1
|
Malik AA, Shariq M, Sheikh JA, Jaiswal U, Fayaz H, Shrivastava G, Ehtesham NZ, Hasnain SE. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Crit Rev Biochem Mol Biol 2024; 59:310-336. [PMID: 39378051 DOI: 10.1080/10409238.2024.2411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/14/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. M. tb employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit M. tb survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Telangana, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Udyeshita Jaiswal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Gauri Shrivastava
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, India
| |
Collapse
|
2
|
Pidot SJ, Klatt S, Ates LS, Frigui W, Sayes F, Majlessi L, Izumi H, Monk IR, Porter JL, Bennett-Wood V, Seemann T, Otter A, Taiaroa G, Cook GM, West N, Tobias NJ, Fuerst JA, Stutz MD, Pellegrini M, McConville M, Brosch R, Stinear TP. Marine sponge microbe provides insights into evolution and virulence of the tubercle bacillus. PLoS Pathog 2024; 20:e1012440. [PMID: 39207937 PMCID: PMC11361433 DOI: 10.1371/journal.ppat.1012440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Stephan Klatt
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Louis S. Ates
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Hiroshi Izumi
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Ian R. Monk
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - George Taiaroa
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicholas West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael D. Stutz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Malcolm McConville
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Garrett SR, Higginson AB, Palmer T. Multiple variants of the type VII secretion system in Gram-positive bacteria. MICROLIFE 2024; 5:uqae013. [PMID: 38957458 PMCID: PMC11217815 DOI: 10.1093/femsml/uqae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Type VII secretion systems (T7SS) are found in bacteria across the Bacillota and Actinomycetota phyla and have been well described in Staphylococcus aureus, Bacillus subtilis, and pathogenic mycobacteria. The T7SS from Actinomycetota and Bacillota share two common components, a membrane-bound EccC/EssC ATPase and EsxA, a small helical hairpin protein of the WXG100 family. However, they also have additional phylum-specific components, and as a result they are termed the T7SSa (Actinomycetota) and T7SSb (Bacillota), respectively. Here, we identify additional organizations of the T7SS across these two phyla and describe eight additional T7SS subtypes, which we have named T7SSc-T7SSj. T7SSd is found exclusively in Actinomycetota including the Olselnella and Bifodobacterium genus, whereas the other seven are found only in Bacillota. All of the novel subtypes contain the canonical ATPase (TsxC) and the WXG100-family protein (TsxA). Most of them also contain a small ubiquitin-related protein, TsxB, related to the T7SSb EsaB/YukD component. Protein kinases, phosphatases, and forkhead-associated (FHA) proteins are often encoded in the novel T7SS gene clusters. Candidate substrates of these novel T7SS subtypes include LXG-domain and RHS proteins. Predicted substrates are frequently encoded alongside genes for additional small WXG100-related proteins that we speculate serve as cosecretion partners. Collectively our findings reveal unexpected diversity in the T7SS in Gram-positive bacteria.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Andrew B Higginson
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
4
|
Klein TA, Shah PY, Gkragkopoulou P, Grebenc DW, Kim Y, Whitney JC. Structure of a tripartite protein complex that targets toxins to the type VII secretion system. Proc Natl Acad Sci U S A 2024; 121:e2312455121. [PMID: 38194450 PMCID: PMC10801868 DOI: 10.1073/pnas.2312455121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.
Collapse
Affiliation(s)
- Timothy A. Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Prakhar Y. Shah
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Polyniki Gkragkopoulou
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Dirk W. Grebenc
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - John C. Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
5
|
Yang Y, Boardman E, Deme J, Alcock F, Lea S, Palmer T. Three small partner proteins facilitate the type VII-dependent secretion of an antibacterial nuclease. mBio 2023; 14:e0210023. [PMID: 37815362 PMCID: PMC10653861 DOI: 10.1128/mbio.02100-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus is an opportunistic human pathogen associated with severe infections and antimicrobial resistance. S. aureus strains utilize a type VII secretion system to secrete toxins targeting competitor bacteria, likely facilitating colonization. EsaD is a nuclease toxin secreted by the type VII secretion system in many strains of S. aureus as well as other related bacterial species. Here, we identify three small proteins of previously unknown function as export factors, required for efficient secretion of EsaD. We show that these proteins bind to the transport domain of EsaD, forming a complex with a striking cane-like conformation.
Collapse
Affiliation(s)
- Yaping Yang
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eleanor Boardman
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Justin Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Felicity Alcock
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Bunduc CM, Ding Y, Kuijl C, Marlovits TC, Bitter W, Houben ENG. Reconstitution of a minimal ESX-5 type VII secretion system suggests a role for PPE proteins in the outer membrane transport of proteins. mSphere 2023; 8:e0040223. [PMID: 37747201 PMCID: PMC10597459 DOI: 10.1128/msphere.00402-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Mycobacteria utilize type VII secretion systems (T7SSs) to secrete proteins across their highly hydrophobic and diderm cell envelope. Pathogenic mycobacteria have up to five different T7SSs, called ESX-1 to ESX-5, which are crucial for growth and virulence. Here, we use a functionally reconstituted ESX-5 system in the avirulent species Mycobacterium smegmatis that lacks ESX-5, to define the role of each esx-5 gene in system functionality. By creating an array of gene deletions and assessing protein levels of components and membrane complex assembly, we observed that only the five components of the inner membrane complex are required for its assembly. However, in addition to these five core components, active secretion also depends on both the Esx and PE/PPE substrates. Tagging the PPE substrates followed by subcellular fractionation, surface labeling and membrane extraction showed that these proteins localize to the mycobacterial outer membrane. This indicates that they could play a role in secretion across this enigmatic outer barrier. These results provide the first full overview of the role of each esx-5 gene in T7SS functionality. IMPORTANCE Pathogenic mycobacteria, such as the notorious Mycobacterium tuberculosis, are highly successful as pathogens, in part due to their specific and diderm cell envelope, with a mycolic acid-containing outer membrane. The architecture of this highly impermeable membrane is little understood and the proteins that populate it even less so. To transport proteins across their cell envelope, mycobacteria employ a specialized transport pathway called type VII secretion. While recent studies have elucidated the type VII secretion membrane channel that mediates transport across the inner membrane, the identity of the outer membrane channel remains a black box. Here, we show evidence that specific substrates of the type VII pathway could form these channels. Elucidating the pathway and mechanism of protein secretion through the mycobacterial outer membrane will allow its exploitation for the development of novel mycobacterial therapeutics.
Collapse
Affiliation(s)
- C. M. Bunduc
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
- Centre for Structural Systems Biology, Notkestraße, Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße, Hamburg, Germany
- German Electron Synchrotron Centre, Notkestraße, Hamburg, Germany
| | - Y. Ding
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
| | - C. Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - T. C. Marlovits
- Centre for Structural Systems Biology, Notkestraße, Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße, Hamburg, Germany
- German Electron Synchrotron Centre, Notkestraße, Hamburg, Germany
| | - W. Bitter
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - E. N. G. Houben
- Molecular Microbiology Section, Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
7
|
García-Bengoa M, Meurer M, Stehr M, Elamin AA, Singh M, Oehlmann W, Mörgelin M, von Köckritz-Blickwede M. Mycobacterium tuberculosis PE/PPE proteins enhance the production of reactive oxygen species and formation of neutrophil extracellular traps. Front Immunol 2023; 14:1206529. [PMID: 37675111 PMCID: PMC10478095 DOI: 10.3389/fimmu.2023.1206529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Neutrophil granulocytes predominate in the lungs of patients infected with Mycobacterium tuberculosis (Mtb) in earlier stages of the disease. During infection, neutrophils release neutrophil extracellular traps (NETs), an antimicrobial mechanism by which a DNA-backbone spiked with antimicrobial components traps the mycobacteria. However, the specific mycobacterial factors driving NET formation remain unclear. Proteins from the proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family are critical to Mtb pathophysiology and virulence. Methods Here, we investigated NET induction by PE18, PPE26, and PE31 in primary human blood-derived neutrophils. Neutrophils were stimulated with the respective proteins for 3h, and NET formation was subsequently assessed using confocal fluorescence microscopy. Intracellular ROS levels and cell necrosis were estimated by flow cytometry. Additionally, the influence of phorbol-12-myristate-13-acetate (PMA), a known NADPH oxidase enhancer, on NET formation was examined. Neutrophil integrity following incubation with the PE/PPE proteins was evaluated using transmission electron microscopy. Results For the first time, we report that stimulation of primary human blood-derived neutrophils with Mtb proteins PE18, PPE26, and PE31 resulted in the formation of NETs, which correlated with an increase in intracellular ROS levels. Notably, the presence of PMA further amplified this effect. Following incubation with the PE/PPE proteins, neutrophils were found to remain viable and structurally intact, as verified through transmission electron microscopy, indicating the occurrence of vital NET formation. Discussion These findings offer valuable insights that contribute to a better understanding of host-pathogen interactions during Mtb infection. Moreover, they underscore the significance of these particular Mtb antigens in triggering NET formation, representing a distinctive and previously unrecognized function of PE/PPE antigens.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Marita Meurer
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Matthias Stehr
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | | | | | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
8
|
Jolly J, Cheatham TC, Blackburn JS. Phosphatase and Pseudo-Phosphatase Functions of Phosphatase of Regenerating Liver 3 (PRL-3) Are Insensitive to Divalent Metals In Vitro. ACS OMEGA 2023; 8:30578-30589. [PMID: 37636930 PMCID: PMC10448674 DOI: 10.1021/acsomega.3c04095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
Phosphatase of regenerating liver 3 (PRL-3) is associated with cancer metastasis and has been shown to interact with the cyclin and CBS domain divalent metal cation transport mediator (CNNM) family of proteins to regulate the intracellular concentration of magnesium and other divalent metals. Despite PRL-3's importance in cancer, factors that regulate PRL-3's phosphatase activity and its interactions with CNNM proteins remain unknown. Here, we show that divalent metal ions, including magnesium, calcium, and manganese, have no impact on PRL-3's structure, stability, phosphatase activity, or CNNM binding capacity, indicating that PRL-3 does not act as a metal sensor, despite its interaction with CNNM metal transporters. In vitro approaches found that PRL-3 is a broad but not indiscriminate phosphatase, with activity toward di- and tri-nucleotides, phosphoinositols, and NADPH but not other common metabolites. Although calcium, magnesium, manganese, and zinc-binding sites were predicted near the PRL-3 active site, these divalent metals did not specifically alter PRL-3's phosphatase activity toward a generic substrate, its transition from an inactive phospho-cysteine intermediate state, or its direct binding with the CBS domain of CNNM. PRL-3's insensitivity to metal cations negates the possibility of its role as an intracellular metal content sensor for regulating CNNM activity. Further investigation is warranted to define the regulatory mechanisms governing PRL-3's phosphatase activity and CNNM interactions, as these findings could hold potential therapeutic implications in cancer treatment.
