1
|
Bollati M, Fasola E, Pieraccini S, Freddi F, Cocomazzi P, Oliva F, Klußmann M, Maspero A, Piarulli U, Ferrara S, Pellegrino S, Bertoni G, Gazzola S. Impairing protein-protein interactions in an essential tRNA modification complex: An innovative antimicrobial strategy against Pseudomonas aeruginosa. J Pept Sci 2024:e3658. [PMID: 39434676 DOI: 10.1002/psc.3658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Protein-protein interactions (PPIs) have been recognized as a promising target for the development of new drugs, as proved by the growing number of PPI modulators reaching clinical trials. In this context, peptides represent a valid alternative to small molecules, owing to their unique ability to mimic the target protein structure and interact with wider surface areas. Among the possible fields of interest, bacterial PPIs represent an attractive target to face the urgent necessity to fight antibiotic resistance. Growing attention has been paid to the YgjD/YeaZ/YjeE complex responsible for the essential t6A37 tRNA modification in bacteria. We previously identified an α-helix on the surface of Pseudomonas aeruginosa YeaZ, crucial for the YeaZ-YeaZ homodimer formation and the conserved YeaZ-YgjD interactions. Herein, we present our studies for impairing the PPIs involved in the formation of the YeaZ dimers through synthetic peptide derivatives of this helical moiety, both in vitro with purified components and on P. aeruginosa cells. Our results proved the possibility of targeting those PPIs which are usually essential for protein functioning and thus are refractory to mutational changes and antibiotic resistance development.
Collapse
Affiliation(s)
- Michela Bollati
- Institute of Biophysics, National Research Council, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Elettra Fasola
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | | | - Francesca Freddi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Paolo Cocomazzi
- Institute of Biophysics, National Research Council, Milan, Italy
| | - Francesco Oliva
- Department of Chemistry, Università degli Studi di Milano, Milan, Italy
| | - Merlin Klußmann
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Angelo Maspero
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | - Umberto Piarulli
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | - Silvia Ferrara
- Institute of Biophysics, National Research Council, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Gazzola
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| |
Collapse
|
2
|
Throll P, G Dolce L, Rico-Lastres P, Arnold K, Tengo L, Basu S, Kaiser S, Schneider R, Kowalinski E. Structural basis of tRNA recognition by the m 3C RNA methyltransferase METTL6 in complex with SerRS seryl-tRNA synthetase. Nat Struct Mol Biol 2024; 31:1614-1624. [PMID: 38918637 PMCID: PMC11479938 DOI: 10.1038/s41594-024-01341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Methylation of cytosine 32 in the anticodon loop of tRNAs to 3-methylcytosine (m3C) is crucial for cellular translation fidelity. Misregulation of the RNA methyltransferases setting this modification can cause aggressive cancers and metabolic disturbances. Here, we report the cryo-electron microscopy structure of the human m3C tRNA methyltransferase METTL6 in complex with seryl-tRNA synthetase (SerRS) and their common substrate tRNASer. Through the complex structure, we identify the tRNA-binding domain of METTL6. We show that SerRS acts as the tRNASer substrate selection factor for METTL6. We demonstrate that SerRS augments the methylation activity of METTL6 and that direct contacts between METTL6 and SerRS are necessary for efficient tRNASer methylation. Finally, on the basis of the structure of METTL6 in complex with SerRS and tRNASer, we postulate a universal tRNA-binding mode for m3C RNA methyltransferases, including METTL2 and METTL8, suggesting that these mammalian paralogs use similar ways to engage their respective tRNA substrates and cofactors.
Collapse
Affiliation(s)
| | | | - Palma Rico-Lastres
- Institute of Functional Epigenetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Katharina Arnold
- Institute of Functional Epigenetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Laura Tengo
- European Molecular Biology Laboratory, Grenoble, France
| | - Shibom Basu
- European Molecular Biology Laboratory, Grenoble, France
| | - Stefanie Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Eva Kowalinski
- European Molecular Biology Laboratory, Grenoble, France.
| |
Collapse
|
3
|
Miyauchi K, Kimura S, Akiyama N, Inoue K, Ishiguro K, Vu TS, Srisuknimit V, Koyama K, Hayashi G, Soma A, Nagao A, Shirouzu M, Okamoto A, Waldor MK, Suzuki T. A tRNA modification with aminovaleramide facilitates AUA decoding in protein synthesis. Nat Chem Biol 2024:10.1038/s41589-024-01726-x. [PMID: 39300229 DOI: 10.1038/s41589-024-01726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Modified tRNA anticodons are critical for proper mRNA translation during protein synthesis. It is generally thought that almost all bacterial tRNAsIle use a modified cytidine-lysidine (L)-at the first position (34) of the anticodon to decipher the AUA codon as isoleucine (Ile). Here we report that tRNAsIle from plant organelles and a subset of bacteria contain a new cytidine derivative, designated 2-aminovaleramididine (ava2C). Like L34, ava2C34 governs both Ile-charging ability and AUA decoding. Cryo-electron microscopy structural analyses revealed molecular details of codon recognition by ava2C34 with a specific interaction between its terminal amide group and an mRNA residue 3'-adjacent to the AUA codon. These findings reveal the evolutionary variation of an essential tRNA modification and demonstrate the molecular basis of AUA decoding mediated by a unique tRNA modification.
Collapse
Affiliation(s)
- Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Naho Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kazuki Inoue
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Thien-Son Vu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Veerasak Srisuknimit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Kenta Koyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Biomolecular Engineering, Nagoya University, Nagoya, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Delgado S, Armijo Á, Bravo V, Orellana O, Salazar JC, Katz A. Impact of the chemical modification of tRNAs anticodon loop on the variability and evolution of codon usage in proteobacteria. Front Microbiol 2024; 15:1412318. [PMID: 39161601 PMCID: PMC11332805 DOI: 10.3389/fmicb.2024.1412318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 08/21/2024] Open
Abstract
Despite the highly conserved nature of the genetic code, the frequency of usage of each codon can vary significantly. The evolution of codon usage is shaped by two main evolutionary forces: mutational bias and selection pressures. These pressures can be driven by environmental factors, but also by the need for efficient translation, which depends heavily on the concentration of transfer RNAs (tRNAs) within the cell. The data presented here supports the proposal that tRNA modifications play a key role in shaping the overall preference of codon usage in proteobacteria. Interestingly, some codons, such as CGA and AGG (encoding arginine), exhibit a surprisingly low level of variation in their frequency of usage, even across genomes with differing GC content. These findings suggest that the evolution of GC content in proteobacterial genomes might be primarily driven by changes in the usage of a specific subset of codons, whose usage is itself influenced by tRNA modifications.
Collapse
Affiliation(s)
| | - Álvaro Armijo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Verónica Bravo
- Programa Centro de Investigacion Biomédica y Aplicada, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
6
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
7
|
Böttcher B, Kienast SD, Leufken J, Eggers C, Sharma P, Leufken CM, Morgner B, Drexler HCA, Schulz D, Allert S, Jacobsen ID, Vylkova S, Leidel SA, Brunke S. A highly conserved tRNA modification contributes to C. albicans filamentation and virulence. Microbiol Spectr 2024; 12:e0425522. [PMID: 38587411 PMCID: PMC11064501 DOI: 10.1128/spectrum.04255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2024] [Indexed: 04/09/2024] Open
Abstract
tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.
Collapse
Affiliation(s)
- Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sandra D. Kienast
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Johannes Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Christine M. Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bianka Morgner
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Hannes C. A. Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sebastian A. Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| |
Collapse
|
8
|
Guo H, Lei T, Yang J, Wang Y, Wang Y, Ji Y. New Insights into the Biological Functions of Essential TsaB/YeaZ Protein in Staphylococcus aureus. Antibiotics (Basel) 2024; 13:393. [PMID: 38786122 PMCID: PMC11117223 DOI: 10.3390/antibiotics13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
TsaB/YeaZ represents a promising target for novel antibacterial agents due to its indispensable role in bacterial survival, high conservation within bacterial species, and absence of eukaryotic homologs. Previous studies have elucidated the role of the essential staphylococcal protein, TsaB/YeaZ, in binding DNA to mediate the transcription of the ilv-leu operon, responsible for encoding key enzymes involved in the biosynthesis of branched-chain amino acids-namely isoleucine, leucine, and valine (ILV). However, the regulation of ILV biosynthesis does not account for the essentiality of TsaB/YeaZ for bacterial growth. In this study, we investigated the impact of TsaB/YeaZ depletion on bacterial morphology and gene expression profiles using electron microscopy and deep transcriptomic analysis, respectively. Our results revealed significant alterations in bacterial size and surface smoothness upon TsaB/YeaZ depletion. Furthermore, we pinpointed specific genes and enriched biological pathways significantly affected by TsaB/YeaZ during the early and middle exponential phases and early stationary phases of growth. Crucially, our research uncovered a regulatory role for TsaB/YeaZ in bacterial autolysis. These discoveries offer fresh insights into the multifaceted biological functions of TsaB/YeaZ within S. aureus.
Collapse
Affiliation(s)
- Haiyong Guo
- School of Life Science, Jilin Normal University, Siping 136000, China; (H.G.)
| | - Ting Lei
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (T.L.)
| | - Junshu Yang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (T.L.)
| | - Yue Wang
- School of Life Science, Jilin Normal University, Siping 136000, China; (H.G.)
| | - Yifan Wang
- School of Life Science, Jilin Normal University, Siping 136000, China; (H.G.)
