1
|
Bruna RE, Kendra CG, Pontes MH. An intracellular phosphorus-starvation signal activates the PhoB/PhoR two-component system in Salmonella enterica. mBio 2024; 15:e0164224. [PMID: 39152718 PMCID: PMC11389368 DOI: 10.1128/mbio.01642-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/19/2024] Open
Abstract
Bacteria acquire P primarily as inorganic orthophosphate (Pi, PO43-). Once internalized, Pi is rapidly assimilated into biomass during the synthesis of ATP. Because Pi is essential, but excessive ATP is toxic, the acquisition of environmental Pi is tightly regulated. In the bacterium Salmonella enterica (Salmonella), growth in Pi-limiting environments activates the membrane sensor histidine kinase PhoR, leading to the phosphorylation of its cognate transcriptional regulator PhoB and subsequent transcription of genes involved in adaptations to low Pi. Pi limitation promotes PhoR kinase activity by altering the conformation of a membrane signaling complex comprised of PhoR, the multicomponent Pi transporter system PstSACB and the regulatory protein PhoU. However, the identity of the Pi-starvation signal and how it controls PhoR activity remain unknown. Here, we identify conditions where the PhoB and PhoR signal transduction proteins can be maintained in an inactive state when Salmonella is grown in media lacking Pi. Our results demonstrate that PhoB/PhoR is activated by an intracellular P-insufficiency signal.IMPORTANCEIn enteric bacteria, the transcriptional response to phosphorus (P) starvation is controlled by a specialized signal transduction system comprised of a membrane-bound, multicomponent signal sensor, and a cytoplasmic transcriptional factor. Whereas this system has been primarily studied in the context of phosphate (Pi) starvation, it is currently unknown how this stress initiates signal transduction. In the current study, we establish that this signaling system is regulated by a cytoplasmic signal arising from insufficient P. We demonstrate that rather than responding to extracellular conditions, cells couple the activation of their P starvation response to the availability of cytoplasmic P. This regulatory logic may enable cells to prevent toxicity resulting from excessive Pi acquisition and hinder the onset of a P starvation response when their metabolic demands are being met through the consumption of P sources other than Pi.
Collapse
Affiliation(s)
- Roberto E Bruna
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, Camp Hill, Pennsylvania, USA
| | - Christopher G Kendra
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, Camp Hill, Pennsylvania, USA
| | - Mauricio H Pontes
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, Pennsylvania State University, Camp Hill, Pennsylvania, USA
| |
Collapse
|
2
|
Kenney LJ. Peeling the onion: additional layers of regulation in the acid stress response. J Bacteriol 2024; 206:e0006924. [PMID: 38488356 PMCID: PMC11025319 DOI: 10.1128/jb.00069-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Bacteria are capable of withstanding large changes in osmolality and cytoplasmic pH, unlike eukaryotes that tightly regulate their pH and cellular composition. Previous studies on the bacterial acid stress response described a rapid, brief acidification, followed by immediate recovery. More recent experiments with better pH probes have imaged single living cells, and we now appreciate that following acid stress, bacteria maintain an acidic cytoplasm for as long as the stress remains. This acidification enables pathogens to sense a host environment and turn on their virulence programs, for example, enabling survival and replication within acidic vacuoles. Single-cell analysis identified an intracellular pH threshold of ~6.5. Acid stress reduces the internal pH below this threshold, triggering the assembly of a type III secretion system in Salmonella and the secretion of virulence factors in the host. These pathways are significant because preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. Although we refer to the acid stress response as singular, it is actually a complex response that involves numerous two-component signaling systems, several amino acid decarboxylation systems, as well as cellular buffering systems and electron transport chain components, among others. In a recent paper in the Journal of Bacteriology, M. G. Gorelik, H. Yakhnin, A. Pannuri, A. C. Walker, C. Pourciau, D. Czyz, T. Romeo, and P. Babitzke (J Bacteriol 206:e00354-23, 2024, https://doi.org/10.1128/jb.00354-23) describe a new connection linking the carbon storage regulator CsrA to the acid stress response, highlighting new additional layers of complexity.
Collapse
Affiliation(s)
- Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch Galveston, Galveston, Texas, USA
| |
Collapse
|
3
|
Geyi D, Thomas P, Prakasan L, Issac YM, Singh A, Nair SS, Singh M, Inbaraj S, Kumar S, Mariappan AK, Abhishek, Chaturvedi VK, Dandapat P. Salmonella enterica serovars linked with poultry in India: antibiotic resistance profiles and carriage of virulence genes. Braz J Microbiol 2024; 55:969-979. [PMID: 38233640 PMCID: PMC10920579 DOI: 10.1007/s42770-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024] Open
Abstract
Salmonella is an important poultry pathogen with zoonotic potential. Being a foodborne pathogen, Salmonella-contaminated poultry products can act as the major source of infection in humans. In India, limited studies have addressed the diversity of Salmonella strains of poultry origin. This study represented 26 strains belonging to Salmonella serovars Typhimurium, Infantis, Virchow, Kentucky, and Agona. The strains were tested for resistance to 14 different antimicrobial agents using the Kirby-Bauer disk-diffusion assay. The presence of the invA, hilA, agfA, lpfA, sopE, and spvC virulence genes was assessed by polymerase chain reaction (PCR), and the genetic diversity was assessed by Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR). The highest resistance to tetracycline (n = 17; 65.38%) followed by nalidixic acid (n = 16; 61.53%) was detected among the strains. Among the strains (n = 17) phenotypically resistant to tetracycline, 94% (n = 16) were also positive for the tetA gene. Based on the presence of virulence genes, the strains were characterized into three virulence profiles (PI, P2, and P3). Among the investigated virulence genes, invA, hilA, agfA, and lpfA were present in all strains. The sopE gene was mostly associated with serovars Virchow (n = 3; 100%) and Typhimurium (n = 8; 80%), whereas spvC gene was exclusive for two Typhimurium strains that lacked sopE gene. ERIC-PCR profiling indicated clusters correlating their serovar, geographical, and farm origins. These results demonstrate that Salmonella isolates with a wide genetic range, antibiotic resistance, and virulence characteristics can colonize poultry. The presence of such strains is crucial for both food safety and public health.
Collapse
Affiliation(s)
- Dengam Geyi
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Prasad Thomas
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Lakshmi Prakasan
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Yancy M Issac
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Arvinderpal Singh
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, Jammu, 181102, India
| | - Sonu S Nair
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Maninder Singh
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Sophia Inbaraj
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Suman Kumar
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Asok K Mariappan
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Abhishek
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Vinod K Chaturvedi
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Premanshu Dandapat
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
4
|
Brugger C, Srirangam S, Deaconescu AM. IraM remodels the RssB segmented helical linker to stabilize σ s against degradation by ClpXP. J Biol Chem 2024; 300:105568. [PMID: 38103640 PMCID: PMC10844676 DOI: 10.1016/j.jbc.2023.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
Upon Mg2+ starvation, a condition often associated with virulence, enterobacteria inhibit the ClpXP-dependent proteolysis of the master transcriptional regulator, σs, via IraM, a poorly understood antiadaptor that prevents RssB-dependent loading of σs onto ClpXP. This inhibition results in σs accumulation and expression of stress resistance genes. Here, we report on the structural analysis of RssB bound to IraM, which reveals that IraM induces two folding transitions within RssB, amplified via a segmented helical linker. These conformational changes result in an open, yet inhibited RssB structure in which IraM associates with both the C-terminal and N-terminal domains of RssB and prevents binding of σs to the 4-5-5 face of the N-terminal receiver domain. This work highlights the remarkable structural plasticity of RssB and reveals how a stress-specific RssB antagonist modulates a core stress response pathway that could be leveraged to control biofilm formation, virulence, and the development of antibiotic resistance.
Collapse
Affiliation(s)
- Christiane Brugger
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Srinivas Srirangam
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
5
|
Yao T, Liu X, Li D, Huang Y, Yang W, Liu R, Wang Q, Li X, Zhou J, Jin C, Liu Y, Yang B, Pang Y. Two-component system RstAB promotes the pathogenicity of adherent-invasive Escherichia coli in response to acidic conditions within macrophages. Gut Microbes 2024; 16:2356642. [PMID: 38769708 PMCID: PMC11135836 DOI: 10.1080/19490976.2024.2356642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.
Collapse
Affiliation(s)
- Ting Yao
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Xingmei Liu
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Dan Li
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Yu Huang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Wen Yang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Ruiying Liu
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Qian Wang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Xueping Li
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Jiarui Zhou
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Chen Jin
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Yutao Liu
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Bin Yang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| | - Yu Pang
- TEDA (Tianjin Economic-Technological Development Area) Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Vinchhi R, Yelpure C, Balachandran M, Matange N. Pervasive gene deregulation underlies adaptation and maladaptation in trimethoprim-resistant E. coli. mBio 2023; 14:e0211923. [PMID: 38032208 PMCID: PMC10746255 DOI: 10.1128/mbio.02119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Bacteria employ a number of mechanisms to adapt to antibiotics. Mutations in transcriptional regulators alter the expression levels of genes that can change the susceptibility of bacteria to antibiotics. Two-component signaling proteins are a major class of signaling molecule used by bacteria to regulate transcription. In previous work, we found that mutations in MgrB, a feedback regulator of the PhoQP two-component system, conferred trimethoprim tolerance to Escherichia coli. Here, we elucidate how mutations in MgrB have a domino-like effect on the gene regulatory network of E. coli. As a result, pervasive perturbation of gene regulation ensues. Depending on the environmental context, this pervasive deregulation is either adaptive or maladaptive. Our study sheds light on how deregulation of gene expression can be beneficial for bacteria when challenged with antibiotics, and why regulators like MgrB may have evolved in the first place.
