulett MD. Convergent evolution of defensin sequence, structure and function. Cell Mol Life Sci 2017; 74:663-682. [PMID: 27557668 PMCID: PMC11107677 DOI: 10.1007/s00018-016-2344-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
Defensins are a well-characterised group of small, disulphide-rich, cationic peptides that are produced by essentially all eukaryotes and are highly diverse in their sequences and structures. Most display broad range antimicrobial activity at low micromolar concentrations, whereas others have other diverse roles, including cell signalling (e.g. immune cell recruitment, self/non-self-recognition), ion channel perturbation, toxic functions, and enzyme inhibition. The defensins consist of two superfamilies, each derived from an independent evolutionary origin, which have subsequently undergone extensive divergent evolution in their sequence, structure and function. Referred to as the cis- and trans-defensin superfamilies, they are classified based on their secondary structure orientation, cysteine motifs and disulphide bond connectivities, tertiary structure similarities and precursor gene sequence. The utility of displaying loops on a stable, compact, disulphide-rich core has been exploited by evolution on multiple occasions. The defensin superfamilies represent a case where the ensuing convergent evolution of sequence, structure and function has been particularly extreme. Here, we discuss the extent, causes and significance of these convergent features, drawing examples from across the eukaryotes.
Collapse
Affiliation(s)
- Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
30
|
Kaur J, Fellers J, Adholeya A, Velivelli SLS, El-Mounadi K, Nersesian N, Clemente T, Shah D. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat. Transgenic Res 2017; 26:37-49. [PMID: 27582300 PMCID: PMC5243879 DOI: 10.1007/s11248-016-9978-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022]
Abstract
Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.
Collapse
Affiliation(s)
- Jagdeep Kaur
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| | - John Fellers
- USDA-ARS-HWWGRU, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Alok Adholeya
- Mycorrhizal Applications, 1005 North Warson Road, BRDG Park, St. Louis, MO, 63132, USA
| | | | - Kaoutar El-Mounadi
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA, 19530, USA
| | - Natalya Nersesian
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Thomas Clemente
- Department of Agronomy and Horticulture/Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Dilip Shah
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
31
|
Sonderegger C, Fizil Á, Burtscher L, Hajdu D, Muñoz A, Gáspári Z, Read ND, Batta G, Marx F. D19S Mutation of the Cationic, Cysteine-Rich Protein PAF: Novel Insights into Its Structural Dynamics, Thermal Unfolding and Antifungal Function. PLoS One 2017; 12:e0169920. [PMID: 28072824 PMCID: PMC5224997 DOI: 10.1371/journal.pone.0169920] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.
Collapse
Affiliation(s)
- Christoph Sonderegger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Laura Burtscher
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorottya Hajdu
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Alberto Muñoz
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Nick D. Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Zhang Y, Zheng Q, Sun C, Song J, Gao L, Zhang S, Muñoz A, Read ND, Lu L. Palmitoylation of the Cysteine Residue in the DHHC Motif of a Palmitoyl Transferase Mediates Ca2+ Homeostasis in Aspergillus. PLoS Genet 2016; 12:e1005977. [PMID: 27058039 PMCID: PMC4825924 DOI: 10.1371/journal.pgen.1005977] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/15/2016] [Indexed: 01/08/2023] Open
Abstract
Finely tuned changes in cytosolic free calcium ([Ca2+]c) mediate numerous intracellular functions resulting in the activation or inactivation of a series of target proteins. Palmitoylation is a reversible post-translational modification involved in membrane protein trafficking between membranes and in their functional modulation. However, studies on the relationship between palmitoylation and calcium signaling have been limited. Here, we demonstrate that the yeast palmitoyl transferase ScAkr1p homolog, AkrA in Aspergillus nidulans, regulates [Ca2+]c homeostasis. Deletion of akrA showed marked defects in hyphal growth and conidiation under low calcium conditions which were similar to the effects of deleting components of the high-affinity calcium uptake system (HACS). The [Ca2+]c dynamics in living cells expressing the calcium reporter aequorin in different akrA mutant backgrounds were defective in their [Ca2+]c responses to high extracellular Ca2+ stress or drugs that cause ER or plasma membrane stress. All of these effects on the [Ca2+]c responses mediated by AkrA were closely associated with the cysteine residue of the AkrA DHHC motif, which is required for palmitoylation by AkrA. Using the acyl-biotin exchange chemistry assay combined with proteomic mass spectrometry, we identified protein substrates palmitoylated by AkrA including two new putative P-type ATPases (Pmc1 and Spf1 homologs), a putative proton V-type proton ATPase (Vma5 homolog) and three putative proteins in A. nidulans, the transcripts of which have previously been shown to be induced by extracellular calcium stress in a CrzA-dependent manner. Thus, our findings provide strong evidence that the AkrA protein regulates [Ca2+]c homeostasis by palmitoylating these protein candidates and give new insights the role of palmitoylation in the regulation of calcium-mediated responses to extracellular, ER or plasma membrane stress. Palmitoylation is a reversible post-translational modification catalyzed by palmitoyl acyltransferases (PATs) and proteins that undergo this modification are involved in numerous intracellular functions. Yeast Akr1p was the first characterized PAT whilst HIP14, an Akr1p homolog in human, is one of the most highly conserved