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (T.L.)
| |
Collapse
|
9
|
Zhang Y, Zhou JB, Yin Y, Wang ED, Zhou XL. Multifaceted roles of t6A biogenesis in efficiency and fidelity of mitochondrial gene expression. Nucleic Acids Res 2024; 52:3213-3233. [PMID: 38227555 PMCID: PMC11014344 DOI: 10.1093/nar/gkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
N 6-Threonylcarbamoyladenosine at A37 (t6A37) of ANN-decoding transfer RNAs (tRNAs) is a universal modification whose functions have been well documented in bacteria and lower eukaryotes; however, its role in organellar translation is not completely understood. In this study, we deleted the mitochondrial t6A37-modifying enzyme OSGEPL1 in HEK293T cells. OSGEPL1 is dispensable for cell viability. t6A37 hypomodification selectively stimulated N1-methyladenosine at A9 (m1A9) and N2-methylguanosine at G10 (m2G10) modifications and caused a substantial reduction in the aminoacylation of mitochondrial tRNAThr and tRNALys, resulting in impaired translation efficiency. Multiple types of amino acid misincorporation due to the misreading of near-cognate codons by t6A37-unmodified tRNAs were detected, indicating a triggered translational infidelity. Accordingly, the alterations in mitochondrial structure, function, and the activated mitochondrial unfolded protein response were observed. Mitochondrial function was efficiently restored by wild-type, but not by tRNA-binding-defective OSGEPL1. Lastly, in Osgepl1 deletion mice, disruption to mitochondrial translation was evident but resulted in no observable deficiency under physiological conditions in heart, which displays the highest Osgepl1 expression. Taken together, our data delineate the multifaceted roles of mitochondrial t6A37 modification in translation efficiency and quality control in mitochondria.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jing-Bo Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, 333 Haike Road, Shanghai 201210, China
| | - En-Duo Wang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xiao-Long Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Smith TJ, Giles RN, Koutmou KS. Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation. Semin Cell Dev Biol 2024; 154:105-113. [PMID: 37385829 DOI: 10.1016/j.semcdb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
RNAs are central to protein synthesis, with ribosomal RNA, transfer RNAs and messenger RNAs comprising the core components of the translation machinery. In addition to the four canonical bases (uracil, cytosine, adenine, and guanine) these RNAs contain an array of enzymatically incorporated chemical modifications. Transfer RNAs (tRNAs) are responsible for ferrying amino acids to the ribosome, and are among the most abundant and highly modified RNAs in the cell across all domains of life. On average, tRNA molecules contain 13 post-transcriptionally modified nucleosides that stabilize their structure and enhance function. There is an extensive chemical diversity of tRNA modifications, with over 90 distinct varieties of modifications reported within tRNA sequences. Some modifications are crucial for tRNAs to adopt their L-shaped tertiary structure, while others promote tRNA interactions with components of the protein synthesis machinery. In particular, modifications in the anticodon stem-loop (ASL), located near the site of tRNA:mRNA interaction, can play key roles in ensuring protein homeostasis and accurate translation. There is an abundance of evidence indicating the importance of ASL modifications for cellular health, and in vitro biochemical and biophysical studies suggest that individual ASL modifications can differentially influence discrete steps in the translation pathway. This review examines the molecular level consequences of tRNA ASL modifications in mRNA codon recognition and reading frame maintenance to ensure the rapid and accurate translation of proteins.
Collapse
Affiliation(s)
- Tyler J Smith
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Rachel N Giles
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Kristin S Koutmou
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Jin M, Zhang Z, Yu Z, Chen W, Wang X, Lei D, Zhang W. Structure-function analysis of an ancient TsaD-TsaC-SUA5-TcdA modular enzyme reveals a prototype of tRNA t6A and ct6A synthetases. Nucleic Acids Res 2023; 51:8711-8729. [PMID: 37427786 PMCID: PMC10484737 DOI: 10.1093/nar/gkad587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
N 6-threonylcarbamoyladenosine (t6A) is a post-transcriptional modification found uniquely at position 37 of tRNAs that decipher ANN-codons in the three domains of life. tRNA t6A plays a pivotal role in promoting translational fidelity and maintaining protein homeostasis. The biosynthesis of tRNA t6A requires members from two evolutionarily conserved protein families TsaC/Sua5 and TsaD/Kae1/Qri7, and a varying number of auxiliary proteins. Furthermore, tRNA t6A is modified into a cyclic hydantoin form of t6A (ct6A) by TcdA in bacteria. In this work, we have identified a TsaD-TsaC-SUA5-TcdA modular protein (TsaN) from Pandoraviruses and determined a 3.2 Å resolution cryo-EM structure of P. salinus TsaN. The four domains of TsaN share strong structural similarities with TsaD/Kae1/Qri7 proteins, TsaC/Sua5 proteins, and Escherichia coli TcdA. TsaN catalyzes the formation of threonylcarbamoyladenylate (TC-AMP) using L-threonine, HCO3- and ATP, but does not participate further in tRNA t6A biosynthesis. We report for the first time that TsaN catalyzes a tRNA-independent threonylcarbamoyl modification of adenosine phosphates, leading to t6ADP and t6ATP. Moreover, TsaN is also active in catalyzing tRNA-independent conversion of t6A nucleoside to ct6A. Our results imply that TsaN from Pandoraviruses might be a prototype of the tRNA t6A- and ct6A-modifying enzymes in some cellular organisms.
Collapse
Affiliation(s)
- Mengqi Jin
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Zelin Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Zhijiang Yu
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Wei Chen
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dongsheng Lei
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Wenhua Zhang
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
López JL, Fourie A, Poppeliers SWM, Pappas N, Sánchez-Gil JJ, de Jonge R, Dutilh BE. Growth rate is a dominant factor predicting the rhizosphere effect. THE ISME JOURNAL 2023; 17:1396-1405. [PMID: 37322285 PMCID: PMC10432406 DOI: 10.1038/s41396-023-01453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
The root microbiome is shaped by plant root activity, which selects specific microbial taxa from the surrounding soil. This influence on the microorganisms and soil chemistry in the immediate vicinity of the roots has been referred to as the rhizosphere effect. Understanding the traits that make bacteria successful in the rhizosphere is critical for developing sustainable agriculture solutions. In this study, we compared the growth rate potential, a complex trait that can be predicted from bacterial genome sequences, to functional traits encoded by proteins. We analyzed 84 paired rhizosphere- and soil-derived 16S rRNA gene amplicon datasets from 18 different plants and soil types, performed differential abundance analysis, and estimated growth rates for each bacterial genus. We found that bacteria with higher growth rate potential consistently dominated the rhizosphere, and this trend was confirmed in different bacterial phyla using genome sequences of 3270 bacterial isolates and 6707 metagenome-assembled genomes (MAGs) from 1121 plant- and soil-associated metagenomes. We then identified which functional traits were enriched in MAGs according to their niche or growth rate status. We found that predicted growth rate potential was the main feature for differentiating rhizosphere and soil bacteria in machine learning models, and we then analyzed the features that were important for achieving faster growth rates, which makes bacteria more competitive in the rhizosphere. As growth rate potential can be predicted from genomic data, this work has implications for understanding bacterial community assembly in the rhizosphere, where many uncultivated bacteria reside.
Collapse
Affiliation(s)
- José L López
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Bariloche, Rio Negro, Argentina
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Arista Fourie
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Sanne W M Poppeliers
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Nikolaos Pappas
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Juan J Sánchez-Gil
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands.
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
13
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
14
|
Wu P, Gan Q, Zhang X, Yang Y, Xiao Y, She Q, Ni J, Huang Q, Shen Y. The archaeal KEOPS complex possesses a functional Gon7 homolog and has an essential function independent of the cellular t 6A modification level. MLIFE 2023; 2:11-27. [PMID: 38818338 PMCID: PMC10989989 DOI: 10.1002/mlf2.12051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2024]
Abstract
Kinase, putative Endopeptidase, and Other Proteins of Small size (KEOPS) is a multisubunit protein complex conserved in eukaryotes and archaea. It is composed of Pcc1, Kae1, Bud32, Cgi121, and Gon7 in eukaryotes and is primarily involved in N6-threonylcarbamoyl adenosine (t6A) modification of transfer RNAs (tRNAs). Recently, it was reported that KEOPS participates in homologous recombination (HR) repair in yeast. To characterize the KEOPS in archaea (aKEOPS), we conducted genetic and biochemical analyses of its encoding genes in the hyperthermophilic archaeon Saccharolobus islandicus. We show that aKEOPS also possesses five subunits, Pcc1, Kae1, Bud32, Cgi121, and Pcc1-like (or Gon7-like), just like eukaryotic KEOPS. Pcc1-like has physical interactions with Kae1 and Pcc1 and can mediate the monomerization of the dimeric subcomplex (Kae1-Pcc1-Pcc1-Kae1), suggesting that Pcc1-like is a functional homolog of the eukaryotic Gon7 subunit. Strikingly, none of the genes encoding aKEOPS subunits, including Pcc1 and Pcc1-like, can be deleted in the wild type and in a t6A modification complementary strain named TsaKI, implying that the aKEOPS complex is essential for an additional cellular process in this archaeon. Knock-down of the Cgi121 subunit leads to severe growth retardance in the wild type that is partially rescued in TsaKI. These results suggest that aKEOPS plays an essential role independent of the cellular t6A modification level. In addition, archaeal Cgi121 possesses dsDNA-binding activity that relies on its tRNA 3' CCA tail binding module. Our study clarifies the subunit organization of archaeal KEOPS and suggests an origin of eukaryotic Gon7. The study also reveals a possible link between the function in t6A modification and the additional function, presumably HR.
Collapse
Affiliation(s)
- Pengju Wu
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qi Gan
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xuemei Zhang
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yunfeng Yang
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yuanxi Xiao
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qunxin She
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qihong Huang
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| |
Collapse
|
15
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
16
|
Sreelatha S, Kumar N, Rajani S. Biological effects of Thymol loaded chitosan nanoparticles (TCNPs) on bacterial plant pathogen Xanthomonas campestris pv. campestris. Front Microbiol 2022; 13:1085113. [PMID: 36620059 PMCID: PMC9815552 DOI: 10.3389/fmicb.2022.1085113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Engineered nanomaterials can provide eco-friendly alternatives for crop disease management. Chitosan based nanoparticles has shown beneficial applications in sustainable agricultural practices and effective healthcare. Previously we demonstrated that Thymol loaded chitosan nanoparticles (TCNPs) showed bactericidal activity against Xanthomonas campestris pv campestris (Xcc), a bacterium that causes black rot disease in brassica crops. Despite the progress in assessing the antibacterial action of TCNPs, the knowledge about the molecular response of Xcc when exposed to TCNPs is yet to be explored. In the present study, we combined physiological, spectroscopic and untargeted metabolomics studies to investigate the response mechanisms in Xcc induced by TCNPs. Cell proliferation and membrane potential assays of Xcc cells exposed to sub-lethal concentration of TCNPs showed that TCNPs affects the cell proliferation rate and damages the cell membrane altering the membrane potential. FTIR spectroscopy in conjunction with untargeted metabolite profiling using mass spectrometry of TCNPs treated Xcc cells revealed alterations in amino acids, lipids, nucleotides, fatty acids and antioxidant metabolites. Mass spectroscopy analysis revealed a 10-25% increase in nucleic acid, fatty acids and antioxidant metabolites and a 20% increase in lipid metabolites while a decrease of 10-20% in amino acids and carbohydrates was seen in in TCNP treated Xcc cells. Overall, our results demonstrate that the major metabolic perturbations induced by TCNPs in Xcc are associated with membrane damage and oxidative stress, thus providing information on the mechanism of TCNPs mediated cytotoxicity. This will aid towards the development of nano- based agrochemicals as an alternative to chemical pesticides in future.
