1
|
Yue H, Hu J, Xu X, Liu Q. Carbon dioxide suppresses filamentous growth in the human fungal pathogen Candida tropicalis. Microb Pathog 2024; 199:107255. [PMID: 39719163 DOI: 10.1016/j.micpath.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
A striking characteristic of the human fungal pathogen Candida albicans is its ability to switch between budding yeast morphology and the filamentous form, facilitating its adaptation to changing host environments. The filamentous growth of C. albicans is mediated by various environmental factors, such as carbon dioxide (CO2), N-acetylglucosamine (GlcNAc), serum, and high temperature. Despite extensive studies in C. albicans, the regulatory mechanism of filamentation in Candida tropicalis, a fungal species that is closely related to C. albicans, has not been well characterized. In this study, we reveal opposite roles of CO2 in regulating filamentation among Candida species: CO2 promotes filamentous growth in C. albicans and Candida dubliniensis, whereas it inhibits filamentation in C. tropicalis. Despite the critical role of the canonical cAMP pathway in filamentation, it is dispensable in CO2-regulated filamentation in C. tropicalis. A CO2-specific signaling is involved in the regulation of filamentous growth in C. tropicalis. Additionally, we identify two key elements involved in CO2 sensing in C. tropicalis: a single carbonic anhydrase (CA) Nce103 and the bZIP transcription factor Rca1. Both Nce103 and Rca1 are important for cellular growth in ambient air and negatively regulate filamentous development in response to CO2 in C. tropicalis. These findings reveal a distinct mechanism underlying CO2-regulated filamentation in C. tropicalis, contributing to a deeper understanding of its unique survival strategies in diverse environmental niches and providing new insights into the adaptive evolution of CO2 sensing mechanisms among various fungal pathogens.
Collapse
Affiliation(s)
- Huizhen Yue
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Jian Hu
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Chinese Medicine, Beijing, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China.
| |
Collapse
|
2
|
Hidalgo-Vico S, Prieto D, Alonso-Monge R, Román E, Maufrais C, d'Enfert C, Pla J. Candida albicans strains adapted to the mouse gut are resistant to bile salts via a Flo8-dependent mechanism. Fungal Genet Biol 2024; 175:103939. [PMID: 39486612 DOI: 10.1016/j.fgb.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Candidaalbicans normally colonizes the human gastrointestinal tract as a commensal. Studying fungal factors involved in colonizing the mammalian gastrointestinal tract requires mouse models with altered microbiota. We have obtained strains of C.albicans through microevolution in the mouse gut for a prolonged period (one year) that display a substantial increase in fitness in this niche. These strains show resistance to bile salts, an increase in their adhesion to the intestinal mucosa, and are unable to filament in response to serum. Genetic analysis revealed some alterations, mainly a triploidy of chr7, a whole chr6 homozygosis, and an SNP in the FLO8 gene (located in the chr6), resulting in a truncated protein version. A wild type FLO8 gene complemented filamentation and bile salt sensitivity but showed an intermediate fitness phenotype in colonization. Alterations in bile salt sensitivity were also evident in bmt mutants, defective in β-mannosylation, and transcriptional targets of Flo8, suggesting a link between the fungal cell wall and mammalian gut colonization via the Flo8 transcriptional regulator.
Collapse
Affiliation(s)
- Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, Centre de Ressources et Recherche en Informatique (C2RI), 75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Lorenz MC. Regulatory complexity of cellular differentiation in Candida albicans revealed through systematic screening of protein kinase mutants. mBio 2024; 15:e0169824. [PMID: 39058031 PMCID: PMC11323536 DOI: 10.1128/mbio.01698-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
A recent study in mBio reports the construction and preliminary screening of a library containing mutants of 99 of the 119 predicted protein kinases in Candida albicans (the majority of the remaining 20 are probably essential) (J. Kramara, M.-J. Kim, T. L. Ollinger, L. C. Ristow, et al., mBio e01249-24, 2024, https://doi.org/10.1128/mbio.01249-24). Using a quantitative competition assay in 10 conditions that represent nutritional, osmotic, cell wall, and pH stresses that are considered to model various aspects of the host environment allowed them to phenotypically cluster kinases, which highlight both the integration and specialization of signaling pathways, suggesting novel functions for many kinases. In addition, they tackle two complex and partially overlapping differentiation events, hyphal morphogenesis and biofilm formation. They find that a remarkable 88% of the viable kinase mutants in C. albicans affect hyphal growth, illustrating how integrated morphogenesis is in the overall biology of this organism, and begin to dissect the regulatory relationships that control this key virulence trait.
Collapse
Affiliation(s)
- Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
4
|
Liang SH, Sircaik S, Dainis J, Kakade P, Penumutchu S, McDonough LD, Chen YH, Frazer C, Schille TB, Allert S, Elshafee O, Hänel M, Mogavero S, Vaishnava S, Cadwell K, Belenky P, Perez JC, Hube B, Ene IV, Bennett RJ. The hyphal-specific toxin candidalysin promotes fungal gut commensalism. Nature 2024; 627:620-627. [PMID: 38448595 PMCID: PMC11230112 DOI: 10.1038/s41586-024-07142-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.
Collapse
Affiliation(s)
- Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Shabnam Sircaik
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Joseph Dainis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Liam D McDonough
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ying-Han Chen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Osama Elshafee
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Maria Hänel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Shipra Vaishnava
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ken Cadwell
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - J Christian Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| | - Iuliana V Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Ramírez-Zavala B, Betsova D, Schwanfelder S, Krüger I, Mottola A, Krüger T, Kniemeyer O, Brakhage AA, Morschhäuser J. Multiple phosphorylation sites regulate the activity of the repressor Mig1 in Candida albicans. mSphere 2023; 8:e0054623. [PMID: 38010000 PMCID: PMC10732041 DOI: 10.1128/msphere.00546-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The SNF1 protein kinase signaling pathway, which is highly conserved in eukaryotic cells, is important for metabolic adaptations in the pathogenic yeast Candida albicans. However, so far, it has remained elusive how SNF1 controls the activity of one of its main effectors, the repressor protein Mig1 that inhibits the expression of genes required for the utilization of alternative carbon sources when glucose is available. In this study, we have identified multiple phosphorylation sites in Mig1 that contribute to its inactivation. Mutation of these sites strongly increased Mig1 repressor activity in the absence of SNF1, but SNF1 could still sufficiently inhibit the hyperactive Mig1 to enable growth on alternative carbon sources. These findings reveal features of Mig1 that are important for controlling its repressor activity. Furthermore, they demonstrate that both SNF1 and additional protein kinases regulate Mig1 in this pathogenic yeast.
