1
|
Feng L, Luo X, Huang L, Zhang Y, Li F, Li S, Zhang Z, Yang X, Wang X, OuYang X, Shi X, Zhang D, Tao X, Chen J, Yang J, Zhang S, Liu Y. A viral protein activates the MAPK pathway to promote viral infection by downregulating callose deposition in plants. Nat Commun 2024; 15:10548. [PMID: 39632828 PMCID: PMC11618657 DOI: 10.1038/s41467-024-54467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved in both plants and animals and play critical roles in activating innate immunity to defend against various pathogens. However, the role of MAPK cascades in positively regulating or enhancing viral infections in plants is unclear. In this study, we investigate the involvement of MAPK cascades in infection by the positive-strand RNA virus tomato chlorosis virus (ToCV). Our findings reveal that ToCV infection activates MAPK cascades, promoting virus spread within plants. Specifically, ToCV P7, a pathogenicity determinant protein, localizes to the plasma membrane and recruits NbMPK3/6 from the nucleus. Subsequently, P7 is directly phosphorylated on serine 59 by NbMPK3/6. Phosphorylated P7 interacts with NbREM1.1 and inhibits its ability to induce callose deposition at plasmodesmata. These results demonstrate that NbMPK3/6 directly phosphorylate ToCV P7, modulating antiviral defence mechanisms by downregulating callose deposition at plasmodesmata and thereby enhancing ToCV transmission in N. benthamiana. This study sheds light on the intricate arms race between host defence and viral counter-defence strategies.
Collapse
Affiliation(s)
- Lixiao Feng
- Longping Branch, Biology College of Hunan University, Changsha, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Liping Huang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijun Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhanhong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiao Yang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xin Wang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaobin Shi
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Deyong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
- Yuelushan Laboratory, Changsha, China.
| | - Songbai Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| | - Yong Liu
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| |
Collapse
|
2
|
Sierra-Mejia A, Villamor DEV, Rocha A, Wintermantel WM, Tzanetakis IE. Engineering a robust infectious clone and gene silencing vector from blackberry yellow vein associated virus. Virus Res 2024; 350:199488. [PMID: 39490589 PMCID: PMC11736398 DOI: 10.1016/j.virusres.2024.199488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Criniviruses are emerging pathogens responsible for significant disease outbreaks worldwide. Among them, blackberry yellow vein-associated virus (BYVaV) is prevalent in blackberry-producing areas of the United States and, when present in the blackberry yellow vein disease complex with other viruses, can lead to substantial crop losses. To better understand BYVaV biology and its role in virus complex disease development, we developed a BYVaV-derived infectious clone and a virus-induced gene silencing (VIGS) vector. The infectious clone successfully induced systemic infection and symptom development in Nicotiana benthamiana. Additionally, transmission of the recombinant virus to indicator plants was confirmed using the whitefly vector Trialeurodes vaporariorum. The infectious clone was subsequently modified into a VIGS vector, with the foreign insert remaining stable for the length of the study. This work provides essential tools for advancing the study of BYVaV biology and conducting genomic studies in its natural hosts.
Collapse
Affiliation(s)
- Andrea Sierra-Mejia
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, Arkansas 72701, United States
| | - Dan E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, Arkansas 72701, United States
| | - Aaron Rocha
- United States Department of Agriculture, Agricultural Research Service, Salinas, California 93905, United States
| | - William M Wintermantel
- United States Department of Agriculture, Agricultural Research Service, Salinas, California 93905, United States
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, Arkansas 72701, United States.
| |
Collapse
|
3
|
Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses: implications in global circulation and disease outbreak. FRONTIERS IN PLANT SCIENCE 2024; 15:1376284. [PMID: 38807782 PMCID: PMC11130427 DOI: 10.3389/fpls.2024.1376284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.
Collapse
Affiliation(s)
- Nagamani Sandra
- Seed Pathology Laboratory, Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Kwon SJ, Lee YJ, Cho YE, Byun HS, Seo JK. Engineering of stable infectious cDNA constructs of a fluorescently tagged tomato chlorosis virus. Virology 2024; 593:110010. [PMID: 38364352 DOI: 10.1016/j.virol.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Tomato chlorosis virus (ToCV) is an emerging pathogen that cause severe yellow leaf disorder syndrome in tomato plants. In this study, we aimed to generate a recombinant ToCV tagged with green fluorescent protein (GFP) to enable real-time monitoring of viral infection in living plants. Transformation of the full-length cDNA construct of ToCV RNA1 into Escherichia coli resulted in instability issues, which were successfully overcome by inserting a plant intron into RNA1. Subsequently, a GFP tag was engineered into a cDNA construct of ToCV RNA2. The resulting recombinant ToCV-GFP could systemically infect Nicotiana benthamiana plants, and GFP expression was observed along the major veins. Utilizing ToCV-GFP, we also showed that ToCV engages in antagonistic relationships with two different tomato-infecting viruses in mixed infections in N. benthamiana. This study demonstrates the potential of ToCV-GFP as a valuable tool for the visual tracking of infection and movement of criniviruses in living plants.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Ye-Ji Lee
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Eun Cho
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Hee-Seong Byun
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Jang-Kyun Seo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Department of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
5
|
El Hamss H, Maruthi MN, Omongo CA, Wang HL, van Brunschot S, Colvin J, Delatte H. Microbiome diversity and composition in Bemisia tabaci SSA1-SG1 whitefly are influenced by their host's life stage. Microbiol Res 2024; 278:127538. [PMID: 37952351 DOI: 10.1016/j.micres.2023.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Within the Bemisia tabaci group of cryptic whitefly species, many are damaging agricultural pests and plant-virus vectors, conferring upon this group the status of one of the world's top 100 most invasive and destructive species, affecting farmers' income and threatening their livelihoods. Studies on the microbiome of whitefly life stages are scarce, although their composition and diversity greatly influence whitefly fitness and development. We used high-throughput sequencing to understand microbiome diversity in different developmental stages of the B. tabaci sub-Saharan Africa 1 (SSA1-SG1) species of the whitefly from Uganda. Endosymbionts (Portiera, Arsenophonus, Wolbachia, and Hemipteriphilus were detected but excluded from further statistical analysis as they were not influenced by life stage using Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS, p = 0.925 and Bray, p = 0.903). Our results showed significant differences in the meta microbiome composition in different life stages of SSA1-SG1. The diversity was significantly higher in eggs (Shannon, p = 0.024; Simpson, p = 0.047) than that in nymphs and pupae, while the number of microbial species observed by the amplicon sequence variant (ASV) was not significant (n(ASV), p = 0.094). At the phylum and genus levels, the dominant constituents in the microbiome changed significantly during various developmental stages, with Halomonas being present in eggs, whereas Bacillus and Caldalkalibacillus were consistently found across all life stages. These findings provide the first description of differing meta microbiome diversity in the life stage of whiteflies, suggesting their putative role in whitefly development.
Collapse
Affiliation(s)
- Hajar El Hamss
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom.
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom.
| | - Christopher A Omongo
- Root Crops Programme, National Crops Resource Research Institute (RCP-NaCRRI), Kampala, Uganda
| | - Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom; School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom
| | | |
Collapse
|
6
|
Ontiveros I, Fernández-Pozo N, Esteve-Codina A, López-Moya JJ, Díaz-Pendón JA. Enhanced Susceptibility to Tomato Chlorosis Virus (ToCV) in Hsp90- and Sgt1-Silenced Plants: Insights from Gene Expression Dynamics. Viruses 2023; 15:2370. [PMID: 38140611 PMCID: PMC10747942 DOI: 10.3390/v15122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi). Gene expression changes were most notable at 2 and 14 dpi, likely corresponding to whitefly feeding and viral infection. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed key genes and pathways associated with ToCV infection, including those related to plant immunity, flavonoid and steroid biosynthesis, photosynthesis, and hormone signaling. Additionally, virus-derived small interfering RNAs (vsRNAs) originating from ToCV predominantly came from RNA2 and were 22 nucleotides in length. Furthermore, two genes involved in plant immunity, Hsp90 (heat shock protein 90) and its co-chaperone Sgt1 (suppressor of the G2 allele of Skp1) were targeted through viral-induced gene silencing (VIGS), showing a potential contribution to basal resistance against viral infections since their reduction correlated with increased ToCV accumulation. This study provides insights into tomato plant responses to ToCV, with potential implications for developing effective disease control strategies.
Collapse
Affiliation(s)
- Irene Ontiveros
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Noé Fernández-Pozo
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Juan Antonio Díaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| |
Collapse
|
7
|
Shahriari Z, Su X, Zheng K, Zhang Z. Advances and Prospects of Virus-Resistant Breeding in Tomatoes. Int J Mol Sci 2023; 24:15448. [PMID: 37895127 PMCID: PMC10607384 DOI: 10.3390/ijms242015448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.
Collapse
Affiliation(s)
- Zolfaghar Shahriari
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz 617-71555, Iran
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| |
Collapse
|
8
|
Mirzayeva S, Huseynova I, Özmen CY, Ergül A. Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses. THE PLANT PATHOLOGY JOURNAL 2023; 39:466-485. [PMID: 37817493 PMCID: PMC10580053 DOI: 10.5423/ppj.oa.07.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.