Collapse
|
17
|
Su C, Jin M, Zhang W. Conservation and Diversification of tRNA t 6A-Modifying Enzymes across the Three Domains of Life. Int J Mol Sci 2022; 23:13600. [PMID: 36362385 PMCID: PMC9654439 DOI: 10.3390/ijms232113600] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The universal N6-threonylcarbamoyladenosine (t6A) modification occurs at position 37 of tRNAs that decipher codons starting with adenosine. Mechanistically, t6A stabilizes structural configurations of the anticodon stem loop, promotes anticodon-codon pairing and safeguards the translational fidelity. The biosynthesis of tRNA t6A is co-catalyzed by two universally conserved protein families of TsaC/Sua5 (COG0009) and TsaD/Kae1/Qri7 (COG0533). Enzymatically, TsaC/Sua5 protein utilizes the substrates of L-threonine, HCO3-/CO2 and ATP to synthesize an intermediate L-threonylcarbamoyladenylate, of which the threonylcarbamoyl-moiety is subsequently transferred onto the A37 of substrate tRNAs by the TsaD-TsaB -TsaE complex in bacteria or by the KEOPS complex in archaea and eukaryotic cytoplasm, whereas Qri7/OSGEPL1 protein functions on its own in mitochondria. Depletion of tRNA t6A interferes with protein homeostasis and gravely affects the life of unicellular organisms and the fitness of higher eukaryotes. Pathogenic mutations of YRDC, OSGEPL1 and KEOPS are implicated in a number of human mitochondrial and neurological diseases, including autosomal recessive Galloway-Mowat syndrome. The molecular mechanisms underscoring both the biosynthesis and cellular roles of tRNA t6A are presently not well elucidated. This review summarizes current mechanistic understandings of the catalysis, regulation and disease implications of tRNA t6A-biosynthetic machineries of three kingdoms of life, with a special focus on delineating the structure-function relationship from perspectives of conservation and diversity.
Collapse
Affiliation(s)
| | | | - Wenhua Zhang
- School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730030, China
| |
Collapse
|
18
|
Jiang M, Wang Z, Xia F, Wen Z, Chen R, Zhu D, Wang M, Zhuge X, Dai J. Reductions in bacterial viability stimulate the production of Extra-intestinal Pathogenic Escherichia coli (ExPEC) cytoplasm-carrying Extracellular Vesicles (EVs). PLoS Pathog 2022; 18:e1010908. [PMID: 36260637 PMCID: PMC9621596 DOI: 10.1371/journal.ppat.1010908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Extra-intestinal Pathogenic Escherichia coli (ExPEC) is defined as an extra-intestinal foodborne pathogen, and several dominant sequence types (STs) ExPEC isolates are highly virulent, with zoonotic potential. Bacteria extracellular vesicles (EVs) carry specific subsets of molecular cargo, which affect various biological processes in bacteria and host. The mechanisms of EVs formation in ExPEC remains to be elucidated. Here, the purified EVs of ExPEC strains of different STs were isolated with ultracentrifugation processes. A comparative analysis of the strain proteomes showed that cytoplasmic proteins accounted for a relatively high proportion of the proteins among ExPEC EVs. The proportion of cytoplasm-carrying vesicles in ExPEC EVs was calculated with a simple green fluorescent protein (GFP) expression method. The RecA/LexA-dependent SOS response is a critical mediator of generation of cytoplasm-carrying EVs. The SOS response activates the expression of prophage-associated endolysins, Epel1, Epel2.1, and Epel2.2, which triggered cell lysis, increasing the production of ExPEC cytoplasm-carrying EVs. The repressor LexA controlled directly the expression of these endolysins by binding to the SOS boxes in the endolysin promoter regions. Reducing bacterial viability stimulated the production of ExPEC EVs, especially cytoplasm-carrying EVs. The imbalance in cell division caused by exposure to H2O2, the deletion of ftsK genes, or t6A synthesis defects activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, and thus increasing the proportion of cytoplasm-carrying EVs in the total ExPEC EVs. Antibiotics, which decreased bacterial viability, also increase the production of ExPEC cytoplasm-carrying EVs through the SOS response. Changes in the proportion of cytoplasm-carrying EVs affected the total DNA content of ExPEC EVs. When macrophages are exposed to a higher proportion of cytoplasm-carrying vesicles, ExPEC EVs were more cytotoxic to macrophages, accompanied with more-severe mitochondrial disruption and a higher level of induced intrinsic apoptosis. In summary, we offered comprehensive insight into the proteome analysis of ExPEC EVs. This study demonstrated the novel formation mechanisms of E. coli cytoplasm-carrying EVs. Bacteria can release extracellular vesicles (EVs) into the extracellular environment. Bacterial EVs are primarily composed of protein, DNA, RNA, lipopolysaccharide (LPS), and diverse metabolite molecules. The molecular cargoes of EVs are critical for the interaction between microbes and their hosts, and affected various host biological processes. However, the mechanisms underlying the biogenesis of bacterial EVs had not been fully clarified in extra-intestinal pathogenic Escherichia coli (ExPEC). In this study, we demonstrated ExPEC EVs contained at least three types of vesicles, including outer membrane vesicles (OMVs), outer-inner membrane vesicles (OIMVs), and explosive outer membrane vesicles (EOMVs). Our results systematically identified important factors affecting the production of ExPEC cytoplasm-carrying EVs, especially EOMVs. A reduction in bacterial viability activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, which increased the production of ExPEC cytoplasm-carrying EVs. This increase in the proportion of cytoplasm-carrying EVs increased the cytotoxicity of EVs. It was noteworthy that antibiotics increased the production of ExPEC EVs, especially the numbers of cytoplasm-carrying EVs, which in turn increased EV cytotoxicity, suggesting that the treatment of infections of multidrug-resistant strains infection with antibiotics might cause greater host damage. Our study should improve the prevention and treatment of ExPEC infections.
Collapse
Affiliation(s)
- Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Rui Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Dongyu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China,* E-mail: (XZ); (JD)
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,College of Pharmacy, China Pharmaceutical University, Nanjing, China,* E-mail: (XZ); (JD)
| |
Collapse
|
19
|
Garzón MJ, Reyes-Prieto M, Gil R. The Minimal Translation Machinery: What We Can Learn From Naturally and Experimentally Reduced Genomes. Front Microbiol 2022; 13:858983. [PMID: 35479634 PMCID: PMC9035817 DOI: 10.3389/fmicb.2022.858983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
The current theoretical proposals of minimal genomes have not attempted to outline the essential machinery for proper translation in cells. Here, we present a proposal of a minimal translation machinery based on (1) a comparative analysis of bacterial genomes of insects’ endosymbionts using a machine learning classification algorithm, (2) the empiric genomic information obtained from Mycoplasma mycoides JCVI-syn3.0 the first minimal bacterial genome obtained by design and synthesis, and (3) a detailed functional analysis of the candidate genes based on essentiality according to the DEG database (Escherichia coli and Bacillus subtilis) and the literature. This proposed minimal translational machinery is composed by 142 genes which must be present in any synthetic prokaryotic cell designed for biotechnological purposes, 76.8% of which are shared with JCVI-syn3.0. Eight additional genes were manually included in the proposal for a proper and efficient translation.
Collapse
Affiliation(s)
| | - Mariana Reyes-Prieto
- Institute for Integrative Systems Biology, Universitat de València–Consejo Superior de Investigaciones Científicas, Paterna, Spain
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community, Valencia, Spain
| | - Rosario Gil
- Departament de Genètica, Universitat de València, Burjassot, Spain
- Institute for Integrative Systems Biology, Universitat de València–Consejo Superior de Investigaciones Científicas, Paterna, Spain
- *Correspondence: Rosario Gil,
| |
Collapse
|
20
|
Wang ZQ, Zhang CC. A tRNA t 6A modification system contributes to the sensitivity towards the toxin β-N-methylamino-L-alanine (BMAA) in the cyanobacterium Anabaena sp. PCC 7120. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106121. [PMID: 35180454 DOI: 10.1016/j.aquatox.2022.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are oxygen-evolving photosynthetic autotrophs essential for nutrient cycling in the environment. They possess multiple control mechanisms for their cellular activities in order to adapt to the environment. While protein translation is essential for cell survival and adaptation, the regulation and the flexibility of this process are poorly understood in cyanobacteria. β-N-methylamino-L-alanine (BMAA), an amino acid analog proposed as an environmental neurotoxin, is highly toxic to the filamentous diazotrophic cyanobacterium Anabaena PCC 7120. In this study, through genetic analysis of BMAA-resistant mutants, we demonstrate that the system responsible for modification of ANN-decoding tRNAs with N(6)-threonylcarbamoyl adenosine (t6A) is involved in BMAA sensitivity through the control of translation. Both BMAA and inactivation of the t6A biosynthesis pathway affect translational fidelity and ribosome assembly. However, the two factors display either additive effects on translational elongation, or attenuate each other over translational fidelity or the resistance/sensitivity to antibiotics that inhibit different steps of the translational process. BMAA has a broad effect on translation and transcription, and once BMAA enters the cells, the presence of the t6A biosynthesis pathway increases the sensitivity of the cells towards this toxin. BMAA-resistant mutants screening is an effective method for getting insight into the toxic mechanisms of BMAA. In addition, BMAA is a useful tool for probing translational flexibility of cyanobacteria, and the characterization of the corresponding resistant mutants should help us to reveal translational mechanism allowing cyanobacteria to adapt to changing environments.