Collapse
Affiliation(s)
- Jeffery
T. Jolly
- Department
of Cellular & Molecular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Markey
Cancer Center at the University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ty C. Cheatham
- Department
of Cellular & Molecular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Markey
Cancer Center at the University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jessica S. Blackburn
- Department
of Cellular & Molecular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Markey
Cancer Center at the University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
9
|
Yang Y, Boardman E, Deme J, Alcock F, Lea S, Palmer T. Three small partner proteins facilitate the type VII-dependent secretion export of an antibacterial nuclease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535202. [PMID: 37461441 PMCID: PMC10350083 DOI: 10.1101/2023.04.01.535202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The type VIIb protein secretion system (T7SSb) plays a role in interbacterial competition in Gram-positive Firmicute bacteria and secretes various toxic effector proteins. The mechanism of secretion and the roles of numerous conserved genes within T7SSb gene clusters remain unknown. EsaD is a nuclease toxin secreted by the Staphylococcus aureus T7SSb, which forms a complex with its cognate immunity protein, EsaG, and chaperone EsaE. Encoded upstream of EsaD are three small secreted proteins, EsxB, EsxC and EsxD. Here we show that EsxBCD bind to the transport domain of EsaD and function as EsaD export factors. We report the first structural information for a complete T7SSb substrate pre-secretion complex. Cryo-EM of the EsaDEG trimer and the EsaDEG-EsxBCD hexamer shows that incorporation of EsxBCD confers a conformation comprising a flexible globular cargo domain attached to a long narrow shaft that is likely to be crucial for efficient toxin export.
Collapse
Affiliation(s)
- Yaping Yang
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Eleanor Boardman
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Justin Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702
| | - Felicity Alcock
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Susan Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
10
|
Famelis N, Geibel S, van Tol D. Mycobacterial type VII secretion systems. Biol Chem 2023; 0:hsz-2022-0350. [PMID: 37276364 DOI: 10.1515/hsz-2022-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Mycobacteria, such as the pathogen M. tuberculosis, utilize up to five paralogous type VII secretion systems to transport proteins across their cell envelope. Since these proteins associate in pairs that depend on each other for transport to a different extent, the secretion pathway to the bacterial surface remained challenging to address. Structural characterization of the inner-membrane embedded secretion machineries along with recent advances on the substrates' co-dependencies for transport allow for the first time more detailed and testable models for secretion.
Collapse
Affiliation(s)
- Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius Maximilian University of Würzburg, D-97080 Würzburg, Germany
| | - Sebastian Geibel
- Leiden Institute of Chemistry, Leiden University, NL-2333 CC Leiden, Netherlands
| | - Daan van Tol
- Leiden Institute of Chemistry, Leiden University, NL-2333 CC Leiden, Netherlands
| |
Collapse
|
11
|
Sankey N, Merrick H, Singh P, Rogers J, Reddi A, Hartson SD, Mitra A. Role of the Mycobacterium tuberculosis ESX-4 Secretion System in Heme Iron Utilization and Pore Formation by PPE Proteins. mSphere 2023; 8:e0057322. [PMID: 36749044 PMCID: PMC10117145 DOI: 10.1128/msphere.00573-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is transmitted through aerosols and primarily colonizes within the lung. The World Health Organization estimates that Mtb kills ~1.4 million people every year. A key aspect that makes Mtb such a successful pathogen is its ability to overcome iron limitation mounted by the host immune response. In our previous studies, we have shown that Mtb can utilize iron from heme, the largest source of iron in the human host, and that it uses two redundant heme utilization pathways. In this study, we show that the ESX-4 type VII secretion system (T7SS) is necessary for extracellular heme uptake into the Mtb cell through both heme utilization pathways. ESX-4 influences the secretion of the culture filtrate proteins Rv0125 and Rv1085c, which are also necessary for efficient heme utilization. We also discovered that deletion of the alternative sigma factor SigM significantly reduced Mtb heme utilization through both pathways and predict that SigM is a global positive regulator of core heme utilization genes of both pathways. Finally, we present the first direct evidence that some mycobacterial PPE (proline-proline-glutamate motif) proteins of the PPE protein family are pore-forming membrane proteins. Altogether, we identified core components of both Mtb Heme utilization pathways that were previously unknown and identified a novel channel-forming membrane protein of Mtb. IMPORTANCE M. tuberculosis (Mtb) is completely dependent on iron acquisition in the host to cause disease. The largest source of iron for Mtb in the human host is heme. Here, we show that the ancestral ESX-4 type VII secretion system is required for the efficient utilization of heme as a source of iron, which is an essential nutrient. This is another biological function identified for ESX-4 in Mtb, whose contribution to Mtb physiology is poorly understood. A most exciting finding is that some mycobacterial PPE (proline-proline-glutamate motif) proteins that have been implicated in the nutrient acquisition are membrane proteins that can form channels in a lipid bilayer. These observations have far-reaching implications because they support an emerging theme that PPE proteins can function as channel proteins in the outer mycomembrane for nutrient acquisition. Mtb has evolved a heme uptake system that is drastically different from all other known bacterial heme acquisition systems.
Collapse
Affiliation(s)
- November Sankey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Haley Merrick
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Padam Singh
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Amit Reddi
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Steven D. Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Avishek Mitra
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
12
|
D'Souza C, Kishore U, Tsolaki AG. The PE-PPE Family of Mycobacterium tuberculosis: Proteins in Disguise. Immunobiology 2023; 228:152321. [PMID: 36805109 DOI: 10.1016/j.imbio.2022.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis has thrived in parallel with humans for millennia, and despite our efforts, M. tuberculosis continues to plague us, currently infecting a third of the world's population. The success of M. tuberculosis has recently been attributed, in part, to the PE-PPE family; a unique collection of 168 proteins fundamentally involved in the pathogenesis of M. tuberculosis. The PE-PPE family proteins have been at the forefront of intense research efforts since their discovery in 1998 and whilst our knowledge and understanding has significantly advanced over the last two decades, many important questions remain to be elucidated. This review consolidates and examines the vast body of existing literature regarding the PE-PPE family proteins, with respect to the latest developments in elucidating their evolution, structure, subcellular localisation, function, and immunogenicity. This review also highlights significant inconsistencies and contradictions within the field. Additionally, possible explanations for these knowledge gaps are explored. Lastly, this review poses many important questions, which need to be addressed to complete our understanding of the PE-PPE family, as well as highlighting the challenges associated with studying this enigmatic family of proteins. Further research into the PE-PPE family, together with technological advancements in genomics and proteomics, will undoubtedly improve our understanding of the pathogenesis of M. tuberculosis, as well as identify key targets/candidates for the development of novel drugs, diagnostics, and vaccines.