Collapse
Affiliation(s)
| | - Darina Betsova
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sonja Schwanfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ines Krüger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Austin Mottola
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Case NT, Westman J, Hallett MT, Plumb J, Farheen A, Maxson ME, MacAlpine J, Liston SD, Hube B, Robbins N, Whitesell L, Grinstein S, Cowen LE. Respiration supports intraphagosomal filamentation and escape of Candida albicans from macrophages. mBio 2023; 14:e0274523. [PMID: 38038475 PMCID: PMC10746240 DOI: 10.1128/mbio.02745-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Candida albicans is a leading human fungal pathogen that often causes life-threatening infections in immunocompromised individuals. The ability of C. albicans to transition between yeast and filamentous forms is key to its virulence, and this occurs in response to many host-relevant cues, including engulfment by host macrophages. While previous efforts identified C. albicans genes required for filamentation in other conditions, the genes important for this morphological transition upon internalization by macrophages remained largely enigmatic. Here, we employed a functional genomic approach to identify genes that enable C. albicans filamentation within macrophages and uncovered a role for the mitochondrial ribosome, respiration, and the SNF1 AMP-activated kinase complex. Additionally, we showed that glucose uptake and glycolysis by macrophages support C. albicans filamentation. This work provides insights into the metabolic dueling that occurs during the interaction of C. albicans with macrophages and identifies vulnerabilities in C. albicans that could serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Nicola T. Case
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Johannes Westman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jonathan Plumb
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aiman Farheen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sean D. Liston
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Center of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Ke CL, Lew SQ, Hsieh Y, Chang SC, Lin CH. Convergent and divergent roles of the glucose-responsive kinase SNF4 in Candida tropicalis. Virulence 2023; 14:2175914. [PMID: 36745535 PMCID: PMC9928470 DOI: 10.1080/21505594.2023.2175914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The sucrose non-fermenting 1 (SNF1) complex is a heterotrimeric protein kinase complex that is an ortholog of the mammalian AMPK complex and is evolutionally conserved in most eukaryotes. This complex contains a catalytic subunit (Snf1), a regulatory subunit (Snf4) and a scaffolding subunit (Sip1/Sip2/Gal73) in budding yeast. Although the function of AMPK has been well studied in Saccharomyces cerevisiae and Candida albicans, the role of AMPK in Candida tropicalis has never been investigated. In this study, we focused on SNF4 in C. tropicalis as this fungus cannot produce a snf1Δ mutant. We demonstrated that C. tropicalis SNF4 shares similar roles in glucose derepression and is necessary for cell wall integrity and virulence. The expression of both SNF1 and SNF4 was significantly induced when glucose was limited. Furthermore, snf4Δ strains exhibited high sensitivity to many surface-perturbing agents because the strains contained lower levels of glucan, chitin and mannan. Interestingly, in contrast to C. albicans sak1Δ and snf4Δ, C. tropicalis snf4Δ exhibited phenotypes for cell aggregation and pseudohypha production. These data indicate that SNF4 performs convergent and divergent roles in C. tropicalis and possibly other unknown roles in the C. tropicalis SNF1-SNF4 AMPK pathway.
Collapse
Affiliation(s)
- Cai-Ling Ke
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shi Qian Lew
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi Hsieh
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Szu-Cheng Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan,CONTACT Ching-Hsuan Lin
| |
Collapse
|
8
|
Ramírez-Zavala B, Krüger I, Wollner A, Schwanfelder S, Morschhäuser J. The Ypk1 protein kinase signaling pathway is rewired and not essential for viability in Candida albicans. PLoS Genet 2023; 19:e1010890. [PMID: 37561787 PMCID: PMC10443862 DOI: 10.1371/journal.pgen.1010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Protein kinases are central components of almost all signaling pathways that control cellular activities. In the model organism Saccharomyces cerevisiae, the paralogous protein kinases Ypk1 and Ypk2, which control membrane lipid homeostasis, are essential for viability, and previous studies strongly indicated that this is also the case for their single ortholog Ypk1 in the pathogenic yeast Candida albicans. Here, using FLP-mediated inducible gene deletion, we reveal that C. albicans ypk1Δ mutants are viable but slow-growing, explaining prior failures to obtain null mutants. Phenotypic analyses of the mutants showed that the functions of Ypk1 in regulating sphingolipid biosynthesis and cell membrane lipid asymmetry are conserved, but the consequences of YPK1 deletion are milder than in S. cerevisiae. Mutational studies demonstrated that the highly conserved PDK1 phosphorylation site T548 in its activation loop is essential for Ypk1 function, whereas the TORC2 phosphorylation sites S687 and T705 at the C-terminus are important for Ypk1-dependent resistance to membrane stress. Unexpectedly, Pkh1, the single C. albicans orthologue of Pkh1/Pkh2, which mediate Ypk1 phosphorylation at the PDK1 site in S. cerevisiae, was not required for normal growth of C. albicans under nonstressed conditions, and Ypk1 phosphorylation at T548 was only slightly reduced in pkh1Δ mutants. We found that another protein kinase, Pkh3, whose ortholog in S. cerevisiae cannot substitute Pkh1/2, acts redundantly with Pkh1 to activate Ypk1 in C. albicans. No phenotypic effects were observed in cells lacking Pkh3 alone, but pkh1Δ pkh3Δ double mutants had a severe growth defect and Ypk1 phosphorylation at T548 was completely abolished. These results establish that Ypk1 is not essential for viability in C. albicans and that, despite its generally conserved function, the Ypk1 signaling pathway is rewired in this pathogenic yeast and includes a novel upstream kinase to activate Ypk1 by phosphorylation at the PDK1 site.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Andreas Wollner
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sonja Schwanfelder
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Larcombe DE, Bohovych IM, Pradhan A, Ma Q, Hickey E, Leaves I, Cameron G, Avelar GM, de Assis LJ, Childers DS, Bain JM, Lagree K, Mitchell AP, Netea MG, Erwig LP, Gow NAR, Brown AJP. Glucose-enhanced oxidative stress resistance-A protective anticipatory response that enhances the fitness of Candida albicans during systemic infection. PLoS Pathog 2023; 19:e1011505. [PMID: 37428810 PMCID: PMC10358912 DOI: 10.1371/journal.ppat.1011505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/20/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.