Collapse
Affiliation(s)
- Samra Mirzayeva
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of Azerbaijan Republic, Baku AZ1073, Azerbaijan
| | - Irada Huseynova
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of Azerbaijan Republic, Baku AZ1073, Azerbaijan
| | | | - Ali Ergül
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| |
Collapse
|
9
|
Wen Z, Feng J, Zhu B, Xu W, Xu F, Tan H, Chu D, Guo L. Pyrifluquinazon baseline susceptibility and inhibition of Tomato chlorosis virus transmission by Bemisia tabaci. PEST MANAGEMENT SCIENCE 2023; 79:3520-3528. [PMID: 37144964 DOI: 10.1002/ps.7532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is associated with tomato yellow leaf disorder diseases in more than 20 countries. ToCV can be transmitted in a semipersistent manner by whitefly vectors such as Bemisia tabaci. Controlling the vector pests by using chemical insecticides is an efficient and effective approach to reduce and interrupt the virus transmission. Pyrifluquinazon is a new pyridine azomethine derivative, showing insecticidal toxicity to sucking pests by disturbing their feeding behavior. However, limited attention has been paid to the performance of pyrifluquinazon against B. tabaci and ToCV transmission. RESULT This study showed the lethal concentration of 50% (LC50 ) values of pyrifluquinazon to 22 B. tabaci field populations ranged from 0.54 to 2.44 mg L-1 , and the baseline susceptibility of B. tabaci to pyrifluquinazon was 1.24 mg L-1 with a 95% confidence limit of 0.35-1.85 mg L-1 . Pyrifluquinazon and afidopyropen did not show cross-resistance to dinotefuran and pymetrozine in B. tabaci, which both inhibited the feeding activities of B. tabaci. The antifeedant concentration of 50% (AFC50 ) values at 48 h were 0.70 mg L-1 for pyrifluquinazon and 2.13 mg L-1 for afidopyropen. Foliar application of pyrifluquinazon and afidopyropen reduced the ToCV transmission by 40.91% and 33.33%, respectively and significantly decreased the ToCV loads in tomato plants under laboratory conditions. CONCLUSION These results provided new information about the effects of modulators of the vanilloid-type transient receptor potential channel on the toxicity to B. tabaci and inhibition of ToCV transmission. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zanrong Wen
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Jinzheng Feng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Bolin Zhu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Wei Xu
- Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Fa Xu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Huiwen Tan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Lei Guo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
10
|
Lyu J, Yang Y, Sun X, Jiang S, Hong H, Zhu X, Liu Y. Genetic Variability and Molecular Evolution of Tomato Mosaic Virus Populations in Three Northern China Provinces. Viruses 2023; 15:1617. [PMID: 37515303 PMCID: PMC10383530 DOI: 10.3390/v15071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
RNA viruses tend to mutate during transmission and host infection, which is critical to viral adaptation and evolution. Tomato mosaic virus (ToMV) is a member of the genus Tobamovirus (family Virgaviridae) and an economically important virus with detrimental effects on tomatoes worldwide. Although the ToMV gene sequences have been completed in China, their genetic diversity and population structure remain unclear. We collected 425 tomato samples from tomato-growing areas in three northern Chinese provinces 2016. Reverse transcription PCR results showed that the average incidence of the virus in the field samples was 67.15%, and ToMV was detected in all test areas. The analysis of ToMV single nucleotide polymorphisms in China showed that ToMV was evolutionarily conserved, and the variation in the whole genome was uneven. Pairwise identity analysis showed significant variability in genome sequences among ToMV strains with genomic nucleotide identities of 73.2-99.6%. The ToMV population in the northern Chinese provinces had purification and selection functions, which were beneficial in the evolution of the ToMV population. Although there has been some distribution of ToMV strains in China, the virus was generally stabilized as a uniform strain under the pressure of purification selection. Our findings show how to monitor the prevalent strains of ToMV and their virulence in China and provide useful information for its prevention and control.
Collapse
Affiliation(s)
- Jinfu Lyu
- Shandong Provincial University Laboratory for Protected Horticulture, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang 262700, China
| | - Yuanyuan Yang
- Shandong Provincial University Laboratory for Protected Horticulture, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang 262700, China
| | - Xiaohui Sun
- Shandong Province Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shanshan Jiang
- Shandong Province Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Hong
- Shandong Province Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaoping Zhu
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yongguang Liu
- Shandong Provincial University Laboratory for Protected Horticulture, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang 262700, China
| |
Collapse
|
11
|
Fortes IM, Fernández-Muñoz R, Moriones E. Crinivirus Tomato Chlorosis Virus Compromises the Control of Tomato Yellow Leaf Curl Virus in Tomato Plants by the Ty-1 Gene. PHYTOPATHOLOGY 2023; 113:1347-1359. [PMID: 36690608 DOI: 10.1094/phyto-09-22-0334-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
12
|
Fontdevila Pareta N, Khalili M, Maachi A, Rivarez MPS, Rollin J, Salavert F, Temple C, Aranda MA, Boonham N, Botermans M, Candresse T, Fox A, Hernando Y, Kutnjak D, Marais A, Petter F, Ravnikar M, Selmi I, Tahzima R, Trontin C, Wetzel T, Massart S. Managing the deluge of newly discovered plant viruses and viroids: an optimized scientific and regulatory framework for their characterization and risk analysis. Front Microbiol 2023; 14:1181562. [PMID: 37323908 PMCID: PMC10265641 DOI: 10.3389/fmicb.2023.1181562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
The advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels. Even though the proposed approach was widely used, a revision of these guidelines was prepared to consider virus discovery and characterization trends and integrate novel approaches and tools recently published or under development. This updated framework is more adapted to the current rate of virus discovery and provides an improved prioritization for filling knowledge and data gaps. It consists of four distinct steps adapted to include a multi-stakeholder feedback loop. Key improvements include better prioritization and organization of the various steps, earlier data sharing among researchers and involved stakeholders, public database screening, and exploitation of genomic information to predict biological properties.
Collapse
Affiliation(s)
| | - Maryam Khalili
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
- EGFV, Univ. Bordeaux, INRAE, ISVV, Villenave d’Ornon, France
| | | | - Mark Paul S. Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- College of Agriculture and Agri-Industries, Caraga State University, Butuan, Philippines
| | - Johan Rollin
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- DNAVision (Belgium), Charleroi, Belgium
| | - Ferran Salavert
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Coline Temple
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Miguel A. Aranda
- Department of Stress Biology and Plant Pathology, Center for Edaphology and Applied Biology of Segura, Spanish National Research Council (CSIC), Murcia, Spain
| | - Neil Boonham
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marleen Botermans
- Netherlands Institute for Vectors, Invasive Plants and Plant Health (NIVIP), Wageningen, Netherlands
| | | | - Adrian Fox
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
- Fera Science Ltd, York Biotech Campus, York, United Kingdom
| | | | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
| | | | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ilhem Selmi
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Rachid Tahzima
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Plant Sciences Unit, Institute for Agricultural, Fisheries and Food Research (ILVO), Merelbeke, Belgium
| | - Charlotte Trontin
- European and Mediterranean Plant Protection Organization, Paris, France
| | - Thierry Wetzel
- DLR Rheinpfalz, Institute of Plant Protection, Neustadt an der Weinstrasse, Germany
| | - Sebastien Massart
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Bioversity International, Montpellier, France
| |
Collapse
|
13
|
Zhao J, Sun X, Dai H, Zhang X, Zhang D, Zhu X. Changes in Gene Expression of Whiteflies, Bemisia tabaci MED Feeding on Tomato Plants Infected by One of the Criniviruses, Tomato Chlorosis Virus through Transcriptome Analysis. Int J Genomics 2023; 2023:3807812. [PMID: 37261104 PMCID: PMC10228217 DOI: 10.1155/2023/3807812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 05/01/2023] [Indexed: 06/02/2023] Open
Abstract
Tomato chlorosis virus (ToCV), transmitted by the whitefly, Bemisia tabaci (Gennadius; Hemiptera: Aleyrodidae) has been continuously emerging on tomato plants and causing a significant economic loss throughout China. In the current study, RNA-Seq analysis was used to explore the gene expression profiles of B. tabaci Mediterranean (MED) that fed on both ToCV-infected and -uninfected tomato plants for 6, 12, 24, and 48 hours, respectively. The results revealed that dynamic changes occurred in the gene expressions of whiteflies at different time intervals after they acquired the virus. A total of 1709, 461, 4548, and 1748 differentially expressed genes (DEGs) were identified after a 6, 12, 24, and 48 hours feeding interval for the viral acquisition, respectively. The least number of expressed genes appeared in whiteflies with the 12 hours feeding treatment, and the largest numbers of those found in those with 24 hours feeding treatment. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that B. tabaci MED responded to ToCV acquisition through altering its nerve system development, fertility, detoxification, glucose metabolism, and immune function before it lost its ability to transmit the virus. The number of DEGs, degree of differential gene expressions, expression level of the same gene, involved biological processes, and metabolic functions in whiteflies post the 12 hours feeding, and viral acquisition were different from those from other three feeding treatments, which could be a significant finding suggesting an effective control of B. tabaci MED should be done less than 12 hours after whiteflies started feeding on ToCV-infected tomatoes. Our results further provided a clarified understanding in how B. tabaci was protected from viral acquisitions through comparison of the differential profile of gene expressions in whiteflies feeding on plants that were infected by semipersistent viruses.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biology and Molecular Biology of University in Shandong, College of Seed and Facility Agricultural Engineering, Weifang University, Weifang 261061, China
| | - Xiaoan Sun
- Facility Horticulture of University in Shandong, College of Agriculture, Weifang University of Science & Technology, Shouguang 262700, China
| | - Huijie Dai
- Facility Horticulture of University in Shandong, College of Agriculture, Weifang University of Science & Technology, Shouguang 262700, China
| | - Xianping Zhang
- Shandong Provincial key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Dezhen Zhang
- Facility Horticulture of University in Shandong, College of Agriculture, Weifang University of Science & Technology, Shouguang 262700, China
| | - Xiaoping Zhu
- Shandong Provincial key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
14
|
Shang K, Xiao L, Zhang X, Zang L, Zhao D, Wang C, Wang X, Zhou T, Zhu C, Zhu X. Tomato chlorosis virus p22 interacts with NbBAG5 to inhibit autophagy and regulate virus infection. MOLECULAR PLANT PATHOLOGY 2023; 24:425-435. [PMID: 36828802 PMCID: PMC10098061 DOI: 10.1111/mpp.13311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 05/03/2023]
Abstract
Tomato chlorosis virus (ToCV) is a member of the genus Crinivirus in the family Closteroviridae. It has a wide host range and wide distribution, causing serious harm to the vegetable industry. The autophagy pathway plays an important role in plant resistance to virus infection. Viruses and plant hosts coevolve in defence and antidefence processes around autophagy. In this study, the interaction between ToCV p22 and Nicotiana benthamiana B-cell lymphoma2-associated athanogenes5 Nicotiana benthamiana (NbBAG5) was examined. Through overexpression and down-regulation of NbBAG5, results showed that NbBAG5 could negatively regulate ToCV infection. NbBAG5 was found to be localized in mitochondria and can change the original localization of ToCV p22, which is colocalized in mitochondria. NbBAG5 inhibited the expression of mitophagy-related genes and the number of autophagosomes, thereby regulating viral infection by affecting mitophagy. In summary, this study demonstrated that ToCV p22 affects autophagy by interacting with NbBAG5, established the association between viral infection, BAG proteins family, and the autophagy pathway, and explained the molecular mechanism by which ToCV p22 interacts with NbBAG5 to inhibit autophagy to regulate viral infection.