Collapse
Affiliation(s)
- Rhea Vinchhi
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Chetna Yelpure
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Manasvi Balachandran
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Nishad Matange
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| |
Collapse
|
7
|
Li W, Ren Q, Ni T, Zhao Y, Sang Z, Luo R, Li Z, Li S. Strategies adopted by Salmonella to survive in host: a review. Arch Microbiol 2023; 205:362. [PMID: 37904066 DOI: 10.1007/s00203-023-03702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.
Collapse
Affiliation(s)
- Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qili Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ting Ni
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yifei Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Renli Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
8
|
Jiang S, Steup LC, Kippnich C, Lazaridi S, Malengo G, Lemmin T, Yuan J. The inhibitory mechanism of a small protein reveals its role in antimicrobial peptide sensing. Proc Natl Acad Sci U S A 2023; 120:e2309607120. [PMID: 37792514 PMCID: PMC10576120 DOI: 10.1073/pnas.2309607120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
A large number of small membrane proteins have been uncovered in bacteria, but their mechanism of action has remained mostly elusive. Here, we investigate the mechanism of a physiologically important small protein, MgrB, which represses the activity of the sensor kinase PhoQ and is widely distributed among enterobacteria. The PhoQ/PhoP two-component system is a master regulator of the bacterial virulence program and interacts with MgrB to modulate bacterial virulence, fitness, and drug resistance. A combination of cross-linking approaches with functional assays and protein dynamic simulations revealed structural rearrangements due to interactions between MgrB and PhoQ near the membrane/periplasm interface and along the transmembrane helices. These interactions induce the movement of the PhoQ catalytic domain and the repression of its activity. Without MgrB, PhoQ appears to be much less sensitive to antimicrobial peptides, including the commonly used C18G. In the presence of MgrB, C18G promotes MgrB to dissociate from PhoQ, thus activating PhoQ via derepression. Our findings reveal the inhibitory mechanism of the small protein MgrB and uncover its importance in antimicrobial peptide sensing.
Collapse
Affiliation(s)
- Shan Jiang
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| | - Lydia C. Steup
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| | - Charlotte Kippnich
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| | - Symela Lazaridi
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, 3012Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012Bern, Switzerland
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| | - Thomas Lemmin
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, 3012Bern, Switzerland
| | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, 35043Marburg, Germany
- Center for Synthetic Microbiology, 35043Marburg, Germany
| |
Collapse
|
9
|
Groisman EA, Choi J. Advancing evolution: Bacteria break down gene silencer to express horizontally acquired genes. Bioessays 2023; 45:e2300062. [PMID: 37533411 PMCID: PMC10530229 DOI: 10.1002/bies.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Horizontal gene transfer advances bacterial evolution. To benefit from horizontally acquired genes, enteric bacteria must overcome silencing caused when the widespread heat-stable nucleoid structuring (H-NS) protein binds to AT-rich horizontally acquired genes. This ability had previously been ascribed to both anti-silencing proteins outcompeting H-NS for binding to AT-rich DNA and RNA polymerase initiating transcription from alternative promoters. However, we now know that pathogenic Salmonella enterica serovar Typhimurium and commensal Escherichia coli break down H-NS when this silencer is not bound to DNA. Curiously, both species use the same protease - Lon - to destroy H-NS in distinct environments. Anti-silencing proteins promote the expression of horizontally acquired genes without binding to them by displacing H-NS from AT-rich DNA, thus leaving H-NS susceptible to proteolysis and decreasing H-NS amounts overall. Conserved amino acid sequences in the Lon protease and H-NS cleavage site suggest that diverse bacteria degrade H-NS to exploit horizontally acquired genes.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
- Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT, 06516, USA
| | - Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| |
Collapse
|
10
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
11
|
Zhou J, Ma H, Zhang L. Mechanisms of Virulence Reprogramming in Bacterial Pathogens. Annu Rev Microbiol 2023; 77:561-581. [PMID: 37406345 DOI: 10.1146/annurev-micro-032521-025954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bacteria are single-celled organisms that carry a comparatively small set of genetic information, typically consisting of a few thousand genes that can be selectively activated or repressed in an energy-efficient manner and transcribed to encode various biological functions in accordance with environmental changes. Research over the last few decades has uncovered various ingenious molecular mechanisms that allow bacterial pathogens to sense and respond to different environmental cues or signals to activate or suppress the expression of specific genes in order to suppress host defenses and establish infections. In the setting of infection, pathogenic bacteria have evolved various intelligent mechanisms to reprogram their virulence to adapt to environmental changes and maintain a dominant advantage over host and microbial competitors in new niches. This review summarizes the bacterial virulence programming mechanisms that enable pathogens to switch from acute to chronic infection, from local to systemic infection, and from infection to colonization. It also discusses the implications of these findings for the development of new strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Hongmei Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Lianhui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
12
|
Shetty D, Kenney LJ. A pH-sensitive switch activates virulence in Salmonella. eLife 2023; 12:e85690. [PMID: 37706506 PMCID: PMC10519707 DOI: 10.7554/elife.85690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
The transcriptional regulator SsrB acts as a switch between virulent and biofilm lifestyles of non-typhoidal Salmonella enterica serovar Typhimurium. During infection, phosphorylated SsrB activates genes on Salmonella Pathogenicity Island-2 (SPI-2) essential for survival and replication within the macrophage. Low pH inside the vacuole is a key inducer of expression and SsrB activation. Previous studies demonstrated an increase in SsrB protein levels and DNA-binding affinity at low pH; the molecular basis was unknown (Liew et al., 2019). This study elucidates its underlying mechanism and in vivo significance. Employing single-molecule and transcriptional assays, we report that the SsrB DNA-binding domain alone (SsrBc) is insufficient to induce acid pH-sensitivity. Instead, His12, a conserved residue in the receiver domain confers pH sensitivity to SsrB allosterically. Acid-dependent DNA binding was highly cooperative, suggesting a new configuration of SsrB oligomers at SPI-2-dependent promoters. His12 also plays a role in SsrB phosphorylation; substituting His12 reduced phosphorylation at neutral pH and abolished pH-dependent differences. Failure to flip the switch in SsrB renders Salmonella avirulent and represents a potential means of controlling virulence.
Collapse
Affiliation(s)
- Dasvit Shetty
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| | - Linda J Kenney
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at GalvestonGalvestonUnited States
| |
Collapse
|
13
|
Xu Z, Chen Y, Wu Z, Li D, Li X, Feng X, Deng H, Chen H, Zhang B, Lin Z. Bacterial mineralization of chromium-copper spinel with highly performance in electroplating effluent. WATER RESEARCH 2023; 242:120229. [PMID: 37331227 DOI: 10.1016/j.watres.2023.120229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Cr (VI) contamination has posed severe challenges to water quality, food safety, and land resources. Microbial reduction of Cr(VI) to Cr(III) has drawn considerable attention due to its low cost and environmental friendliness. However, recent reports have shown that Cr(VI) generates highly migratable organo-Cr(III) rather than stable inorganic chromium minerals during the biological reduction process. In this work, it was reported for the first time that spinel structure CuCr2O4 was formed by Bacillus cereus in Cr biomineralization process. Different from known biomineralization models (biologically controlled mineralization and biologically induced mineralization), the chromium-copper minerals here appeared as specialized minerals with extracellular distribution. In view of this, a possible mechanism of biologically secretory mineralization was proposed. In addition, Bacillus cereus demonstrated a high conversion ability in the treatment of electroplating wastewater. The Cr(VI) removal percentage reached 99.7%, which satisfied the Chinese emission standard of pollutants for electroplating (GB 21,900-2008), indicating its application potential. Altogether, our work elucidated a bacterial chromium spinel mineralization pathway and evaluated the potential of this system for application in actual wastewater, opening a new avenue in the field of chromium pollution treatment and control.