Collapse
Affiliation(s)
- Daniel E. Larcombe
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Iryna M. Bohovych
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Gary Cameron
- Rowett Institute, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Gabriela M. Avelar
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leandro J. de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Judith M. Bain
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine Lagree
- Department of Microbiology, Biosciences Building, University of Georgia, Athens, Georgia, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, Biosciences Building, University of Georgia, Athens, Georgia, United States of America
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, One Chapel Place, London, United Kingdom
| | - Neil A. R. Gow
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| |
Collapse
|
10
|
Li Z, Cai C, Huo X, Li X, Lin Z. Sucrose-nonfermenting 1 kinase activates histone acetylase GCN5 to promote cellulase production in Trichoderma. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12617-x. [PMID: 37318636 DOI: 10.1007/s00253-023-12617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Trichoderma serves as the primary producer of cellulases and hemicellulases in industrial settings as it readily secretes a variety of cellulolytic enzymes. The protein kinase SNF1 (sucrose-nonfermenting 1) can enable cells to adapt to changes in carbon metabolism by phosphorylating key rate-limiting enzymes involved in the maintenance of energy homeostasis and carbon metabolism within cells. Histone acetylation is an important epigenetic regulatory mechanism that influences physiological and biochemical processes. GCN5 is a representative histone acetylase involved in promoter chromatin remodeling and associated transcriptional activation. Here, the TvSNF1 and TvGCN5 genes were identified in Trichoderma viride Tv-1511, which exhibits promising activity with respect to its ability to produce cellulolytic enzymes for biological transformation. The SNF1-mediated activation of the histone acetyltransferase GCN5 was herein found to promote cellulase production in T. viride Tv-1511 via facilitating changes in histone acetylation. These results demonstrated that cellulolytic enzyme activity and the expression of genes encoding cellulases and transcriptional activators were clearly enhanced in T. viride Tv-1511 mutants in which TvSNF1 and TvGCN5 were overexpressed, with concomitant changes in histone H3 acetylation levels associated with these genes. GCN5 was also found to be directly recruited to promoter regions to alter histone acetylation, while SNF1 functioned upstream as a transcriptional activator that promotes GCN5 upregulation at the mRNA and protein levels in the context of cellulase induction in T. viride Tv-1511. These findings underscore the important role that this SNF1-GCN5 cascade plays in regulating cellulase production in T. viride Tv-1511 by promoting altered histone acetylation, offering a theoretical basis for the optimization of T. viride in the context of industrial cellulolytic enzyme production. KEY POINTS: • SNF1 kinase and GCN5 acetylase promoted cellulase production in Trichoderma by increasing the expression of genes encoding cellulases and transcriptional activators • SNF1 and GCN5 promoted cellulase production by driving H3ac modifications, and GCN5 directly band to the promoter regions to catalyze distinct H3ac modifications • SNF1 acts upstream of GCN5 as a transcriptional activator in the cellulase production of Trichoderma.
Collapse
Affiliation(s)
- Zhe Li
- Biology Institute, Qilu University of Technology, Jinan, 250014, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China.
| | - Chunjing Cai
- Biology Institute, Qilu University of Technology, Jinan, 250014, China
| | - Xuexue Huo
- Biology Institute, Qilu University of Technology, Jinan, 250014, China
| | - Xuan Li
- Biology Institute, Qilu University of Technology, Jinan, 250014, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
11
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
12
|
CRISPR-Cas9 Editing Induces Loss of Heterozygosity in the Pathogenic Yeast Candida parapsilosis. mSphere 2022; 7:e0039322. [PMID: 36416551 PMCID: PMC9769790 DOI: 10.1128/msphere.00393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genetic manipulation is often used to study gene function. However, unplanned genome changes (including single nucleotide polymorphisms [SNPs], aneuploidy, and loss of heterozygosity [LOH]) can affect the phenotypic traits of the engineered strains. Here, we compared the effect of classical deletion methods (replacing target alleles with selectable markers by homologous recombination) with CRISPR-Cas9 editing in the diploid human-pathogenic yeast Candida parapsilosis. We sequenced the genomes of 9 isolates that were modified using classic recombination methods and 12 that were edited using CRISPR-Cas9. As a control, the genomes of eight isolates that were transformed with a Cas9-expressing plasmid in the absence of a guide RNA were also sequenced. Following gene manipulation using classic homologous recombination, only one strain exhibited extensive LOH near the targeted gene (8.9 kb), whereas another contained multiple LOH events not associated with the intended modification. In contrast, large regions of LOH (up to >1,100 kb) were observed in most CRISPR-Cas9-edited strains. LOH most commonly occurred adjacent to the Cas9 cut site and extended to the telomere in four isolates. In two isolates, we observed LOH on chromosomes that were not targeted by CRISPR-Cas9. Among the CRISPR-edited isolates, two exhibited cysteine and methionine auxotrophy caused by LOH at a heterozygous site in MET10, approximately 11 and 157 kb downstream from the Cas9 target site, respectively. C. parapsilosis isolates have relatively low levels of heterozygosity. However, our results show that mutation complementation to confirm observed phenotypes is required when using CRISPR-Cas9. IMPORTANCE CRISPR-Cas9 has greatly streamlined gene editing and is now the gold standard and first choice for genetic engineering. However, we show that in diploid species, extra care should be taken in confirming the cause of any phenotypic changes observed. We show that the Cas9-induced double-strand break is often associated with loss of heterozygosity in the asexual diploid human fungal pathogen Candida parapsilosis. This can result in deleterious heterozygous variants (e.g., stop gain in one allele) becoming homozygous, resulting in unplanned phenotypic changes. Our results stress the importance of mutation complementation even when using CRISPR-Cas9.
Collapse
|
13
|
Brandt P, Gerwien F, Wagner L, Krüger T, Ramírez-Zavala B, Mirhakkak MH, Schäuble S, Kniemeyer O, Panagiotou G, Brakhage AA, Morschhäuser J, Vylkova S. Candida albicans SR-Like Protein Kinases Regulate Different Cellular Processes: Sky1 Is Involved in Control of Ion Homeostasis, While Sky2 Is Important for Dipeptide Utilization. Front Cell Infect Microbiol 2022; 12:850531. [PMID: 35601106 PMCID: PMC9121809 DOI: 10.3389/fcimb.2022.850531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
Protein kinases play a crucial role in regulating cellular processes such as growth, proliferation, environmental adaptation and stress responses. Serine-arginine (SR) protein kinases are highly conserved in eukaryotes and regulate fundamental processes such as constitutive and alternative splicing, mRNA processing and ion homeostasis. The Candida albicans genome encodes two (Sky1, Sky2) and the Candida glabrata genome has one homolog (Sky1) of the human SR protein kinase 1, but their functions have not yet been investigated. We used deletion strains of the corresponding genes in both fungi to study their cellular functions. C. glabrata and C. albicans strains lacking SKY1 exhibited higher resistance to osmotic stress and toxic polyamine concentrations, similar to Saccharomyces cerevisiae sky1Δ mutants. Deletion of SKY2 in C. albicans resulted in impaired utilization of various dipeptides as the sole nitrogen source. Subsequent phosphoproteomic analysis identified the di- and tripeptide transporter Ptr22 as a potential Sky2 substrate. Sky2 seems to be involved in Ptr22 regulation since overexpression of PTR22 in the sky2Δ mutant restored the ability to grow on dipeptides and made the cells more susceptible to the dipeptide antifungals Polyoxin D and Nikkomycin Z. Altogether, our results demonstrate that C. albicans and C. glabrata Sky1 protein kinases are functionally similar to Sky1 in S. cerevisiae, whereas C. albicans Sky2, a unique kinase of the CTG clade, likely regulates dipeptide uptake via Ptr22.