Collapse
Affiliation(s)
- Kaijie Shang
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
- State Key Laboratory of Crop BiologyCollege of Life Sciences, Shandong Agricultural UniversityTaiʼanChina
| | - Li Xiao
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| | - Xianping Zhang
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| | - Lianyi Zang
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| | - Dan Zhao
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| | - Chenchen Wang
- State Key Laboratory of Crop BiologyCollege of Life Sciences, Shandong Agricultural UniversityTaiʼanChina
| | - Xipan Wang
- State Key Laboratory of Crop BiologyCollege of Life Sciences, Shandong Agricultural UniversityTaiʼanChina
| | - Tao Zhou
- State Key Laboratory for Agro‐Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Changxiang Zhu
- State Key Laboratory of Crop BiologyCollege of Life Sciences, Shandong Agricultural UniversityTaiʼanChina
| | - Xiaoping Zhu
- College of Plant ProtectionShandong Agricultural UniversityTaiʼanChina
| |
Collapse
|
15
|
Sun X, Zang L, Liu X, Jiang S, Zhang X, Zhao D, Shang K, Zhou T, Zhu C, Zhu X. Interactions of Tomato Chlorosis Virus p27 Protein with Tomato Catalase Are Involved in Viral Infection. Viruses 2023; 15:v15040990. [PMID: 37112970 PMCID: PMC10145342 DOI: 10.3390/v15040990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Tomato chlorosis virus (ToCV) severely threatens tomato production worldwide. P27 is known to be involved in virion assembly, but its other roles in ToCV infection are unclear. In this study, we found that removal of p27 reduced systemic infection, while ectopic expression of p27 promoted systemic infection of potato virus X in Nicotiana benthamiana. We determined that Solanum lycopersicum catalases (SlCAT) can interact with p27 in vitro and in vivo and that amino acids 73 to 77 of the N-terminus of SlCAT represent the critical region for their interaction. p27 is distributed in the cytoplasm and nucleus, and its coexpression with SlCAT1 or SlCAT2 changes its distribution in the nucleus. Furthermore, we found that silencing of SlCAT1 and SlCAT2 can promote ToCV infection. In conclusion, p27 can promote viral infection by binding directly to inhibit anti-ToCV processes mediated by SlCAT1 or SlCAT2.
Collapse
Affiliation(s)
- Xiaohui Sun
- Shandong Province Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Plant Protection, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Taian 271018, China
| | - Lianyi Zang
- College of Plant Protection, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Taian 271018, China
| | - Xiaoying Liu
- College of Plant Protection, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Taian 271018, China
| | - Shanshan Jiang
- Shandong Province Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianping Zhang
- College of Plant Protection, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Taian 271018, China
| | - Dan Zhao
- College of Plant Protection, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Taian 271018, China
| | - Kaijie Shang
- College of Plant Protection, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Taian 271018, China
| | - Tao Zhou
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xiaoping Zhu
- Shandong Province Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
16
|
Xu H, Zhang Z, Zhang Z, Peng J, Gao Y, Li K, Chen J, Du J, Yan S, Zhang D, Zhou X, Shi X, Liu Y. Effects of insulin-like peptide 7 in Bemisia tabaci MED on tomato chlorosis virus transmission. PEST MANAGEMENT SCIENCE 2023; 79:1508-1517. [PMID: 36533303 DOI: 10.1002/ps.7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is a semi-persistent plant virus that is primarily transmitted by the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). It causes a serious disease that lowers tomato yield. Insulin-like peptide (ILP), an insulin homolog, regulates trehalose metabolism in a variety of insects. In a previous study, we discovered that trehalose metabolism is required for whiteflies to transmit ToCV effectively. Furthermore, transcriptome sequencing revealed that the BtILP7 gene was highly expressed in B. tabaci infected with ToCV. Therefore, the whitefly ILP7 gene may facilitate the transmission of ToCV and be an attractive target for the control of whiteflies and subsequently ToCV. RESULTS The ToCV content in B. tabaci MED was found to be correlated with BtILP7 gene expression. Subsequent RNA interference (RNAi) of the BtILP7 gene had a significant impact on B. tabaci MED's trehalose metabolism and reproductive capacity, as well as ability to transmit ToCV. CONCLUSIONS These results indicate that the BtILP7 gene was closely related to ToCV transmission by regulating trehalose metabolism and reproduction behavior, thus providing a secure and environmentally friendly management strategy for the control of whiteflies and ToCV-caused disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- HuiNan Xu
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhanHong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jing Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - KaiLong Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jianbin Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiao Du
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Shuo Yan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - DeYong Zhang
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - XuGuo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - XiaoBin Shi
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
17
|
Yang X, Luo X, Zhang Y, Zhang Z, OuYang X, Shi X, Lv X, Li F, Zhang S, Liu Y, Zhang D. Tomato chlorosis virus CPm protein is a pathogenicity determinant and suppresses host local RNA silencing induced by single-stranded RNA. Front Microbiol 2023; 14:1151747. [PMID: 37056753 PMCID: PMC10086252 DOI: 10.3389/fmicb.2023.1151747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionTomato chlorosis virus (ToCV) is a typical member of the genus Crinivirus, which severely threatens Solanaceae crops worldwide. The CPm protein encoded by ToCV has been reported to be associated with virus transmission by vectors and is involved in RNA silencing suppression, while the mechanisms remain ambiguous.MethodsHere, ToCV CPm was ectopically expressed by a Potato virus X (PVX) vector and infiltrated into Nicotiana benthamiana wild-type and GFP-transgenic16c plants.ResultsThe phylogenetic analysis showed that the CPm proteins encoded by criniviruses were distinctly divergent in amino acid sequences and predicted conserved domains, and the ToCV CPm protein possesses a conserved domain homologous to the TIGR02569 family protein, which does not occur in other criniviruses. Ectopic expression of ToCV CPm using a PVX vector resulted in severe mosaic symptoms followed by a hypersensitive-like response in N. benthamiana. Furthermore, agroinfiltration assays in N. benthamiana wilt type or GFP-transgenic 16c indicated that ToCV CPm protein effectively suppressed local RNA silencing induced by single-stranded but not double-stranded RNA, which probably resulted from the activity of binding double-stranded but not single-stranded RNA by ToCV CPm protein.ConclusionTaken together, the results of this study suggest that the ToCV CPm protein possesses the dual activities of pathogenicity and RNA silencing, which might inhibit host post-transcriptional gene silencing (PTGS)-mediated resistance and is pivotal in the primary process of ToCV infecting hosts.