Collapse
Affiliation(s)
- Zhongxuan Xu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yuxi Chen
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Zhen Wu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Diandi Li
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Xiaoqin Li
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Xuezhen Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Deng
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China.
| | - Hong Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhang Lin
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
14
|
Iwadate Y, Golubeva YA, Slauch JM. Cation Homeostasis: Coordinate Regulation of Polyamine and Magnesium Levels in Salmonella. mBio 2023; 14:e0269822. [PMID: 36475749 PMCID: PMC9972920 DOI: 10.1128/mbio.02698-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Polyamines are organic cations that are important in all domains of life. Here, we show that in Salmonella, polyamine levels and Mg2+ levels are coordinately regulated and that this regulation is critical for viability under both low and high concentrations of polyamines. Upon Mg2+ starvation, polyamine synthesis is induced, as is the production of the high-affinity Mg2+ transporters MgtA and MgtB. Either polyamine synthesis or Mg2+ transport is required to maintain viability. Mutants lacking the polyamine exporter PaeA, the expression of which is induced by PhoPQ in response to low Mg2+, lose viability in the stationary phase. This lethality is suppressed by blocking either polyamine synthesis or Mg2+ transport, suggesting that once Mg2+ levels are reestablished, the excess polyamines must be excreted. Thus, it is the relative levels of both Mg2+ and polyamines that are regulated to maintain viability. Indeed, sensitivity to high concentrations of polyamines is proportional to the Mg2+ levels in the medium. These results are recapitulated during infection. Polyamine synthesis mutants are attenuated in a mouse model of systemic infection, as are strains lacking the MgtB Mg2+ transporter. The loss of MgtB in the synthesis mutant background confers a synthetic phenotype, confirming that Mg2+ and polyamines are required for the same process(es). Mutants lacking PaeA are also attenuated, but deleting paeA has no phenotype in a polyamine synthesis mutant background. These data support the idea that the cell coordinately controls both the polyamine and Mg2+ concentrations to maintain overall cation homeostasis, which is critical for survival in the macrophage phagosome. IMPORTANCE Polyamines are organic cations that are important in all life forms and are essential in plants and animals. However, their physiological functions and regulation remain poorly understood. We show that polyamines are critical for the adaptation of Salmonella to low Mg2+ conditions, including those found in the macrophage phagosome. Polyamines are synthesized upon low Mg2+ stress and partially replace Mg2+ until cytoplasmic Mg2+ levels are restored. Indeed, it is the sum of Mg2+ and polyamines in the cell that is critical for viability. While Mg2+ and polyamines compensate for one another, too little of both or too much of both is lethal. After cytoplasmic Mg2+ levels are reestablished, polyamines must be exported to avoid the toxic effects of excess divalent cations.
Collapse
Affiliation(s)
- Yumi Iwadate
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yekaterina A. Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Duan H, Zhang X, Figeys D. An emerging field: Post-translational modification in microbiome. Proteomics 2023; 23:e2100389. [PMID: 36239139 DOI: 10.1002/pmic.202100389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Post-translational modifications (PTMs) play an essential role in most biological processes. PTMs on human proteins have been extensively studied. Studies on bacterial PTMs are emerging, which demonstrate that bacterial PTMs are different from human PTMs in their types, mechanisms and functions. Few PTM studies have been done on the microbiome. Here, we reviewed several studied PTMs in bacteria including phosphorylation, acetylation, succinylation, glycosylation, and proteases. We discussed the enzymes responsible for each PTM and their functions. We also summarized the current methods used to study microbiome PTMs and the observations demonstrating the roles of PTM in the microbe-microbe interactions within the microbiome and their interactions with the environment or host. Although new methods and tools for PTM studies are still needed, the existing technologies have made great progress enabling a deeper understanding of the functional regulation of the microbiome. Large-scale application of these microbiome-wide PTM studies will provide a better understanding of the microbiome and its roles in the development of human diseases.
Collapse
Affiliation(s)
- Haonan Duan
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xu Zhang
- Center for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
The LysR-Type Transcription Regulator YhjC Promotes the Systemic Infection of Salmonella Typhimurium in Mice. Int J Mol Sci 2023; 24:ijms24021302. [PMID: 36674819 PMCID: PMC9867438 DOI: 10.3390/ijms24021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella Typhimurium is a Gram-negative intestinal pathogen that can infect humans and a variety of animals, causing gastroenteritis or serious systemic infection. Replication within host macrophages is essential for S. Typhimurium to cause systemic infection. By analyzing transcriptome data, the expression of yhjC gene, which encodes a putative regulator in S. Typhimurium, was found to be significantly up-regulated after the internalization of Salmonella by macrophages. Whether yhjC gene is involved in S. Typhimurium systemic infection and the related mechanisms were investigated in this study. The deletion of yhjC reduced the replication ability of S. Typhimurium in macrophages and decreased the colonization of S. Typhimurium in mouse systemic organs (liver and spleen), while increasing the survival rate of the infected mice, suggesting that YhjC protein promotes systemic infection by S. Typhimurium. Furthermore, by using transcriptome sequencing and RT-qPCR assay, the transcription of several virulence genes, including spvD, iroCDE and zraP, was found to be down-regulated after the deletion of yhjC. Electrophoretic mobility shift assay showed that YhjC protein can directly bind to the promoter region of spvD and zraP to promote their transcription. These findings suggest that YhjC contributes to the systemic virulence of S. Typhimurium via the regulation of multiple virulence genes and YhjC could represent a promising target to control S. Typhimurium infection.
Collapse
|
17
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
18
|
López‐Escarpa D, Castanheira S, García‐del Portillo F. OmpR and Prc contribute to switch the Salmonella morphogenetic program in response to phagosome cues. Mol Microbiol 2022; 118:477-493. [PMID: 36115022 PMCID: PMC9827838 DOI: 10.1111/mmi.14982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Salmonella enterica serovar Typhimurium infects eukaryotic cells residing within membrane-bound phagosomes. In this compartment, the pathogen replaces the morphogenetic penicillin-binding proteins 2 and 3 (PBP2/PBP3) with PBP2SAL /PBP3SAL , two proteins absent in Escherichia coli. The basis for this switch is unknown. Here, we show that PBP3 protein levels drop drastically when S. Typhimurium senses acidity, high osmolarity and nutrient scarcity, cues that activate virulence functions required for intra-phagosomal survival and proliferation. The protease Prc and the transcriptional regulator OmpR contribute to lower PBP3 levels whereas OmpR stimulates PBP2SAL /PBP3SAL production. Surprisingly, despite being essential for division in E. coli, PBP3 levels also drop in non-pathogenic and pathogenic E. coli exposed to phagosome cues. Such exposure alters E. coli morphology resulting in very long bent and twisted filaments indicative of failure in the cell division and elongation machineries. None of these aberrant shapes are detected in S. Typhimurium. Expression of PBP3SAL restores cell division in E. coli exposed to phagosome cues although the cells retain elongation defects in the longitudinal axis. By switching the morphogenetic program, OmpR and Prc allow S. Typhimurium to properly divide and elongate inside acidic phagosomes maintaining its cellular dimensions and the rod shape.
Collapse
Affiliation(s)
- David López‐Escarpa
- Laboratory of Intracellular Bacterial PathogensNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Sónia Castanheira
- Laboratory of Intracellular Bacterial PathogensNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | | |
Collapse
|
19
|
Abstract
Bacteria have evolved many different signal transduction systems to sense and respond to changing environmental conditions. Signal integration is mainly achieved by signal recognition at extracytosolic ligand-binding domains (LBDs) of receptors. Hundreds of different LBDs have been reported, and our understanding of their sensing properties is growing. Receptors must function over a range of environmental pH values, but there is little information available on the robustness of sensing as a function of pH. Here, we have used isothermal titration calorimetry to determine the pH dependence of ligand recognition by nine LBDs that cover all major LBD superfamilies, of periplasmic solute-binding proteins, and cytosolic LBDs. We show that periplasmic LBDs recognize ligands over a very broad pH range, frequently stretching over eight pH units. This wide pH range contrasts with a much narrower pH response range of the cytosolic LBDs analyzed. Many LBDs must be dimeric to bind ligands, and analytical ultracentrifugation studies showed that the LBD of the Tar chemoreceptor forms dimers over the entire pH range tested. The pH dependences of Pseudomonas aeruginosa motility and chemotaxis were bell-shaped and centered at pH 7.0. Evidence for pH robustness of signaling in vivo was obtained by Förster Resonance Energy Transfer (FRET) measurements of the chemotaxis pathway responses in Escherichia coli. Bacteria have evolved several strategies to cope with extreme pH, such as periplasmic chaperones for protein refolding. The intrinsic pH resistance of periplasmic LBDs appears to be another strategy that permits bacteria to survive under adverse conditions.