Collapse
Affiliation(s)
- Christopher D'Souza
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anthony G Tsolaki
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
13
|
The ESX-1 Substrate PPE68 Has a Key Function in ESX-1-Mediated Secretion in Mycobacterium marinum. mBio 2022; 13:e0281922. [PMID: 36409073 PMCID: PMC9765416 DOI: 10.1128/mbio.02819-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria use specialized type VII secretion systems (T7SSs) to secrete proteins across their diderm cell envelope. One of the T7SS subtypes, named ESX-1, is a major virulence determinant in pathogenic species such as Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. ESX-1 secretes a variety of substrates, called Esx, PE, PPE, and Esp proteins, at least some of which are folded heterodimers. Investigation into the functions of these substrates is problematic, because of the intricate network of codependent secretion between several ESX-1 substrates. Here, we describe the ESX-1 substrate PPE68 as essential for secretion of the highly immunogenic substrates EsxA and EspE via the ESX-1 system in M. marinum. While secreted PPE68 is processed on the cell surface, the majority of cell-associated PPE68 of M. marinum and M. tuberculosis is present in a cytosolic complex with its PE partner and the EspG1 chaperone. Interfering with the binding of EspG1 to PPE68 blocked its export and the secretion of EsxA and EspE. In contrast, esxA was not required for the secretion of PPE68, revealing a hierarchy in codependent secretion. Remarkably, the final 10 residues of PPE68, a negatively charged domain, seem essential for EspE secretion, but not for the secretion of EsxA and of PPE68 itself. This indicates that distinctive domains of PPE68 are involved in secretion of the different ESX-1 substrates. Based on these findings, we propose a mechanistic model for the central role of PPE68 in ESX-1-mediated secretion and substrate codependence. IMPORTANCE Pathogenic mycobacteria, such Mycobacterium tuberculosis and Mycobacterium marinum, use a type VII secretion system (T7SS) subtype, called ESX-1, to mediate intracellular survival via phagosomal rupture and subsequent translocation of the mycobacterium to the host cytosol. Identifying the ESX-1 substrate that is responsible for this process is problematic because of the intricate network of codependent secretion between ESX-1 substrates. Here, we show the central role of the ESX-1 substrate PPE68 for the secretion of ESX-1 substrates in Mycobacterium marinum. Unravelling the mechanism of codependent secretion will aid the functional understanding of T7SSs and will allow the analysis of the individual roles of ESX-1 substrates in the virulence caused by the significant human pathogen Mycobacterium tuberculosis.
Collapse
|
14
|
Gijsbers A, Eymery M, Gao Y, Menart I, Vinciauskaite V, Siliqi D, Peters PJ, McCarthy A, Ravelli RBG. The crystal structure of the EspB-EspK virulence factor-chaperone complex suggests an additional type VII secretion mechanism in Mycobacterium tuberculosis. J Biol Chem 2022; 299:102761. [PMID: 36463964 PMCID: PMC9811218 DOI: 10.1016/j.jbc.2022.102761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Pathogenic species from the Mycobacterium genus are responsible for a number of adverse health conditions in humans and animals that threaten health security and the economy worldwide. Mycobacteria have up to five specialized secretion systems (ESX-1 to ESX-5) that transport virulence factors across their complex cell envelope to facilitate manipulation of their environment. In pathogenic species, these virulence factors influence the immune system's response and are responsible for membrane disruption and contributing to cell death. While structural details of these secretion systems have been recently described, gaps still remain in the structural understanding of the secretion mechanisms of most substrates. Here, we describe the crystal structure of Mycobacterium tuberculosis ESX-1 secretion-associated substrate EspB bound to its chaperone EspK. We found that EspB interacts with the C-terminal domain of EspK through its helical tip. Furthermore, cryogenic electron microscopy, size exclusion chromatography analysis, and small-angle X-ray scattering experiments show that EspK keeps EspB in its secretion-competent monomeric form and prevents its oligomerization. The structure presented in this study suggests an additional secretion mechanism in ESX-1, analogous to the chaperoning of proline-glutamate (PE)-proline-proline-glutamate (PPE) proteins by EspG, where EspK facilitates the secretion of EspB in Mycobacterium species.
Collapse
Affiliation(s)
- Abril Gijsbers
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | | | - Ye Gao
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Isabella Menart
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Vanesa Vinciauskaite
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | | | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
15
|
Abstract
Bacterial type VIIb secretion systems (T7SSb) are multisubunit integral membrane protein complexes found in Firmicutes that play a role in both bacterial competition and virulence by secreting toxic effector proteins. The majority of characterized T7SSb effectors adopt a polymorphic domain architecture consisting of a conserved N-terminal Leu-X-Gly (LXG) domain and a variable C-terminal toxin domain. Recent work has started to reveal the diversity of toxic activities exhibited by LXG effectors; however, little is known about how these proteins are recruited to the T7SSb apparatus. In this work, we sought to characterize genes encoding domains of unknown function (DUFs) 3130 and 3958, which frequently cooccur with LXG effector-encoding genes. Using coimmunoprecipitation-mass spectrometry analyses, in vitro copurification experiments, and T7SSb secretion assays, we found that representative members of these protein families form heteromeric complexes with their cognate LXG domain and in doing so, function as targeting factors that promote effector export. Additionally, an X-ray crystal structure of a representative DUF3958 protein, combined with predictive modeling of DUF3130 using AlphaFold2, revealed structural similarity between these protein families and the ubiquitous WXG100 family of T7SS effectors. Interestingly, we identified a conserved FxxxD motif within DUF3130 that is reminiscent of the YxxxD/E “export arm” found in mycobacterial T7SSa substrates and mutation of this motif abrogates LXG effector secretion. Overall, our data experimentally link previously uncharacterized bacterial DUFs to type VIIb secretion and reveal a molecular signature required for LXG effector export.
Collapse
|
16
|
Bandyopadhyay A, Saxena AK. Structural and ATPase activity analysis of nucleotide binding domain of Rv3870 enzyme of M. tuberculosis ESX-1 system. Int J Biol Macromol 2021; 189:879-889. [PMID: 34428493 DOI: 10.1016/j.ijbiomac.2021.08.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
The EccC enzyme of ESX-1 system contains (i) a membrane bound Rv3870 with single ATPase domain and (ii) a cytoplasmic Rv3871 with two ATPase domains and involved in secretion of ESAT6/CFP10 factor out of the cell. In current study, we have structurally and biochemically characterized the ATPase domain (442-747 residues) of Rv3870 enzyme. The ΔRv3870 eluted as oligomer (~813 kDa) from Superdex 200 (16/60) column, as identified based on molecular mass standard and dynamics light scattering. The SAXS analysis yielded a tetrameric ring envelope of ΔRv3870, quite consistent to dynamic light scattering data. The ΔRv3870 exhibited ATPase activity having kinetic parameters, Km ~ 100 ± 40 μM, kcat ~ 1.81 ± 0.27 min-1 and Vmax ~ 54.41 μM/min/mg. ATPase activity using nine ΔRv3870 mutants showed 70-91% decrease in catalytic efficiency of the enzyme. ΔRv3870 binds Rv3871 with KD ~ 484.0 ± 10.3 nM and its catalytic efficiency is enhanced ~6.7-fold in presence of Rv3871. CD data revealed the high TM ~ 82.2 ± 0.5 °C for ΔRv3870 and enhanced in presence of ATP + Mg2+, as observed in dynamics simulation on ΔRv3870 hexameric models. Overall, our structural and biochemical studies on ΔRv3870 have explained the mechanism, which will contribute in development of antivirulence inhibitors against M. tuberculosis.
Collapse
Affiliation(s)
- Arkita Bandyopadhyay
- Rm-403/440, Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi-67, India
| | - Ajay K Saxena
- Rm-403/440, Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi-67, India.
| |
Collapse
|
17
|
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567-584. [PMID: 34040228 DOI: 10.1038/s41579-021-00560-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany. .,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany.
| |
Collapse
|
18
|
Abstract
The type VII protein secretion system (T7SS) of Staphylococcus aureus is encoded at the ess locus. T7 substrate recognition and protein transport are mediated by EssC, a membrane-bound multidomain ATPase. Four EssC sequence variants have been identified across S. aureus strains, each accompanied by a specific suite of substrate proteins. The ess genes are upregulated during persistent infection, and the secretion system contributes to virulence in disease models. It also plays a key role in intraspecies competition, secreting nuclease and membrane-depolarizing toxins that inhibit the growth of strains lacking neutralizing immunity proteins. A genomic survey indicates that the T7SS is widely conserved across staphylococci and is encoded in clusters that contain diverse arrays of toxin and immunity genes. The presence of genomic islands encoding multiple immunity proteins in species such as Staphylococcus warneri that lack the T7SS points to a major role for the secretion system in bacterial antagonism. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Bowman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| |
Collapse
|
19
|
De Maio F, Berisio R, Manganelli R, Delogu G. PE_PGRS proteins of Mycobacterium tuberculosis: A specialized molecular task force at the forefront of host-pathogen interaction. Virulence 2021; 11:898-915. [PMID: 32713249 PMCID: PMC7550000 DOI: 10.1080/21505594.2020.1785815] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
To the PE_PGRS protein subfamily belongs a group of surface-exposed mycobacterial antigens that in Mycobacterium tuberculosis (Mtb) H37Rv accounts to more than 65 genes, 51 of which are thought to express a functional protein. PE_PGRS proteins share a conserved structural architecture with three main domains: the N-terminal PE domain; the PGRS domain, that can vary in sequence and size and is characterized by the presence of multiple GGA-GGX amino acid repeats; the highly conserved sequence containing the GRPLI motif that links the PE and PGRS domains; the unique C-terminus end that can vary in size from few to up to ≈ 300 amino acids. pe_pgrs genes emerged in slow-growing mycobacteria and expanded and diversified in MTBC and few other pathogenic mycobacteria. Interestingly, despite sequence homology and apparent redundancy, PE_PGRS proteins seem to have evolved a peculiar function. In this review, we summarize the actual knowledge on this elusive protein family in terms of evolution, structure, and function, focusing on the role of PE_PGRS in TB pathogenesis. We provide an original hypothesis on the role of the PE domain and propose a structural model for the polymorphic PGRS domain that might explain how so similar proteins can have different physiological functions.