Collapse
Affiliation(s)
- Philipp Brandt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Franziska Gerwien
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Lysett Wagner
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | | | - Mohammad H. Mirhakkak
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Axel A. Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- *Correspondence: Slavena Vylkova,
| |
Collapse
|
14
|
Ramírez-Zavala B, Krüger I, Dunker C, Jacobsen ID, Morschhäuser J. The protein kinase Ire1 has a Hac1-independent essential role in iron uptake and virulence of Candida albicans. PLoS Pathog 2022; 18:e1010283. [PMID: 35108336 PMCID: PMC8846550 DOI: 10.1371/journal.ppat.1010283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Protein kinases play central roles in virtually all signaling pathways that enable organisms to adapt to their environment. Microbial pathogens must cope with severely restricted iron availability in mammalian hosts to invade and establish themselves within infected tissues. To uncover protein kinase signaling pathways that are involved in the adaptation of the pathogenic yeast Candida albicans to iron limitation, we generated a comprehensive protein kinase deletion mutant library of a wild-type strain. Screening of this library revealed that the protein kinase Ire1, which has a conserved role in the response of eukaryotic cells to endoplasmic reticulum stress, is essential for growth of C. albicans under iron-limiting conditions. Ire1 was not necessary for the activity of the transcription factor Sef1, which regulates the response of the fungus to iron limitation, and Sef1 target genes that are induced by iron depletion were normally upregulated in ire1Δ mutants. Instead, Ire1 was required for proper localization of the high-affinity iron permease Ftr1 to the cell membrane. Intriguingly, iron limitation did not cause increased endoplasmic reticulum stress, and the transcription factor Hac1, which is activated by Ire1-mediated removal of the non-canonical intron in the HAC1 mRNA, was dispensable for Ftr1 localization to the cell membrane and growth under iron-limiting conditions. Nevertheless, expression of a pre-spliced HAC1 copy in ire1Δ mutants restored Ftr1 localization and rescued the growth defects of the mutants. Both ire1Δ and hac1Δ mutants were avirulent in a mouse model of systemic candidiasis, indicating that an appropriate response to endoplasmic reticulum stress is important for the virulence of C. albicans. However, the specific requirement of Ire1 for the functionality of the high-affinity iron permease Ftr1, a well-established virulence factor, even in the absence of endoplasmic reticulum stress uncovers a novel Hac1-independent essential role of Ire1 in iron acquisition and virulence of C. albicans.
Collapse
Affiliation(s)
| | - Ines Krüger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christine Dunker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
16
|
A Suppressor Mutation in the β-Subunit Kis1 Restores Functionality of the SNF1 Complex in Candida albicans snf4Δ Mutants. mSphere 2021; 6:e0092921. [PMID: 34908458 PMCID: PMC8673253 DOI: 10.1128/msphere.00929-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric protein kinase SNF1 is a key regulator of metabolic adaptation in the pathogenic yeast Candida albicans, and mutants with a defective SNF1 complex cannot grow on carbon sources other than glucose. We identified a novel type of suppressor mutation in the β-subunit Kis1 that rescued the growth defects of cells lacking the regulatory γ-subunit Snf4 of the SNF1 complex. Unlike wild-type Kis1, the mutated Kis1A396T could bind to the catalytic α-subunit Snf1 in the absence of Snf4. Binding of Kis1A396T did not enhance phosphorylation of Snf1 by the upstream activating kinase Sak1, which is impaired in snf4Δ mutants. Nevertheless, the mutated Kis1A396T reestablished SNF1-dependent gene expression, confirming that SNF1 functionality was restored. The repressor proteins Mig1 and Mig2 were phosphorylated even in the absence of Snf1, but their phosphorylation patterns were altered, indicating that SNF1 regulates Mig1 and Mig2 activity indirectly. In contrast to wild-type cells, mutants lacking Snf4 were unable to reduce the amounts of Mig1 and Mig2 when grown on alternative carbon sources, and this deficiency was also remediated by the mutated Kis1A396T. These results provide novel insights into the regulation of SNF1 and the repressors Mig1 and Mig2 in the metabolic adaptation of C. albicans. IMPORTANCE The highly conserved protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans, but it is not clear how it regulates its downstream targets in this fungus. We show that the repressor proteins Mig1 and Mig2 are phosphorylated also in cells lacking the catalytic α-subunit Snf1 of the SNF1 complex, but the amounts of both proteins were reduced in wild-type cells when glucose was replaced by alternative carbon sources, pointing to an indirect mechanism of regulation. Mutants lacking the regulatory γ-subunit Snf4 of the SNF1 complex, which cannot grow on alternative carbon sources, were unable to downregulate Mig1 and Mig2 levels. We identified a novel type of suppressor mutation, an amino acid substitution in the β-subunit Kis1, which enabled Kis1 to bind to Snf1 in the absence of Snf4, thereby restoring Mig1 and Mig2 downregulation, SNF1-dependent gene expression, and growth on alternative carbon sources. These results provide new insights into the SNF1 signaling pathway in C. albicans.
Collapse
|
17
|
Hanumantha Rao K, Roy K, Paul S, Ghosh S. N-acetylglucosamine transporter, Ngt1, undergoes sugar-responsive endosomal trafficking in Candida albicans. Mol Microbiol 2021; 117:429-449. [PMID: 34877729 DOI: 10.1111/mmi.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
N-acetylglucosamine (GlcNAc), an important amino sugar at the infection sites of the fungal pathogen Candida albicans, triggers multiple cellular processes. GlcNAc import at the cell surface is mediated by GlcNAc transporter, Ngt1 which seems to play a critical role during GlcNAc signaling. We have investigated the Ngt1 dynamics that provide a platform for further studies aimed at understanding the mechanistic insights of regulating process(es) in C. albicans. The expression of this transporter is prolific and highly sensitive to even very low levels (˂2 µM) of GlcNAc. Under these conditions, Ngt1 undergoes phosphorylation-associated ubiquitylation as a code for internalization. This ubiquitylation process involves the triggering proteins like protein kinase Snf1, arrestin-related trafficking adaptors (ART) protein Rod1, and yeast ubiquitin ligase Rsp5. Interestingly, analysis of ∆snf1 and ∆rsp5 mutants revealed that while Rsp5 is promoting the endosomal trafficking of Ngt1-GFPɤ, Snf1 hinders the process. Furthermore, colocalization experiments of Ngt1 with Vps17 (an endosomal marker), Sec7 (a trans-Golgi marker), and a vacuolar marker revealed the fate of Ngt1 during sugar-responsive endosomal trafficking. ∆ras1 and ∆ubi4 mutants showed decreased ubiquitylation and delayed endocytosis of Ngt1. According to our knowledge, this is the first report which illustrates the mechanistic insights that are responsible for endosomal trafficking of a GlcNAc transporter in an eukaryotic organism.
Collapse
Affiliation(s)
- Kongara Hanumantha Rao
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India.,Central Instrumentation Facility, Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Kasturi Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| | - Soumita Paul
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| | - Swagata Ghosh
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| |
Collapse
|
18
|
Vico SH, Prieto D, Monge RA, Román E, Pla J. The Glyoxylate Cycle Is Involved in White-Opaque Switching in Candida albicans. J Fungi (Basel) 2021; 7:jof7070502. [PMID: 34202465 PMCID: PMC8304919 DOI: 10.3390/jof7070502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans. The master regulator of the white-opaque transition WOR1 has been implicated in the adaptation to this commensal status. A proteomic analysis of cells overexpressing this transcription factor (WOR1OE) suggested an altered metabolism of carbon sources and a phenotypic analysis confirmed this alteration. The WOR1OE cells are deficient in using trehalose and xylose and are unable to use 2C sources, which is consistent with a reduction in the amount of Icl1, the isocitrate lyase enzyme. The icl1Δ/Δ mutants overexpressing WOR1 are deficient in the production of phloxine B positive cells, a main characteristic of opaque cells, a phenotype also observed in mating type hemizygous mtla1Δ icl1Δ/Δ cells, suggesting the involvement of Icl1 in the adaptation to the commensal state. In fact, icl1Δ/Δ cells have reduced fitness in mouse gastrointestinal tract as compared with essentially isogenic heterozygous ICL1/icl1Δ, but overproduction of WOR1 in an icl1Δ/Δ mutant does not restore fitness. These results implicate the glyoxylate shunt in the adaptation to commensalism of C. albicans by mechanisms that are partially independent of WOR1.