Collapse
|
20
|
Roy Chowdhury A, Sah S, Varshney U, Chakravortty D. Salmonella Typhimurium outer membrane protein A (OmpA) renders protection from nitrosative stress of macrophages by maintaining the stability of bacterial outer membrane. PLoS Pathog 2022; 18:e1010708. [PMID: 35969640 PMCID: PMC9410544 DOI: 10.1371/journal.ppat.1010708] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 08/25/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial porins are highly conserved outer membrane proteins used in the selective transport of charged molecules across the membrane. In addition to their significant contributions to the pathogenesis of Gram-negative bacteria, their role(s) in salmonellosis remains elusive. In this study, we investigated the role of outer membrane protein A (OmpA), one of the major outer membrane porins of Salmonella, in the pathogenesis of Salmonella Typhimurium (STM). Our study revealed that OmpA plays an important role in the intracellular virulence of Salmonella. An ompA deficient strain of Salmonella (STM ΔompA) showed compromised proliferation in macrophages. We found that the SPI-2 encoded virulence factors such as sifA and ssaV are downregulated in STM ΔompA. The poor colocalization of STM ΔompA with LAMP-1 showed that disruption of SCV facilitated its release into the cytosol of macrophages, where it was assaulted by reactive nitrogen intermediates (RNI). The enhanced recruitment of nitrotyrosine on the cytosolic population of STM ΔompAΔsifA and ΔompAΔssaV compared to STM ΔsifA and ΔssaV showed an additional role of OmpA in protecting the bacteria from host nitrosative stress. Further, we showed that the generation of greater redox burst could be responsible for enhanced sensitivity of STM ΔompA to the nitrosative stress. The expression of several other outer membrane porins such as ompC, ompD, and ompF was upregulated in STM ΔompA. We found that in the absence of ompA, the enhanced expression of ompF increased the outer membrane porosity of Salmonella and made it susceptible to in vitro and in vivo nitrosative stress. Our study illustrates a novel mechanism for the strategic utilization of OmpA by Salmonella to protect itself from the nitrosative stress of macrophages. Salmonella Typhimurium majorly uses SPI-1 and SPI-2 encoded T3SS and virulence factors for thriving in the host macrophages. But the role of non-SPI genes in Salmonella pathogenesis remains unknown. This article illustrates a novel mechanism of how a non-SPI virulent protein, OmpA, helps Salmonella Typhimurium to survive in murine macrophages. Our data revealed that Salmonella lacking OmpA (STM ΔompA) is deficient in producing SPI-2 effector proteins and has a severe defect in maintaining the stability of its outer membrane. It is released into the cytosol of macrophages during infection after disrupting the SCV membrane. STM ΔompA was severely challenged with reactive nitrogen intermediates in the cytosol, which reduced their proliferation in macrophages. We further showed that the deletion of OmpA increased the expression of other larger porins (ompC, ompD, and ompF) on the surface of Salmonella. It was observed that the enhanced expression of OmpF in STM ΔompA increased the outer membrane permeability and made the bacteria more susceptible to in vitro and in vivo nitrosative stress. Altogether our study proposes new insights into the role of Salmonella OmpA as an essential virulence factor.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
21
|
Nitrate Utilization Promotes Systemic Infection of Salmonella Typhimurium in Mice. Int J Mol Sci 2022; 23:ijms23137220. [PMID: 35806223 PMCID: PMC9266322 DOI: 10.3390/ijms23137220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Salmonella Typhimurium is an invasive enteric pathogen that causes gastroenteritis in humans and life-threatening systemic infections in mice. During infection of the intestine, S. Typhimurium can exploit nitrate as an electron acceptor to enhance its growth. However, the roles of nitrate on S. Typhimurium systemic infection are unknown. In this study, nitrate levels were found to be significantly increased in the liver and spleen of mice systemically infected by S. Typhimurium. Mutations in genes encoding nitrate transmembrane transporter (narK) or nitrate-producing flavohemoprotein (hmpA) decreased the replication of S. Typhimurium in macrophages and reduced systemic infection in vivo, suggesting that nitrate utilization promotes S. Typhimurium systemic virulence. Moreover, nitrate utilization contributes to the acidification of the S. Typhimurium cytoplasm, which can sustain the virulence of S. Typhimurium by increasing the transcription of virulence genes encoding on Salmonella pathogenicity island 2 (SPI-2). Furthermore, the growth advantage of S. Typhimurium conferred by nitrate utilization occurred only under low-oxygen conditions, and the nitrate utilization was activated by both the global regulator Fnr and the nitrate-sensing two-component system NarX-NarL. Collectively, this study revealed a novel mechanism adopted by Salmonella to interact with its host and increase its virulence.
Collapse
|
22
|
Salvail H, Choi J, Groisman EA. Differential synthesis of novel small protein times Salmonella virulence program. PLoS Genet 2022; 18:e1010074. [PMID: 35245279 PMCID: PMC8896665 DOI: 10.1371/journal.pgen.1010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Gene organization in operons enables concerted transcription of functionally related genes and efficient control of cellular processes. Typically, an operon is transcribed as a polycistronic mRNA that is translated into corresponding proteins. Here, we identify a bicistronic operon transcribed as two mRNAs, yet only one allows translation of both genes. We establish that the novel gene ugtS forms an operon with virulence gene ugtL, an activator of the master virulence regulatory system PhoP/PhoQ in Salmonella enterica serovar Typhimurium. Only the longer ugtSugtL mRNA carries the ugtS ribosome binding site and therefore allows ugtS translation. Inside macrophages, the ugtSugtL mRNA species allowing translation of both genes is produced hours before that allowing translation solely of ugtL. The small protein UgtS controls the kinetics of PhoP phosphorylation by antagonizing UgtL activity, preventing premature activation of a critical virulence program. Moreover, S. enterica serovars that infect cold-blooded animals lack ugtS. Our results establish how foreign gene control of ancestral regulators enables pathogens to time their virulence programs. Pathogens must express their virulence genes at precisely the right time to cause disease. Here, we identify a novel small protein that governs a critical virulence program in the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). We establish that the novel small protein UgtS prevents the virulence protein UgtL from activating the master virulence regulator PhoP inside macrophages. S. Typhimurium produces two ugtSugtL mRNAs, but only one of them allows ugtS translation. The absence of ugtS from S. enterica serovars that infect cold-blooded animals raises the possibility of UgtS playing a regulatory role during infection of warm-blooded animals. Our findings establish how a horizontally acquired bicistron enables pathogens to time their virulence programs by controlling ancestral regulators.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Microbial Sciences Institute, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
23
|
Sáenz L, Guzmán M, Vidal S, Caruffo M, Siel D, Zayas C, Paredes R, Valenzuela C, Hidalgo H, Pérez O, Lapierre L. Efficacy of Multivalent, Cochleate-Based Vaccine against Salmonella Infantis, S. Enteritidis and S. Typhimurium in Laying Hens. Vaccines (Basel) 2022; 10:vaccines10020226. [PMID: 35214684 PMCID: PMC8879397 DOI: 10.3390/vaccines10020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica is an important foodborne pathogen. Commercial poultry are the main reservoirs of Salmonella enterica, leading to the contamination of food and outbreaks in humans. The vaccination of chickens is one of the most important strategies to reduce the number of Salmonella in poultry farms. Unfortunately, commercial vaccines have not been fully effective in controlling the spread and do not contain all the Salmonella serovars that circulate on farms. In this study, we evaluate a new, cochleate-based, trivalent injectable vaccine against S. Enteritidis, S. Typhimurium and S. Infantis, describing the vaccine security, capacity to induce specific anti-Salmonella serovar IgY and the gene expression of immune markers related to CD4 and CD8 T-cell-mediated immunity. Efficacy was evaluated through oral challenges performed separately for each Salmonella serotype. The efficacy and safety of the trivalent vaccine was proven under controlled conditions. The vaccine has no local or systemic reactions or adverse effects on poultry performance related to the vaccine. The vaccine provided significantly increased serum IgY titer levels, significantly reduced Salmonella CFU/g present in the cecum and an increased CD4+/CD8+ ratio in vaccinated animals when challenged with S. Infantis, S. Enteritidis and S. Typhimurium. These results indicate that this new trivalent vaccine does not generate adverse effects in poultry and produces an increase in neutralizing antibodies against the three Salmonella serovars.
Collapse
Affiliation(s)
- Leonardo Sáenz
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Miguel Guzmán
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, NIAVA, Facultad de Medicina Veterinaria y Agronomía, Campus Maipú–Sede Santiago, Universidad de las Américas, Santiago 9251454, Chile
| | - Sonia Vidal
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Mario Caruffo
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Daniela Siel
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Caridad Zayas
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile;
| | - Carolina Valenzuela
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Héctor Hidalgo
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
| | - Oliver Pérez
- Instituto de Ciencias Básicas Y Preclínicas “Victoria de Girón”, Universidad de Ciencias Médicas de La Habana, Havana 10600, Cuba;
| | - Lisette Lapierre
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (L.S.); (M.G.); (S.V.); (M.C.); (D.S.); (C.Z.); (C.V.); (H.H.)
- Lisette Lapierre, Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile
- Correspondence:
| |
Collapse
|
24
|
De Marchi S, García-Lojo D, Bodelón G, Pérez-Juste J, Pastoriza-Santos I. Plasmonic Au@Ag@mSiO 2 Nanorattles for In Situ Imaging of Bacterial Metabolism by Surface-Enhanced Raman Scattering Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61587-61597. [PMID: 34927427 PMCID: PMC8719315 DOI: 10.1021/acsami.1c21812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is well known that microbial populations and their interactions are largely influenced by their secreted metabolites. Noninvasive and spatiotemporal monitoring and imaging of such extracellular metabolic byproducts can be correlated with biological phenotypes of interest and provide new insights into the structure and development of microbial communities. Herein, we report a surface-enhanced Raman scattering (SERS) hybrid substrate consisting of plasmonic Au@Ag@mSiO2 nanorattles for optophysiological monitoring of extracellular metabolism in microbial populations. A key element of the SERS substrate is the mesoporous silica shell encapsulating single plasmonic nanoparticles, which furnishes colloidal stability and molecular sieving capabilities to the engineered nanostructures, thereby realizing robust, sensitive, and reliable measurements. The reported SERS-based approach may be used as a powerful tool for deciphering the role of extracellular metabolites and physicochemical factors in microbial community dynamics and interactions.
Collapse
Affiliation(s)
- Sarah De Marchi
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Daniel García-Lojo
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Gustavo Bodelón
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Jorge Pérez-Juste
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO,
Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Galicia
Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| |
Collapse
|
25
|
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, Bumann D. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci U S A 2021; 118:e2113951118. [PMID: 34911764 PMCID: PMC8713819 DOI: 10.1073/pnas.2113951118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.