Collapse
Affiliation(s)
- Zi-Qian Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, People's Republic of China; Institute WUT-AMU, Aix-Marseille University and Wuhan University of Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
21
|
Chen Q, Lu X, Xie J, Ma N, Xu W, Zhang Z, Huang X, Liu H, Hou J, Zhang X, Zhu W. Analysis of L Antigen Family Member 3 as a Potential Biomarker and Therapeutic Target Associated With the Progression of Hepatocellular Carcinoma. Front Oncol 2022; 12:813275. [PMID: 35433409 PMCID: PMC9008773 DOI: 10.3389/fonc.2022.813275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third cause of cancer-related deaths worldwide. L antigen family member 3 (LAGE3) is a prognostic biomarker and associated with progression in a variety of tumors. However, little has been reported about the role and potential mechanism of LAGE3 in HCC. Methods The clinical value and function of LAGE3 in HCC were obtained from multiple online databases. The potential functions and pathways of LAGE3 in HCC were analysed by R package of “clusterProfiler”. LAGE3 knockdown cells were constructed in HepG2, HuH7 and MHCC97H cell lines, respectively. The biological roles of LAGE3 were examined by in vitro and in vivo experiments. Results LAGE3 was upregulated in HCC tissues compared with normal tissues, and high expression of LAGE3 was significantly associated with several clinical characteristics and indicated a worse prognosis of HCC. The co-expressed genes of LAGE3 could be enriched in the mTOR signaling pathway in HCC. LAGE3 was upregulated in HCC cell lines. Functionally, knocking down LAGE3 expression not only increased apoptosis and inhibited growth rate, cell death mediated by T cells, colony formation, migration and invasion ability of HCC cell lines in vitro, but also reduced the progression of HCC in the subcutaneous xenotransplanted tumor model. Conclusion Our results suggested that LAGE3 served as an oncogenic factor of HCC and could be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Ma
- Department of Pathology, The First People’s Hospital of Foshan, Foshan, China
| | - Weikang Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiming Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhu, ; Xiaoyong Zhang, ; Jinlin Hou,
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhu, ; Xiaoyong Zhang, ; Jinlin Hou,
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhu, ; Xiaoyong Zhang, ; Jinlin Hou,
| |
Collapse
|
22
|
Ogura M. Identification of transposon-inserted mutations including rnpB::Tn that abolished glucose induction of sigX encoding extracytoplasmic function-sigma factor in Bacillus subtilis. Biosci Biotechnol Biochem 2022; 86:282-285. [PMID: 34864869 DOI: 10.1093/bbb/zbab211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/27/2021] [Indexed: 11/13/2022]
Abstract
We investigated the regulators of the glucose induction (GI) of the ECF-sigma genes sigX/M. During further screening of transposon-inserted mutants, we identified several regulators including an RNA component of RNase P (rnpB), which is required for tRNA maturation. A depletion of rnpB is known to trigger the stringent response. We showed evidence that the stringent response inhibited GI of sigX/M.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Orido, Shizuoka, Japan
| |
Collapse
|
23
|
Frankowska K, Sochacka E. New efficient synthesis of tRNA related adenosines bearing the hydantoin ring (ct6A, ms2ct6A) by intramolecular cyclization of N6-(N-Boc-α-aminoacyl)-adenosine derivatives. Chembiochem 2022; 23:e202100655. [PMID: 34997683 DOI: 10.1002/cbic.202100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Indexed: 11/10/2022]
Abstract
A novel and efficient way for synthesis of N6-hydantoin modified adenosines, which utilizes readily available N6-(N-Boc-α-aminoacyl)-adenosine derivatives, was developed. The procedure is based on the epimerization free Tf2O-mediated conversion of the Boc group into an isocyanate moiety, followed by intramolecular cyclization. Using this method two recently discovered hydantoin modified tRNA adenosines, i.e. cyclic N6-threonylcarbamoyl-adenosine (ct6A) and 2-methylthio-N6-threonylcarbamoyladenosine (ms2ct6A) were prepared in good yields.
Collapse
Affiliation(s)
- Katarzyna Frankowska
- Lodz University of Technology: Politechnika Lodzka, Faculty of Chemistry, POLAND
| | - Elzbieta Sochacka
- Lodz University of Technology, Faculty of Chemistry, ul. Żeromskiego 116, 90-924, Łódź, POLAND
| |
Collapse
|
24
|
Wang JT, Zhou JB, Mao XL, Zhou L, Chen M, Zhang W, Wang ED, Zhou XL. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2223-2239. [PMID: 35104889 PMCID: PMC8887486 DOI: 10.1093/nar/gkac056] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
Abstract
N6-Threonylcarbamoyladenosine (t6A) is a universal and pivotal tRNA modification. KEOPS in eukaryotes participates in its biogenesis, whose mutations are connected with Galloway-Mowat syndrome. However, the tRNA substrate selection mechanism by KEOPS and t6A modification function in mammalian cells remain unclear. Here, we confirmed that all ANN-decoding human cytoplasmic tRNAs harbor a t6A moiety. Using t6A modification systems from various eukaryotes, we proposed the possible coevolution of position 33 of initiator tRNAMet and modification enzymes. The role of the universal CCA end in t6A biogenesis varied among species. However, all KEOPSs critically depended on C32 and two base pairs in the D-stem. Knockdown of the catalytic subunit OSGEP in HEK293T cells had no effect on the steady-state abundance of cytoplasmic tRNAs but selectively inhibited tRNAIle aminoacylation. Combined with in vitro aminoacylation assays, we revealed that t6A functions as a tRNAIle isoacceptor-specific positive determinant for human cytoplasmic isoleucyl-tRNA synthetase (IARS1). t6A deficiency had divergent effects on decoding efficiency at ANN codons and promoted +1 frameshifting. Altogether, our results shed light on the tRNA recognition mechanism, revealing both commonality and diversity in substrate recognition by eukaryotic KEOPSs, and elucidated the critical role of t6A in tRNAIle aminoacylation and codon decoding in human cells.
Collapse
Affiliation(s)
| | | | - Xue-Ling Mao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Li Zhou
- School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu
| | - Meirong Chen
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, Jiangsu
| | - Wenhua Zhang
- School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu
| | - En-Duo Wang
- Correspondence may also be addressed to En-Duo Wang. Tel: +86 21 5492 1241; Fax: +86 21 5492 1011;
| | - Xiao-Long Zhou
- To whom correspondence should be addressed. Tel: +86 21 5492 1247 Fax: +86 21 5492 1011;
| |
Collapse
|
25
|
Kanesaki Y, Ogura M. RNA-seq analysis identified glucose-responsive genes and YqfO as a global regulator in Bacillus subtilis. BMC Res Notes 2021; 14:450. [PMID: 34906218 PMCID: PMC8670212 DOI: 10.1186/s13104-021-05869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Objective We observed that the addition of glucose enhanced the expression of sigX and sigM, encoding extra-cytoplasmic function sigma factors in Bacillus subtilis. Several regulatory factors were identified for this phenomenon, including YqfO, CshA (RNA helicase), and YlxR (nucleoid-associated protein). Subsequently, the relationships among these regulators were analyzed. Among them, YqfO is conserved in many bacterial genomes and may function as a metal ion insertase or metal chaperone, but has been poorly characterized. Thus, to further characterize YqfO, we performed RNA sequencing (RNA-seq) analysis of YqfO in addition to CshA and YlxR. Results We first performed comparative RNA-seq to detect the glucose-responsive genes. Next, to determine the regulatory effects of YqfO in addition to CshA and YlxR, three pairs of comparative RNA-seq analyses were performed (yqfO/wt, cshA/wt, and ylxR/wt). We observed relatively large regulons (approximately 420, 780, and 180 for YqfO, CshA, and YlxR, respectively) and significant overlaps, indicating close relationships among the three regulators. This study is the first to reveal that YqfO functions as a global regulator in B. subtilis. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05869-1.
Collapse
Affiliation(s)
- Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido Shimizu-ku, Shizuoka, 424-8610, Japan.
| |
Collapse
|
26
|
Kant S, Pancholi V. Novel Tyrosine Kinase-Mediated Phosphorylation With Dual Specificity Plays a Key Role in the Modulation of Streptococcus pyogenes Physiology and Virulence. Front Microbiol 2021; 12:689246. [PMID: 34950110 PMCID: PMC8689070 DOI: 10.3389/fmicb.2021.689246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) genomes do not contain a gene encoding a typical bacterial-type tyrosine kinase (BY-kinase) but contain an orphan gene-encoding protein Tyr-phosphatase (SP-PTP). Hence, the importance of Tyr-phosphorylation is underappreciated and not recognized for its role in GAS pathophysiology and pathogenesis. The fact that SP-PTP dephosphorylates Abl-tyrosine kinase-phosphorylated myelin basic protein (MBP), and SP-STK (S. pyogenes Ser/Thr kinase) also autophosphorylates its Tyr101-residue prompted us to identify a putative tyrosine kinase and Tyr-phosphorylation in GAS. Upon a genome-wide search of kinases possessing a classical Walker motif, we identified a non-canonical tyrosine kinase M5005_Spy_1476, a ∼17 kDa protein (153 aa) (SP-TyK). The purified recombinant SP-TyK autophosphorylated in the presence of ATP. In vitro and in vivo phosphoproteomic analyses revealed two key phosphorylated tyrosine residues located within the catalytic domain of SP-TyK. An isogenic mutant lacking SP-TyK derived from the M1T1 strain showed a retarded growth pattern. It displayed defective cell division and long chains with multiple parallel septa, often resulting in aggregates. Transcriptomic analysis of the mutant revealed 287 differentially expressed genes responsible for GAS pathophysiology and pathogenesis. SP-TyK also phosphorylated GAS CovR, WalR, SP-STP, and SDH/GAPDH proteins with dual specificity targeting their Tyr/Ser/Thr residues as revealed by biochemical and mass-spectrometric-based phosphoproteomic analyses. SP-TyK-phosphorylated CovR bound to PcovR efficiently. The mutant displayed sustained release of IL-6 compared to TNF-α during co-culturing with A549 lung cell lines, attenuation in mice sepsis model, and significantly reduced ability to adhere to and invade A549 lung cells and form biofilms on abiotic surfaces. SP-TyK, thus, plays a critical role in fine-tuning the regulation of key cellular functions essential for GAS pathophysiology and pathogenesis through post-translational modifications and hence, may serve as a promising target for future therapeutic developments.