Collapse
|
19
|
Yang X, Meng L, Lin X, Jiang HY, Hu XP, Li CF. Role of Elm1, Tos3, and Sak1 Protein Kinases in the Maltose Metabolism of Baker's Yeast. Front Microbiol 2021; 12:665261. [PMID: 34140941 PMCID: PMC8204090 DOI: 10.3389/fmicb.2021.665261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022] Open
Abstract
Glucose repression is a key regulatory system controlling the metabolism of non-glucose carbon source in yeast. Glucose represses the utilization of maltose, the most abundant fermentable sugar in lean dough and wort, thereby negatively affecting the fermentation efficiency and product quality of pasta products and beer. In this study, the focus was on the role of three kinases, Elm1, Tos3, and Sak1, in the maltose metabolism of baker’s yeast in lean dough. The results suggested that the three kinases played different roles in the regulation of the maltose metabolism of baker’s yeast with differential regulations on MAL genes. Elm1 was necessary for the maltose metabolism of baker’s yeast in maltose and maltose-glucose, and the overexpression of ELM1 could enhance the maltose metabolism and lean dough fermentation ability by upregulating the transcription of MALx1 (x is the locus) in maltose and maltose-glucose and MALx2 in maltose. The native level of TOS3 and SAK1 was essential for yeast cells to adapt glucose repression, but the overexpression of TOS3 and SAK1 alone repressed the expression of MALx1 in maltose-glucose and MALx2 in maltose. Moreover, the three kinases might regulate the maltose metabolism via the Snf1-parallel pathways with a carbon source-dependent manner. These results, for the first time, suggested that Elm1, rather than Tos3 and Sak1, might be the dominant regulator in the maltose metabolism of baker’s yeast. These findings provided knowledge about the glucose repression of maltose and gave a new perspective for breeding industrial yeasts with rapid maltose metabolism.
Collapse
Affiliation(s)
- Xu Yang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Lu Meng
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Xue Lin
- College of Food Science and Engineering, Hainan University, Haikou, China.,Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, China.,Hainan Key Laboratory of Food Nutrition and Functional Food, Haikou, China
| | - Huan-Yuan Jiang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiao-Ping Hu
- College of Food Science and Engineering, Hainan University, Haikou, China.,Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, China.,Hainan Key Laboratory of Food Nutrition and Functional Food, Haikou, China
| | - Cong-Fa Li
- College of Food Science and Engineering, Hainan University, Haikou, China.,Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, China.,Hainan Key Laboratory of Food Nutrition and Functional Food, Haikou, China
| |
Collapse
|
20
|
Mottola A, Ramírez-Zavala B, Hünniger K, Kurzai O, Morschhäuser J. The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans. Mol Microbiol 2021; 116:483-497. [PMID: 33860578 DOI: 10.1111/mmi.14727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Abstract
The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall.
Collapse
Affiliation(s)
- Austin Mottola
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | - Kerstin Hünniger
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Oliver Kurzai
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Laurian R, Ravent J, Dementhon K, Lemaire M, Soulard A, Cotton P. Candida albicans Hexokinase 2 Challenges the Saccharomyces cerevisiae Moonlight Protein Model. Microorganisms 2021; 9:microorganisms9040848. [PMID: 33920979 PMCID: PMC8071269 DOI: 10.3390/microorganisms9040848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Survival of the pathogenic yeast Candida albicans depends upon assimilation of fermentable and non-fermentable carbon sources detected in host microenvironments. Among the various carbon sources encountered in a human body, glucose is the primary source of energy. Its effective detection, metabolism and prioritization via glucose repression are primordial for the metabolic adaptation of the pathogen. In C. albicans, glucose phosphorylation is mainly performed by the hexokinase 2 (CaHxk2). In addition, in the presence of glucose, CaHxK2 migrates in the nucleus and contributes to the glucose repression signaling pathway. Based on the known dual function of the Saccharomyces cerevisiae hexokinase 2 (ScHxk2), we intended to explore the impact of both enzymatic and regulatory functions of CaHxk2 on virulence, using a site-directed mutagenesis approach. We show that the conserved aspartate residue at position 210, implicated in the interaction with glucose, is essential for enzymatic and glucose repression functions but also for filamentation and virulence in macrophages. Point mutations and deletion into the N-terminal region known to specifically affect glucose repression in ScHxk2 proved to be ineffective in CaHxk2. These results clearly show that enzymatic and regulatory functions of the hexokinase 2 cannot be unlinked in C. albicans.
Collapse
Affiliation(s)
- Romain Laurian
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
| | - Jade Ravent
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
| | - Karine Dementhon
- UMR-CNRS 5234, Laboratoire de Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, 33076 Bordeaux, France;
| | - Marc Lemaire
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
| | - Alexandre Soulard
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
| | - Pascale Cotton
- INSA Lyon, CNRS, Université de Lyon, Université Claude Bernard Lyon1, UMR5240 MAP, 69622 Villeurbanne, France; (R.L.); (J.R.); (M.L.); (A.S.)
- Correspondence:
| |
Collapse
|
22
|
Das S, Bhuyan R, Goswami AM, Saha T. Kinome analyses of Candida albicans, C. parapsilosis and C. tropicalis enable novel kinases as therapeutic drug targets in candidiasis. Gene 2021; 780:145530. [PMID: 33631248 DOI: 10.1016/j.gene.2021.145530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/20/2020] [Accepted: 02/09/2021] [Indexed: 01/12/2023]
Abstract
Candida spp. have attracted considerable attention as they cause serious human diseases in immunocompromised individuals. The genomes of the pathogenic Candida spp. have been sequenced, but systemic characterizations of their kinomes are yet to be reported. As in various eukaryotes, the protein kinases play crucial regulatory roles in pathogenicity of Candida. Increased frequency of antifungal resistance in Candida spp. requires significant attention to explore novel therapeutic molecules for their control. The present in-silico study involves novel bioinformatics strategies to identify the kinase proteins and their potential drug targets with the purpose to combat fungal infections. The study reports 103, 107 and 106 kinase proteins from 3 Candida spp., C. albicans, C. parapsilosis and C. tropicalis, respectively. Moreover, 79 common kinase proteins were identified, of which 54 proteins play essential roles in Candida spp. and 42 proteins were human non-homologues. Among the essential and human non-homologous protein kinases, 9 were found to be common essential human non-homologues, of which 6 are uniquely present in Candida. These 6 protein kinases namely, Hsl1, Npr1, Ptk2, Kin2, Ksp1 and orf19.3854 (CAALFM_CR06040WA) are involved in various molecular and cellular processes regulating virulence or pathogenicity. Further, these 6 kinases are prioritized as potential drug targets and explored for discovering new lead compounds against candidiasis. The drug repurposing approach for these 6 kinases show 13 approved drugs and investigational compounds that might play substantial inhibitory roles during combating candidiasis.