Collapse
Affiliation(s)
- Jiagui Li
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Joseph Fanous
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
26
|
Choi J, Salvail H, Groisman EA. RNA chaperone activates Salmonella virulence program during infection. Nucleic Acids Res 2021; 49:11614-11628. [PMID: 34751407 PMCID: PMC8599858 DOI: 10.1093/nar/gkab992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Organisms often harbor seemingly redundant proteins. In the bacterium Salmonella enterica serovar Typhimurium (S. Typhimurium), the RNA chaperones CspC and CspE appear to play redundant virulence roles because a mutant lacking both chaperones is attenuated, whereas mutants lacking only one exhibit wild-type virulence. We now report that CspC—but not CspE—is necessary to activate the master virulence regulator PhoP when S. Typhimurium experiences mildly acidic pH, such as inside macrophages. This CspC-dependent PhoP activation is specific to mildly acidic pH because a cspC mutant behaves like wild-type S. Typhimurium under other PhoP-activating conditions. Moreover, it is mediated by ugtL, a virulence gene required for PhoP activation inside macrophages. Purified CspC promotes ugtL translation by disrupting a secondary structure in the ugtL mRNA that occludes ugtL’s ribosome binding site. Our findings demonstrate that proteins that are seemingly redundant actually confer distinct and critical functions to the lifestyle of an organism.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
27
|
Lisowski C, Dias J, Costa S, Silva RJ, Mano M, Eulalio A. Dysregulated endolysosomal trafficking in cells arrested in the G 1 phase of the host cell cycle impairs Salmonella vacuolar replication. Autophagy 2021; 18:1785-1800. [PMID: 34781820 DOI: 10.1080/15548627.2021.1999561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Modulation of the host cell cycle has emerged as a common theme among the pathways regulated by bacterial pathogens, arguably to promote host cell colonization. However, in most cases the exact benefit ensuing from such interference to the infection process remains unclear. Previously, we have shown that Salmonella actively induces G2/M arrest of host cells, and that infection is severely inhibited in cells arrested in G1. In this study, we demonstrate that Salmonella vacuolar replication is inhibited in host cells blocked in G1, whereas the cytosolic replication of the closely related pathogen Shigella is not affected. Mechanistically, we show that cells arrested in G1, but not cells arrested in G2, present dysregulated endolysosomal trafficking, displaying an abnormal accumulation of vesicles positive for late endosomal and lysosomal markers. In addition, the macroautophagic/autophagic flux and degradative lysosomal function are strongly impaired. This endolysosomal trafficking dysregulation results in sustained activation of the SPI-1 type III secretion system and lack of vacuole repair by the autophagy pathway, ultimately compromising the maturation and integrity of the Salmonella-containing vacuole. As such, Salmonella is released in the host cytosol. Collectively, our findings demonstrate that the modulation of the host cell cycle occurring during Salmonella infection is related to a disparity in the permissivity of cells arrested in G1 and G2/M, due to their intrinsic characteristics.
Collapse
Affiliation(s)
- Clivia Lisowski
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jane Dias
- RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Susana Costa
- RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ricardo Jorge Silva
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Effects of pH on the Properties of Membrane Vesicles Including Glucosyltransferase in Streptococcus mutans. Microorganisms 2021; 9:microorganisms9112308. [PMID: 34835434 PMCID: PMC8618110 DOI: 10.3390/microorganisms9112308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Streptococcus mutans releases membrane vesicles (MVs) and induces MV-dependent biofilm formation. Glucosyltransferases (Gtfs) are bound to MVs and contribute to the adhesion and glucans-dependent biofilm formation of early adherent bacteria on the tooth surface. The biofilm formation of S. mutans may be controlled depending on whether the initial pH tends to be acidic or alkaline. In this study, the characteristics and effects of MVs extracted from various conditions {(initial pH 6.0 and 8.0 media prepared with lactic acid (LA) and acetic acid (AA), and with NaOH (NO), respectively)} on the biofilm formation of S. mutans and early adherent bacteria were investigated. The quantitative changes in glucans between primary pH 6.0 and 8.0 conditions were observed, associated with different activities affecting MV-dependent biofilm formation. The decreased amount of Gtfs on MVs under the initial pH 6.0 conditions strongly guided low levels of MV-dependent biofilm formation. However, in the initial pH 6.0 and 8.0 solutions prepared with AA and NO, the MVs in the biofilm appeared to be formed by the expression of glucans and/or extracellular DNA. These results suggest that the environmental pH conditions established by acid and alkaline factors determine the differences in the local pathogenic activities of biofilm development in the oral cavity.
Collapse
|
29
|
Diversity in Sensing and Signaling of Bacterial Sensor Histidine Kinases. Biomolecules 2021; 11:biom11101524. [PMID: 34680156 PMCID: PMC8534201 DOI: 10.3390/biom11101524] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widely conserved in bacteria to respond to and adapt to the changing environment. Since TCSs are also involved in controlling the expression of virulence, biofilm formation, quorum sensing, and antimicrobial resistance in pathogens, they serve as candidates for novel drug targets. TCSs consist of a sensor histidine kinase (HK) and its cognate response regulator (RR). Upon perception of a signal, HKs autophosphorylate their conserved histidine residues, followed by phosphotransfer to their partner RRs. The phosphorylated RRs mostly function as transcriptional regulators and control the expression of genes necessary for stress response. HKs sense their specific signals not only in their extracytoplasmic sensor domain but also in their cytoplasmic and transmembrane domains. The signals are sensed either directly or indirectly via cofactors and accessory proteins. Accumulating evidence shows that a single HK can sense and respond to multiple signals in different domains. The underlying molecular mechanisms of how HK activity is controlled by these signals have been extensively studied both biochemically and structurally. In this article, we introduce the wide diversity of signal perception in different domains of HKs, together with their recently clarified structures and molecular mechanisms.
Collapse
|
30
|
Abstract
Mg2+ is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg2+, bacteria adopt two main strategies: They increase the abundance and activity of Mg2+ importers and decrease the abundance of Mg2+-chelating ATP and rRNA. These changes reduce regulated proteolysis by ATP-dependent proteases and protein synthesis in a systemic fashion. In many bacterial species, the transcriptional regulator PhoP controls expression of proteins mediating these changes. The 5' leader region of some mRNAs responds to low cytoplasmic Mg2+ or to disruptions in translation of open reading frames in the leader regions by furthering expression of the associated coding regions, which specify proteins mediating survival when the cytoplasmic Mg2+ concentration is low. Microbial species often utilize similar adaptation strategies to cope with low cytoplasmic Mg2+ despite relying on different genes to do so.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516, USA
| | - Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, USA;
| |
Collapse
|
31
|
Vail KJ, da Silveira BP, Bell SL, Cohen ND, Bordin AI, Patrick KL, Watson RO. The opportunistic intracellular bacterial pathogen Rhodococcus equi elicits type I interferon by engaging cytosolic DNA sensing in macrophages. PLoS Pathog 2021; 17:e1009888. [PMID: 34473814 PMCID: PMC8443056 DOI: 10.1371/journal.ppat.1009888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/15/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus equi is a major cause of foal pneumonia and an opportunistic pathogen in immunocompromised humans. While alveolar macrophages constitute the primary replicative niche for R. equi, little is known about how intracellular R. equi is sensed by macrophages. Here, we discovered that in addition to previously characterized pro-inflammatory cytokines (e.g., Tnfa, Il6, Il1b), macrophages infected with R. equi induce a robust type I IFN response, including Ifnb and interferon-stimulated genes (ISGs), similar to the evolutionarily related pathogen, Mycobacterium tuberculosis. Follow up studies using a combination of mammalian and bacterial genetics demonstrated that induction of this type I IFN expression program is largely dependent on the cGAS/STING/TBK1 axis of the cytosolic DNA sensing pathway, suggesting that R. equi perturbs the phagosomal membrane and causes DNA release into the cytosol following phagocytosis. Consistent with this, we found that a population of ~12% of R. equi phagosomes recruits the galectin-3,-8 and -9 danger receptors. Interestingly, neither phagosomal damage nor induction of type I IFN require the R. equi’s virulence-associated plasmid. Importantly, R. equi infection of both mice and foals stimulates ISG expression, in organs (mice) and circulating monocytes (foals). By demonstrating that R. equi activates cytosolic DNA sensing in macrophages and elicits type I IFN responses in animal models, our work provides novel insights into how R. equi engages the innate immune system and furthers our understanding how this zoonotic pathogen causes inflammation and disease. Rhodococcus equi is a facultative intracellular bacterial pathogen of horses and other domestic animals, as well as an opportunistic pathogen of humans. In human patients, Rhodococcus pneumonia bears some pathological similarities to pulmonary tuberculosis, and poses a risk for misdiagnosis. In horses, R. equi infection has a major detrimental impact on the equine breeding industry due to a lack of an efficacious vaccine and its ubiquitous distribution in soil. Given the prevalence of subclinical infection and high false positive rate in current screening methods, there exists a critical need to identify factors contributing to host susceptibility. Here, we use a combination of bacterial genetics and animal models to investigate innate immune responses during R. equi infection. We found that R. equi modulates host immune sensing to elicit a type I interferon response in a manner resembling that of M. tuberculosis. We also found that the danger sensors galectin-3, -8, and -9 are recruited to a population of R. equi-containing vacuoles, independent of expression of VapA. Our research identifies innate immune sensing events and immune transcriptional signatures that may lead to biomarkers for clinical disease, more accurate screening methods, and insight into susceptibility to infection.
