1
|
Apodiakou A, Alseekh S, Hoefgen R, Whitcomb SJ. Overexpression of SLIM1 transcription factor accelerates vegetative development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1327152. [PMID: 38571711 PMCID: PMC10988502 DOI: 10.3389/fpls.2024.1327152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The transcription factor Sulfur Limitation 1 (SLIM1) belongs to the plant-specific Ethylene Insenstive3-Like transcription factor family and is known to coordinate gene expression in response to sulfur deficiency. However, the roles of SLIM1 in nutrient-sufficient conditions have not been characterized. Employing constitutive SLIM1 overexpression (35S::SLIM1) and CRISPR/Cas9 mutant plants (slim1-cr), we identified several distinct phenotypes in nutrient-sufficient conditions in Arabidopsis thaliana. Overexpression of SLIM1 results in plants with approximately twofold greater rosette area throughout vegetative development. 35S::SLIM1 plants also bolt earlier and exhibit earlier downregulation of photosynthesis-associated genes and earlier upregulation of senescence-associated genes than Col-0 and slim1-cr plants. This suggests that overexpression of SLIM1 accelerates development in A. thaliana. Genome-wide differential gene expression analysis relative to Col-0 at three time points with slim1-cr and two 35S::SLIM1 lines allowed us to identify 1,731 genes regulated directly or indirectly by SLIM1 in vivo.
Collapse
Affiliation(s)
- Anastasia Apodiakou
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sarah J. Whitcomb
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Cereal Crops Research Unit, United States Department of Agriculture - Agricultural Research Service, Madison, WI, United States
| |
Collapse
|
2
|
Waszczak C, Yarmolinsky D, Leal Gavarrón M, Vahisalu T, Sierla M, Zamora O, Carter R, Puukko T, Sipari N, Lamminmäki A, Durner J, Ernst D, Winkler JB, Paulin L, Auvinen P, Fleming AJ, Andersson MX, Kollist H, Kangasjärvi J. Synthesis and import of GDP-l-fucose into the Golgi affect plant-water relations. THE NEW PHYTOLOGIST 2024; 241:747-763. [PMID: 37964509 DOI: 10.1111/nph.19378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023]
Abstract
Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | | | - Marina Leal Gavarrón
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Olena Zamora
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, CB2 1LR, Cambridge, UK
| | - Tuomas Puukko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Nina Sipari
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Airi Lamminmäki
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andrew J Fleming
- School of Biosciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Hannes Kollist
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
3
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
4
|
Genome-Wide Identification and Expression Analysis of nsLTP Gene Family in Rapeseed (Brassica napus) Reveals Their Critical Roles in Biotic and Abiotic Stress Responses. Int J Mol Sci 2022; 23:ijms23158372. [PMID: 35955505 PMCID: PMC9368849 DOI: 10.3390/ijms23158372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Non-specific lipid transfer proteins (nsLTPs) are small cysteine-rich basic proteins which play essential roles in plant growth, development and abiotic/biotic stress response. However, there is limited information about the nsLTP gene (BnLTP) family in rapeseed (Brassica napus). In this study, 283 BnLTP genes were identified in rapeseed, which were distributed randomly in 19 chromosomes of rapeseed. Phylogenetic analysis showed that BnLTP proteins were divided into seven groups. Exon/intron structure and MEME motifs both remained highly conserved in each BnLTP group. Segmental duplication and hybridization of rapeseed’s two sub-genomes mainly contributed to the expansion of the BnLTP gene family. Various potential cis-elements that respond to plant growth, development, biotic/abiotic stresses, and phytohormone signals existed in BnLTP gene promoters. Transcriptome analysis showed that BnLTP genes were expressed in various tissues/organs with different levels and were also involved in the response to heat, drought, NaCl, cold, IAA and ABA stresses, as well as the treatment of fungal pathogens (Sclerotinia sclerotiorum and Leptosphaeria maculans). The qRT-PCR assay validated the results of RNA-seq expression analysis of two top Sclerotinia-responsive BnLTP genes, BnLTP129 and BnLTP161. Moreover, batches of BnLTPs might be regulated by BnTT1 and BnbZIP67 to play roles in the development, metabolism or adaptability of the seed coat and embryo in rapeseed. This work provides an important basis for further functional study of the BnLTP genes in rapeseed quality improvement and stress resistance.