Collapse
Affiliation(s)
- Sanjib Das
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal 741235, India
| | - Rajabrata Bhuyan
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Achintya Mohan Goswami
- Department of Physiology, Krishnagar Govt. College, Krishnagar, Nadia, West Bengal 741101, India.
| | - Tanima Saha
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal 741235, India.
| |
Collapse
|
23
|
Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion. mSphere 2020; 5:5/4/e00805-20. [PMID: 32817381 PMCID: PMC7440847 DOI: 10.1128/msphere.00805-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The protein kinase Snf1, a member of the highly conserved AMP-activated protein kinase family, is a central regulator of metabolic adaptation. In the pathogenic yeast Candida albicans, Snf1 is considered to be essential, as previous attempts by different research groups to generate homozygous snf1Δ mutants were unsuccessful. We aimed to elucidate why Snf1 is required for viability in C. albicans by generating snf1Δ null mutants through forced, inducible gene deletion and observing the terminal phenotype before cell death. Unexpectedly, we found that snf1Δ mutants were viable and could grow, albeit very slowly, on rich media containing the preferred carbon source glucose. Growth was improved when the cells were incubated at 37°C instead of 30°C, and this phenotype enabled us to isolate homozygous snf1Δ mutants also by conventional, sequential deletion of both SNF1 alleles in a wild-type C. albicans strain. All snf1Δ mutants could grow slowly on glucose but were unable to utilize alternative carbon sources. Our results show that, under optimal conditions, C. albicans can live and grow without Snf1. Furthermore, they demonstrate that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans IMPORTANCE Essential genes are those that are indispensable for the viability and growth of an organism. Previous studies indicated that the protein kinase Snf1, a central regulator of metabolic adaptation, is essential in the pathogenic yeast Candida albicans, because no homozygous snf1 deletion mutants of C. albicans wild-type strains could be obtained by standard approaches. In order to investigate the lethal consequences of SNF1 deletion, we generated conditional mutants in which SNF1 could be deleted by forced, inducible excision from the genome. Unexpectedly, we found that snf1 null mutants were viable and could grow slowly under optimal conditions. The growth phenotypes of the snf1Δ mutants explain why such mutants were not recovered in previous attempts. Our study demonstrates that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans.
Collapse
|
24
|
Kumamoto CA, Gresnigt MS, Hube B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr Opin Microbiol 2020; 56:7-15. [PMID: 32604030 PMCID: PMC7744392 DOI: 10.1016/j.mib.2020.05.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022]
Abstract
Candida albicans is a regular member of the intestinal microbiota in the majority of the human population. This underscores C. albicans' adaptation to life in the intestine without inducing competitive interactions with other microbes, or immune responses detrimental to its survival. However, specific conditions such as a dysbalanced microbiome, a suppression of the immune system, and an impaired intestinal barrier can predispose for invasive, mostly nosocomial, C. albicans infections. Colonization of the intestine and translocation through the intestinal barrier are fundamental aspects of the processes preceding life-threatening systemic candidiasis. Insights into C. albicans' commensal lifestyle and translocation can thus help us to understand how patients develop candidiasis, and may provide leads for therapeutic strategies aimed at preventing infection. In this review, we discuss the commensal lifestyle of C. albicans in the intestine, the role of morphology for commensalism, the influence of diet, and the interactions with bacteria of the microbiota.
Collapse
Affiliation(s)
- Carol A Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Mark S Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany; Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
25
|
Lagree K, Woolford CA, Huang MY, May G, McManus CJ, Solis NV, Filler SG, Mitchell AP. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality. PLoS Genet 2020; 16:e1008582. [PMID: 31961865 PMCID: PMC6994163 DOI: 10.1371/journal.pgen.1008582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/31/2020] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic adaptation is linked to the ability of the opportunistic pathogen Candida albicans to colonize and cause infection in diverse host tissues. One way that C. albicans controls its metabolism is through the glucose repression pathway, where expression of alternative carbon source utilization genes is repressed in the presence of its preferred carbon source, glucose. Here we carry out genetic and gene expression studies that identify transcription factors Mig1 and Mig2 as mediators of glucose repression in C. albicans. The well-studied Mig1/2 orthologs ScMig1/2 mediate glucose repression in the yeast Saccharomyces cerevisiae; our data argue that C. albicans Mig1/2 function similarly as repressors of alternative carbon source utilization genes. However, Mig1/2 functions have several distinctive features in C. albicans. First, Mig1 and Mig2 have more co-equal roles in gene regulation than their S. cerevisiae orthologs. Second, Mig1 is regulated at the level of protein accumulation, more akin to ScMig2 than ScMig1. Third, Mig1 and Mig2 are together required for a unique aspect of C. albicans biology, the expression of several pathogenicity traits. Such Mig1/2-dependent traits include the abilities to form hyphae and biofilm, tolerance of cell wall inhibitors, and ability to damage macrophage-like cells and human endothelial cells. Finally, Mig1 is required for a puzzling feature of C. albicans biology that is not shared with S. cerevisiae: the essentiality of the Snf1 protein kinase, a central eukaryotic carbon metabolism regulator. Our results integrate Mig1 and Mig2 into the C. albicans glucose repression pathway and illuminate connections among carbon control, pathogenicity, and Snf1 essentiality. All organisms tailor genetic programs to the available nutrients, such as sources of carbon. Here we define two key regulators of the genetic programs for carbon source utilization in the fungal pathogen Candida albicans. The two regulators have many shared roles, yet are partially specialized to control carbon acquisition and metabolism, respectively. In addition, the regulators together control traits associated with pathogenicity, an indication that carbon regulation is integrated into the pathogenicity program. Finally, the regulators help to explain a long-standing riddle—that the central carbon regulator Snf1 is essential for C. albicans viability.
Collapse
Affiliation(s)
- Katherine Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
26
|
Williams RB, Lorenz MC. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence. mBio 2020; 11:e03070-19. [PMID: 31937647 PMCID: PMC6960290 DOI: 10.1128/mbio.03070-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022] Open
Abstract
The phagocytic cells of the innate immune system are an essential first line of antimicrobial defense, and yet Candida albicans, one of the most problematic fungal pathogens, is capable of resisting the stresses imposed by the macrophage phagosome, eventually resulting in the destruction of the phagocyte. C. albicans rapidly adapts to the phagosome by upregulating multiple alternative carbon utilization pathways, particularly those for amino acids, carboxylic acids, and N-acetylglucosamine (GlcNAc). Here, we report that C. albicans recognizes these carbon sources both as crucial nutrients and as independent signals in its environment. Even in the presence of glucose, each carbon source promotes increased resistance to a unique profile of stressors; lactate promotes increased resistance to osmotic and cell wall stresses, amino acids increased resistance to oxidative and nitrosative stresses, and GlcNAc increased resistance to oxidative stress and caspofungin, while all three alternative carbon sources have been shown to induce resistance to fluconazole. Moreover, we show mutants incapable of utilizing these carbon sources, in particular, strains engineered to be defective in all three pathways, are significantly attenuated in both macrophage and mouse models, with additive effects observed as multiple carbon pathways are eliminated, suggesting that C. albicans simultaneously utilizes multiple carbon sources within the macrophage phagosome and during disseminated candidiasis. Taking the data together, we propose that, in addition to providing energy to the pathogen within host environments, alternative carbon sources serve as niche-specific priming signals that allow C. albicans to recognize microenvironments within the host and to prepare for stresses associated with that niche, thus promoting host adaptation and virulence.IMPORTANCECandida albicans is a fungal pathogen and a significant cause of morbidity and mortality, particularly in people with defects, sometimes minor ones, in innate immunity. The phagocytes of the innate immune system, particularly macrophages and neutrophils, generally restrict this organism to its normal commensal niches, but C. albicans shows a robust and multifaceted response to these cell types. Inside macrophages, a key component of this response is the activation of multiple pathways for the utilization of alternative carbon sources, particularly amino acids, carboxylic acids, and N-acetylglucosamine. These carbon sources are key sources of energy and biomass but also independently promote stress resistance, induce cell wall alterations, and affect C. albicans interactions with macrophages. Engineered strains incapable of utilizing these alternative carbon pathways are attenuated in infection models. These data suggest that C. albicans recognizes nutrient composition as an indicator of specific host environments and tailors its responses accordingly.