Collapse
Affiliation(s)
- Krystal J. Vail
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathology, Texas A&M University, College Station, Texas, United States of America
| | - Bibiana Petri da Silveira
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Samantha L. Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Angela I. Bordin
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kristin L. Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Robert O. Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
33
|
Microbes exploit death-induced nutrient release by gut epithelial cells. Nature 2021; 596:262-267. [PMID: 34349263 DOI: 10.1038/s41586-021-03785-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/30/2021] [Indexed: 01/13/2023]
Abstract
Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.
Collapse
|
34
|
Panta PR, Doerrler WT. A link between pH homeostasis and colistin resistance in bacteria. Sci Rep 2021; 11:13230. [PMID: 34168215 PMCID: PMC8225787 DOI: 10.1038/s41598-021-92718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
Colistin resistance is complex and multifactorial. DbcA is an inner membrane protein belonging to the DedA superfamily required for maintaining extreme colistin resistance of Burkholderia thailandensis. The molecular mechanisms behind this remain unclear. Here, we report that ∆dbcA displays alkaline pH/bicarbonate sensitivity and propose a role of DbcA in extreme colistin resistance of B. thailandensis by maintaining cytoplasmic pH homeostasis. We found that alkaline pH or presence of sodium bicarbonate displays a synergistic effect with colistin against not only extremely colistin resistant species like B. thailandensis and Serratia marcescens, but also a majority of Gram-negative and Gram-positive bacteria tested, suggesting a link between cytoplasmic pH homeostasis and colistin resistance across species. We found that lowering the level of oxygen in the growth media or supplementation of fermentable sugars such as glucose not only alleviated alkaline pH stress, but also increased colistin resistance in most bacteria tested, likely by avoiding cytoplasmic alkalinization. Our observations suggest a previously unreported link between pH, oxygen, and colistin resistance. We propose that maintaining optimal cytoplasmic pH is required for colistin resistance in a majority of bacterial species, consistent with the emerging link between cytoplasmic pH homeostasis and antibiotic resistance.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
35
|
Badie F, Saffari M, Moniri R, Alani B, Atoof F, Khorshidi A, Shayestehpour M. The combined effect of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella enterica ser. Enteritidis and Typhimurium. Arch Microbiol 2021; 203:4475-4484. [PMID: 34137898 DOI: 10.1007/s00203-021-02435-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Salmonella enterica is a major food borne pathogen that creates biofilm. Salmonella biofilm formation under different environmental conditions is a public health problem. The present study was aimed to evaluate the combined effects of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella Enteritidis and Salmonella Typhimurium. In this study, the effect of temperature (2, 8, 22.5, 37, 43 °C) and pH (2.4, 3, 4.5, 6, 6.6) on the expression of biofilm production genes (adr A, bap A), virulence genes (hil A, inv A) and the stress gene (RpoS) of S. Enteritidis and S. Typhimurium was evaluated. The response surface methodology (RSM) approach was used to evaluate the combined effect of the above factors. The highest expression of adr A, bap A, hil A, and RpoS gene for S. Typhimurium was at 22 °C-pH 4.5 (6.39-fold increase), 37 °C-pH 6 (3.92-fold increase), 37 °C-pH 6 (183-fold increase), and 37 °C-pH 3 (43.8-fold increase), respectively. The inv A gene of S. Typhimurium was decreased in all conditions. The adr A, bap A, hil A, inv A, and RpoS gene of S. Enteritidis had the highest expression level at 8 °C-pH 3 (4.09-fold increase), 22 °C-pH 6 (2.71-fold increase), 8 °C pH 3 (190-fold increase), 22 °C-pH 4.5 (9.21-fold increase), and 8 °C-pH 3 (16.6-fold), respectively. Response surface methodology (RSM) indicated that the temperature and pH had no significant effect on the expression level of adr A, bap A, hil A, Inv A, and RpoS gene in S. Enteritidis and S. Typhimurium. The expression of biofilm production genes (adr A, bap A), virulence genes (hil A, inv A) and the stress gene (RpoS) of S. Enteritidis and S. Typhimurium is not directly and exclusively associated with temperature and pH conditions.
Collapse
Affiliation(s)
- Fereshteh Badie
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Anatomical Science Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Atoof
- Department of Biostatistics and Epidemiology, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Khorshidi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Shayestehpour
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran. .,Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
36
|
Gu D, Xue H, Yuan X, Yu J, Xu X, Huang Y, Li M, Zhai X, Pan Z, Zhang Y, Jiao X. Genome-Wide Identification of Genes Involved in Acid Stress Resistance of Salmonella Derby. Genes (Basel) 2021; 12:genes12040476. [PMID: 33806186 PMCID: PMC8065570 DOI: 10.3390/genes12040476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/05/2023] Open
Abstract
Resistance to and survival under acidic conditions are critical for Salmonella to infect the host. As one of the most prevalent serotypes identified in pigs and humans, how S. Derby overcomes acid stress remains unclear. Here, we de novo sequenced the genome of a representative S. Derby strain 14T from our S. Derby strain stock and identified its acid resistance-associated genes using Tn-seq analysis. A total of 35 genes, including those belonging to two-component systems (TCS) (cpxAR), the CRISPR-Cas system (casCE), and other systems, were identified as essential for 14T to survive under acid stress. The results demonstrated that the growth curve and survival ability of ΔcpxA and ΔcpxR were decreased under acid stress, and the adhesion and invasion abilities to the mouse colon cancer epithelial cells (MC38) of ΔcpxR were also decreased compared with the wild type strain, suggesting that the TCS CpxAR plays an essential role in the acid resistance and virulence of S. Derby. Also, CasC and CasE were found to be responsible for acid resistance in S. Derby. Our results indicate that acid stress induces multiple genes’ expression to mediate the acid resistance of S. Derby and enhance its pathogenesis during an infection.
Collapse
Affiliation(s)
- Dan Gu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Han Xue
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaohui Yuan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Jinyan Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaomeng Xu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yu Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Mingzhu Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Xianyue Zhai
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (D.G.); (H.X.); (X.Y.); (J.Y.); (X.X.); (Y.H.); (M.L.); (X.Z.); (Z.P.); (X.J.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
37
|
Acetylation of PhoP K88 Is Involved in Regulating Salmonella Virulence. Infect Immun 2021; 89:IAI.00588-20. [PMID: 33318137 DOI: 10.1128/iai.00588-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The PhoP-PhoQ two-component regulation system of Salmonella enterica serovar Typhimurium is involved in the response to various environmental stresses and is essential for bacterial virulence. Our previous studies showed that acetylation plays an important role in regulating the activity of PhoP, which consequently mediates the change in virulence of S Typhimurium. Here, we demonstrate that a conserved lysine residue, K88, is crucial for the function of PhoP and its acetylation-downregulated PhoP activities. K88 could be specifically acetylated by acetyl phosphate (AcP), and the acetylation level of K88 decreased significantly after phagocytosis of S Typhimurium by macrophages. Acetylation of K88 inhibited PhoP dimerization and DNA-binding abilities. In addition, mutation of K88 to glutamine, mimicking the acetylated form, dramatically attenuated intestinal inflammation and systemic infection of S Typhimurium in the mouse model. These findings indicate that nonenzymatic acetylation of PhoP by AcP is a fine-tuned mechanism for the virulence of S Typhimurium and highlights that virulence and metabolism in the host are closely linked.
Collapse
|
38
|
Luiz de Freitas L, Pereira da Silva F, Fernandes KM, Carneiro DG, Licursi de Oliveira L, Martins GF, Dantas Vanetti MC. The virulence of Salmonella Enteritidis in Galleria mellonella is improved by N-dodecanoyl-homoserine lactone. Microb Pathog 2021; 152:104730. [PMID: 33444697 DOI: 10.1016/j.micpath.2021.104730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
Salmonella is a food and waterborne pathogen responsible for outbreaks worldwide, and it can survive during passage through the stomach and inside host phagocytic cells. Virulence genes are required for infection and survival in macrophages, and some are under the regulation of the quorum sensing (QS) system. This study investigated the influence of the autoinducer 1 (AI-1), N-dodecanoyl-homoserine lactone (C12-HSL), on the virulence of Salmonella PT4 using Galleria mellonella as an infection model. Salmonella PT4 was grown in the presence and absence of C12-HSL under anaerobic conditions for 7 h, and the expression of rpoS, arcA, arcB, and invA genes was evaluated. After the inoculation of G. mellonella with the median lethal dose (LD50) of Salmonella PT4, the survival of bacteria inside the larvae and their health status (health index scoring) were monitored, as well as the pigment, nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT) production. Also, the hemocyte viability, the induction of caspase-3, and microtubule-associated light chain 3 (LC3) protein in hemocytes were evaluated. Salmonella PT4 growing in the presence of C12-HSL showed increased rpoS, arcA, arcB, and invA expression and promoted higher larvae mortality and worse state of health after 24 h of infection. The C12-HSL also increased the persistence of Salmonella PT4 in the hemolymph and in the hemocytes. The highest pigmentation, NO production, and antioxidant enzymes were verified in the larva hemolymph infected with Salmonella PT4 grown with C12-HSL. Hemocytes from larvae infected with Salmonella PT4 grown with C12-HSL showed lower viability and higher production of caspase-3 and LC3. Taken together, these findings suggest that C12-HSL could be involved in the virulence of Salmonella PT4.