Collapse
Affiliation(s)
- Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" , Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore , Rome, Italy
| | - Rita Berisio
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB , Naples, Italy
| | | | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie - Sezione di Microbiologia, Università Cattolica del Sacro Cuore , Rome, Italy.,Mater Olbia Hospital , Olbia, Italy
| |
Collapse
|
20
|
Gijsbers A, Vinciauskaite V, Siroy A, Gao Y, Tria G, Mathew A, Sánchez-Puig N, López-Iglesias C, Peters PJ, Ravelli RBG. Priming mycobacterial ESX-secreted protein B to form a channel-like structure. Curr Res Struct Biol 2021; 3:153-164. [PMID: 34337436 PMCID: PMC8313811 DOI: 10.1016/j.crstbi.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
ESX-1 is a major virulence factor of Mycobacterium tuberculosis, a secretion machinery directly involved in the survival of the microorganism from the immune system defence. It disrupts the phagosome membrane of the host cell through a contact-dependent mechanism. Recently, the structure of the inner-membrane core complex of the homologous ESX-3 and ESX-5 was resolved; however, the elements involved in the secretion through the outer membrane or those acting on the host cell membrane are unknown. Protein substrates might form this missing element. Here, we describe the oligomerisation process of the ESX-1 substrate EspB, which occurs upon cleavage of its C-terminal region and is favoured by an acidic environment. Cryo-electron microscopy data shows that quaternary structure of EspB is conserved across slow growing species, but not in the fast growing M. smegmatis. EspB assembles into a channel with dimensions and characteristics suitable for the transit of ESX-1 substrates, as shown by the presence of another EspB trapped within. Our results provide insight into the structure and assembly of EspB, and suggests a possible function as a structural element of ESX-1.
Collapse
Affiliation(s)
- Abril Gijsbers
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Vanesa Vinciauskaite
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Axel Siroy
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Ye Gao
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Giancarlo Tria
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Anjusha Mathew
- Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Nuria Sánchez-Puig
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
21
|
Ehtram A, Shariq M, Ali S, Quadir N, Sheikh JA, Ahmad F, Sharma T, Ehtesham NZ, Hasnain SE. Teleological cooption of Mycobacterium tuberculosis PE/PPE proteins as porins: Role in molecular immigration and emigration. Int J Med Microbiol 2021; 311:151495. [PMID: 33730677 DOI: 10.1016/j.ijmm.2021.151495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023] Open
Abstract
Permeation through bacterial cells for exchange or uptake of biomolecules and ions invariably depend upon the existence of pore-forming proteins (porins) in their outer membrane. Mycobacterium tuberculosis (M. tb) harbours one of the most rigid cell envelopes across bacterial genera and is devoid of the classical porins for solute transport across the cell membrane. Though canonical porins are incompatible with the evolution of permeability barrier, porin like activity has been reported from membrane preparations of pathogenic mycobacteria. This suggests a sophisticated transport mechanism that has been elusive until now, along with the protein family responsible for it. Recent evidence suggests that these slow-growing mycobacteria have co-opted some of PE/PPE family proteins as molecular transport channels, in place of porins, to facilitate uptake of nutrients required to thrive in the restrictive host environment. These reports advocate that PE/PPE proteins, due to their structural ability, have a potential role in importing small molecules to the cell's interior. This mechanism unveils how a successful pathogen overcomes its restrictive membrane's transport limitations for selective uptake of nutrients. If extrapolated to have a role in drug transport, these channels could help understand the emergence of drug resistance. Further, as these proteins are associated with the export of virulence factors, they can be exploited as novel drug targets. There remains, however, an interesting question that as the PE/PPE proteins can allow the 'import' of molecules from outside the cell, is the reverse transport also possible across the M. tb membrane. In this review, we have discussed recent evidence supporting PE/PPE's role as a specific transport channel for selective uptake of small molecule nutrients and, as possible molecular export machinery of M. tb. This newly discovered role as transmembrane channels demands further research on this enigmatic family of proteins to comprehend the pathomechanism of this very smart pathogen.
Collapse
Affiliation(s)
- Aquib Ehtram
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India
| | - Sabeeha Ali
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Neha Quadir
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India; Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Faraz Ahmad
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India
| | - Tarina Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, India.
| | - Seyed E Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.
| |
Collapse
|
22
|
Tran HKR, Grebenc DW, Klein TA, Whitney JC. Bacterial type VII secretion: An important player in host-microbe and microbe-microbe interactions. Mol Microbiol 2021; 115:478-489. [PMID: 33410158 DOI: 10.1111/mmi.14680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Type VII secretion systems (T7SSs) are poorly understood protein export apparatuses found in mycobacteria and many species of Gram-positive bacteria. To date, this pathway has predominantly been studied in Mycobacterium tuberculosis, where it has been shown to play an essential role in virulence; however, much less studied is an evolutionarily divergent subfamily of T7SSs referred to as the T7SSb. The T7SSb is found in the major Gram-positive phylum Firmicutes where it was recently shown to target both eukaryotic and prokaryotic cells, suggesting a dual role for this pathway in host-microbe and microbe-microbe interactions. In this review, we compare the current understanding of the molecular architectures and substrate repertoires of the well-studied mycobacterial T7SSa systems to that of recently characterized T7SSb pathways and highlight how these differences may explain the observed biological functions of this understudied protein export machine.
Collapse
Affiliation(s)
- Hiu-Ki R Tran
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dirk W Grebenc
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Timothy A Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
PE_PGRS33, an Important Virulence Factor of Mycobacterium tuberculosis and Potential Target of Host Humoral Immune Response. Cells 2021; 10:cells10010161. [PMID: 33467487 PMCID: PMC7830552 DOI: 10.3390/cells10010161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/16/2023] Open
Abstract
PE_PGRS proteins are surface antigens of Mycobacterium tuberculosis (Mtb) and a few other pathogenic mycobacteria. The PE_PGRS33 protein is among the most studied PE_PGRSs. It is known that the PE domain of PE_PGRS33 is required for the protein translocation through the mycobacterial cell wall, where the PGRS domain remains available for interaction with host receptors. Interaction with Toll like receptor 2 (TLR2) promotes secretion of inflammatory chemokines and cytokines, which are key in the immunopathogenesis of tuberculosis (TB). In this review, we briefly address some key challenges in the development of a TB vaccine and attempt to provide a rationale for the development of new vaccines aimed at fostering a humoral response against Mtb. Using PE_PGRS33 as a model for a surface-exposed antigen, we exploit the availability of current structural data using homology modeling to gather insights on the PGRS domain features. Our study suggests that the PGRS domain of PE_PGRS33 exposes four PGII sandwiches on the outer surface, which, we propose, are directly involved through their loops in the interactions with the host receptors and, as such, are promising targets for a vaccination strategy aimed at inducing a humoral response.
Collapse
|
24
|
Qian J, Chen R, Wang H, Zhang X. Role of the PE/PPE Family in Host-Pathogen Interactions and Prospects for Anti-Tuberculosis Vaccine and Diagnostic Tool Design. Front Cell Infect Microbiol 2020; 10:594288. [PMID: 33324577 PMCID: PMC7726347 DOI: 10.3389/fcimb.2020.594288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
The pe/ppe genes are found in pathogenic, slow-growing Mycobacterium tuberculosis and other M. tuberculosis complex (MTBC) species. These genes are considered key factors in host-pathogen interactions. Although the function of most PE/PPE family proteins remains unclear, accumulating evidence suggests that this family is involved in M. tuberculosis infection. Here, we review the role of PE/PPE proteins, which are believed to be linked to the ESX system function. Further, we highlight the reported functions of PE/PPE proteins, including their roles in host cell interaction, immune response regulation, and cell fate determination during complex host-pathogen processes. Finally, we propose future directions for PE/PPE protein research and consider how the current knowledge might be applied to design more specific diagnostics and effective vaccines for global tuberculosis control.
Collapse
Affiliation(s)
- Jianing Qian
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Run Chen
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Xuelian Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum. Microbiol Mol Biol Rev 2020; 84:84/4/e00082-19. [DOI: 10.1128/mmbr.00082-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pathogenic mycobacteria cause chronic and acute diseases ranging from human tuberculosis (TB) to nontubercular infections.
Mycobacterium tuberculosis
causes both acute and chronic human tuberculosis. Environmentally acquired nontubercular mycobacteria (NTM) cause chronic disease in humans and animals. Not surprisingly, NTM and
M. tuberculosis
often use shared molecular mechanisms to survive within the host. The ESX-1 system is a specialized secretion system that is essential for virulence and is functionally conserved between
M. tuberculosis
and
Mycobacterium marinum
.