of 23 human PATs that catalyze the addition of palmitate to the Huntington protein which is of major importance in Huntington’s disease. Calcium serves numerous signaling and structural functions in all eukaryotes. However, studies on the relationship between calcium signaling and palmitoylation are lacking. In this study, we demonstrate that the palmitoyl transferase Akr1 homolog in the filamentous fungus Aspergillus nidulans, similar to the high-affinity calcium uptake system (HACS), is required for normal growth and sporulation in the presence of low extracellular calcium. We find that AkrA dysfunction decreases the transient increase in cytosolic free calcium induced by a high extracellular calcium stress, tunicamycin (which induces endoplasmic reticulum stress) or the antifungal agent itraconazole (which induces plasma membrane stress). The influence of AkrA on all of these processes involves its DHHC motif, which is required for palmitoylation of various proteins associated with many processes including calcium signaling and membrane trafficking. Our findings provide evidence for a crucial link between calcium signaling and palmitoylation, suggesting a possible role in the mechanistic basis of human PAT-related diseases. These results also indicate that regulators of posttranslational modification may provide promising antifungal targets for new therapies.
Collapse
Affiliation(s)
- Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingqing Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Congcong Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinxing Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lina Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Nick D. Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
33
|
El-Mounadi K, Islam KT, Hernández-Ortiz P, Read ND, Shah DM. Antifungal mechanisms of a plant defensin MtDef4 are not conserved between the ascomycete fungi Neurospora crassa and Fusarium graminearum. Mol Microbiol 2016; 100:542-59. [PMID: 26801962 DOI: 10.1111/mmi.13333] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 12/14/2022]
Abstract
Defensins play an important role in plant defense against fungal pathogens. The plant defensin, MtDef4, inhibits growth of the ascomycete fungi, Neurospora crassa and Fusarium graminearum, at micromolar concentrations. We have reported that MtDef4 is transported into the cytoplasm of these fungi and exerts its antifungal activity on intracellular targets. Here, we have investigated whether the antifungal mechanisms of MtDef4 are conserved in these fungi. We show that N. crassa and F. graminearum respond differently to MtDef4 challenge. Membrane permeabilization is required for the antifungal activity of MtDef4 against F. graminearum but not against N. crassa. We find that MtDef4 is targeted to different subcellular compartments in each fungus. Internalization of MtDef4 in N. crassa is energy-dependent and involves endocytosis. By contrast, MtDef4 appears to translocate into F. graminearum autonomously using a partially energy-dependent pathway. MtDef4 has been shown to bind to the phospholipid phosphatidic acid (PA). We provide evidence that the plasma membrane localized phospholipase D, involved in the biosynthesis of PA, is needed for entry of this defensin in N. crassa, but not in F. graminearum. To our knowledge, this is the first example of a defensin which inhibits the growth of two ascomycete fungi via different mechanisms.
Collapse
Affiliation(s)
| | - Kazi T Islam
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Patricia Hernández-Ortiz
- Manchester Fungal Infection Group, Institution of Inflammation and Repair, University of Manchester, Manchester, M13 9NT, UK
| | - Nick D Read
- Manchester Fungal Infection Group, Institution of Inflammation and Repair, University of Manchester, Manchester, M13 9NT, UK
| | - Dilip M Shah
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
34
|
Muñoz A, Bertuzzi M, Bettgenhaeuser J, Iakobachvili N, Bignell EM, Read ND. Different Stress-Induced Calcium Signatures Are Reported by Aequorin-Mediated Calcium Measurements in Living Cells of Aspergillus fumigatus. PLoS One 2015; 10:e0138008. [PMID: 26402916 PMCID: PMC4581630 DOI: 10.1371/journal.pone.0138008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is an inhaled fungal pathogen of human lungs, the developmental growth of which is reliant upon Ca2+-mediated signalling. Ca2+ signalling has regulatory significance in all eukaryotic cells but how A. fumigatus uses intracellular Ca2+ signals to respond to stresses imposed by the mammalian lung is poorly understood. In this work, A. fumigatus strains derived from the clinical isolate CEA10, and a non-homologous recombination mutant ΔakuBKU80, were engineered to express the bioluminescent Ca2+-reporter aequorin. An aequorin-mediated method for routine Ca2+ measurements during the early stages of colony initiation was successfully developed and dynamic changes in cytosolic free calcium ([Ca2+]c) in response to extracellular stimuli were measured. The response to extracellular challenges (hypo- and hyper-osmotic shock, mechanical perturbation, high extracellular Ca2+, oxidative stress or exposure to human serum) that the fungus might be exposed to during infection, were analysed in living conidial germlings. The 'signatures' of the transient [Ca2+]c responses to extracellular stimuli were found to be dose- and age-dependent. Moreover, Ca2+-signatures associated with each physico-chemical treatment were found to be unique, suggesting the involvement of heterogeneous combinations of Ca2+-signalling components in each stress response. Concordant with the involvement of Ca2+-calmodulin complexes in these Ca2+-mediated responses, the calmodulin inhibitor trifluoperazine (TFP) induced changes in the Ca2+-signatures to all the challenges. The Ca2+-chelator BAPTA potently inhibited the initial responses to most stressors in accordance with a critical role for extracellular Ca2+ in initiating the stress responses.