Collapse
|
27
|
Xing Y, Liu Y, Qi Z, Liu Z, Wang X, Zhang H. LAGE3 promoted cell proliferation, migration, and invasion and inhibited cell apoptosis of hepatocellular carcinoma by facilitating the JNK and ERK signaling pathway. Cell Mol Biol Lett 2021; 26:49. [PMID: 34837962 PMCID: PMC8903694 DOI: 10.1186/s11658-021-00295-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is now the second leading cause of cancer death worldwide and lacks effectual therapy due to its high rate of tumor recurrence and metastasis. The aim of this study was to investigate the effects of L antigen family member 3 (LAGE3, a member of the LAGE gene family involved in positive transcription) on the progression of HCC. METHODS The expression of LAGE3 was detected by quantitative real-time polymerase chain reaction. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation assay, EdU, and cell cycle analysis assay were employed to evaluate the proliferation of HCC cells. Annexin V-FITC/PI and TUNEL assay were used to assess the apoptosis rate of HCC cells. Wound healing and transwell assay were used to investigate the migration and invasion of HCC cells. A xenograft model of HCC was established with 2 × 106 Hep3B or SK-HEP1 cells to investigate the in vivo effects of LAGE3. Then, the protein levels of LAGE3, p-p38, p-38, c-Jun N-terminal kinase (JNK),p-JNK, extracellular signal-regulated kinase (ERK), and p-ERK were detected by western blot. RESULTS We found that LAGE3 was upregulated in HCC tissues compared to adjacent tissues, and its high expression was correlated with poor overall survival by bioinformatics analysis. Next, we manually regulated the expression of LAGE3 in HCC cells. The knockdown of LAGE3 inhibited the proliferation of HCC cells by arresting the cell cycle in G1 phase. Also the downregulation of LAGE3 inhibited cell migration and invasion and induced apoptosis of HCC cells, while overexpression of LAGE3 promoted the malignant phenotypes of HCC. These results were further confirmed by the in vivo growth of HCC xenografts and the inhibition of apoptosis of HCC tumor cells. Furthermore, we found that LAGE3 exerted cancer-promoting effects by potentiating the JNK and ERK signaling pathway. An ERK inhibitor (10 μM SCH772984) or JNK inhibitor (25 μM SP600125) repressed the upregulated LAGE3-induced proliferation, migration, and invasion of HCC cells. CONCLUSIONS LAGE3 enhanced the malignant phenotypes of HCC by promoting the JNK and ERK signaling pathway.
Collapse
Affiliation(s)
- Ying Xing
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yang Liu
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhong Qi
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhengrong Liu
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xin Wang
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hongyi Zhang
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
28
|
Li J, Zhu WY, Yang WQ, Li CT, Liu RJ. The occurrence order and cross-talk of different tRNA modifications. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1423-1436. [PMID: 33881742 DOI: 10.1007/s11427-020-1906-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Chemical modifications expand the composition of RNA molecules from four standard nucleosides to over 160 modified nucleosides, which greatly increase the complexity and utility of RNAs. Transfer RNAs (tRNAs) are the most heavily modified cellular RNA molecules and contain the largest variety of modifications. Modification of tRNAs is pivotal for protein synthesis and also precisely regulates the noncanonical functions of tRNAs. Defects in tRNA modifications lead to numerous human diseases. Up to now, more than 100 types of modifications have been found in tRNAs. Intriguingly, some modifications occur widely on all tRNAs, while others only occur on a subgroup of tRNAs or even only a specific tRNA. The modification frequency of each tRNA is approximately 7% to 25%, with 5-20 modification sites present on each tRNA. The occurrence and modulation of tRNA modifications are specifically noticeable as plenty of interplays among different sites and modifications have been discovered. In particular, tRNA modifications are responsive to environmental changes, indicating their dynamic and highly organized nature. In this review, we summarized the known occurrence order, cross-talk, and cooperativity of tRNA modifications.
Collapse
Affiliation(s)
- Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
29
|
Kouvela A, Zaravinos A, Stamatopoulou V. Adaptor Molecules Epitranscriptome Reprograms Bacterial Pathogenicity. Int J Mol Sci 2021; 22:8409. [PMID: 34445114 PMCID: PMC8395126 DOI: 10.3390/ijms22168409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The strong decoration of tRNAs with post-transcriptional modifications provides an unprecedented adaptability of this class of non-coding RNAs leading to the regulation of bacterial growth and pathogenicity. Accumulating data indicate that tRNA post-transcriptional modifications possess a central role in both the formation of bacterial cell wall and the modulation of transcription and translation fidelity, but also in the expression of virulence factors. Evolutionary conserved modifications in tRNA nucleosides ensure the proper folding and stability redounding to a totally functional molecule. However, environmental factors including stress conditions can cause various alterations in tRNA modifications, disturbing the pathogen homeostasis. Post-transcriptional modifications adjacent to the anticodon stem-loop, for instance, have been tightly linked to bacterial infectivity. Currently, advances in high throughput methodologies have facilitated the identification and functional investigation of such tRNA modifications offering a broader pool of putative alternative molecular targets and therapeutic avenues against bacterial infections. Herein, we focus on tRNA epitranscriptome shaping regarding modifications with a key role in bacterial infectivity including opportunistic pathogens of the human microbiome.
Collapse
Affiliation(s)
- Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | | |
Collapse
|
30
|
Perpich JD, Yakoumatos L, Johns P, Stocke KS, Fitzsimonds ZR, Wilkey DW, Merchant ML, Miller DP, Lamont RJ. Identification and characterization of a UbK family kinase in Porphyromonas gingivalis that phosphorylates the RprY response regulator. Mol Oral Microbiol 2021; 36:258-266. [PMID: 34241965 DOI: 10.1111/omi.12347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
Phosphorylation of proteins is a key component of bacterial signaling systems that can control important functions such as community development and virulence. We report here the identification of a Ubiquitous bacterial Kinase (UbK) family member, designated UbK1, in the anaerobic periodontal pathogen, Porphyromonas gingivalis. UbK1 contains conserved SPT/S, Hanks-type HxDxYR, EW, and Walker A motifs, and a mutation analysis established the Walker A domain and the Hanks-type domain as required for both autophosphorylation and transphosphorylation. UbK1 autophosphorylates on the proximal serine in the SPT/S domain as well as the tyrosine residue within the HxDxYR domain and the tyrosine residue immediately proximal, indicating both serine/threonine and tyrosine specificity. The orphan two-component system response regulator (RR) RprY was phosphorylated on Y41 in the receiver domain by UbK1. The ubk1 gene is essential in P. gingivalis; however, overexpression of UbK1 showed that UbK1-mediated phosphorylation of RprY functions predominantly to augment its properties as a transcriptional enhancer. These results establish that P. gingivalis possesses an active UbK kinase in addition to a previously described Bacterial Tyrosine family kinase. The RR RprY is identified as the first transcriptional regulator controlled by a UbK enzyme.
Collapse
Affiliation(s)
- John D Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA.,Department of Pharmaceutical Sciences, Sullivan University College of Pharmacy and Health Sciences, Louisville, Kentucky, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Parker Johns
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Kendall S Stocke
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Daniel W Wilkey
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
31
|
L Antigen Family Member 3 Serves as a Prognostic Biomarker for the Clinical Outcome and Immune Infiltration in Skin Cutaneous Melanoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6648182. [PMID: 33829062 PMCID: PMC8000545 DOI: 10.1155/2021/6648182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
L Antigen Family Member 3 (LAGE3) is an important RNA modification-related protein. Whereas few studies have interrogated the LAGE3 protein, there is limited data on its role in tumors. Here, we analyzed and profiled the LAGE3 protein in skin cutaneous melanoma (CM) using TCGA, GTEx, or GEO databases. Our data showed an upregulation of LAGE3 in melanoma cell lines compared to normal skin cell lines. Besides, the Kaplan–Meier curves and Cox proportional hazard model revealed that LAGE3 was an independent survival indicator for CM, especially in metastatic CM. Moreover, LAGE3 was negatively associated with multiple immune cell infiltration levels in CM, especially CD8+ T cells in metastatic CM. Taken together, our study suggests that LAGE3 could be a potential prognostic biomarker and might be a potential target for the development of novel CM treatment strategies.
Collapse
|
32
|
Kopina BJ, Missoury S, Collinet B, Fulton MG, Cirio C, van Tilbeurgh H, Lauhon CT. Structure of a reaction intermediate mimic in t6A biosynthesis bound in the active site of the TsaBD heterodimer from Escherichia coli. Nucleic Acids Res 2021; 49:2141-2160. [PMID: 33524148 PMCID: PMC7913687 DOI: 10.1093/nar/gkab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 11/14/2022] Open
Abstract
The tRNA modification N6-threonylcarbamoyladenosine (t6A) is universally conserved in all organisms. In bacteria, the biosynthesis of t6A requires four proteins (TsaBCDE) that catalyze the formation of t6A via the unstable intermediate l-threonylcarbamoyl-adenylate (TC-AMP). While the formation and stability of this intermediate has been studied in detail, the mechanism of its transfer to A37 in tRNA is poorly understood. To investigate this step, the structure of the TsaBD heterodimer from Escherichia coli has been solved bound to a stable phosphonate isosteric mimic of TC-AMP. The phosphonate inhibits t6A synthesis in vitro with an IC50 value of 1.3 μM in the presence of millimolar ATP and L-threonine. The inhibitor binds to TsaBD by coordination to the active site Zn atom via an oxygen atom from both the phosphonate and the carboxylate moieties. The bound conformation of the inhibitor suggests that the catalysis exploits a putative oxyanion hole created by a conserved active site loop of TsaD and that the metal essentially serves as a binding scaffold for the intermediate. The phosphonate bound crystal structure should be useful for the rational design of potent, drug-like small molecule inhibitors as mechanistic probes or potentially novel antibiotics.