Collapse
Affiliation(s)
- Xiao Yang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xiangwen Luo
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Zhanhong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Xiaobin Shi
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Xiaoyuan Lv
- Technical Center of Changsha Customs, Changsha, Hunan, China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Songbai Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
- *Correspondence: Songbai Zhang,
| | - Yong Liu
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
- Yong Liu,
| | - Deyong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
- Deyong Zhang,
| |
Collapse
|
18
|
Lu DYH, Liao JY, Fajar A, Chen JB, Wei Y, Zhang ZH, Zhang Z, Zheng LM, Tan XQ, Zhou XG, Shi XB, Liu Y, Zhang DY. Co-infection of TYLCV and ToCV increases cathepsin B and promotes ToCV transmission by Bemisia tabaci MED. Front Microbiol 2023; 14:1107038. [PMID: 37007483 PMCID: PMC10061087 DOI: 10.3389/fmicb.2023.1107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Tomato disease is an important disease affecting agricultural production, and the combined infection of tomato chlorosis virus (ToCV) and tomato yellow leaf curl virus (TYLCV) has gradually expanded in recent years, but no effective control method has been developed to date. Both viruses are transmitted by Bemisia tabaci Mediteranean (MED). Previously, we found that after B. tabaci MED was fed on ToCV-and TYLCV-infected plants, the transmission efficiency of ToCV was significantly higher than that on plants infected only with ToCV. Therefore, we hypothesize that co-infection could enhance the transmission rates of the virus. In this study, transcriptome sequencing was performed to compare the changes of related transcription factors in B. tabaci MED co-infected with ToCV and TYLCV and infected only with ToCV. Hence, transmission experiments were carried out using B. tabaci MED to clarify the role of cathepsin in virus transmission. The gene expression level and enzyme activity of cathepsin B (Cath B) in B. tabaci MED co-infected with ToCV and TYLCV increased compared with those under ToCV infection alone. After the decrease in cathepsin activity in B. tabaci MED or cathepsin B was silenced, its ability to acquire and transmit ToCV was significantly reduced. We verified the hypothesis that the relative expression of cathepsin B was reduced, which helped reduce ToCV transmission by B. tabaci MED. Therefore, it was speculated that cathepsin has profound research significance in the control of B. tabaci MED and the spread of viral diseases.
Collapse
Affiliation(s)
- Ding-Yi-Hui Lu
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Jin-Yu Liao
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Anugerah Fajar
- Department of Entomology, University of Kentucky, Lexington, KY, United States
- Research Center for Biomaterials, Indonesia Institute of Sciences, Cibinong, Indonesia
| | - Jian-Bin Chen
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yan Wei
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Zhan-Hong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Min Zheng
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xin-Qiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiao-Bin Shi
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
- *Correspondence: Xiao-Bin Shi, ; Yong Liu, ; De-Yong Zhang,
| | - Yong Liu
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
- *Correspondence: Xiao-Bin Shi, ; Yong Liu, ; De-Yong Zhang,
| | - De-Yong Zhang
- Subcollege of Longping, College of Biology, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
- *Correspondence: Xiao-Bin Shi, ; Yong Liu, ; De-Yong Zhang,
| |
Collapse
|
19
|
Chaudhary P, Kaur A, Singh B, Kumar S, Hallan V, Nagpal AK. First report of tomato chlorosis virus (ToCV) and detection of other viruses in field-grown tomatoes in North-Western region of India. Virusdisease 2023; 34:56-75. [PMID: 37009255 PMCID: PMC10050630 DOI: 10.1007/s13337-022-00801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
Tomato crop is known to be infected by large number of viruses across the globe causing severe losses in its yield. Accurate information on the distribution and incidence of different viruses is essential to implement virus control strategies. This study provides information on prevalence and distribution of different viruses infecting tomato crop in North-western region of India. Leaf samples of 76 symptomatic tomato and 30 symptomatic and asymptomatic plants of Chenopodium sp. (weed) were collected from eight villages. DAS-ELISA and/or RT-PCR/PCR were used to detect occurrence of nineteen viruses and one viroid in tomatoes. Nine viruses viz. cucumber mosaic virus, groundnut bud necrosis virus, potato virus M, potato virus S, potato virus X, potato virus Y, tomato chlorosis virus, tomato leaf curl New Delhi virus and tomato mosaic virus were detected in 58 of 76 tomato samples. Detection of viruses was confirmed by cloning of specific amplicons followed by sequencing and submission of sequences to the GenBank database. None of the targeted pathogens were found in collected weed samples. Tomato leaf curl New Delhi virus (ToLCNDV) was the most prevalent virus (64.47%) followed by potato virus Y (PVY) (23.68%). Double, triple, quadruple and quintuple infections were also noticed. Phylogenetic analysis of nucleotide sequences was also carried out. Nine viruses infecting tomato crop from North-western region of India were detected. ToLCNDV was most prevalent with highest incidence. To the best of our knowledge, this is the first report of ToCV on tomato from India. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-022-00801-y.
Collapse
Affiliation(s)
- Poonam Chaudhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amritpreet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Balwinder Singh
- Post Graduate Department of Botany, Khalsa College, Amritsar, India
| | - Surender Kumar
- Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vipin Hallan
- Institute of Himalayan Bioresource Technology, Palampur, India
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
20
|
Pascual S, Rodríguez-Álvarez CI, Kaloshian I, Nombela G. Hsp90 Gene Is Required for Mi-1-Mediated Resistance of Tomato to the Whitefly Bemisia tabaci. PLANTS (BASEL, SWITZERLAND) 2023; 12:641. [PMID: 36771723 PMCID: PMC9919380 DOI: 10.3390/plants12030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nematodes and insects, but the resistance mechanisms differ depending on the harmful organism, as a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required for Mi-1-mediated resistance to nematodes, aphids, and whiteflies, and several additional proteins also play a role in this resistance. Among them, the involvement of the chaperone HSP90 has been demonstrated in Mi-1-mediated resistance for aphids and nematodes, but not for whiteflies. In this work, we studied the implication of the Hsp90 gene in the Mi-1 resistance against the whitefly Bemisia tabaci by means of Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS). The silencing of the Hsp90 gene in tomato Motelle plants carrying the Mi-1 gene resulted in a decrease in resistance to whiteflies, as oviposition values were significantly higher than those on non-silenced plants. This decrease in resistance was equivalent to that caused by the silencing of the Mi-1 gene itself. Infiltration with the control TRV vector did not alter Mi-1 mediated resistance to B. tabaci. Similar to the Mi-1 gene, silencing of Hsp90-1 occurs partially, as silenced plants showed a significant but not complete suppression of gene expression. Thus, our results demonstrate the requirement of Hsp90 in the Mi-1-mediated resistance to B. tabaci and reinforce the hypothesis of a common model for this resistance to nematodes and insects.
Collapse
Affiliation(s)
- Susana Pascual
- Entomology Group, Plant Protection Department, National Institute of Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Ctra. Coruña km 7, 28040 Madrid, Spain
| | - Clara I. Rodríguez-Álvarez
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | - Gloria Nombela
- Department of Plant Protection, Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., 28006 Madrid, Spain
| |
Collapse
|
21
|
Development of a RT-LAMP assay for real-time detection of criniviruses infecting tomato. J Virol Methods 2023; 312:114662. [PMID: 36455691 DOI: 10.1016/j.jviromet.2022.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Yellowing symptoms caused by tomato chlorosis virus (ToCV) and tomato infectious chlorosis virus (TICV), both assigned to the genus Crinivirus, resemble nutrient deficiencies. Therefore, early diagnosis of infections will prevent crop damage and the spread of the viruses. In this study, we established a rapid detection method for ToCV and TICV by reverse transcription-loop-mediated isothermal amplification (RT-LAMP). We first designed primer sets for RT-LAMP specific for ToCV and TICV. Next, by selecting the optimum primer set and determining the optimum conditions for the RT-LAMP reaction, each virus was detected within 50 min by piercing the diseased area of a tomato leaf with a toothpick, immersing the toothpick in the reaction solution, and conducting the RT-LAMP reaction. To verify the accuracy of the procedure, 61 tomato leaf samples showing disease symptoms were collected from five regions of Indonesia, and the RT-LAMP results for the samples were identical to those obtained with the commonly used reverse transcription-polymerase chain reaction.
Collapse
|
22
|
Lombardi EM, Peters J, Jacob L, Power AG. Wild and weedy Hesperis matronalis hosts turnip mosaic virus across heterogeneous landscapes in upstate New York. Virus Res 2023; 323:199011. [PMID: 36511291 DOI: 10.1016/j.virusres.2022.199011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
Abstract
Turnip mosaic virus (TuMV) is a widespread and economically important pathogen in agricultural crops and has the widest known host range in the virus family Potyviridae. While management of the virus and its aphid vectors in agricultural fields decreases virus incidence, many alternative wild hosts for TuMV may serve as source populations for crop infection through spillover. Over thirty years ago, research demonstrated that the introduced brassica, Dame's Rocket (Hesperis matronalis) hosts several viruses, including TuMV. Here, we use both enzyme-linked immunosorbent assays (ELISA) and next generation sequencing to document the frequent infection by TuMV of Dame's Rocket, which is common and widespread in disturbed areas around crop fields in upstate New York. Deep sequencing of multiple tissue types of symptomatic hosts indicate that the infection is systemic and causes diagnostic, visible symptoms. In a common garden experiment using host populations from across upstate New York, we found evidence for genetic tolerance to TuMV infection in H. matronalis. Field surveys show that TuMV prevalence varies across populations, but is generally higher in agricultural areas. Examining disease dynamics in this and other common alternative hosts will enhance our understanding of TuMV epidemiology and, more broadly, virus distribution in wild plants.