Collapse
|
5
|
Wei H, Movahedi A, Liu G, Zhu S, Chen Y, Yu C, Zhong F, Zhang J. Characteristics, expression profile, and function of non-specific lipid transfer proteins of Populus trichocarpa. Int J Biol Macromol 2022; 202:468-481. [PMID: 35063485 DOI: 10.1016/j.ijbiomac.2022.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Plant non-specific lipid transfer proteins (nsLTPs) are involved in various physiological processes. However, the characteristics and function of LTPs in Populus trichocarpa are unclear. Here, we report the functional properties of type IV, V, and VI P. trichocarpa nsLTPs (PtLTPs). The IV, V, and VI PtLTPs clustered in the same clade shared similar gene structures and motif and distributions. Also, collinearity analysis revealed 2 and 7 gene pairs have tandem duplication and segmental duplication events, respectively. The expression patterns of type IV, V, and VI PtLTPs differed among poplar tissues. We investigated the effects of various stresses on the Potri.010G100600, Potri.010G196300, and Potri.016G104300 (type V LTPs) mRNA levels, and type V LTPs can respond to multiple stresses. Potri.008G061800 was localized to the cell wall, extracellular space, and plasma membrane. Glutathione-S-transferase-Potri.008G061800 obtained by prokaryotic expression had weakly inhibited the growth of Septotis populiperda in vitro. Taken together, our data show that type IV, V, and VI PtLTPs may be thought as novel regulators of plant stresses. They could be considered an effective genetic resource for molecular breeding in poplar.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Sheng Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
6
|
David L, Kang J, Nicklay J, Dufresne C, Chen S. Identification of DIR1-Dependant Cellular Responses in Guard Cell Systemic Acquired Resistance. Front Mol Biosci 2022; 8:746523. [PMID: 34977152 PMCID: PMC8718647 DOI: 10.3389/fmolb.2021.746523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
After localized invasion by bacterial pathogens, systemic acquired resistance (SAR) is induced in uninfected plant tissues, resulting in enhanced defense against a broad range of pathogens. Although SAR requires mobilization of signaling molecules via the plant vasculature, the specific molecular mechanisms remain elusive. The lipid transfer protein defective in induced resistance 1 (DIR1) was identified in Arabidopsis thaliana by screening for mutants that were defective in SAR. Here, we demonstrate that stomatal response to pathogens is altered in systemic leaves by SAR, and this guard cell SAR defense requires DIR1. Using a multi-omics approach, we have determined potential SAR signaling mechanisms specific for guard cells in systemic leaves by profiling metabolite, lipid, and protein differences between guard cells in the wild type and dir1-1 mutant during SAR. We identified two long-chain 18 C and 22 C fatty acids and two 16 C wax esters as putative SAR-related molecules dependent on DIR1. Proteins and metabolites related to amino acid biosynthesis and response to stimulus were also changed in guard cells of dir1-1 compared to the wild type. Identification of guard cell-specific SAR-related molecules may lead to new avenues of genetic modification/molecular breeding for disease-resistant plants.