Collapse
Affiliation(s)
- Brett J Kopina
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Sophia Missoury
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Bruno Collinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne-Université, UMR7590 CNRS, MNHN, Paris, France
| | - Mark G Fulton
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Charles Cirio
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Herman van Tilbeurgh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Charles T Lauhon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
33
|
The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 2021; 22:375-392. [PMID: 33658722 DOI: 10.1038/s41580-021-00342-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Transfer RNA (tRNA) is an adapter molecule that links a specific codon in mRNA with its corresponding amino acid during protein synthesis. tRNAs are enzymatically modified post-transcriptionally. A wide variety of tRNA modifications are found in the tRNA anticodon, which are crucial for precise codon recognition and reading frame maintenance, thereby ensuring accurate and efficient protein synthesis. In addition, tRNA-body regions are also frequently modified and thus stabilized in the cell. Over the past two decades, 16 novel tRNA modifications were discovered in various organisms, and the chemical space of tRNA modification continues to expand. Recent studies have revealed that tRNA modifications can be dynamically altered in response to levels of cellular metabolites and environmental stresses. Importantly, we now understand that deficiencies in tRNA modification can have pathological consequences, which are termed 'RNA modopathies'. Dysregulation of tRNA modification is involved in mitochondrial diseases, neurological disorders and cancer.
Collapse
|
34
|
Samatova E, Daberger J, Liutkute M, Rodnina MV. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front Microbiol 2021; 11:619430. [PMID: 33505387 PMCID: PMC7829197 DOI: 10.3389/fmicb.2020.619430] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Protein homeostasis of bacterial cells is maintained by coordinated processes of protein production, folding, and degradation. Translational efficiency of a given mRNA depends on how often the ribosomes initiate synthesis of a new polypeptide and how quickly they read the coding sequence to produce a full-length protein. The pace of ribosomes along the mRNA is not uniform: periods of rapid synthesis are separated by pauses. Here, we summarize recent evidence on how ribosome pausing affects translational efficiency and protein folding. We discuss the factors that slow down translation elongation and affect the quality of the newly synthesized protein. Ribosome pausing emerges as important factor contributing to the regulatory programs that ensure the quality of the proteome and integrate the cellular and environmental cues into regulatory circuits of the cell.
Collapse
Affiliation(s)
- Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jan Daberger
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
35
|
Debiec K, Sochacka E. Efficient access to 3'- O-phosphoramidite derivatives of tRNA related N 6-threonylcarbamoyladenosine (t 6A) and 2-methylthio- N 6-threonylcarbamoyladenosine (ms 2t 6A). RSC Adv 2021; 11:1992-1999. [PMID: 35424152 PMCID: PMC8693639 DOI: 10.1039/d0ra09803e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
An efficient method of ureido linkage formation during epimerization-free one-pot synthesis of protected hypermodified N 6-threonylcarbamoyladenosine (t6A) and its 2-SMe analog (ms2t6A) was developed. The method is based on a Tf2O-mediated direct conversion of the N-Boc-protecting group of N-Boc-threonine into the isocyanate derivative, followed by reaction with the N 6 exo-amine function of the sugar protected nucleoside (yield 86-94%). Starting from 2',3',5'-tri-O-acetyl protected adenosine or 2-methylthioadenosine, the corresponding 3'-O-phosphoramidite monomers were obtained in 48% and 42% overall yield (5 step synthesis). In an analogous synthesis, using the 2'-O-(tert-butyldimethylsilyl)-3',5'-O-(di-tert-butylsilylene) protection system at the adenosine ribose moiety, the t6A-phosphoramidite monomer was obtained in a less laborious manner and in a remarkably better yield of 74%.
Collapse
Affiliation(s)
- Katarzyna Debiec
- Institute of Organic Chemistry, Lodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| |
Collapse
|
36
|
Dong X, Yang Q, Gu J, Lv S, Song D, Chen D, Song J, Zhang X, Huang D. Identification and validation of L Antigen Family Member 3 as an immune-related biomarker associated with the progression of papillary thyroid cancer. Int Immunopharmacol 2020; 90:107267. [PMID: 33310661 DOI: 10.1016/j.intimp.2020.107267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is heterogeneous cancer with many different immune cells involved in its pathogenesis. L Antigen Family Member 3 (LAGE3) is an ESO/LAGE gene family member that has not been extensively studied in PTC. METHODS Comprehensive bioinformatics analyses of LAGE3 were based on The Cancer Genome Atlas, Gene Expression Omnibus, and Genomics of Drug Sensitivity in Cancer (GDSC) databases. We also performed RNA-sequencing on 78 paired samples from local PTC patients. RESULTS We observed that LAGE3 was significantly up-regulated in most solid tumor types, including PTC compared with corresponding normal tissues. The high level of LAGE3 was also significantly associated with advanced malignancy. LAGE3 expression was significantly associated with cancer-related pathways, biochemical metabolism, and immune-related terms. Further, tumor microenvironment analysis indicated LAGE3 was positively correlated with different immune cells infiltrating levels and the activity of different steps of the cancer-immunity cycle. Analyses based on the GDSC database revealed that low levels of LAGE3 might be resistant to WZ3105, I-BET-762, and PHA-793887. In addition, the experimental results validated that knocking down LAGE3 could affect proliferation, migration, and invasion in the PTC cell lines. CONCLUSION This study discloses that LAGE3 plays an oncogenic and cancer-immunological role, also providing novel PTC biological and clinical implications.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, #1 Nan Bai Xiang Street, Wenzhou, China.
| | - Qingwen Yang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.
| | - Junwei Gu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, #1 Nan Bai Xiang Street, Wenzhou, China.
| | - Shihui Lv
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, #1 Nan Bai Xiang Street, Wenzhou, China.
| | - Dandan Song
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, #1 Nan Bai Xiang Street, Wenzhou, China.
| | - Danxiang Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, #1 Nan Bai Xiang Street, Wenzhou, China.
| | - Jingjing Song
- Department of Children's Health Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, #1 Nan Bai Xiang Street, Wenzhou, China.
| | - Duping Huang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, #1 Nan Bai Xiang Street, Wenzhou, China.
| |
Collapse
|
37
|
Ogura M. Glucose-Mediated Protein Arginine Phosphorylation/Dephosphorylation Regulates ylxR Encoding Nucleoid-Associated Protein and Cell Growth in Bacillus subtilis. Front Microbiol 2020; 11:590828. [PMID: 33101263 PMCID: PMC7546277 DOI: 10.3389/fmicb.2020.590828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Glucose is the most favorable carbon source for many bacteria, and these bacteria have several glucose-responsive networks. We proposed new glucose responsive system, which includes protein acetylation and probable translation control through TsaEBD, which is a tRNA modification enzyme required for the synthesis of threonylcarbamoyl adenosine (t6A)-tRNA. The system also includes nucleoid-associated protein YlxR, regulating more than 400 genes including many metabolic genes and the ylxR-containing operon driven by the PylxS promoter is induced by glucose. Thus, transposon mutagenesis was performed for searching regulatory factors for PylxS expression. As a result, ywlE was identified. The McsB kinase phosphorylates arginine (Arg) residues of proteins and the YwlE phosphatase counteracts against McsB through Arg-dephosphorylation. Phosphorylated Arg has been known to function as a tag for ClpCP-dependent protein degradation. The previous analysis identified TsaD as an Arg-phosphorylated protein. Our results showed that the McsB/YwlE system regulates PylxS expression through ClpCP-mediated protein degradation of TsaD. In addition, we observed that glucose induced ywlE expression and repressed mcsB expression. It was concluded that these phenomena would cause glucose induction (GI) of PylxS, based on the Western blot analyses of TsaD-FLAG. These observations and the previous those that many glycolytic enzymes are Arg-phosphorylated suggested that the McsB/YwlE system might be involved in cell growth in glucose-containing medium. We observed that the disruption of mcsB and ywlE resulted in an increase of cell mass and delayed growth, respectively, in semi-synthetic medium. These results provide us broader insights to the physiological roles of the McsB/YwlE system and protein Arg-phosphorylation.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| |
Collapse
|
38
|
Ogura M, Shindo K, Kanesaki Y. Bacillus subtilis Nucleoid-Associated Protein YlxR Is Involved in Bimodal Expression of the Fructoselysine Utilization Operon ( frlBONMD-yurJ) Promoter. Front Microbiol 2020; 11:2024. [PMID: 32983026 PMCID: PMC7475707 DOI: 10.3389/fmicb.2020.02024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria must survive harsh environmental fluctuations at times and have evolved several strategies. “Collective” behaviors have been identified due to recent progress in single-cell analysis. Since most bacteria exist as single cells, bacterial populations are often considered clonal. However, accumulated evidence suggests this is not the case. Gene expression and protein expression are often not homogeneous, resulting in phenotypic heterogeneity. In extreme cases, this leads to bistability, the existence of two stable states. In many cases, expression of key master regulators is bimodal via positive feedback loops causing bimodal expression of the target genes. We observed bimodal expression of metabolic genes for alternative carbon sources. Expression profiles of the frlBONMD-yurJ operon driven by the frlB promoter (PfrlB), which encodes degradation enzymes and a transporter for amino sugars including fructoselysine, were investigated using transcriptional lacZ and gfp, and translational fluorescence reporter mCherry fusions. Disruption effects of genes encoding CodY, FrlR, RNaseY, and nucleoid-associated protein YlxR, four known regulatory factors for PfrlB, were examined for expression of each fusion construct. Expression of PfrlB-gfp and PfrlB-mCherry, which were located at amyE and its original locus, respectively, was bimodal; and disruption of ylxR resulted in the disappearance of the clear bimodal expression pattern in flow cytometric analyses. This suggested a role for YlxR on the bimodal expression of PfrlB. The data indicated that YlxR acted on the bimodal expression of PfrlB through both transcription and translation. YlxR regulates many genes, including those related to translation, supporting the above notion. Depletion of RNaseY abolished heterogenous expression of transcriptional PfrlB-gfp but not bimodal expression of translational PfrlB-mCherry, suggesting the role of RNaseY in regulation of the operon through mRNA stability control and regulatory mechanism for PfrlB-mCherry at the translational level. Based on these results, we discuss the meaning and possible cause of bimodal PfrlB expression.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, Tokyo, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
39
|
Swinehart W, Deutsch C, Sarachan KL, Luthra A, Bacusmo JM, de Crécy-Lagard V, Swairjo MA, Agris PF, Iwata-Reuyl D. Specificity in the biosynthesis of the universal tRNA nucleoside N6-threonylcarbamoyl adenosine (t 6A)-TsaD is the gatekeeper. RNA (NEW YORK, N.Y.) 2020; 26:1094-1103. [PMID: 32385138 PMCID: PMC7430679 DOI: 10.1261/rna.075747.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
N6-threonylcarbamoyl adenosine (t6A) is a nucleoside modification found in all kingdoms of life at position 37 of tRNAs decoding ANN codons, which functions in part to restrict translation initiation to AUG and suppress frameshifting at tandem ANN codons. In Bacteria the proteins TsaB, TsaC (or C2), TsaD, and TsaE, comprise the biosynthetic apparatus responsible for t6A formation. TsaC(C2) and TsaD harbor the relevant active sites, with TsaC(C2) catalyzing the formation of the intermediate threonylcarbamoyladenosine monophosphate (TC-AMP) from ATP, threonine, and CO2, and TsaD catalyzing the transfer of the threonylcarbamoyl moiety from TC-AMP to A37 of substrate tRNAs. Several related modified nucleosides, including hydroxynorvalylcarbamoyl adenosine (hn6A), have been identified in select organisms, but nothing is known about their biosynthesis. To better understand the mechanism and structural constraints on t6A formation, and to determine if related modified nucleosides are formed via parallel biosynthetic pathways or the t6A pathway, we carried out biochemical and biophysical investigations of the t6A systems from E. coli and T. maritima to address these questions. Using kinetic assays of TsaC(C2), tRNA modification assays, and NMR, our data demonstrate that TsaC(C2) exhibit relaxed substrate specificity, producing a variety of TC-AMP analogs that can differ in both the identity of the amino acid and nucleotide component, whereas TsaD displays more stringent specificity, but efficiently produces hn6A in E. coli and T. maritima tRNA. Thus, in organisms that contain modifications such as hn6A in their tRNA, we conclude that their origin is due to formation via the t6A pathway.