Collapse
Affiliation(s)
- Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jan Bettgenhaeuser
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Nino Iakobachvili
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Elaine M. Bignell
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (NDR); (EMB)
| | - Nick D. Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (NDR); (EMB)
| |
Collapse
|
35
|
Maróti G, Downie JA, Kondorosi É. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:57-63. [PMID: 26116977 DOI: 10.1016/j.pbi.2015.05.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/13/2015] [Accepted: 05/31/2015] [Indexed: 05/25/2023]
Abstract
Plants must co-exist with both pathogenic and beneficial microbes. Antimicrobial peptides with broad antimicrobial activities represent one of the first lines of defense against pathogens. Many plant cysteine-rich peptides with potential antimicrobial properties have been predicted. Amongst them, defensins and defensin-like peptides are the most abundant and plants can express several hundreds of them. In some rhizobial-legume symbioses special defensin-like peptides, the nodule-specific cysteine-rich (NCR) peptides have evolved in those legumes whose symbiotic partner terminally differentiates. In Medicago truncatula, >700 NCRs exist and collectively act as plant effectors inducing irreversible differentiation of rhizobia to nitrogen-fixing bacteroids. Cationic NCR peptides have a broad range of potent antimicrobial activities but do not kill the endosymbionts.
Collapse
Affiliation(s)
- Gergely Maróti
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., Szeged 6726, Hungary
| | - J Allan Downie
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Éva Kondorosi
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., Szeged 6726, Hungary.
| |
Collapse
|
36
|
Calcium-Mediated Induction of Paradoxical Growth following Caspofungin Treatment Is Associated with Calcineurin Activation and Phosphorylation in Aspergillus fumigatus. Antimicrob Agents Chemother 2015; 59:4946-55. [PMID: 26055379 PMCID: PMC4505252 DOI: 10.1128/aac.00263-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022] Open
Abstract
The echinocandin antifungal drug caspofungin at high concentrations reverses the growth inhibition of Aspergillus fumigatus, a phenomenon known as the "paradoxical effect," which is not consistently observed with other echinocandins (micafungin and anidulafungin). Previous studies of A. fumigatus revealed the loss of the paradoxical effect following pharmacological or genetic inhibition of calcineurin, yet the underlying mechanism is poorly understood. Here, we utilized a codon-optimized bioluminescent Ca(2+) reporter aequorin expression system in A. fumigatus and showed that caspofungin elicits a transient increase in cytosolic free Ca(2+) ([Ca(2+)]c) in the fungus that acts as the initial trigger of the paradoxical effect by activating calmodulin-calcineurin signaling. While the increase in [Ca(2+)]c was also observed upon treatment with micafungin, another echinocandin without the paradoxical effect, a higher [Ca(2+)]c increase was noted with the paradoxical-growth concentration of caspofungin. Treatments with a Ca(2+)-selective chelator, BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid], or the L-type Ca(2+) channel blocker verapamil abolished caspofungin-mediated paradoxical growth in both the wild-type and the echinocandin-resistant (EMFR-S678P) strains. Concomitant with increased [Ca(2+)]c levels at higher concentrations of caspofungin, calmodulin and calcineurin gene expression was enhanced. Phosphoproteomic analysis revealed that calcineurin is activated through phosphorylation at its serine-proline-rich region (SPRR), a domain previously shown to be essential for regulation of hyphal growth, only at a paradoxical-growth concentration of caspofungin. Our results indicate that as opposed to micafungin, the increased [Ca(2+)]c at high concentrations of caspofungin activates calmodulin-calcineurin signaling at both a transcriptional and a posttranslational level and ultimately leads to paradoxical fungal growth.