Collapse
Affiliation(s)
- Lisa David
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States
| | - Jianing Kang
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States.,College of Life Science, Northeast Agricultural University, Harbin, China
| | - Josh Nicklay
- Thermo Fisher Scientific, Somerset, NJ, United States
| | - Craig Dufresne
- Thermo Training Institute, Thermo Fisher Scientific, West Palm Beach, FL, United States
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute (UFGI), Gainesville, FL, United States.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Kibe M, Nair SK, Das B, Bright JM, Makumbi D, Kinyua J, Suresh LM, Beyene Y, Olsen MS, Prasanna BM, Gowda M. Genetic Dissection of Resistance to Gray Leaf Spot by Combining Genome-Wide Association, Linkage Mapping, and Genomic Prediction in Tropical Maize Germplasm. FRONTIERS IN PLANT SCIENCE 2020; 11:572027. [PMID: 33224163 PMCID: PMC7667048 DOI: 10.3389/fpls.2020.572027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/29/2020] [Indexed: 05/05/2023]
Abstract
Gray leaf spot (GLS) is one of the major maize foliar diseases in sub-Saharan Africa. Resistance to GLS is controlled by multiple genes with additive effect and is influenced by both genotype and environment. The objectives of the study were to dissect the genetic architecture of GLS resistance through linkage mapping and genome-wide association study (GWAS) and assessing the potential of genomic prediction (GP). We used both biparental populations and an association mapping panel of 410 diverse tropical/subtropical inbred lines that were genotyped using genotype by sequencing. Phenotypic evaluation in two to four environments revealed significant genotypic variation and moderate to high heritability estimates ranging from 0.43 to 0.69. GLS was negatively and significantly correlated with grain yield, anthesis date, and plant height. Linkage mapping in five populations revealed 22 quantitative trait loci (QTLs) for GLS resistance. A QTL on chromosome 7 (qGLS7-105) is a major-effect QTL that explained 28.2% of phenotypic variance. Together, all the detected QTLs explained 10.50, 49.70, 23.67, 18.05, and 28.71% of phenotypic variance in doubled haploid (DH) populations 1, 2, 3, and F3 populations 4 and 5, respectively. Joint linkage association mapping across three DH populations detected 14 QTLs that individually explained 0.10-15.7% of phenotypic variance. GWAS revealed 10 significantly (p < 9.5 × 10-6) associated SNPs distributed on chromosomes 1, 2, 6, 7, and 8, which individually explained 6-8% of phenotypic variance. A set of nine candidate genes co-located or in physical proximity to the significant SNPs with roles in plant defense against pathogens were identified. GP revealed low to moderate prediction correlations of 0.39, 0.37, 0.56, 0.30, 0.29, and 0.38 for within IMAS association panel, DH pop1, DH pop2, DH pop3, F3 pop4, and F3 po5, respectively, and accuracy was increased substantially to 0.84 for prediction across three DH populations. When the diversity panel was used as training set to predict the accuracy of GLS resistance in biparental population, there was 20-50% reduction compared to prediction within populations. Overall, the study revealed that resistance to GLS is quantitative in nature and is controlled by many loci with a few major and many minor effects. The SNPs/QTLs identified by GWAS and linkage mapping can be potential targets in improving GLS resistance in breeding programs, while GP further consolidates the development of high GLS-resistant lines by incorporating most of the major- and minor-effect genes.
Collapse
Affiliation(s)
- Maguta Kibe
- International Maize and Wheat Improvement Center, Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Sudha K. Nair
- International Maize and Wheat Improvement Center, Hyderabad, India
| | - Biswanath Das
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Jumbo M. Bright
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Johnson Kinyua
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - L. M. Suresh
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | - Michael S. Olsen
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| | | | - Manje Gowda
- International Maize and Wheat Improvement Center, Nairobi, Kenya
| |
Collapse
|
8
|
Lewandowska M, Keyl A, Feussner I. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. THE NEW PHYTOLOGIST 2020; 227:698-713. [PMID: 32242934 DOI: 10.1111/nph.16571] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/12/2020] [Indexed: 05/18/2023]
Abstract
The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UV radiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses.