Collapse
Affiliation(s)
- William Swinehart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| | - Christopher Deutsch
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| | - Kathryn L Sarachan
- The RNA Institute, State University of New York, Albany, New York 12222, USA
| | - Amit Luthra
- Department of Chemistry and Biochemistry, and The Viral Information Institute, San Diego State University, San Diego, California 92182, USA
| | - Jo Marie Bacusmo
- Department of Microbiology and Cell Science, University of Florida, Gainsville, Florida 32611, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainsville, Florida 32611, USA
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, and The Viral Information Institute, San Diego State University, San Diego, California 92182, USA
| | - Paul F Agris
- The RNA Institute, State University of New York, Albany, New York 12222, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| |
Collapse
|
40
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
41
|
Li J, Wang Y, Xu B, Liu Y, Zhou M, Long T, Li H, Dong H, Nie Y, Chen PR, Wang E, Liu R. Intellectual disability-associated gene ftsj1 is responsible for 2'-O-methylation of specific tRNAs. EMBO Rep 2020; 21:e50095. [PMID: 32558197 PMCID: PMC7403668 DOI: 10.15252/embr.202050095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
tRNA modifications at the anti-codon loop are critical for accurate decoding. FTSJ1 was hypothesized to be a human tRNA 2'-O-methyltransferase. tRNAPhe (GAA) from intellectual disability patients with mutations in ftsj1 lacks 2'-O-methylation at C32 and G34 (Cm32 and Gm34). However, the catalytic activity, RNA substrates, and pathogenic mechanism of FTSJ1 remain unknown, owing, in part, to the difficulty in reconstituting enzymatic activity in vitro. Here, we identify an interacting protein of FTSJ1, WDR6. For the first time, we reconstitute the 2'-O-methylation activity of the FTSJ1-WDR6 complex in vitro, which occurs at position 34 of specific tRNAs with m1 G37 as a prerequisite. We find that modifications at positions 32, 34, and 37 are interdependent and occur in a hierarchical order in vivo. We also show that the translation efficiency of the UUU codon, but not the UUC codon decoded by tRNAPhe (GAA), is reduced in ftsj1 knockout cells. Bioinformatics analysis reveals that almost 40% of the high TTT-biased genes are related to brain/nervous functions. Our data potentially enhance our understanding of the relationship between FTSJ1 and nervous system development.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yan‐Nan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Bei‐Si Xu
- Center for Applied BioinformaticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ya‐Ping Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationSynthetic and Functional Biomolecules CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Mi Zhou
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Tao Long
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Hao Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Han Dong
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Peng R Chen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationSynthetic and Functional Biomolecules CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - En‐Duo Wang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Ru‐Juan Liu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
42
|
Bruch A, Laguna T, Butter F, Schaffrath R, Klassen R. Misactivation of multiple starvation responses in yeast by loss of tRNA modifications. Nucleic Acids Res 2020; 48:7307-7320. [PMID: 32484543 PMCID: PMC7367188 DOI: 10.1093/nar/gkaa455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Previously, combined loss of different anticodon loop modifications was shown to impair the function of distinct tRNAs in Saccharomyces cerevisiae. Surprisingly, each scenario resulted in shared cellular phenotypes, the basis of which is unclear. Since loss of tRNA modification may evoke transcriptional responses, we characterized global transcription patterns of modification mutants with defects in either tRNAGlnUUG or tRNALysUUU function. We observe that the mutants share inappropriate induction of multiple starvation responses in exponential growth phase, including derepression of glucose and nitrogen catabolite-repressed genes. In addition, autophagy is prematurely and inadequately activated in the mutants. We further demonstrate that improper induction of individual starvation genes as well as the propensity of the tRNA modification mutants to form protein aggregates are diminished upon overexpression of tRNAGlnUUG or tRNALysUUU, the tRNA species that lack the modifications of interest. Hence, our data suggest that global alterations in mRNA translation and proteostasis account for the transcriptional stress signatures that are commonly triggered by loss of anticodon modifications in different tRNAs.
Collapse
Affiliation(s)
- Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Teresa Laguna
- Department of Quantitative Proteomics, IMB Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, IMB Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
43
|
de Crécy-Lagard V, Jaroch M. Functions of Bacterial tRNA Modifications: From Ubiquity to Diversity. Trends Microbiol 2020; 29:41-53. [PMID: 32718697 DOI: 10.1016/j.tim.2020.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/21/2023]
Abstract
Modified nucleotides in tRNA are critical components of the translation apparatus, but their importance in the process of translational regulation had until recently been greatly overlooked. Two breakthroughs have recently allowed a fuller understanding of the importance of tRNA modifications in bacterial physiology. One is the identification of the full set of tRNA modification genes in model organisms such as Escherichia coli K12. The second is the improvement of available analytical tools to monitor tRNA modification patterns. The role of tRNA modifications varies greatly with the specific modification within a given tRNA and with the organism studied. The absence of these modifications or reductions can lead to cell death or pleiotropic phenotypes or may have no apparent visible effect. By linking translation through their decoding functions to metabolism through their biosynthetic pathways, tRNA modifications are emerging as important components of the bacterial regulatory toolbox.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Marshall Jaroch
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
44
|
Hibi K, Amikura K, Sugiura N, Masuda K, Ohno S, Yokogawa T, Ueda T, Shimizu Y. Reconstituted cell-free protein synthesis using in vitro transcribed tRNAs. Commun Biol 2020; 3:350. [PMID: 32620935 PMCID: PMC7334211 DOI: 10.1038/s42003-020-1074-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Entire reconstitution of tRNAs for active protein production in a cell-free system brings flexibility into the genetic code engineering. It can also contribute to the field of cell-free synthetic biology, which aims to construct self-replicable artificial cells. Herein, we developed a system equipped only with in vitro transcribed tRNA (iVTtRNA) based on a reconstituted cell-free protein synthesis (PURE) system. The developed system, consisting of 21 iVTtRNAs without nucleotide modifications, is able to synthesize active proteins according to the redesigned genetic code. Manipulation of iVTtRNA composition in the system enabled genetic code rewriting. Introduction of modified nucleotides into specific iVTtRNAs demonstrated to be effective for both protein yield and decoding fidelity, where the production yield of DHFR reached about 40% of the reaction with native tRNA at 30°C. The developed system will prove useful for studying decoding processes, and may be employed in genetic code and protein engineering applications. Keita Hibi et al. develop a system to reconstitute cell-free protein synthesis using only in vitro transcribed tRNA (iVTtRNAs). They use 21 iVTtRNAs with and without nucleotide modifications to successfully synthesize functional proteins with about 40% production yield. Their system will be useful to study gene and protein engineering.