Collapse
|
26
|
Conserved ESX-1 Substrates EspE and EspF Are Virulence Factors That Regulate Gene Expression. Infect Immun 2020; 88:IAI.00289-20. [PMID: 32900815 DOI: 10.1128/iai.00289-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the cause of human tuberculosis, and Mycobacterium marinum, a nontubercular pathogen with a broad host range, require the ESX-1 secretion system for virulence. The ESX-1 system secretes proteins which cause phagosomal lysis within the macrophage via an unknown mechanism. As reported elsewhere (R. E. Bosserman et al., Proc Natl Acad Sci U S A 114:E10772-E10781, 2017, https://doi.org/10.1073/pnas.1710167114), we recently discovered that the ESX-1 system regulates gene expression in M. marinum This finding was confirmed in M. tuberculosis in reports by C. Sala et al. (PLoS Pathog 14:e1007491, 2018, https://doi.org/10.1371/journal.ppat.1007491) and A. M. Abdallah et al. (PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). We further demonstrated that a feedback control mechanism connects protein secretion to WhiB6-dependent expression of the esx-1 genes via an unknown mechanism. Here, we connect protein secretion and gene expression by showing for the first time that specific ESX-1 substrates have dual functions inside and outside the mycobacterial cell. We demonstrate that the EspE and EspF substrates negatively control esx-1 gene expression in the M. marinum cytoplasm through the conserved WhiB6 transcription factor. We found that EspE and EspF are required for virulence and promote lytic activity independently of the major EsxA and EsxB substrates. We show that the dual functions of EspE and EspF are conserved in the orthologous proteins from M. tuberculosis Our findings support a role for EspE and EspF in virulence that is independent of the EsxA and EsxB substrates and demonstrate that ESX-1 substrates have a conserved role in regulating gene expression.
Collapse
|
27
|
Bunduc CM, Bitter W, Houben E. Structure and Function of the Mycobacterial Type VII Secretion Systems. Annu Rev Microbiol 2020; 74:315-335. [DOI: 10.1146/annurev-micro-012420-081657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria have evolved intricate secretion machineries for the successful delivery of large molecules across their cell envelopes. Such specialized secretion systems allow a variety of bacteria to thrive in specific host environments. In mycobacteria, type VII secretion systems (T7SSs) are dedicated protein transport machineries that fulfill diverse and crucial roles, ranging from metabolite uptake to immune evasion and subversion to conjugation. Since the discovery of mycobacterial T7SSs about 15 y ago, genetic, structural, and functional studies have provided insight into the roles and functioning of these secretion machineries. Here, we focus on recent advances in the elucidation of the structure and mechanism of mycobacterial T7SSs in protein secretion. As many of these systems are essential for mycobacterial growth or virulence, they provide opportunities for the development of novel therapies to combat a number of relevant mycobacterial diseases.
Collapse
Affiliation(s)
- Catalin M. Bunduc
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - W. Bitter
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, 1007 MB Amsterdam, The Netherlands
| | - E.N.G. Houben
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
28
|
Williamson ZA, Chaton CT, Ciocca WA, Korotkova N, Korotkov KV. PE5-PPE4-EspG 3 heterotrimer structure from mycobacterial ESX-3 secretion system gives insight into cognate substrate recognition by ESX systems. J Biol Chem 2020; 295:12706-12715. [PMID: 32675282 PMCID: PMC7476729 DOI: 10.1074/jbc.ra120.012698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/06/2020] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium tuberculosis has evolved numerous type VII secretion (ESX) systems to secrete multiple factors important for both growth and virulence across their cell envelope. ESX-1, ESX-3, and ESX-5 systems have been shown to each secrete a distinct set of substrates, including PE and PPE families of proteins, named for conserved Pro-Glu and Pro-Pro-Glu motifs in their N termini. Proper secretion of the PE-PPE proteins requires the presence of EspG, with each system encoding its own unique copy. There is no cross-talk between any of the ESX systems, and how each EspG recognizes its subset of PE-PPE proteins is currently unknown. The only current structural characterization of PE-PPE-EspG heterotrimers is from the ESX-5 system. Here we present the crystal structure of the PE5mt-PPE4mt-EspG3mm heterotrimer from the ESX-3 system. Our heterotrimer reveals that EspG3mm interacts exclusively with PPE4mt in a similar manner to EspG5, shielding the hydrophobic tip of PPE4mt from solvent. The C-terminal helical domain of EspG3mm is dynamic, alternating between "open" and "closed" forms, and this movement is likely functionally relevant in the unloading of PE-PPE heterodimers at the secretion machinery. In contrast to the previously solved ESX-5 heterotrimers, the PE-PPE heterodimer of our ESX-3 heterotrimer is interacting with its chaperone at a drastically different angle and presents different faces of the PPE protein to the chaperone. We conclude that the PPE-EspG interface from each ESX system has a unique shape complementarity that allows each EspG to discriminate among noncognate PE-PPE pairs.
Collapse
Affiliation(s)
- Zachary A Williamson
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine T Chaton
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - William A Ciocca
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Natalia Korotkova
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Konstantin V Korotkov
- Department of Molecular & Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
29
|
Ly A, Liu J. Mycobacterial Virulence Factors: Surface-Exposed Lipids and Secreted Proteins. Int J Mol Sci 2020; 21:ijms21113985. [PMID: 32498243 PMCID: PMC7312605 DOI: 10.3390/ijms21113985] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
The clinically important Mycobacterium tuberculosis (M. tb) and related mycobacterial pathogens use various virulence mechanisms to survive and cause disease in their hosts. Several well-established virulence factors include the surface-exposed lipids in the mycobacterial outer membrane, as well as the Esx family proteins and the Pro-Glu (PE)/ Pro-Pro-Glu (PPE) family proteins secreted by type VII secretion systems (T7SS). Five ESX T7SS exist in M. tb and three—EsxA secretion system-1 (ESX-1), ESX-3, and ESX-5—have been implicated in virulence, yet only the structures of ESX-3 and ESX-5 have been solved to date. Here, we summarize the current research on three outer membrane lipids—phthiocerol dimycocerosates, phenolic glycolipids, and sulfolipids—as well as the secretion machinery and substrates of three mycobacterial T7SS—ESX-1, ESX-3, and ESX-5. We propose a structural model of the M. tb ESX-1 system based on the latest structural findings of the ESX-3 and ESX-5 secretion apparatuses to gain insight into the transport mechanism of ESX-associated virulence factors.
Collapse
Affiliation(s)
| | - Jun Liu
- Correspondence: ; Tel.: +1-416-946-5067
| |
Collapse
|
30
|
Crosskey TD, Beckham KS, Wilmanns M. The ATPases of the mycobacterial type VII secretion system: Structural and mechanistic insights into secretion. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 152:25-34. [DOI: 10.1016/j.pbiomolbio.2019.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
|
31
|
Damen MPM, Phan TH, Ummels R, Rubio-Canalejas A, Bitter W, Houben ENG. Modification of a PE/PPE substrate pair reroutes an Esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system. J Biol Chem 2020; 295:5960-5969. [PMID: 32184351 DOI: 10.1074/jbc.ra119.011682] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/13/2020] [Indexed: 01/20/2023] Open
Abstract
Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1-5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1.
Collapse
Affiliation(s)
- Merel P M Damen
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Trang H Phan
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Alba Rubio-Canalejas
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Edith N G Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Bunduc CM, Ummels R, Bitter W, Houben ENG. Species-specific secretion of ESX-5 type VII substrates is determined by the linker 2 of EccC 5. Mol Microbiol 2020; 114:66-76. [PMID: 32096294 PMCID: PMC7384006 DOI: 10.1111/mmi.14496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Indexed: 12/20/2022]
Abstract
Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5 , possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5 . This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5 , showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5 .
Collapse
Affiliation(s)
- Catalin M Bunduc
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medical Microbiology and Infection Control, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Tucci P, Portela M, Chetto CR, González-Sapienza G, Marín M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One 2020; 15:e0221837. [PMID: 32126063 PMCID: PMC7053730 DOI: 10.1371/journal.pone.0221837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Despite being the subject of intensive research, tuberculosis, caused by Mycobacterium tuberculosis, remains at present the leading cause of death from an infectious agent. Secreted and cell wall proteins interact with the host and play important roles in pathogenicity. These proteins are explored as candidate diagnostic markers, potential drug targets or vaccine antigens, and more recently special attention is being given to the role of their post-translational modifications. With the purpose of contributing to the proteomic and glycoproteomic characterization of this important pathogen, we performed a shotgun analysis of culture filtrate proteins of M. tuberculosis based on a liquid nano-HPLC tandem mass spectrometry and a label-free spectral counting normalization approach for protein quantification. We identified 1314 M. tuberculosis proteins in culture filtrate and found that the most abundant proteins belong to the extracellular region or cell wall compartment, and that the functional categories with higher protein abundance factor were virulence, detoxification and adaptation, and cell wall and cell processes. We could identify a group of proteins consistently detected in previous studies, most of which were highly abundant proteins. In culture filtrate, 140 proteins were predicted to contain one of the three types of bacterial N-terminal signal peptides. Besides, various proteins belonging to the ESX secretion systems, and to the PE and PPE families, secreted by the type VII secretion system using nonclassical secretion signals, were also identified. O-glycosylation was identified in 46 proteins, many of them lipoproteins and cell wall associated proteins. Finally, we provide proteomic evidence for 33 novel O-glycosylated proteins, aiding to the glycoproteomic characterization of relevant antigenic membrane and exported proteins. These findings are expected to collaborate with the research on pathogen derived biomarkers, virulence factors and vaccine candidates, and to provide clues to the understanding of the pathogenesis and survival strategies adopted by M. tuberculosis.