Collapse
Affiliation(s)
- Leonardo Luiz de Freitas
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Deisy Guimarães Carneiro
- Departmento de Microbiologia, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
39
|
Choi J, Groisman EA. Horizontally acquired regulatory gene activates ancestral regulatory system to promote Salmonella virulence. Nucleic Acids Res 2020; 48:10832-10847. [PMID: 33045730 PMCID: PMC7641745 DOI: 10.1093/nar/gkaa813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Horizontally acquired genes are typically regulated by ancestral regulators. This regulation enables expression of horizontally acquired genes to be coordinated with that of preexisting genes. Here, we report a singular example of the opposite regulation: a horizontally acquired gene that controls an ancestral regulator, thereby promoting bacterial virulence. We establish that the horizontally acquired regulatory gene ssrB is necessary to activate the ancestral regulatory system PhoP/PhoQ of Salmonella enterica serovar Typhimurium (S. Typhimurium) in mildly acidic pH, which S. Typhimurium experiences inside macrophages. SsrB promotes phoP transcription by binding upstream of the phoP promoter. SsrB also increases ugtL transcription by binding to the ugtL promoter region, where it overcomes gene silencing by the heat-stable nucleoid structuring protein H-NS, enhancing virulence. The largely non-pathogenic species S. bongori failed to activate PhoP/PhoQ in mildly acidic pH because it lacks both the ssrB gene and the SsrB binding site in the target promoter. Low Mg2+ activated PhoP/PhoQ in both S. bongori and ssrB-lacking S. Typhimurium, indicating that the SsrB requirement for PhoP/PhoQ activation is signal-dependent. By controlling the ancestral genome, horizontally acquired genes are responsible for more crucial abilities, including virulence, than currently thought.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
40
|
Blanc-Potard AB, Groisman EA. How Pathogens Feel and Overcome Magnesium Limitation When in Host Tissues. Trends Microbiol 2020; 29:98-106. [PMID: 32807623 DOI: 10.1016/j.tim.2020.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Host organisms utilize nutritional immunity to limit the availability of nutrients essential to an invading pathogen. Nutrients may include amino acids, nucleotide bases, and transition metals, the essentiality of which varies among pathogens. The mammalian macrophage protein Slc11a1 (previously Nramp1) mediates resistance to several intracellular pathogens. Slc11a1 is proposed to restrict growth of Salmonella enterica serovar Typhimurium in host tissues by causing magnesium deprivation. This is intriguing because magnesium is the most abundant divalent cation in all living cells. A pathogen's response to factors such as Slc11a1 that promote nutritional immunity may therefore reflect what the pathogen 'feels' in its cytoplasm, rather than the nutrient concentration in host cell compartments.
Collapse
Affiliation(s)
- Anne-Béatrice Blanc-Potard
- Laboratory of Pathogen Host Interactions, Université Montpellier, case 107, Place Eugène Bataillon, 34095, Montpellier cedex 5, France; CNRS, UMR5235, 34095, Montpellier Cedex 05, France.
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA.
| |
Collapse
|
41
|
Honeycutt JD, Wenner N, Li Y, Brewer SM, Massis LM, Brubaker SW, Chairatana P, Owen SV, Canals R, Hinton JCD, Monack DM. Genetic variation in the MacAB-TolC efflux pump influences pathogenesis of invasive Salmonella isolates from Africa. PLoS Pathog 2020; 16:e1008763. [PMID: 32834002 PMCID: PMC7446830 DOI: 10.1371/journal.ppat.1008763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023] Open
Abstract
The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoidal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal tract and cause systemic bloodstream infections with increased morbidity and mortality. To investigate this evolution in pathogenesis, we compared the genomes of African iNTS isolates with other Salmonella enterica serovar Typhimurium and identified several macA and macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregulated during macrophage infection and after antimicrobial peptide exposure, with macAB transcription being supported by the PhoP/Q two-component system. Constitutive expression of macAB improves survival of Salmonella in the presence of the antimicrobial peptide C18G. Furthermore, these macAB variants affect replication in macrophages and influence fitness during colonization of the murine gastrointestinal tract. Importantly, the infection outcome resulting from these macAB variants depends upon both the Salmonella Typhimurium genetic background and the host gene Nramp1, an important determinant of innate resistance to intracellular bacterial infection. The variations we have identified in the MacAB-TolC efflux pump in African iNTS may reflect evolution within human host populations that are compromised in their ability to clear intracellular Salmonella infections.
Collapse
Affiliation(s)
- Jared D. Honeycutt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yan Li
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Susan M. Brewer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Liliana M. Massis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sky W. Brubaker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Phoom Chairatana
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siân V. Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
42
|
Salmonella expresses foreign genes during infection by degrading their silencer. Proc Natl Acad Sci U S A 2020; 117:8074-8082. [PMID: 32209674 DOI: 10.1073/pnas.1912808117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The heat-stable nucleoid structuring (H-NS, also referred to as histone-like nucleoid structuring) protein silences transcription of foreign genes in a variety of Gram-negative bacterial species. To take advantage of the products encoded in foreign genes, bacteria must overcome the silencing effects of H-NS. Because H-NS amounts are believed to remain constant, overcoming gene silencing has largely been ascribed to proteins that outcompete H-NS for binding to AT-rich foreign DNA. However, we report here that the facultative intracellular pathogen Salmonella enterica serovar Typhimurium decreases H-NS amounts 16-fold when inside macrophages. This decrease requires both the protease Lon and the DNA-binding virulence regulator PhoP. The decrease in H-NS abundance reduces H-NS binding to foreign DNA, allowing transcription of foreign genes, including those required for intramacrophage survival. The purified Lon protease degraded free H-NS but not DNA-bound H-NS. By displacing H-NS from DNA, the PhoP protein promoted H-NS proteolysis, thereby de-repressing foreign genes-even those whose regulatory sequences are not bound by PhoP. The uncovered mechanism enables a pathogen to express foreign virulence genes during infection without the need to evolve binding sites for antisilencing proteins at each foreign gene.
Collapse
|
43
|
Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol 2020; 17:403-416. [PMID: 31142822 DOI: 10.1038/s41579-019-0201-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.
Collapse
Affiliation(s)
- Brent W Simpson
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
44
|
Aranda-Díaz A, Obadia B, Dodge R, Thomsen T, Hallberg ZF, Güvener ZT, Ludington WB, Huang KC. Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance. eLife 2020; 9:51493. [PMID: 31995029 PMCID: PMC7025823 DOI: 10.7554/elife.51493] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Predicting antibiotic efficacy within microbial communities remains highly challenging. Interspecies interactions can impact antibiotic activity through many mechanisms, including alterations to bacterial physiology. Here, we studied synthetic communities constructed from the core members of the fruit fly gut microbiota. Co-culturing of Lactobacillus plantarum with Acetobacter species altered its tolerance to the transcriptional inhibitor rifampin. By measuring key metabolites and environmental pH, we determined that Acetobacter species counter the acidification driven by L. plantarum production of lactate. Shifts in pH were sufficient to modulate L. plantarum tolerance to rifampin and the translational inhibitor erythromycin. A reduction in lag time exiting stationary phase was linked to L. plantarum tolerance to rifampicin, opposite to a previously identified mode of tolerance to ampicillin in E. coli. This mechanistic understanding of the coupling among interspecies interactions, environmental pH, and antibiotic tolerance enables future predictions of growth and the effects of antibiotics in more complex communities.
Collapse
Affiliation(s)
- Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Benjamin Obadia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ren Dodge
- Department of Embryology, Carnegie Institution of Washington, Baltimore, United States
| | - Tani Thomsen
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Zachary F Hallberg
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Zehra Tüzün Güvener
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - William B Ludington
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Embryology, Carnegie Institution of Washington, Baltimore, United States
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
45
|
Horizontally Acquired Quorum-Sensing Regulators Recruited by the PhoP Regulatory Network Expand the Host Adaptation Repertoire in the Phytopathogen Pectobacterium brasiliense. mSystems 2020; 5:5/1/e00650-19. [PMID: 31992632 PMCID: PMC6989131 DOI: 10.1128/msystems.00650-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this study, we examine the impact of transcriptional network rearrangements driven by horizontal gene acquisition in PhoP and SlyA regulons using as a case study a phytopathosystem comprised of potato tubers and the soft-rot pathogen Pectobacterium brasiliense 1692 (Pb1692). Genome simulations and statistical analyses uncovered the tendency of PhoP and SlyA networks to mobilize lineage-specific traits predicted as horizontal gene transfer at late infection, highlighting the prominence of regulatory network rearrangements in this stage of infection. The evidence further supports the circumscription of two horizontally acquired quorum-sensing regulators (carR and expR1) by the PhoP network. By recruiting carR and expR1, the PhoP network also impacts certain host adaptation- and bacterial competition-related systems, seemingly in a quorum sensing-dependent manner, such as the type VI secretion system, carbapenem biosynthesis, and plant cell wall-degrading enzymes (PCWDE) like cellulases and pectate lyases. Conversely, polygalacturonases and the type III secretion system (T3SS) exhibit a transcriptional pattern that suggests quorum-sensing-independent regulation by the PhoP network. This includes an uncharacterized novel phage-related gene family within the T3SS gene cluster that has been recently acquired by two Pectobacterium species. The evidence further suggests a PhoP-dependent regulation of carbapenem- and PCWDE-encoding genes based on the synthesized products' optimum pH. The PhoP network also controls slyA expression in planta, which seems to impact carbohydrate metabolism regulation, especially at early infection, when 76.2% of the SlyA-regulated genes from that category also require PhoP to achieve normal expression levels.IMPORTANCE Exchanging genetic material through horizontal transfer is a critical mechanism that drives bacteria to efficiently adapt to host defenses. In this report, we demonstrate that a specific plant-pathogenic species (from the Pectobacterium genus) successfully integrated a population density-based behavior system (quorum sensing) acquired through horizontal transfer into a resident stress-response gene regulatory network controlled by the PhoP protein. Evidence found here underscores that subsets of bacterial weaponry critical for colonization, typically known to respond to quorum sensing, are also controlled by PhoP. Some of these traits include different types of enzymes that can efficiently break down plant cell walls depending on the environmental acidity level. Thus, we hypothesize that PhoP's ability to elicit regulatory responses based on acidity and nutrient availability fluctuations has strongly impacted the fixation of its regulatory connection with quorum sensing. In addition, another global gene regulator, known as SlyA, was found under the PhoP regulatory network. The SlyA regulator controls a series of carbohydrate metabolism-related traits, which also seem to be regulated by PhoP. By centralizing quorum sensing and slyA under PhoP scrutiny, Pectobacterium cells added an advantageous layer of control over those two networks that potentially enhances colonization efficiency.