Collapse
|
37
|
Binder U, Benčina M, Fizil Á, Batta G, Chhillar AK, Marx F. Protein kinase A signaling and calcium ions are major players in PAF mediated toxicity against Aspergillus niger. FEBS Lett 2015; 589:1266-71. [PMID: 25882631 PMCID: PMC4424949 DOI: 10.1016/j.febslet.2015.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022]
Abstract
The Penicillium chrysogenum antifungal protein PAF is toxic against potentially pathogenic Ascomycetes. We used the highly sensitive aequorin-expressing model Aspergillus niger to identify a defined change in cytoplasmic free Ca(2+) dynamics in response to PAF. This Ca(2+) signature depended on an intact positively charged lysine-rich PAF motif. By combining Ca(2+) measurements in A. niger mutants with deregulated cAMP/protein kinase A (PKA) signaling, we proved the interconnection of Ca(2+) perturbation and cAMP/PKA signaling in the mechanistic function of PAF. A deep understanding of the mode of action of PAF is an invaluable prerequisite for its future application as new antifungal drug.
Collapse
Affiliation(s)
- Ulrike Binder
- Biocenter, Division of Molecular Biology, Medical University of Innsbruck, Innrain 80, A-6020 Innsbruck, Austria; Division of Hygiene and Medical Microbiology, Schöpfstrasse 41, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Mojca Benčina
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Anil K Chhillar
- Biocenter, Division of Molecular Biology, Medical University of Innsbruck, Innrain 80, A-6020 Innsbruck, Austria; Centre for Biotechnology, Maharshi Dayanand University, IN-124001 Rohtak, Haryana, India
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Medical University of Innsbruck, Innrain 80, A-6020 Innsbruck, Austria.
| |
Collapse
|
38
|
Mith O, Benhamdi A, Castillo T, Bergé M, MacDiarmid CW, Steffen J, Eide DJ, Perrier V, Subileau M, Gosti F, Berthomieu P, Marquès L. The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Microbiologyopen 2015; 4:409-22. [PMID: 25755096 PMCID: PMC4475384 DOI: 10.1002/mbo3.248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides represent an expanding family of peptides involved in innate immunity of many living organisms. They show an amazing diversity in their sequence, structure, and mechanism of action. Among them, plant defensins are renowned for their antifungal activity but various side activities have also been described. Usually, a new biological role is reported along with the discovery of a new defensin and it is thus not clear if this multifunctionality exists at the family level or at the peptide level. We previously showed that the plant defensin AhPDF1.1b exhibits an unexpected role by conferring zinc tolerance to yeast and plant cells. In this paper, we further explored this activity using different yeast genetic backgrounds: especially the zrc1 mutant and an UPRE-GFP reporter yeast strain. We showed that AhPDF1.1b interferes with adaptive cell response in the endoplasmic reticulum to confer cellular zinc tolerance. We thus highlighted that, depending on its cellular localization, AhPDF1.1b exerts quite separate activities: when it is applied exogenously, it is a toxin against fungal and also root cells, but when it is expressed in yeast cells, it is a peptide that modulates the cellular adaptive response to zinc overload.
Collapse
Affiliation(s)
- Oriane Mith
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Asma Benhamdi
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Teddy Castillo
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Muriel Bergé
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Janet Steffen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Véronique Perrier
- INRA/CIRAD UMR 1028 IATE Ingénierie des Agropolymères et Technologies Emergentes, Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Maeva Subileau
- INRA/CIRAD UMR 1028 IATE Ingénierie des Agropolymères et Technologies Emergentes, Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Françoise Gosti
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Pierre Berthomieu
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Laurence Marquès
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| |
Collapse
|
39
|
Vriens K, Cammue BPA, Thevissen K. Antifungal plant defensins: mechanisms of action and production. Molecules 2014; 19:12280-303. [PMID: 25153857 PMCID: PMC6271847 DOI: 10.3390/molecules190812280] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022] Open
Abstract
Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date. This review summarizes the mechanism of action of well-characterized antifungal plant defensins, including RsAFP2, MsDef1, MtDef4, NaD1 and Psd1, and points out the variety by which antifungal plant defensins affect microbial cell viability. Furthermore, this review summarizes production routes for plant defensins, either via heterologous expression or chemical synthesis. As plant defensins are generally considered non-toxic for plant and mammalian cells, they are regarded as attractive candidates for further development into novel antimicrobial agents.
Collapse
Affiliation(s)
- Kim Vriens
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee 3001, Belgium
| |
Collapse
|