Collapse
Affiliation(s)
- Robert B Williams
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
27
|
Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLoS Pathog 2019; 15:e1007823. [PMID: 31809527 PMCID: PMC6919631 DOI: 10.1371/journal.ppat.1007823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/18/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Inside the human host, the pathogenic yeast Candida albicans colonizes predominantly oxygen-poor niches such as the gastrointestinal and vaginal tracts, but also oxygen-rich environments such as cutaneous epithelial cells and oral mucosa. This suppleness requires an effective mechanism to reversibly reprogram the primary metabolism in response to oxygen variation. Here, we have uncovered that Snf5, a subunit of SWI/SNF chromatin remodeling complex, is a major transcriptional regulator that links oxygen status to the metabolic capacity of C. albicans. Snf5 and other subunits of SWI/SNF complex were required to activate genes of carbon utilization and other carbohydrates related process specifically under hypoxia. snf5 mutant exhibited an altered metabolome reflecting that SWI/SNF plays an essential role in maintaining metabolic homeostasis and carbon flux in C. albicans under hypoxia. Snf5 was necessary to activate the transcriptional program linked to both commensal and invasive growth. Accordingly, snf5 was unable to maintain its growth in the stomach, the cecum and the colon of mice. snf5 was also avirulent as it was unable to invade Galleria larvae or to cause damage to human enterocytes and murine macrophages. Among candidates of signaling pathways in which Snf5 might operate, phenotypic analysis revealed that mutants of Ras1-cAMP-PKA pathway, as well as mutants of Yak1 and Yck2 kinases exhibited a similar carbon flexibility phenotype as did snf5 under hypoxia. Genetic interaction analysis indicated that the adenylate cyclase Cyr1, a key component of the Ras1-cAMP pathway interacted genetically with Snf5. Our study yielded new insight into the oxygen-sensitive regulatory circuit that control metabolic flexibility, stress, commensalism and virulence in C. albicans. A critical aspect of eukaryotic cell fitness is the ability to sense and adapt to variations in oxygen level in their local environment. Hypoxia leads to a substantial remodeling of cell metabolism and energy homeostasis, and thus, organisms must develop an effective regulatory mechanism to cope with oxygen depletion. Candida albicans is an opportunistic yeast that is the most prevalent human fungal pathogens. This yeast colonizes diverse niches inside the human host with contrasting carbon sources and oxygen concentrations. While hypoxia is the predominant condition that C. albicans encounters inside most of the niches, the impact of this condition on metabolic flexibility, a major determinant of fungal virulence, was completely unexplored. Here, we uncovered that the chromatin remodelling complex SWI/SNF is a master regulator of the circuit that links oxygen status to a broad spectrum of carbon utilization routes. Snf5 was essential for the maintenance of C. albicans as a commensal and also for the expression of its virulence. The oxygen-sensitive regulators identified in this work provide a framework to comprehensively understand the virulence of human fungal pathogens and represent a therapeutic value to fight fungal infections.
Collapse
Affiliation(s)
- Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Laura Markey
- Program in Molecular Microbiology, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Faiza Tebbji
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and Engineering, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
28
|
An Intragenic Recombination Event Generates a Snf4-Independent Form of the Essential Protein Kinase Snf1 in Candida albicans. mSphere 2019; 4:4/3/e00352-19. [PMID: 31217306 PMCID: PMC6584375 DOI: 10.1128/msphere.00352-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic alterations, including different types of recombination events, facilitate the generation of genetically altered variants and enable the pathogenic yeast Candida albicans to adapt to stressful conditions encountered in its human host. Here, we show that a specific recombination event between two 8-bp direct repeats within the coding sequence of the SNF1 gene results in the deletion of six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain and relieves this essential kinase from autoinhibition. This preprogrammed deletion allowed C. albicans to overcome growth defects caused by the absence of the regulatory subunit Snf4 and represents a built-in mechanism for the generation of a Snf4-independent Snf1 kinase. The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans. It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two β-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1Δ311 − 316 was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 β-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1Δ311 − 316 still required the β-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4. IMPORTANCE Genomic alterations, including different types of recombination events, facilitate the generation of genetically altered variants and enable the pathogenic yeast Candida albicans to adapt to stressful conditions encountered in its human host. Here, we show that a specific recombination event between two 8-bp direct repeats within the coding sequence of the SNF1 gene results in the deletion of six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain and relieves this essential kinase from autoinhibition. This preprogrammed deletion allowed C. albicans to overcome growth defects caused by the absence of the regulatory subunit Snf4 and represents a built-in mechanism for the generation of a Snf4-independent Snf1 kinase.
Collapse
|
29
|
|
30
|
CgHog1-Mediated CgRds2 Phosphorylation Alters Glycerophospholipid Composition To Coordinate Osmotic Stress in Candida glabrata. Appl Environ Microbiol 2019; 85:AEM.02822-18. [PMID: 30635387 DOI: 10.1128/aem.02822-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
Under stress conditions, Hog1 is required for cell survival through transiently phosphorylating downstream targets and reprogramming gene expression. Here, we report that Candida glabrata Hog1 (CgHog1) interacts with and phosphorylates CgRds2, a zinc cluster transcription factor, in response to osmotic stress. Additionally, we found that deletion of CgRDS2 led to decreases in cell growth and cell survival by 23.4% and 39.6%, respectively, at 1.5 M NaCl, compared with levels of the wild-type strain. This is attributed to significant downregulation of the expression levels of glycerophospholipid metabolism genes. As a result, the content of total glycerophospholipid decreased by 30.3%. Membrane integrity also decreased 47.6% in the Cgrds2Δ strain at 1.5 M NaCl. In contrast, overexpression of CgRDS2 increased the cell growth and cell survival by 10.2% and 6.3%, respectively, owing to a significant increase in the total glycerophospholipid content and increased membrane integrity by 27.2% and 12.1%, respectively, at 1.5 M NaCl, compared with levels for the wild-type strain. However, a strain in which the CgRDS2 gene encodes the replacement of Ser64 and Thr97 residues with alanines (Cgrds22A ), harboring a CgRds2 protein that was not phosphorylated by CgHog1, failed to promote glycerophospholipid metabolism and membrane integrity at 1.5 M NaCl. Thus, the above results demonstrate that CgHog1-mediated CgRds2 phosphorylation enhanced glycerophospholipid composition and membrane integrity to resist osmotic stress in C. glabrata IMPORTANCE This study explored the role of CgHog1-mediated CgRds2 phosphorylation in response to osmotic stress in Candida glabrata CgHog1 interacts with and phosphorylates CgRds2, a zinc cluster transcription factor, under osmotic stress. Phosphorylated CgRds2 plays an important role in increasing glycerophospholipid composition and membrane integrity, thereby enhancing cell growth and survival.