Collapse
|
46
|
Monteiro MCO, Jacobse L, Touzalin T, Koper MTM. Mediator-Free SECM for Probing the Diffusion Layer pH with Functionalized Gold Ultramicroelectrodes. Anal Chem 2020; 92:2237-2243. [PMID: 31874560 PMCID: PMC6977089 DOI: 10.1021/acs.analchem.9b04952] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Probing
pH gradients during electrochemical reactions is important
to better understand reaction mechanisms and to separate the influence
of pH and pH gradients from intrinsic electrolyte effects. Here, we
develop a pH sensor to measure pH changes in the diffusion layer during
hydrogen evolution. The probe was synthesized by functionalizing a
gold ultramicroelectrode with a self-assembled monolayer of 4-nitrothiophenol
(4-NTP) and further converting it to form a hydroxylaminothiophenol
(4-HATP)/4-nitrosothiophenol (4-NSTP) redox couple. The pH sensing
is realized by recording the tip cyclic voltammetry and monitoring
the Nernstian shift of the midpeak potential. We employ a capacitive
approach technique in our home-built Scanning Electrochemical Microscope
(SECM) setup in which an AC potential is applied to the sample and
the capacitive current generated at the tip is recorded as a function
of distance. This method allows for an approach of the tip to the
electrode that is electrolyte-free and consequently also mediator-free.
Hydrogen evolution on gold in a neutral electrolyte was studied as
a model system. The pH was measured with the probe at a constant distance
from the electrode (ca. 75 μm), while the electrode potential
was varied in time. In the nonbuffered electrolyte used (0.1 M Li2SO4), even at relatively low current densities,
a pH difference of three units is measured between the location of
the probe and the bulk electrolyte. The time scale of the diffusion
layer transient is captured, due to the high time resolution that
can be achieved with this probe. The sensor has high sensitivity,
measuring differences of more than 8 pH units with a resolution better
than 0.1 pH unit.
Collapse
Affiliation(s)
- Mariana C O Monteiro
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Leon Jacobse
- DESY NanoLab , Deutsches Elektronensynchrotron DESY , Notkestrasse 85 , D-22607 Hamburg , Germany
| | - Thomas Touzalin
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA , Leiden , The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA , Leiden , The Netherlands
| |
Collapse
|
47
|
Kenney LJ, Anand GS. EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0001-2019. [PMID: 32003321 PMCID: PMC7192543 DOI: 10.1128/ecosalplus.esp-0001-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Indexed: 01/09/2023]
Abstract
Two-component regulatory systems represent the major paradigm for signal transduction in prokaryotes. The simplest systems are composed of a sensor kinase and a response regulator. The sensor is often a membrane protein that senses a change in environmental conditions and is autophosphorylated by ATP on a histidine residue. The phosphoryl group is transferred onto an aspartate of the response regulator, which activates the regulator and alters its output, usually resulting in a change in gene expression. In this review, we present a historical view of the archetype EnvZ/OmpR two-component signaling system, and then we provide a new view of signaling based on our recent experiments. EnvZ responds to cytoplasmic signals that arise from changes in the extracellular milieu, and OmpR acts canonically (requiring phosphorylation) to regulate the porin genes and noncanonically (without phosphorylation) to activate the acid stress response. Herein, we describe how insights gleaned from stimulus recognition and response in EnvZ are relevant to nearly all sensor kinases and response regulators.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Mechanobiology Institute, T-Lab, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
48
|
The sensor kinase BfmS controls production of outer membrane vesicles in Acinetobacter baumannii. BMC Microbiol 2019; 19:301. [PMID: 31864291 PMCID: PMC6925498 DOI: 10.1186/s12866-019-1679-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background Acinetobacter baumannii is an important opportunistic pathogen responsible for various nosocomial infections. The BfmRS two-component system plays a role in pathogenesis and antimicrobial resistance of A. baumannii via regulation of bacterial envelope structures. This study investigated the role of the sensor kinase, BfmS, in localization of outer membrane protein A (OmpA) in the outer membrane and production of outer membrane vesicles (OMVs) using wild-type A. baumannii ATCC 17978, ΔbfmS mutant, and bfmS-complemented strains. Results The ΔbfmS mutant showed hypermucoid phenotype in the culture plates, growth retardation under static culture conditions, and reduced susceptibility to aztreonam and colistin compared to the wild-type strain. The ΔbfmS mutant produced less OmpA in the outer membrane but released more OmpA via OMVs than the wild-type strain, even though expression of ompA and its protein production were not different between the two strains. The ΔbfmS mutant produced 2.35 times more OMV particles and 4.46 times more OMV proteins than the wild-type stain. The ΔbfmS mutant OMVs were more cytotoxic towards A549 cells than wild-type strain OMVs. Conclusions The present study demonstrates that BfmS controls production of OMVs in A. baumannii. Moreover, BfmS negatively regulates antimicrobial resistance of A. baumannii and OMV-mediated host cell cytotoxicity. Our results indicate that BfmS negatively controls the pathogenic traits of A. baumannii via cell envelope structures and OMV production.
Collapse
|
49
|
Wang YK, Krasnopeeva E, Lin SY, Bai F, Pilizota T, Lo CJ. Comparison of Escherichia coli surface attachment methods for single-cell microscopy. Sci Rep 2019; 9:19418. [PMID: 31857669 PMCID: PMC6923479 DOI: 10.1038/s41598-019-55798-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
For in vivo, single-cell imaging bacterial cells are commonly immobilised via physical confinement or surface attachment. Different surface attachment methods have been used both for atomic force and optical microscopy (including super resolution), and some have been reported to affect bacterial physiology. However, a systematic comparison of the effects these attachment methods have on the bacterial physiology is lacking. Here we present such a comparison for bacterium Escherichia coli, and assess the growth rate, size and intracellular pH of cells growing attached to different, commonly used, surfaces. We demonstrate that E. coli grow at the same rate, length and internal pH on all the tested surfaces when in the same growth medium. The result suggests that tested attachment methods can be used interchangeably when studying E. coli physiology.
Collapse
Affiliation(s)
- Yao-Kuan Wang
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China
| | - Ekaterina Krasnopeeva
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, EH9 3FF, Edinburgh, UK
| | - Ssu-Yuan Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China
| | - Fan Bai
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, EH9 3FF, Edinburgh, UK.
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China.
| |
Collapse
|
50
|
Park M, Kim H, Nam D, Kweon DH, Shin D. The mgtCBR mRNA Leader Secures Growth of Salmonella in Both Host and Non-host Environments. Front Microbiol 2019; 10:2831. [PMID: 31866990 PMCID: PMC6908480 DOI: 10.3389/fmicb.2019.02831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022] Open
Abstract
Upon intracellular cues, bacterial mRNA leaders often form secondary structures that determine expression of a downstream protein-coding region(s), thereby providing bacteria with a mechanism to control the amounts of necessary proteins in the right locales. Here we describe a polycistronic mRNA leader that secures bacterial growth by preventing dysregulated expression of the protein-coding regions. In Salmonella, the mgtCBR mRNA encodes the virulence protein MgtC and the Mg2+ transporter MgtB. A mutant designed to produce leaderless mgtCBR mRNA induced MgtC and MgtB in conditions that promote mgtC transcription. The dysregulated expression of MgtC and MgtB impaired bacterial growth under all such non-host environments. While MgtC, but not MgtB, normally reduces ATP levels in a process requiring the F1F0 ATP synthase, dysregulated MgtC and MgtB reduced ATP levels independently of the F1F0 ATP synthase, which correlated with the mutant’s growth defect. The mutant showed dysregulated MgtC expression and attenuated survival inside macrophages. While MgtB normally does not affect the phenotype, MgtB impaired intramacrophage survival of the mutant in the presence of MgtC. We provide an example showing that a polycistronic mRNA leader prevents the dysregulated function of protein-coding regions to allow bacteria to proliferate across complex niches.
Collapse
Affiliation(s)
- Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Hyunkeun Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Daesil Nam
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Dongwoo Shin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|