Collapse
Affiliation(s)
- Paula Tucci
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Rivas Chetto
- Departamento de Laboratorio, Comisión Honoraria para la Lucha Antituberculosa y Enfermedades Prevalentes, Centro de Referencia Nacional para Micobacterias, Ministerio de Salud Pública, Montevideo, Uruguay
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Universidad de la Republica Uruguay, Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
34
|
Infect and Inject: How Mycobacterium tuberculosis Exploits Its Major Virulence-Associated Type VII Secretion System, ESX-1. Microbiol Spectr 2020; 7. [PMID: 31172908 PMCID: PMC6698389 DOI: 10.1128/microbiolspec.bai-0024-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis is an ancient master of the art of causing human disease. One important weapon within its fully loaded arsenal is the type VII secretion system. M. tuberculosis has five of them: ESAT-6 secretion systems (ESX) 1 to 5. ESX-1 has long been recognized as a major cause of attenuation of the FDA-licensed vaccine Mycobacterium bovis BCG, but its importance in disease progression and transmission has recently been elucidated in more detail. This review summarizes the recent advances in (i) the understanding of the ESX-1 structure and components, (ii) our knowledge of ESX-1's role in hijacking macrophage function to set a path for infection and dissemination, and (iii) the development of interventions that utilize ESX-1 for diagnosis, drug interventions, host-directed therapies, and vaccines.
Collapse
|
35
|
Bhattacharya S, Ghosh P, Banerjee D, Banerjee A, Ray S. In Silico Drug Target Discovery Through Proteome Mining from M. tuberculosis: An Insight into Antivirulent Therapy. Comb Chem High Throughput Screen 2020; 23:253-268. [PMID: 32072892 DOI: 10.2174/1386207323666200219120903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE One of the challenges to conventional therapies against Mycobacterium tuberculosis is the development of multi-drug resistant pathogenic strains. This study was undertaken to explore new therapeutic targets for the revolutionary antivirulence therapy utilizing the pathogen's essential hypothetical proteins, serving as virulence factors, which is the essential first step in novel drug designing. METHODS Functional annotations of essential hypothetical proteins from Mycobacterium tuberculosis (H37Rv strain) were performed through domain annotation, Gene Ontology analysis, physicochemical characterization and prediction of subcellular localization. Virulence factors among the essential hypothetical proteins were predicted, among which pathogen-specific drug target candidates, non-homologous to human and gut microbiota, were identified. This was followed by druggability and spectrum analysis of the identified targets. RESULTS AND CONCLUSION The study successfully assigned functions of 83 essential hypothetical proteins of Mycobacterium tuberculosis, among which 25 were identified as virulence factors. Out of 25, 12 virulence factors were observed as potential pathogen-specific drug target candidates. Nine potential targets had druggable properties and rest three were considered as novel targets. Exploration of these targets will provide new insights into future drug development. Characterization of subcellular localizations revealed that most of the predicted targets were cytoplasmic which could be ideal for intracellular drugs, while two drug targets were membranebound, ideal for vaccines. Spectrum analysis identified one broad-spectrum and 11 narrowspectrum targets. This study would, therefore, instigate designing novel therapeutics for antivirulence therapy, which have the potential to serve as revolutionary treatment instead of conventional antibiotic therapies to overcome the lethality of antibiotic-resistant strains.
Collapse
Affiliation(s)
| | - Puja Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | | | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
36
|
Ates LS. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol 2020; 113:4-21. [PMID: 31661176 PMCID: PMC7028111 DOI: 10.1111/mmi.14409] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/30/2022]
Abstract
The PE and PPE proteins of Mycobacterium tuberculosis have been studied with great interest since their discovery. Named after the conserved proline (P) and glutamic acid (E) residues in their N-terminal domains, these proteins are postulated to perform wide-ranging roles in virulence and immune modulation. However, technical challenges in studying these proteins and their encoding genes have hampered the elucidation of molecular mechanisms and leave many open questions regarding the biological functions mediated by these proteins. Here, I review the shared and unique characteristics of PE and PPE proteins from a molecular perspective linking this information to their functions in mycobacterial virulence. I discuss how the different subgroups (PE_PGRS, PPE-PPW, PPE-SVP and PPE-MPTR) are defined and why this classification of paramount importance to understand the PE and PPE proteins as individuals and or groups. The goal of this MicroReview is to summarize and structure the existing information on this gene family into a simplified framework of thinking about PE and PPE proteins and genes. Thereby, I hope to provide helpful starting points in studying these genes and proteins for researchers with different backgrounds. This has particular implications for the design and monitoring of novel vaccine candidates and in understanding the evolution of the M. tuberculosis complex.
Collapse
Affiliation(s)
- Louis S. Ates
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdam UMCUniversity of AmsterdamMeibergdreef 9Amsterdamthe Netherlands
| |
Collapse
|
37
|
Poweleit N, Czudnochowski N, Nakagawa R, Trinidad DD, Murphy KC, Sassetti CM, Rosenberg OS. The structure of the endogenous ESX-3 secretion system. eLife 2019; 8:e52983. [PMID: 31886769 PMCID: PMC6986878 DOI: 10.7554/elife.52983] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
The ESX (or Type VII) secretion systems are protein export systems in mycobacteria and many Gram-positive bacteria that mediate a broad range of functions including virulence, conjugation, and metabolic regulation. These systems translocate folded dimers of WXG100-superfamily protein substrates across the cytoplasmic membrane. We report the cryo-electron microscopy structure of an ESX-3 system, purified using an epitope tag inserted with recombineering into the chromosome of the model organism Mycobacterium smegmatis. The structure reveals a stacked architecture that extends above and below the inner membrane of the bacterium. The ESX-3 protomer complex is assembled from a single copy of the EccB3, EccC3, and EccE3 and two copies of the EccD3 protein. In the structure, the protomers form a stable dimer that is consistent with assembly into a larger oligomer. The ESX-3 structure provides a framework for further study of these important bacterial transporters.
Collapse
Affiliation(s)
- Nicole Poweleit
- Department of Medicine, Division of Infectious DiseasesUniversity of California, San FranciscoSan FranciscoUnited States
- Chan-Zuckerberg BiohubUniversity of California, San FranciscoSan FranciscoUnited States
| | - Nadine Czudnochowski
- Department of Medicine, Division of Infectious DiseasesUniversity of California, San FranciscoSan FranciscoUnited States
- Chan-Zuckerberg BiohubUniversity of California, San FranciscoSan FranciscoUnited States
| | - Rachel Nakagawa
- Department of Medicine, Division of Infectious DiseasesUniversity of California, San FranciscoSan FranciscoUnited States
| | - Donovan D Trinidad
- Department of Medicine, Division of Infectious DiseasesUniversity of California, San FranciscoSan FranciscoUnited States
- Chan-Zuckerberg BiohubUniversity of California, San FranciscoSan FranciscoUnited States
| | - Kenan C Murphy
- Department of Microbiology and Physiological SystemsUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological SystemsUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Oren S Rosenberg
- Department of Medicine, Division of Infectious DiseasesUniversity of California, San FranciscoSan FranciscoUnited States
- Chan-Zuckerberg BiohubUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
38
|
Ahmad J, Khubaib M, Sheikh JA, Pancsa R, Kumar S, Srinivasan A, Babu MM, Hasnain SE, Ehtesham NZ. Disorder-to-order transition in PE-PPE proteins of Mycobacterium tuberculosis augments the pro-pathogen immune response. FEBS Open Bio 2019; 10:70-85. [PMID: 31643141 PMCID: PMC6943233 DOI: 10.1002/2211-5463.12749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
A growing body of evidence supports the hypothesis that intrinsically disordered proteins often mediate host–pathogen interactions and modulate host functions for pathogen survival and virulence. Mycobacterium tuberculosis (M.tb) has evolved largely through reductive evolution, with a few exceptions such as the glycine–alanine‐rich PE–PPE/PGRS protein family, which has been expanding in pathogenic mycobacteria. Here, our analyses of the M.tb proteome and secretome revealed that the PE–PGRS subfamily is enriched for disordered regions and disordered binding sites, pointing to their importance in host–pathogen interactions. As a case study, the secondary structure of PE35–PPE68 and PE32–PPE65 of the pathogenesis‐related RD1 and RD8 regions was analyzed through Fourier‐transform infrared spectroscopy. These disordered proteins displayed a considerable structural shift from disordered to ordered while engaged in the formation of complexes. While these proteins are immunogenic individually and enhance the pro‐pathogen response, their corresponding complexes enhanced the responses manifold as displayed here by PE35 and PPE68. It is likely that M.tb exploits such disorder–order structural dynamics as a strategy to mount a pro‐pathogen response and subvert host defense for productive infection. This functional gain also serves as a means to compensate genomic content loss due to reductive evolution.