Collapse
|
31
|
Van Ende M, Wijnants S, Van Dijck P. Sugar Sensing and Signaling in Candida albicans and Candida glabrata. Front Microbiol 2019; 10:99. [PMID: 30761119 PMCID: PMC6363656 DOI: 10.3389/fmicb.2019.00099] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Candida species, such as Candida albicans and Candida glabrata, cause infections at different host sites because they adapt their metabolism depending on the available nutrients. They are able to proliferate under both nutrient-rich and nutrient-poor conditions. This adaptation is what makes these fungi successful pathogens. For both species, sugars are very important nutrients and as the sugar level differs depending on the host niche, different sugar sensing systems must be present. Saccharomyces cerevisiae has been used as a model for the identification of these sugar sensing systems. One of the main carbon sources for yeast is glucose, for which three different pathways have been described. First, two transporter-like proteins, ScSnf3 and ScRgt2, sense glucose levels resulting in the induction of different hexose transporter genes. This situation is comparable in C. albicans and C. glabrata, where sensing of glucose by CaHgt4 and CgSnf3, respectively, also results in hexose transporter gene induction. The second glucose sensing mechanism in S. cerevisiae is via the G-protein coupled receptor ScGpr1, which causes the activation of the cAMP/PKA pathway, resulting in rapid adaptation to the presence of glucose. The main components of this glucose sensing system are also conserved in C. albicans and C. glabrata. However, it seems that the ligand(s) for CaGpr1 are not sugars but lactate and methionine. In C. glabrata, this pathway has not yet been investigated. Finally, the glucose repression pathway ensures repression of respiration and repression of the use of alternative carbon sources. This pathway is not well characterized in Candida species. It is important to note that, apart from glucose, other sugars and sugar-analogs, such as N-acetylglucosamine in the case of C. albicans, are also important carbon sources. In these fungal pathogens, sensing sugars is important for a number of virulence attributes, including adhesion, oxidative stress resistance, biofilm formation, morphogenesis, invasion, and antifungal drug tolerance. In this review, the sugar sensing and signaling mechanisms in these Candida species are compared to S. cerevisiae.
Collapse
Affiliation(s)
- Mieke Van Ende
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
32
|
Bar-Yosef H, Gildor T, Ramírez-Zavala B, Schmauch C, Weissman Z, Pinsky M, Naddaf R, Morschhäuser J, Arkowitz RA, Kornitzer D. A Global Analysis of Kinase Function in Candida albicans Hyphal Morphogenesis Reveals a Role for the Endocytosis Regulator Akl1. Front Cell Infect Microbiol 2018; 8:17. [PMID: 29473018 PMCID: PMC5809406 DOI: 10.3389/fcimb.2018.00017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/12/2018] [Indexed: 11/22/2022] Open
Abstract
The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.
Collapse
Affiliation(s)
- Hagit Bar-Yosef
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Tsvia Gildor
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | | | - Christian Schmauch
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute Biology Valrose, Université Côte d'Azur, Nice, France
| | - Ziva Weissman
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Mariel Pinsky
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Rawi Naddaf
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Robert A Arkowitz
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute Biology Valrose, Université Côte d'Azur, Nice, France
| | - Daniel Kornitzer
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| |
Collapse
|
33
|
Zhang P, Li H, Cheng J, Sun AY, Wang L, Mirchevska G, Calderone R, Li D. Respiratory stress in mitochondrial electron transport chain complex mutants of Candida albicans activates Snf1 kinase response. Fungal Genet Biol 2017; 111:73-84. [PMID: 29146491 DOI: 10.1016/j.fgb.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/02/2017] [Accepted: 11/12/2017] [Indexed: 01/23/2023]
Abstract
We have previously established that mitochondrial Complex I (CI) mutants of Candida albicans display reduced oxygen consumption, decreased ATP production, and increased reactive oxidant species (ROS) during cell growth. Using the Seahorse XF96 analyzer, the energetic phenotypes of Electron Transport Chain (ETC) complex mutants are further characterized in the current study. The underlying regulation of energetic changes in these mutants is determined in glucose and non-glucose conditions when compared to wild type (WT) cells. In parental cells, the rate of oxygen consumption remains constant for 2.5 h following the addition of glucose, oligomycin, and 2-DG, but glycolysis is highly active upon the addition of glucose. In comparison, over the same time period, electron transport complex mutants (CI, CIII and CIV) have heightened activities in both oxygen consumption and glycolysis upon glucose uptake. We refer to the response in these mutants as an "explosive respiration," which we believe is caused by low energy levels and increased production of reactive oxygen species (ROS). Accompanying this phenotype in mutants is a hyperphosphorylation of Snf1p which in Saccharomyces cerevisiae serves as an energetic stress response protein kinase for maintaining energy homeostasis. Compared to wild type cells, a 2.9- to 4.4-fold hyperphosphorylation of Snf1p is observed in all ETC mutants in the presence of glucose. However, the explosive respiration and hyperphosphorylation of Snf1 can be partially reduced by the replacement of glucose with either glycerol or oleic acid in a mutant-specific manner. Furthermore, Inhibitors of glutathione synthesis (BSO) or anti-oxidants (mito-TEMPO) likewise confirmed an increase of Sfn1 phosphorylation in WT or mutant due to increased levels of ROS. Our data establish the role of the C. albicans Snf1 as a surveyor of cell energy and ROS levels. We interpret the "explosive respiration" as a failed attempt by ETC mutants to restore energy and ROS homeostasis via Snf1 activation. An inherently high OCR baseline in WT C. albicans with a background level of Snf1 activation is a prerequisite for success in quickly fermenting glucose.
Collapse
Affiliation(s)
- Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Sport Science Research Center, Shandong Sport University, Jinan 250102, China
| | - Hongbin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, China
| | - Jie Cheng
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - April Y Sun
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Liqing Wang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gordana Mirchevska
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Institute of Microbiology and Parasitology, Medical Faculty University Sts Cyril and Methodius, 50 Divizija. No. 6, 1000 Skopje, Macedonia
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
34
|
Prieto D, Román E, Alonso-Monge R, Pla J. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans. Front Cell Infect Microbiol 2017; 7:389. [PMID: 28955659 PMCID: PMC5600957 DOI: 10.3389/fcimb.2017.00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| |
Collapse
|