Collapse
Affiliation(s)
- Elizabeth M Lombardi
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA.
| | - Jasmine Peters
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA
| | - Lukin Jacob
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA
| | - Alison G Power
- Cornell University, Department of Ecology and Evolutionary Biology, E145 Corson Hall, Ithaca, New York 14853, USA
| |
Collapse
|
23
|
Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses 2022; 14:v14112481. [PMID: 36366579 PMCID: PMC9693158 DOI: 10.3390/v14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Southern tomato amalgavirus (STV) is a cryptic pathogen that is abundant in tomato production fields and intensifies the resurgence of tomato yellow stunt disease (ToYSD), together with other phytoviruses. Here, we mapped the geographical and genomic diversity, phylogenetics, and evolutionary dynamics of STV. We found that STV prevailed across China and Pakistan, with a maximum average rate of infection of 43.19% in Beijing, China, and 40.08% in Punjab, Pakistan. Subsequently, we amplified, cloned, and annotated the complete genome sequences of STV isolates from Solanum lycopersicum L. in China (OP548653 and OP548652) and Pakistan (MT066231) using Sanger and next-generation sequencing (NGS). These STV isolates displayed close evolutionary relationships with others from Asia, America, and Europe. Whole-genome-based molecular diversity analysis showed that STV populations had 33 haplotypes with a gene diversity (Hd) of 0.977 and a nucleotide diversity (π) of 0.00404. The genetic variability of RNA-dependent RNA-polymerase (RdRp) was higher than that of the putative coat protein (CP) p42. Further analysis revealed that STV isolates were likely to be recombinant but with a lower-to-moderate level of confidence. With a variable distribution pattern of positively and negatively selected sites, negative selection pressure predominantly acted on p42 and RdRp. These findings elaborated on the molecular variability and evolutionary trends among STV populations across major tomato-producing regions of the world.
Collapse
|
24
|
Silencing of the Prophenoloxidase Gene BtPPO1 Increased the Ability of Acquisition and Retention of Tomato chlorosis virus by Bemisia tabaci. Int J Mol Sci 2022; 23:ijms23126541. [PMID: 35742985 PMCID: PMC9223377 DOI: 10.3390/ijms23126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tomato chlorosis virus (ToCV) has seriously impacted tomato production around the world. ToCV is semi-persistently transmitted by the whitefly, Bemisia tabaci, which is a serious agricultural pest in the world. However, the interaction mechanism between ToCV and its whitefly vector is still poorly understood. Our previous transcriptome analysis demonstrated that the expression level of an immune-related gene, prophenoloxidase (PPO), in B. tabaci increased after ToCV acquisition, which indicates that the PPO may be involved in the interaction mechanism between the ToCV and its vector. To determine the role of the PPO in the acquisition and retention of ToCV by B. tabaci, we cloned the complete Open Reading Frames (ORF) of the BtPPOs (BtPPO1 and BtPPO2), and then structure and phylogenetic analyses were performed. BtPPOs were closely related to the PPO genes of Hemiptera insects. Spatial-temporal expression detection was qualified by using reverse transcription quantitative PCR (RT-qPCR), and this revealed that BtPPOs were expressed in all tissues and developmental stages. We found that only BtPPO1 was significantly upregulated after B. tabaci acquired ToCV for 12 and 24 h. According to the paraffin-fluorescence probe-fluorescence in situ hybridization (FISH) experiment, we verified that ToCV and BtPPO1 were co-located in the thorax of B. tabaci, which further revealed the location of their interaction. Finally, the effects of the BtPPOs on ToCV acquisition and retention by B. tabaci were determined using RNA interference (RNAi). The results showed that the RNAi of the responsive gene (BtPPO1) significantly increased the titer of ToCV in B. tabaci. These results demonstrate that BtPPO1 participates in ToCV acquisition and retention by B. tabaci.
Collapse
|
25
|
Survey of Viruses Infecting Tomato, Cucumber and Mung Bean in Tajikistan. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viral diseases are major constraints to tomato, cucumber and mung bean production in most areas where these crops are grown. To identify the viruses on the crops in Tajikistan, a field survey was conducted in 2019. Samples of cucumber, mung bean and tomato with virus-like symptoms were collected and the viruses present were diagnosed by RT-PCR and PCR. Across all the samples, a very high proportion of the samples were infected with viruses from the genera Cucumovirus and Potyvirus. Cucumber mosaic virus (CMV; Cucumovirus) was very common in the collected samples of the three crops. As for Potyvirus, Potato virus Y (PVY) was detected in the collected tomato samples, Zucchini yellow mosaic virus (ZYMV) was identified in the collected cucumber samples, and Bean common mosaic virus (BCMV) was detected in 53% of the mung bean samples. Over 68% of the collected samples were infected with two or more viruses, suggesting that mixed infections are common for the three crops. Due to the results that the most identified viruses for the three crops are transmitted by aphids, the management of aphids is extremely important for the production of tomato, cucumber and mung bean in Tajikistan.
Collapse
|
26
|
Ma Y, Che H, Gao S, Lin Y, Li S. Diverse Novel Viruses Coinfecting the Tropical Ornamental Plant Polyscias balfouriana in China. Viruses 2022; 14:v14061120. [PMID: 35746592 PMCID: PMC9228080 DOI: 10.3390/v14061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
The viromic profile of Polyscias balfouriana cv. Marginata, a perennial woody and ornamental plant, was determined using ribosomal RNA-depleted total RNA (rRNA-depleted totRNA) sequencing. Five viruses (i.e., polyscias mosaic virus, PoMV; one potential novel rhabdovirus; and three novel viruses of Betaflexiviridae and Closteroviridae) were detected and prevalence-surveyed in Hainan province, China. The genomes of polyscias capillovirus 1 (PCaV-1) and polyscias citrivirus 1 (PCiV-1) of family Betaflexiviridae were completed, and the genomes of polyscias crinivirus 1 (PCrV-1) of Closteroviridae were nearly completed lacking the 5′ and 3′ termini. PCaV-1 shares 68% genome nucleotide (nt) identity and 66% replicase (Rep) amino acid (aa) identity with homologues in apple stem grooving virus (ASGV). PCiV-1 shares 65% genome nt identity and 64% Rep aa identity with homologs in citrus leaf blotch virus (CLBV). Meeting the species demarcation criteria, PCaV-1 and PCiV-1 were considered to be new species in genera Capillovirus and Citrivirus, respectively. PCrV-1 shares high genome nt identity (62%), heat shock protein 70-like protein (HSP70h) and RNA-dependent RNA polymerase (RdRp) aa identity (78−80%) with homologues in tomato chlorosis virus (ToCV). We tentatively consider PCrV-1 to be an unclassified member of the Crinivirus genus. PoMV, PCaV-1, PCiV-1, and PCrV-1 are the prevalent viruses with >73% occurrence in the Xinglong Tropical Botanical Garden, Hainan, China.
Collapse
Affiliation(s)
- Yuxin Ma
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.M.); (H.C.); (Y.L.)
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Haiyan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.M.); (H.C.); (Y.L.)
| | - Shengfeng Gao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China;
| | - Yating Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.M.); (H.C.); (Y.L.)
| | - Shifang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.M.); (H.C.); (Y.L.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
27
|
Ontiveros I, López-Moya JJ, Díaz-Pendón JA. Coinfection of Tomato Plants with Tomato yellow leaf curl virus and Tomato chlorosis virus Affects the Interaction with Host and Whiteflies. PHYTOPATHOLOGY 2022; 112:944-952. [PMID: 34698541 DOI: 10.1094/phyto-08-21-0341-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Susceptible plants infected by single or multiple viruses can differ in symptoms and other alterations influencing virus dissemination. Furthermore, behavior of viruliferous vectors may be altered in certain cases to favor acquisition and inoculation processes conductive to virus transmission. We explored single and mixed infections frequently occurring in tomato crops, caused by two viruses transmitted by the whitefly Bemisia tabaci: Tomato yellow leaf curl virus (TYLCV, Begomovirus, Geminiviridae) and Tomato chlorosis virus (ToCV, Crinivirus, Closteroviridae). Coinfection of both viruses in tomato plants showed more severe symptoms at late stages compared with single infections, although at earlier stages the interaction began with attenuation. This asymmetric synergism correlated with the dynamics of ToCV accumulation and expression of the salicylic acid responsive gene PR-P6. Visual and olfactory cues in whitefly preference were evaluated under controlled conditions in choice assays, testing viruliferous and nonviruliferous adult whiteflies. In experiments allowing both visual and olfactory cues, whiteflies preferred symptomatic leaflets from plants infected either with TYLCV alone or with TYLCV and ToCV, over those infected with ToCV alone or noninfected leaflets, suggesting that TYLCV drove host selection. Odor cues tested in Y-tube olfactometer assays showed neutral effects on whiteflies' preference, and bioassays comparing the attractiveness of colored sticky cards confirmed preference for sectors colored to mimic TYLCV symptomatic leaves compared with asymptomatic leaves. Our results show that the presence of coinfecting viruses affect the host and could alter the behavior of insect vectors.