Collapse
Affiliation(s)
- Milena Lewandowska
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Alisa Keyl
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077, Goettingen, Germany
| |
Collapse
|
9
|
Ali MA, Abbas A, Azeem F, Shahzadi M, Bohlmann H. The Arabidopsis GPI-Anchored LTPg5 Encoded by At3g22600 Has a Role in Resistance against a Diverse Range of Pathogens. Int J Mol Sci 2020; 21:E1774. [PMID: 32150834 PMCID: PMC7084707 DOI: 10.3390/ijms21051774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/22/2023] Open
Abstract
Arabidopsis contains 34 genes for glycosylphosphatidylinositol (GPI)-anchored LTPg proteins. A motif analysis has placed these into four groups. With one exception, all are produced with a signal peptide and are most likely attached to the cell membrane via the GPI anchor. Several of the LTPg genes across the four groups are downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii. We have here studied At3g22600 encoding LTPg5, which is the most strongly downregulated LTPg gene. It is mainly expressed in roots, and a promoter::GUS line was used to confirm the downregulation in syncytia and also showed downregulation in galls of the root knot nematode Meloidogyne incognita. In contrast, infection with bacteria (Pseudomonas syringae) and fungi (Botrytis cinerea) led to the induction of the gene in leaves. This diverse regulation of LTPg5 indicated a role in resistance, which we confirmed with overexpression lines and a T-DNA mutant. The overexpression lines were more resistant to both nematode species and to P. syringae and B. cinerea, while a knock-out mutant was more susceptible to H. schachtii and P. syringae. Thus, LTPg5 encoded by At3g22600 is part of the Arabidopsis resistance mechanism against pathogens. LTPg5 has probably no direct antimicrobial activity but could perhaps act by associating with a receptor-like kinase, leading to the induction of defense genes such as PR1.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan; (A.A.); (M.S.)
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Amjad Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan; (A.A.); (M.S.)
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Farrukh Azeem
- Plant Biotechnology Lab, Department of Bioinformatics and Biotechnology, GC University, Faisalabad 38040, Pakistan;
| | - Mahpara Shahzadi
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan; (A.A.); (M.S.)
- Grassland Economics and Systems Analysis Laboratory, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| |
Collapse
|
10
|
Borniego ML, Molina MC, Guiamét JJ, Martinez DE. Physiological and Proteomic Changes in the Apoplast Accompany Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1635. [PMID: 31969890 PMCID: PMC6960232 DOI: 10.3389/fpls.2019.01635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
The apoplast, i.e. the cellular compartment external to the plasma membrane, undergoes important changes during senescence. Apoplastic fluid volume increases quite significantly in senescing leaves, thereby diluting its contents. Its pH elevates by about 0.8 units, similar to the apoplast alkalization in response to abiotic stresses. The levels of 159 proteins decrease, whereas 24 proteins increase in relative abundance in the apoplast of senescing leaves. Around half of the apoplastic proteins of non-senescent leaves contain a N-terminal signal peptide for secretion, while all the identified senescence-associated apoplastic proteins contain the signal peptide. Several of the apoplastic proteins that accumulate during senescence also accumulate in stress responses, suggesting that the apoplast may constitute a compartment where developmental and stress-related programs overlap. Other senescence-related apoplastic proteins are involved in cell wall modifications, proteolysis, carbohydrate, ROS and amino acid metabolism, signaling, lipid transport, etc. The most abundant senescence-associated apoplastic proteins, PR2 and PR5 (e.g. pathogenesis related proteins PR2 and PR5) are related to leaf aging rather than to the chloroplast degradation program, as their levels increase only in leaves undergoing developmental senescence, but not in dark-induced senescent leaves. Changes in the apoplastic space may be relevant for signaling and molecular trafficking underlying senescence.
Collapse
Affiliation(s)
| | | | | | - Dana E. Martinez
- Instituto de Fisiología Vegetal (INFIVE), CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
11
|
Zhou K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. FRONTIERS IN PLANT SCIENCE 2019; 10:1022. [PMID: 31555307 PMCID: PMC6726743 DOI: 10.3389/fpls.2019.01022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Diverse proteins are found modified with glycosylphosphatidylinositol (GPI) at their carboxyl terminus in eukaryotes, which allows them to associate with membrane lipid bilayers and anchor on the external surface of the plasma membrane. GPI-anchored proteins (GPI-APs) play crucial roles in various processes, and more and more GPI-APs have been identified and studied. In this review, previous genomic and proteomic predictions of GPI-APs in Arabidopsis have been updated, which reveal their high abundance and complexity. From studies of individual GPI-APs in Arabidopsis, certain GPI-APs have been found associated with partner receptor-like kinases (RLKs), targeting RLKs to their subcellular localization and helping to recognize extracellular signaling polypeptide ligands. Interestingly, the association might also be involved in ligand selection. The analyses suggest that GPI-APs are essential and widely involved in signal transduction through association with RLKs.
Collapse
|