Collapse
Affiliation(s)
- Keita Hibi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Kazuaki Amikura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Naoki Sugiura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Keiko Masuda
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan
| | - Satoshi Ohno
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.,Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Tokyo, Shinjuku, 162-8480, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
45
|
de Crécy-Lagard V, Ross RL, Jaroch M, Marchand V, Eisenhart C, Brégeon D, Motorin Y, Limbach PA. Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168. Biomolecules 2020; 10:E977. [PMID: 32629984 PMCID: PMC7408541 DOI: 10.3390/biom10070977] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extensive knowledge of both the nature and position of tRNA modifications in all cellular tRNAs has been limited to two bacteria, Escherichia coli and Mycoplasma capricolum. Bacillus subtilis sp subtilis strain 168 is the model Gram-positive bacteria and the list of the genes involved in tRNA modifications in this organism is far from complete. Mass spectrometry analysis of bulk tRNA extracted from B. subtilis, combined with next generation sequencing technologies and comparative genomic analyses, led to the identification of 41 tRNA modification genes with associated confidence scores. Many differences were found in this model Gram-positive bacteria when compared to E. coli. In general, B. subtilis tRNAs are less modified than those in E. coli, even if some modifications, such as m1A22 or ms2t6A, are only found in the model Gram-positive bacteria. Many examples of non-orthologous displacements and of variations in the most complex pathways are described. Paralog issues make uncertain direct annotation transfer from E. coli to B. subtilis based on homology only without further experimental validation. This difficulty was shown with the identification of the B. subtilis enzyme that introduces ψ at positions 31/32 of the tRNAs. This work presents the most up to date list of tRNA modification genes in B. subtilis, identifies the gaps in knowledge, and lays the foundation for further work to decipher the physiological role of tRNA modifications in this important model organism and other bacteria.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Robert L. Ross
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Virginie Marchand
- UMR7365 IMoPA CNRS-UL and UMS2008 CNRS-UL-INSERM, Université de Lorraine, Biopôle UL, 54000 Nancy, France; (V.M.); (Y.M.)
| | - Christina Eisenhart
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.E.); (P.A.L.)
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 Quai Saint Bernard, CEDEX 05, F-75252 Paris, France;
| | - Yuri Motorin
- UMR7365 IMoPA CNRS-UL and UMS2008 CNRS-UL-INSERM, Université de Lorraine, Biopôle UL, 54000 Nancy, France; (V.M.); (Y.M.)
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.E.); (P.A.L.)
| |
Collapse
|
46
|
Shen H, Zheng E, Yang Z, Yang M, Xu X, Zhou Y, Ni J, Li R, Zhao G. YRDC is upregulated in non-small cell lung cancer and promotes cell proliferation by decreasing cell apoptosis. Oncol Lett 2020; 20:43-52. [PMID: 32565932 PMCID: PMC7285791 DOI: 10.3892/ol.2020.11560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-associated mortality worldwide. yrdC N6-threonylcarbamoltransferase domain containing protein (YRDC) has been demonstrated to be involved in the formation of threonylcarbamoyladenosine in transfer ribonucleic acid. However, the molecular mechanisms underlying NSCLC progression remain largely unclear. The present study revealed that YRDC was upregulated in NSCLC samples compared with adjacent non-cancerous tissues by analyzing datasets obtained from the Gene Expression Omnibus and The Cancer Genome Atlas. Higher expression of YRDC was associated with overall survival time and disease-free survival time in patients with NSCLC, particularly in lung adenocarcinoma. Furthermore, knockdown of YRDC in NSCLS cell lines significantly suppressed cell growth and cell colony formation in vitro. Additionally, the results demonstrated that silencing of YRDC induced apoptosis of A549 cells. Then, the protein-protein interaction networks associated with yrdC N6-threonylcarbamoltransferase domain containing protein (YRDC) in NSCLC were subsequently constructed to investigate the potential molecular mechanism underlying the role of YRDC in NSCLC. The results revealed that YRDC was involved in the regulation of spliceosomes, ribosomes, the p53 signaling pathway, proteasomes, the cell cycle and DNA replication. The present study demonstrated that YRDC may serve as a novel biomarker for the prognosis prediction and treatment of NSCLC.
Collapse
Affiliation(s)
- Haibo Shen
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Enkuo Zheng
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Zhenhua Yang
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Minglei Yang
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Xiang Xu
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Yinjie Zhou
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Junjun Ni
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Rui Li
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Guofang Zhao
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
47
|
Zhang Y, Chen J, Wang Y, Li Y, Rui W, Zhang J, Luo D. Expression and protease characterization of a conserved protein YgjD in Vibrio harveyi. PeerJ 2020; 8:e9061. [PMID: 32477834 PMCID: PMC7241418 DOI: 10.7717/peerj.9061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/04/2020] [Indexed: 11/20/2022] Open
Abstract
The glycopeptidase GCP and its homologue proteins are conserved and essential for survival of bacteria. The ygjD gene (Glycopeptidase homologue) was cloned from Vibrio harveyi strain SF-1. The gene consisted of 1,017 bp, which encodes a 338 amino acid polypeptide. The nucleotide sequence similarity of the ygjD gene with that of V. harveyi FDAARGOS 107 was 95%. The ygjD gene also showed similarities of 68%, 67% and 50% with those of Salmonella enterica, Escherichia coli and Bacillus cereus. The ygjD gene was expressed in E. coli BL21 (DE3) and the recombinant YgjD was purified by Ni2+ affinity chromatography column. The purified YgjD showed a specific 37 kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and exhibited protease activities of 59,000 units/mg, 53,700 units/mg and 8,100 units/mg, respectively, on N-Acetyl-L-tyrosine ethyl ester monohydrate (ATEE), N-Benzoyl-L-tyrosine ethyl ester (BTEE) and N-Benzoyl-DL-arginine-4-nitroanilide hydrochloride (BAPNA) substrates. When the conserved amino acids of His111, Glu113 and His115 in the YgjD were replaced with alanine, respectively, the protease activities of the mutants were partly decreased. The two conserved His111 and His115 of YgjD were mutated and the protein lost the protease activity, which implied that the two amino acid played very important roles in maintaining its protease activity. The addition of the purified YgjD to the culture medium of V. harveyi strain SF-1 can effectively promote the bacteria growth. These results indicated that the protease activities may be involved in the survival of bacteria.
Collapse
Affiliation(s)
- Yayuan Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of life science and enginerring, Lanzhou University of Technology, Lanzhou, China
| | - Yanlin Li
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wenhong Rui
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jiyi Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Dan Luo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
48
|
Begik O, Lucas MC, Liu H, Ramirez JM, Mattick JS, Novoa EM. Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures. Genome Biol 2020; 21:97. [PMID: 32375858 PMCID: PMC7204298 DOI: 10.1186/s13059-020-02009-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RNA modifications play central roles in cellular fate and differentiation. However, the machinery responsible for placing, removing, and recognizing more than 170 RNA modifications remains largely uncharacterized and poorly annotated, and we currently lack integrative studies that identify which RNA modification-related proteins (RMPs) may be dysregulated in each cancer type. RESULTS Here, we perform a comprehensive annotation and evolutionary analysis of human RMPs, as well as an integrative analysis of their expression patterns across 32 tissues, 10 species, and 13,358 paired tumor-normal human samples. Our analysis reveals an unanticipated heterogeneity of RMP expression patterns across mammalian tissues, with a vast proportion of duplicated enzymes displaying testis-specific expression, suggesting a key role for RNA modifications in sperm formation and possibly intergenerational inheritance. We uncover many RMPs that are dysregulated in various types of cancer, and whose expression levels are predictive of cancer progression. Surprisingly, we find that several commonly studied RNA modification enzymes such as METTL3 or FTO are not significantly upregulated in most cancer types, whereas several less-characterized RMPs, such as LAGE3 and HENMT1, are dysregulated in many cancers. CONCLUSIONS Our analyses reveal an unanticipated heterogeneity in the expression patterns of RMPs across mammalian tissues and uncover a large proportion of dysregulated RMPs in multiple cancer types. We provide novel targets for future cancer research studies targeting the human epitranscriptome, as well as foundations to understand cell type-specific behaviors that are orchestrated by RNA modifications.
Collapse
Affiliation(s)
- Oguzhan Begik
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- UNSW, Sydney, Sydney, NSW, 2052, Australia
| | - Morghan C Lucas
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Huanle Liu
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Jose Miguel Ramirez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- UNSW, Sydney, Sydney, NSW, 2052, Australia
| | - Eva Maria Novoa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- UNSW, Sydney, Sydney, NSW, 2052, Australia.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
49
|
Luthra A, Paranagama N, Swinehart W, Bayooz S, Phan P, Quach V, Schiffer JM, Stec B, Iwata-Reuyl D, Swairjo MA. Conformational communication mediates the reset step in t6A biosynthesis. Nucleic Acids Res 2020; 47:6551-6567. [PMID: 31114923 PMCID: PMC6614819 DOI: 10.1093/nar/gkz439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022] Open
Abstract
The universally conserved N6-threonylcarbamoyladenosine (t6A) modification of tRNA is essential for translational fidelity. In bacteria, t6A biosynthesis starts with the TsaC/TsaC2-catalyzed synthesis of the intermediate threonylcarbamoyl adenylate (TC–AMP), followed by transfer of the threonylcarbamoyl (TC) moiety to adenine-37 of tRNA by the TC-transfer complex comprised of TsaB, TsaD and TsaE subunits and possessing an ATPase activity required for multi-turnover of the t6A cycle. We report a 2.5-Å crystal structure of the T. maritima TC-transfer complex (TmTsaB2D2E2) bound to Mg2+-ATP in the ATPase site, and substrate analog carboxy-AMP in the TC-transfer site. Site directed mutagenesis results show that residues in the conserved Switch I and Switch II motifs of TsaE mediate the ATP hydrolysis-driven reactivation/reset step of the t6A cycle. Further, SAXS analysis of the TmTsaB2D2-tRNA complex in solution reveals bound tRNA lodged in the TsaE binding cavity, confirming our previous biochemical data. Based on the crystal structure and molecular docking of TC–AMP and adenine-37 in the TC-transfer site, we propose a model for the mechanism of TC transfer by this universal biosynthetic system.
Collapse
Affiliation(s)
- Amit Luthra
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Naduni Paranagama
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - William Swinehart
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Susan Bayooz
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Phuc Phan
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Vanessa Quach
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Jamie M Schiffer
- Schrödinger, 10201 Wateridge Cir Suite 220, San Diego, CA 92121, USA
| | - Boguslaw Stec
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.,The Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
50
|
Ling J, Fan C, Qin H, Wang M, Chen J, Wittung‐Stafshede P, Zhu TF. Mirror‐Image 5S Ribonucleoprotein Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun‐Jie Ling
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Chuyao Fan
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Hong Qin
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Min Wang
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Ji Chen
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Pernilla Wittung‐Stafshede
- Chemical Biology DivisionDepartment of Biology and Biological EngineeringChalmers University of Technology 41296 Gothenburg Sweden
| | - Ting F. Zhu
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| |
Collapse
|