Collapse
Affiliation(s)
- Irene Ontiveros
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora," E-29750 Algarrobo-Costa, Málaga, Spain
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Juan Antonio Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora," E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
28
|
Rai A, Sivalingam PN, Senthil-Kumar M. A spotlight on non-host resistance to plant viruses. PeerJ 2022; 10:e12996. [PMID: 35382007 PMCID: PMC8977066 DOI: 10.7717/peerj.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
Plant viruses encounter a range of host defenses including non-host resistance (NHR), leading to the arrest of virus replication and movement in plants. Viruses have limited host ranges, and adaptation to a new host is an atypical phenomenon. The entire genotypes of plant species which are imperceptive to every single isolate of a genetically variable virus species are described as non-hosts. NHR is the non-specific resistance manifested by an innately immune non-host due to pre-existing and inducible defense responses, which cannot be evaded by yet-to-be adapted plant viruses. NHR-to-plant viruses are widespread, but the phenotypic variation is often not detectable within plant species. Therefore, molecular and genetic mechanisms of NHR need to be systematically studied to enable exploitation in crop protection. This article comprehensively describes the possible mechanisms of NHR against plant viruses. Also, the previous definition of NHR to plant viruses is insufficient, and the main aim of this article is to sensitize plant pathologists to the existence of NHR to plant viruses and to highlight the need for immediate and elaborate research in this area.
Collapse
Affiliation(s)
- Avanish Rai
- National Institute of Plant Genome Research, New Delhi, India
| | | | | |
Collapse
|
29
|
Lu D, Yue H, Huang L, Zhang D, Zhang Z, Zhang Z, Zhang Y, Li F, Yan F, Zhou X, Shi X, Liu Y. Suppression of Bta11975, an α-glucosidase, by RNA interference reduces transmission of tomato chlorosis virus by Bemisia tabaci. PEST MANAGEMENT SCIENCE 2021; 77:5294-5303. [PMID: 34310017 DOI: 10.1002/ps.6572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is mainly vectored by Bemisia tabaci in China, which has a worldwide distribution, and greatly reduces the yields of tomato and other vegetables. At present, control of ToCV has been focused mainly by the use of insecticides to control whitefly populations. Transcriptome sequencing showed high expression of the B. tabaci Bta11975 gene, an α-glucosidase (AGLU) during ToCV acquisition by whitefly Mediterranean (MED) species. To investigate the role of Bta11975 gene in ToCV acquisition and transmission by B. tabaci MED, we used RNA interference (RNAi) to reduce the expression of the Bta11975 gene. RESULTS The relative expression of the Bta11975 gene was correlated with the ToCV content in B. tabaci. The AGLU is highly expressed in primary salivary gland and gut. After the Bta11975 gene was silenced, the gene expression of B. tabaci was reduced and B. tabaci mortality was increased. Besides, ToCV acquisition by B. tabaci at 48 and 72 h AAP was reduced, and ToCV transmission was significantly reduced by 25 or 50 of B. tabaci. CONCLUSIONS These results indicate that suppression of expression of the Bta11975 gene in B. tabaci MED by RNAi can reduce acquisition and transmission of ToCV by B. tabaci MED.
Collapse
Affiliation(s)
- DingYiHui Lu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hao Yue
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - LiPing Huang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - DeYong Zhang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhanHong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | - XuGuo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - XiaoBin Shi
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
30
|
Jiang D, Chen J, Zan N, Li C, Hu D, Song B. Discovery of Novel Chromone Derivatives Containing a Sulfonamide Moiety as Anti-ToCV Agents through the Tomato Chlorosis Virus Coat Protein-Oriented Screening Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12126-12134. [PMID: 34633811 DOI: 10.1021/acs.jafc.1c02467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A number of novel chromone derivatives containing sulfonamide moieties were designed and synthesized, and the activity of compounds against tomato chlorosis virus (ToCV) was assessed using the ToCVCP-oriented screening method. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models were established based on the dissociation constant (Kd) values of the target compounds, and compound 35 was designed and synthesized with the aid of CoMFA and CoMSIA models. The study of affinity interaction indicated that compound 35 exhibited excellent affinity with ToCVCP with a Kd value of 0.11 μM, which was better than that of the positive control agents xiangcaoliusuobingmi (0.44 μM) and ningnanmycin (0.79 μM). In addition, the in vivo inhibitory effect of compound 35 on the ToCVCP gene was evaluated by the quantitative real-time polymerase chain reaction. ToCVCP gene expression levels of the compound 35 treatment group were reduced by 67.2%, which was better than that of the positive control agent ningnanmycin (59.5%). Therefore, compound 35 can be used as a potential anti-ToCV drug in the future.
Collapse
Affiliation(s)
- Donghao Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ningning Zan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunyi Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
31
|
Tu L, Wu S, Gan S, Zhao W, Li S, Cheng Z, Zhou Y, Zhu Y, Ji Y. A simplified RT-PCR assay for the simultaneous detection of tomato chlorosis virus and tomato yellow leaf curl virus in tomato. J Virol Methods 2021; 299:114282. [PMID: 34648823 DOI: 10.1016/j.jviromet.2021.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/10/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022]
Abstract
Tomato chlorosis virus (ToCV), a species of single-stranded RNA virus belonging to the Crinivirus genus, and Tomato yellow leaf curl virus (TYLCV), a species of single-stranded circular DNA virus belonging to the Begomovirus genus, are two major emerging viruses transmitted by whiteflies and are causing huge losses to tomato production worldwide. To facilitate the simultaneous detection of both viruses in co-infected plants for disease control, a duplex reverse-transcription PCR assay was developed. The assay used three primers, a degenerate reverse primer targeting a conserved region of TYLCV and the RNA2 of ToCV, and two virus-specific forward primers targeting the minor coat protein gene of ToCV and the C3 gene of TYLCV, respectively, to amplify a 762-bp and a 338-bp fragment from ToCV and TYLCV, respectively, in a single reaction. The concentration of the primers, annealing temperature and amplification cycles used in the assay were optimized, and the sensitivity of the assay was assessed. Using this assay, 150 tomato leaf samples collected from the field during 2018 were tested. The results showed that both viruses could be detected simultaneously in co-infected field samples. The assay should benefit the rapid detection of these two viruses in tomato crops and would facilitate early warning of infections for the control of the two virus diseases.
Collapse
Affiliation(s)
- Liqin Tu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province- State Key Laboratory Breeding Base, Nanjing, 210014, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuhua Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province- State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Shexiang Gan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province- State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Wenhao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province- State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province- State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Zhaobang Cheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province- State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province- State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Yuelin Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province- State Key Laboratory Breeding Base, Nanjing, 210014, China.
| |
Collapse
|
32
|
Liu S, Wang C, Liu X, Navas-Castillo J, Zang L, Fan Z, Zhu X, Zhou T. Tomato chlorosis virus-encoded p22 suppresses auxin signalling to promote infection via interference with SKP1-Cullin-F-box TIR1 complex assembly. PLANT, CELL & ENVIRONMENT 2021; 44:3155-3172. [PMID: 34105183 DOI: 10.1111/pce.14125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Phytohormone auxin plays a fundamental role in plant growth and defense against pathogens. However, how auxin signalling is regulated during virus infection in plants remains largely unknown. Auxin/indole-3-acetic acid (Aux/IAA) is the repressor of auxin signalling and can be recognized by an F-box protein transport inhibitor response 1 (TIR1). Ubiquitination and degradation of Aux/IAA by SKP1-Cullin-F-boxTIR1 (SCFTIR1 ) complex can trigger auxin signalling. Here, with an emerging important plant virus worldwide, we showed that tomato chlorosis virus (ToCV) infection or stable transgenic overexpression of its p22 protein does not alter auxin accumulation level but significantly decreases the expression of auxin signalling-responsive genes, suggesting that p22 can attenuate host auxin signalling. Further, p22 could bind the C-terminal of SKP1.1 and compete with TIR1 to interfere with the SCFTIR1 complex assembly, leading to a suppression of Aux/IAA degradation. Silencing and over-expression assays suggested that both NbSKP1.1 and NbTIR1 suppress ToCV accumulation and disease symptoms. Altogether, ToCV p22 disrupts the auxin signalling through destabilizing SCFTIR1 by interacting with the C-terminal of NbSKP1.1 to promote ToCV infection. Our findings uncovered a previously unknown molecular mechanism employed by a plant virus to manipulate SCF complex-mediated ubiquitin pathway and to reprogram auxin signalling for efficient infection.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Cuilin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xuedong Liu
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas - Universidad de Málaga (IHSM-CSIC-UMA), Málaga, Spain
| | - Lianyi Zang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xiaoping Zhu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology, and Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Navas-Hermosilla E, Fiallo-Olivé E, Navas-Castillo J. Infectious Clones of Tomato Chlorosis Virus: Toward Increasing Efficiency by Introducing the Hepatitis Delta Virus Ribozyme. Front Microbiol 2021; 12:693457. [PMID: 34381428 PMCID: PMC8351799 DOI: 10.3389/fmicb.2021.693457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Tomato chlorosis virus (ToCV) is an emergent plant pathogen that causes a yellow leaf disorder in tomato and other solanaceous crops. ToCV is a positive-sense, single stranded (ss)RNA bipartite virus with long and flexuous virions belonging to the genus Crininivirus (family Closteroviridae). ToCV is phloem-limited, transmissible by whiteflies, and causes symptoms of interveinal chlorosis, bronzing, and necrosis in the lower leaves of tomato accompanied by a decline in vigor and reduction in fruit yield. The availability of infectious virus clones is a valuable tool for reverse genetic studies that has been long been hampered in the case of closterovirids due to their genome size and complexity. Here, attempts were made to improve the infectivity of the available agroinfectious cDNA ToCV clones (isolate AT80/99-IC from Spain) by adding the hepatitis delta virus (HDV) ribozyme fused to the 3′ end of both genome components, RNA1 and RNA2. The inclusion of the ribozyme generated a viral progeny with RNA1 3′ ends more similar to that present in the clone used for agroinoculation. Nevertheless, the obtained clones were not able to infect tomato plants by direct agroinoculation, like the original clones. However, the infectivity of the clones carrying the HDV ribozyme in Nicotiana benthamiana plants increased, on average, by two-fold compared with the previously available clones.