Collapse
Affiliation(s)
- Javeed Ahmad
- Inflammation Biology and Cell Signalling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Khubaib
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid Ahmad Sheikh
- Inflammation Biology and Cell Signalling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Rita Pancsa
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohan Madan Babu
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, Hyderabad, India
| | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signalling Laboratory, National Institute of Pathology, New Delhi, India
| |
Collapse
|
39
|
Phan TH, Houben ENG. Bacterial secretion chaperones: the mycobacterial type VII case. FEMS Microbiol Lett 2019; 365:5067300. [PMID: 30085058 PMCID: PMC6109436 DOI: 10.1093/femsle/fny197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chaperones are central players in maintaining the proteostasis in all living cells. Besides highly conserved generic chaperones that assist protein folding and assembly in the cytosol, additional more specific chaperones have evolved to ensure the successful trafficking of proteins with extra-cytoplasmic locations. Associated with the distinctive secretion systems present in bacteria, different dedicated chaperones have been described that not only keep secretory proteins in a translocation competent state, but often are also involved in substrate targeting to the specific translocation channel. Recently, a new class of such chaperones has been identified that are involved in the specific recognition of substrates transported via the type VII secretion pathway in mycobacteria. In this minireview, we provide an overview of the different bacterial chaperones with a focus on their roles in protein secretion and will discuss in detail the roles of mycobacterial type VII secretion chaperones in substrate recognition and targeting.
Collapse
Affiliation(s)
- Trang H Phan
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
40
|
van Winden VJC, Houben ENG, Braunstein M. Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0043-2018. [PMID: 31400094 PMCID: PMC10957183 DOI: 10.1128/microbiolspec.gpp3-0043-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria, including the infamous pathogen Mycobacterium tuberculosis, are high-GC Gram-positive bacteria with a distinctive cell envelope. Although there is a typical inner membrane, the mycobacterial cell envelope is unusual in having its peptidoglycan layer connected to a polymer of arabinogalactan, which in turn is covalently attached to long-chain mycolic acids that help form a highly impermeable mycobacterial outer membrane. This complex double-membrane, or diderm, cell envelope imparts mycobacteria with unique requirements for protein export into and across the cell envelope for secretion into the extracellular environment. In this article, we review the four protein export pathways known to exist in mycobacteria: two conserved systems that exist in all types of bacteria (the Sec and Tat pathways) and two specialized systems that exist in mycobacteria, corynebacteria, and a subset of low-GC Gram-positive bacteria (the SecA2 and type VII secretion pathways). We describe the progress made over the past 15 years in understanding each of these mycobacterial export pathways, and we highlight the need for research to understand the specific steps of protein export across the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Vincent J C van Winden
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines, and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
41
|
A New ESX-1 Substrate in Mycobacterium marinum That Is Required for Hemolysis but Not Host Cell Lysis. J Bacteriol 2019; 201:JB.00760-18. [PMID: 30833360 DOI: 10.1128/jb.00760-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The ESX-1 (ESAT-6 system 1) secretion system plays a conserved role in the virulence of diverse mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis and M. marinum, an environmental mycobacterial species. The ESX-1 system promotes the secretion of protein virulence factors to the extracytoplasmic environment. The secretion of these proteins triggers the host response by lysing the phagosome during macrophage infection. Using proteomic analyses of the M. marinum secretome in the presence and absence of a functional ESX-1 system, we and others have hypothesized that MMAR_2894, a PE family protein, is a potential ESX-1 substrate in M. marinum We used genetic and quantitative proteomic approaches to determine if MMAR_2894 is secreted by the ESX-1 system, and we defined the requirement of MMAR_2894 for ESX-1-mediated secretion and virulence. We show that MMAR_2894 is secreted by the ESX-1 system in M. marinum and is itself required for the optimal secretion of the known ESX-1 substrates in M. marinum Moreover, we found that MMAR_2894 was differentially required for hemolysis and cytolysis of macrophages, two lytic activities ascribed to the M. marinum ESX-1 system.IMPORTANCE Both Mycobacterium tuberculosis, the cause of human tuberculosis (TB), and Mycobacterium marinum, a pathogen of ectotherms, use the ESX-1 secretion system to cause disease. There are many established similarities between the ESX-1 systems in M. tuberculosis and in M. marinum Yet the two bacteria infect different hosts, hinting at species-specific functions of the ESX-1 system. Our findings demonstrate that MMAR_2894 is a PE protein secreted by the ESX-1 system of M. marinum We show that MMAR_2894 is required for the optimal secretion of mycobacterial proteins required for disease. Because the MMAR_2894 gene is not conserved in M. tuberculosis, our findings demonstrate that MMAR_2894 may contribute to a species-specific function of the ESX-1 system in M. marinum, providing new insight into how the M. marinum and M. tuberculosis systems differ.
Collapse
|
42
|
Saelens JW, Viswanathan G, Tobin DM. Mycobacterial Evolution Intersects With Host Tolerance. Front Immunol 2019; 10:528. [PMID: 30967867 PMCID: PMC6438904 DOI: 10.3389/fimmu.2019.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past 200 years, tuberculosis (TB) has caused more deaths than any other infectious disease, likely infecting more people than it has at any other time in human history. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, is an obligate human pathogen that has evolved through the millennia to become an archetypal human-adapted pathogen. This review focuses on the evolutionary framework by which Mtb emerged as a specialized human pathogen and applies this perspective to the emergence of specific lineages that drive global TB burden. We consider how evolutionary pressures, including transmission dynamics, host tolerance, and human population patterns, may have shaped the evolution of diverse mycobacterial genomes.
Collapse
Affiliation(s)
- Joseph W. Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
43
|
Miller BK, Hughes R, Ligon LS, Rigel NW, Malik S, Anjuwon-Foster BR, Sacchettini JC, Braunstein M. Mycobacterium tuberculosis SatS is a chaperone for the SecA2 protein export pathway. eLife 2019; 8:e40063. [PMID: 30604681 PMCID: PMC6333443 DOI: 10.7554/elife.40063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
The SecA2 protein export system is critical for the virulence of Mycobacterium tuberculosis. However, the mechanism of this export pathway remains unclear. Through a screen for suppressors of a secA2 mutant, we identified a new player in the mycobacterial SecA2 pathway that we named SatS for SecA2 (two) Suppressor. In M. tuberculosis, SatS is required for the export of a subset of SecA2 substrates and for growth in macrophages. We further identify a role for SatS as a protein export chaperone. SatS exhibits multiple properties of a chaperone, including the ability to bind to and protect substrates from aggregation. Our structural studies of SatS reveal a distinct combination of a new fold and hydrophobic grooves resembling preprotein-binding sites of the SecB chaperone. These results are significant in better defining a molecular pathway for M. tuberculosis pathogenesis and in expanding our appreciation of the diversity among chaperones and protein export systems.
Collapse
Affiliation(s)
- Brittany K Miller
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - Ryan Hughes
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUnited States
| | - Lauren S Ligon
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - Nathan W Rigel
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - Seidu Malik
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - Brandon R Anjuwon-Foster
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - James C Sacchettini
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUnited States
| | - Miriam Braunstein
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| |
Collapse
|
44
|
Tuukkanen AT, Freire D, Chan S, Arbing MA, Reed RW, Evans TJ, Zenkeviciutė G, Kim J, Kahng S, Sawaya MR, Chaton CT, Wilmanns M, Eisenberg D, Parret AHA, Korotkov KV. Structural Variability of EspG Chaperones from Mycobacterial ESX-1, ESX-3, and ESX-5 Type VII Secretion Systems. J Mol Biol 2018; 431:289-307. [PMID: 30419243 DOI: 10.1016/j.jmb.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
Type VII secretion systems (ESX) are responsible for transport of multiple proteins in mycobacteria. How different ESX systems achieve specific secretion of cognate substrates remains elusive. In the ESX systems, the cytoplasmic chaperone EspG forms complexes with heterodimeric PE-PPE substrates that are secreted from the cells or remain associated with the cell surface. Here we report the crystal structure of the EspG1 chaperone from the ESX-1 system determined using a fusion strategy with T4 lysozyme. EspG1 adopts a quasi 2-fold symmetric structure that consists of a central β-sheet and two α-helical bundles. In addition, we describe the structures of EspG3 chaperones from four different crystal forms. Alternate conformations of the putative PE-PPE binding site are revealed by comparison of the available EspG3 structures. Analysis of EspG1, EspG3, and EspG5 chaperones using small-angle X-ray scattering reveals that EspG1 and EspG3 chaperones form dimers in solution, which we observed in several of our crystal forms. Finally, we propose a model of the ESX-3 specific EspG3-PE5-PPE4 complex based on the small-angle X-ray scattering analysis.