Collapse
Affiliation(s)
- Elisa Navas-Hermosilla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga (IHSM-CSIC-UMA), Algarrobo-Costa, Málaga, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga (IHSM-CSIC-UMA), Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga (IHSM-CSIC-UMA), Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
34
|
Yue H, Huang LP, Lu DYH, Zhang ZH, Zhang Z, Zhang DY, Zheng LM, Gao Y, Tan XQ, Zhou XG, Shi XB, Liu Y. Integrated Analysis of microRNA and mRNA Transcriptome Reveals the Molecular Mechanism of Solanum lycopersicum Response to Bemisia tabaci and Tomato chlorosis virus. Front Microbiol 2021; 12:693574. [PMID: 34239512 PMCID: PMC8258350 DOI: 10.3389/fmicb.2021.693574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tomato chlorosis virus (ToCV), is one of the most devastating cultivated tomato viruses, seriously threatened the growth of crops worldwide. As the vector of ToCV, the whitefly Bemisia tabaci Mediterranean (MED) is mainly responsible for the rapid spread of ToCV. The current understanding of tomato plant responses to this virus and B. tabaci is very limited. To understand the molecular mechanism of the interaction between tomato, ToCV and B. tabaci, we adopted a next-generation sequencing approach to decipher miRNAs and mRNAs that are differentially expressed under the infection of B. tabaci and ToCV in tomato plants. Our data revealed that 6199 mRNAs were significantly regulated, and the differentially expressed genes were most significantly associated with the plant-pathogen interaction, the MAPK signaling pathway, the glyoxylate, and the carbon fixation in photosynthetic organisms and photosynthesis related proteins. Concomitantly, 242 differentially expressed miRNAs were detected, including novel putative miRNAs. Sly-miR159, sly-miR9471b-3p, and sly-miR162 were the most expressed miRNAs in each sample compare to control group. Moreover, we compared the similarities and differences of gene expression in tomato plant caused by infection or co-infection of B. tabaci and ToCV. Taken together, the analysis reported in this article lays a solid foundation for further research on the interaction between tomato, ToCV and B. tabaci, and provide evidence for the identification of potential key genes that influences virus transmission in tomato plants.
Collapse
Affiliation(s)
- Hao Yue
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Ping Huang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Ding-Yi-Hui Lu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Zhan-Hong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - De-Yong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Min Zheng
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yang Gao
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xin-Qiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiao-Bin Shi
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yong Liu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| |
Collapse
|
35
|
Rivarez MPS, Vučurović A, Mehle N, Ravnikar M, Kutnjak D. Global Advances in Tomato Virome Research: Current Status and the Impact of High-Throughput Sequencing. Front Microbiol 2021; 12:671925. [PMID: 34093492 PMCID: PMC8175903 DOI: 10.3389/fmicb.2021.671925] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011–2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS). In this review, we first discuss the role of HTS in these discoveries and its general impact on tomato virome research. We observed that the rate of tomato virus discovery is accelerating in the past few years due to the use of HTS. However, the extent of the post-discovery characterization of viruses is lagging behind and is greater for economically devastating viruses, such as the recently emerged tomato brown rugose fruit virus. Moreover, many known viruses still cause significant economic damages to tomato production. The review of databases and literature revealed at least 312 virus, satellite virus, or viroid species (in 22 families and 39 genera) associated with tomato, which is likely the highest number recorded for any plant. Among those, here, we summarize the current knowledge on the biology, global distribution, and epidemiology of the most important species. Increasing knowledge on tomato virome and employment of HTS to also study viromes of surrounding wild plants and environmental samples are bringing new insights into the understanding of epidemiology and ecology of tomato-infecting viruses and can, in the future, facilitate virus disease forecasting and prevention of virus disease outbreaks in tomato.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
36
|
Use of High-Throughput Sequencing and Two RNA Input Methods to Identify Viruses Infecting Tomato Crops. Microorganisms 2021; 9:microorganisms9051043. [PMID: 34066188 PMCID: PMC8150983 DOI: 10.3390/microorganisms9051043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
We used high-throughput sequencing to identify viruses on tomato samples showing virus-like symptoms. Samples were collected from crops in the Iberian Peninsula. Either total RNA or double-stranded RNA (dsRNA) were used as starting material to build the cDNA libraries. In total, seven virus species were identified, with pepino mosaic virus being the most abundant one. The dsRNA input provided better coverage and read depth but missed one virus species compared with the total RNA input. By performing in silico analyses, we determined a minimum sequencing depth per sample of 0.2 and 1.5 million reads for dsRNA and rRNA-depleted total RNA inputs, respectively, to detect even the less abundant viruses. Primers and TaqMan probes targeting conserved regions in the viral genomes were designed and/or used for virus detection; all viruses were detected by qRT-PCR/RT-PCR in individual samples, with all except one sample showing mixed infections. Three virus species (Olive latent virus 1, Lettuce ring necrosis virus and Tomato fruit blotch virus) are herein reported for the first time in tomato crops in Spain.
Collapse
|
37
|
Esquivel-Fariña A, Rezende JAM, Wintermantel WM, Hladky LJ, Bampi D. Natural Infection Rate of Known Tomato chlorosis virus-Susceptible Hosts and the Influence of the Host Plant on the Virus Relationship With Bemisia tabaci MEAM1. PLANT DISEASE 2021; 105:1390-1397. [PMID: 33107791 DOI: 10.1094/pdis-08-20-1642-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) was identified in tomato crops in São Paulo State, Brazil, in 2006. Management strategies to control external sources of inoculum are necessary, because chemical control of the whitefly vector Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) has not efficiently prevented virus infections and no commercial tomato varieties or hybrids are resistant to this crinivirus. We first evaluated the natural infection rate of some known wild and cultivated ToCV-susceptible hosts and their attractiveness for B. tabaci MEAM1 oviposition. Physalis angulata was the most susceptible to natural infection in all six exposures in 2018 and 2019. No plants of Capsicum annuum 'Dahra' or Chenopodium album became infected. Solanum melongena 'Napoli' had only two infected plants of 60 exposed. Capsicum annuum and Chenopodium album were the least preferred, and Nicotiana tabacum and S. melongena were the most preferred for whitefly oviposition. In addition, from 2016 to 2019, we surveyed different tomato crops and the surrounding vegetation to identify ToCV in weeds and cultivated plants in the region of Sumaré, São Paulo State. Only S. americanum, vila vila (S. sisymbriifolium), and Chenopodium album were found naturally infected, with incidences of 18, 20, and 1.4%, respectively. Finally, we estimated the ToCV titer (U.S. and Brazilian isolates ToCV-FL and ToCV-SP, respectively) by quantitative reverse transcription PCR in different ToCV-susceptible host plants and evaluated the relationship between virus acquisition and transmission by B. tabaci MEAM1. The results clearly showed significant differences in ToCV concentrations in the tissues of ToCV-susceptible host plants, which appeared to be influenced by the virus isolate. The concentration of the virus in plant tissues, in turn, directly influenced the ToCV-B. tabaci MEAM1 relationship and subsequent transmission to tomato plants. To minimize or prevent damage from tomato yellowing disease through management of external sources of ToCV, it is necessary to correctly identify potentially important ToCV-susceptible hosts in the vicinity of new plantings.