Collapse
Affiliation(s)
- Anne T Tuukkanen
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Diana Freire
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Sum Chan
- UCLA-DOE Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A Arbing
- UCLA-DOE Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Robert W Reed
- Department of Molecular & Cellular Biochemistry, and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Timothy J Evans
- Department of Molecular & Cellular Biochemistry, and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Jennifer Kim
- UCLA-DOE Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sara Kahng
- UCLA-DOE Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael R Sawaya
- UCLA-DOE Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Catherine T Chaton
- Department of Molecular & Cellular Biochemistry, and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - David Eisenberg
- UCLA-DOE Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Annabel H A Parret
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany.
| | - Konstantin V Korotkov
- Department of Molecular & Cellular Biochemistry, and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
45
|
Phan TH, van Leeuwen LM, Kuijl C, Ummels R, van Stempvoort G, Rubio-Canalejas A, Piersma SR, Jiménez CR, van der Sar AM, Houben ENG, Bitter W. EspH is a hypervirulence factor for Mycobacterium marinum and essential for the secretion of the ESX-1 substrates EspE and EspF. PLoS Pathog 2018; 14:e1007247. [PMID: 30102741 PMCID: PMC6107294 DOI: 10.1371/journal.ppat.1007247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/23/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis employs a range of ESX-1 substrates to manipulate the host and build a successful infection. Although the importance of ESX-1 secretion in virulence is well established, the characterization of its individual components and the role of individual substrates is far from complete. Here, we describe the functional characterization of the Mycobacterium marinum accessory ESX-1 proteins EccA1, EspG1 and EspH, i.e. proteins that are neither substrates nor structural components. Proteomic analysis revealed that EspG1 is crucial for ESX-1 secretion, since all detectable ESX-1 substrates were absent from the cell surface and culture supernatant in an espG1 mutant. Deletion of eccA1 resulted in minor secretion defects, but interestingly, the severity of these secretion defects was dependent on the culture conditions. Finally, espH deletion showed a partial secretion defect; whereas several ESX-1 substrates were secreted in normal amounts, secretion of EsxA and EsxB was diminished and secretion of EspE and EspF was fully blocked. Interaction studies showed that EspH binds EspE and therefore could function as a specific chaperone for this substrate. Despite the observed differences in secretion, hemolytic activity was lost in all M. marinum mutants, implying that hemolytic activity is not strictly correlated with EsxA secretion. Surprisingly, while EspH is essential for successful infection of phagocytic host cells, deletion of espH resulted in a significantly increased virulence phenotype in zebrafish larvae, linked to poor granuloma formation and extracellular outgrowth. Together, these data show that different sets of ESX-1 substrates play different roles at various steps of the infection cycle of M. marinum. M. tuberculosis is a facultative intracellular pathogen that has an intimate relationship with host macrophages. Proteins secreted by the ESX-1 secretion system play an important role in this interaction, for instance by orchestrating the escape from the phagosome into the cytosol of the macrophage. However, the exact role of the ESX-1 substrates is unknown, due to their complicated interdependency for secretion. Here, we study the function of ESX-1 accessory proteins EccA1, EspG1 and EspH in ESX-1 secretion in Mycobacterium marium, the causative agent of fish tuberculosis. We found that these proteins affect the secretion of different substrate classes, which offers an approach to study the roles of these substrate groups. An espG1 deletion broadly aborts ESX-1 secretion and thus resulted in severe attenuation in a zebrafish model for tuberculosis, whereas EccA1 is only crucial under specific growth conditions. The most surprising results were obtained for EspH. This protein seems to function as a molecular chaperone for EspE and is as such involved in the secretion of a small subset of ESX-1 substrates. Disruption of espH showed a dual character: whereas this gene is essential for the successful infection of macrophages, deletion of espH resulted in significantly increased virulence in zebrafish larvae. These data convincingly show that different subsets of ESX-1 substrates play different roles at various steps in the mycobacterial infection cycle.
Collapse
Affiliation(s)
- Trang H. Phan
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne M. van Leeuwen
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Coen Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Gunny van Stempvoort
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Alba Rubio-Canalejas
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Connie R. Jiménez
- Department of Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Astrid M. van der Sar
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Edith N. G. Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
46
|
Ibrahim AM, Ragab YM, Aly KA, Ramadan MA. Error-prone PCR mutagenesis and reverse bacterial two-hybrid screening identify a mutation in asparagine 53 of the Staphylococcus aureus ESAT6-like component EsxB that perturbs interaction with EsxD. Folia Microbiol (Praha) 2018; 63:483-492. [DOI: 10.1007/s12223-018-0591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/13/2018] [Indexed: 12/01/2022]
|
47
|
Lai LY, Lin TL, Chen YY, Hsieh PF, Wang JT. Role of the Mycobacterium marinum ESX-1 Secretion System in Sliding Motility and Biofilm Formation. Front Microbiol 2018; 9:1160. [PMID: 29899738 PMCID: PMC5988883 DOI: 10.3389/fmicb.2018.01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can cause systemic tuberculosis-like infections in ectotherms and skin infections in humans. Sliding motility correlates with biofilm formation and virulence in most bacteria. In this study, we used a sliding motility assay to screen 2,304 transposon mutants of M. marinum NTUH-M6885 and identified five transposon mutants with decreased sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were present in 3 mutants. We performed reverse-transcription polymerase chain reaction to verify genes from mmar_5438 to mmar_5450, which were found to belong to a single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system. However, deletion of espG or espH resulted in slightly decreased secretion of EsxB (which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system mediates sliding motility and is crucial for biofilm formation. These data provide new insight into M. marinum biofilm formation.
Collapse
Affiliation(s)
- Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
48
|
Jäger F, Kneuper H, Palmer T. EssC is a specificity determinant for Staphylococcus aureus type VII secretion. MICROBIOLOGY-SGM 2018; 164:816-820. [PMID: 29620499 PMCID: PMC5994694 DOI: 10.1099/mic.0.000650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The type VII protein secretion system (T7SS) is found in actinobacteria and firmicutes, and plays important roles in virulence and interbacterial competition. A membrane-bound ATPase protein, EssC in Staphylococcus aureus, lies at the heart of the secretion machinery. The EssC protein from S. aureus strains can be grouped into four variants (EssC1-EssC4) that display sequence variability in the C-terminal region. Here we show that the EssC2, EssC3 and EssC4 variants can be produced in a strain deleted for essC1, and that they are able to mediate secretion of EsxA, an essential component of the secretion apparatus. They are, however, unable to support secretion of the substrate protein EsxC, which is only encoded in essC1-specific strains. This finding indicates that EssC is a specificity determinant for T7 protein secretion. Our results support a model in which the C-terminal domain of EssC interacts with substrate proteins, whereas EsxA interacts elsewhere.
Collapse
Affiliation(s)
- Franziska Jäger
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Holger Kneuper
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
49
|
Ates LS, Dippenaar A, Ummels R, Piersma SR, van der Woude AD, van der Kuij K, Le Chevalier F, Mata-Espinosa D, Barrios-Payán J, Marquina-Castillo B, Guapillo C, Jiménez CR, Pain A, Houben ENG, Warren RM, Brosch R, Hernández-Pando R, Bitter W. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat Microbiol 2018; 3:181-188. [DOI: 10.1038/s41564-017-0090-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/29/2017] [Indexed: 12/30/2022]
|
50
|
Chen X, Cheng HF, Zhou J, Chan CY, Lau KF, Tsui SKW, Au SWN. Structural basis of the PE-PPE protein interaction in Mycobacterium tuberculosis. J Biol Chem 2017; 292:16880-16890. [PMID: 28842489 DOI: 10.1074/jbc.m117.802645] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/16/2017] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has developed multiple strategies to adapt to the human host. The five type VII secretion systems, ESX-1-5, direct the export of many virulence-promoting protein effectors across the complex mycobacterial cell wall. One class of ESX substrates is the PE-PPE family of proteins, which is unique to mycobacteria and essential for infection, antigenic variation, and host-pathogen interactions. The genome of Mtb encodes 168 PE-PPE proteins. Many of them are thought to be secreted through ESX-5 secretion system and to function in pairs. However, understanding of the specific pairing of PE-PPE proteins and their structure-function relationship is limited by the challenging purification of many PE-PPE proteins, and our knowledge of the PE-PPE interactions therefore has been restricted to the PE25-PPE41 pair and its complex with the ESX-5 secretion system chaperone EspG5. Here, we report the crystal structure of a new PE-PPE pair, PE8-PPE15, in complex with EspG5. Our structure revealed that the EspG5-binding sites on PPE15 are relatively conserved among Mtb PPE proteins, suggesting that EspG5-PPE15 represents a more typical model for EspG5-PPE interactions than EspG5-PPE41. A structural comparison with the PE25-PPE41 complex disclosed conformational changes in the four-helix bundle structure and a unique binding mode in the PE8-PPE15 pair. Moreover, homology-modeling and mutagenesis studies further delineated the molecular determinants of the specific PE-PPE interactions. These findings help develop an atomic algorithm of ESX-5 substrate recognition and PE-PPE pairing.
Collapse
Affiliation(s)
- Xin Chen
- From the Centre for Protein Science and Crystallography, School of Life Sciences
| | - Hiu-Fu Cheng
- From the Centre for Protein Science and Crystallography, School of Life Sciences
| | - Junwei Zhou
- From the Centre for Protein Science and Crystallography, School of Life Sciences
| | | | - Kwok-Fai Lau
- From the Centre for Protein Science and Crystallography, School of Life Sciences
| | | | - Shannon Wing-Ngor Au
- From the Centre for Protein Science and Crystallography, School of Life Sciences,
| |
Collapse
|