Collapse
Affiliation(s)
- Arnaldo Esquivel-Fariña
- Department of Phytopathology and Nematology, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Jorge Alberto Marques Rezende
- Department of Phytopathology and Nematology, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | | | - Laura Jenkins Hladky
- U.S. Department of Agriculture Agricultural Research Service, Salinas, CA, U.S.A
| | - Daiana Bampi
- Department of Phytopathology and Nematology, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| |
Collapse
|
38
|
Domingo-Calap ML, Chase O, Estapé M, Moreno AB, López-Moya JJ. The P1 Protein of Watermelon mosaic virus Compromises the Activity as RNA Silencing Suppressor of the P25 Protein of Cucurbit yellow stunting disorder virus. Front Microbiol 2021; 12:645530. [PMID: 33828542 PMCID: PMC8019732 DOI: 10.3389/fmicb.2021.645530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mixed viral infections in plants involving a potyvirus and other unrelated virus often result in synergistic effects, with significant increases in accumulation of the non-potyvirus partner, as in the case of melon plants infected by the potyvirus Watermelon mosaic virus (WMV) and the crinivirus Cucurbit yellow stunting disorder virus (CYSDV). To further explore the synergistic interaction between these two viruses, the activity of RNA silencing suppressors (RSSs) was addressed in transiently co-expressed combinations of heterologous viral products in Nicotiana benthamiana leaves. While the strong RSS activity of WMV Helper Component Proteinase (HCPro) was unaltered, including no evident additive effects observed when co-expressed with the weaker CYSDV P25, an unexpected negative effect of WMV P1 was found on the RSS activity of P25. Analysis of protein expression during the assays showed that the amount of P25 was not reduced when co-expressed with P1. The detrimental action of P1 on the activity of P25 was dose-dependent, and the subcellular localization of fluorescently labeled variants of P1 and P25 when transiently co-expressed showed coincidences both in nucleus and cytoplasm. Also, immunoprecipitation experiments showed interaction of tagged versions of the two proteins. This novel interaction, not previously described in other combinations of potyviruses and criniviruses, might play a role in modulating the complexities of the response to multiple viral infections in susceptible plants.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Instituto Valencia de Investigaciones Agrarias, IVIA, Valencia, Spain
| | - Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Mariona Estapé
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Universitair Medisch Centrum, UMC, Utrecht, Netherlands
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
39
|
Tomato Chlorosis Virus Infection Facilitates Bemisia tabaci MED Reproduction by Elevating Vitellogenin Expression. INSECTS 2021; 12:insects12020101. [PMID: 33503981 PMCID: PMC7911321 DOI: 10.3390/insects12020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/05/2022]
Abstract
Simple Summary The sweet potato whitefly, Bemisia tabaci, is a polyphagous, global invasive insect pest. It can damage vegetables and crops directly by feeding and indirectly by transmitting plant viruses. Previously, we showed that virus infection of host plants can promote B. tabaci MED (Q biotype) reproduction. Here, using a whitefly-tomato chlorosis virus (ToCV)-tomato system, we investigated how ToCV modulates B. tabaci reproduction to facilitate its spread. ToCV infection significantly increased whitefly fecundity and the relative expression of vitellogenin gene (Vg). Both ovarian development and fecundity of whitefly were suppressed when Vg expression was silenced with or without ToCV infection. These combined results reveal that ToCV infection increases B. tabaci MED fecundity via elevated vitellogenin gene expression. Abstract Transmission of plant pathogenic viruses mostly relies on insect vectors. Plant virus could enhance its transmission by modulating the vector. Previously, we showed that feeding on virus infected plants can promote the reproduction of the sweet potato whitefly, Bemisia tabaci MED (Q biotype). In this study, using a whitefly-Tomato chlorosis virus (ToCV)-tomato system, we investigated how ToCV modulates B. tabaci MED reproduction to facilitate its spread. Here, we hypothesized that ToCV-infected tomato plants would increase B. tabaci MED fecundity via elevated vitellogenin (Vg) gene expression. As a result, fecundity and the relative expression of B. tabaci MED Vg was measured on ToCV-infected and uninfected tomato plants on days 4, 8, 12, 16, 20 and 24. The role of Vg on B. tabaci MED reproduction was examined in the presence and absence of ToCV using dietary RNAi. ToCV infection significantly increased B. tabaci MED fecundity on days 12, 16 and 20, and elevated Vg expression on days 8, 12 and 16. Both ovarian development and fecundity of B. tabaci MED were suppressed when Vg was silenced with or without ToCV infection. These combined results suggest that ToCV infection increases B. tabaci MED fecundity via elevated Vg expression.
Collapse
|
40
|
Li J, Wang JC, Ding TB, Chu D. Synergistic Effects of a Tomato chlorosis virus and Tomato yellow leaf curl virus Mixed Infection on Host Tomato Plants and the Whitefly Vector. FRONTIERS IN PLANT SCIENCE 2021; 12:672400. [PMID: 34135928 PMCID: PMC8201402 DOI: 10.3389/fpls.2021.672400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 05/12/2023]
Abstract
In China, Tomato chlorosis virus (ToCV) and Tomato yellow leaf curl virus (TYLCV) are widely present in tomato plants. The epidemiology of these viruses is intimately associated with their vector, the whitefly (Bemisia tabaci MED). However, how a ToCV+TYLCV mixed infection affects viral acquisition by their vector remains unknown. In this study, we examined the growth parameters of tomato seedlings, including disease symptoms and the heights and weights of non-infected, singly infected and mixed infected tomato plants. Additionally, the spatio-temporal dynamics of the viruses in tomato plants, and the viral acquisition and transmission by B. tabaci MED, were determined. The results demonstrated that: (i) ToCV+TYLCV mixed infections induced tomato disease synergism, resulting in a high disease severity index and decreased stem heights and weights; (ii) as the disease progressed, TYLCV accumulated more in upper leaves of TYLCV-infected tomato plants than in lower leaves, whereas ToCV accumulated less in upper leaves of ToCV-infected tomato plants than in lower leaves; (iii) viral accumulation in ToCV+TYLCV mixed infected plants was greater than in singly infected plants; and (iv) B. tabaci MED appeared to have a greater TYLCV, but a lower ToCV, acquisition rate from mixed infected plants compared with singly infected plants. However, mixed infections did not affect transmission by whiteflies. Thus, ToCV+TYLCV mixed infections may induce synergistic disease effects in tomato plants.
Collapse
|
41
|
Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses 2020; 12:v12121388. [PMID: 33291635 PMCID: PMC7761969 DOI: 10.3390/v12121388] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023] Open
Abstract
Virus disease pandemics and epidemics that occur in the world’s staple food crops pose a major threat to global food security, especially in developing countries with tropical or subtropical climates. Moreover, this threat is escalating rapidly due to increasing difficulties in controlling virus diseases as climate change accelerates and the need to feed the burgeoning global population escalates. One of the main causes of these pandemics and epidemics is the introduction to a new continent of food crops domesticated elsewhere, and their subsequent invasion by damaging virus diseases they never encountered before. This review focusses on providing historical and up-to-date information about pandemics and major epidemics initiated by spillover of indigenous viruses from infected alternative hosts into introduced crops. This spillover requires new encounters at the managed and natural vegetation interface. The principal virus disease pandemic examples described are two (cassava mosaic, cassava brown streak) that threaten food security in sub-Saharan Africa (SSA), and one (tomato yellow leaf curl) doing so globally. A further example describes a virus disease pandemic threatening a major plantation crop producing a vital food export for West Africa (cacao swollen shoot). Also described are two examples of major virus disease epidemics that threaten SSA’s food security (rice yellow mottle, groundnut rosette). In addition, brief accounts are provided of two major maize virus disease epidemics (maize streak in SSA, maize rough dwarf in Mediterranean and Middle Eastern regions), a major rice disease epidemic (rice hoja blanca in the Americas), and damaging tomato tospovirus and begomovirus disease epidemics of tomato that impair food security in different world regions. For each pandemic or major epidemic, the factors involved in driving its initial emergence, and its subsequent increase in importance and geographical distribution, are explained. Finally, clarification is provided over what needs to be done globally to achieve effective management of severe virus disease pandemics and epidemics initiated by spillover events.
Collapse
|
42
|
Krause-Sakate R, Watanabe LFM, Gorayeb ES, da Silva FB, Alvarez DDL, Bello VH, Nogueira AM, de Marchi BR, Vicentin E, Ribeiro-Junior MR, Marubayashi JM, Rojas-Bertini CA, Muller C, Bueno RCODF, Rosales M, Ghanim M, Pavan MA. Population Dynamics of Whiteflies and Associated Viruses in South America: Research Progress and Perspectives. INSECTS 2020; 11:insects11120847. [PMID: 33260578 PMCID: PMC7760982 DOI: 10.3390/insects11120847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Whiteflies are one of the most important and widespread pests in the world. In South America, the currently most important species occurring are Bemisia afer,Trialeurodes vaporariorum, and the cryptic species Middle East-Asia Minor 1, Mediterranean, and New World, from Bemisia tabaci complex. The present review compiles information from several studies conducted in South America regarding these insects, providing data related to the dynamics and distribution of whiteflies, the associated viruses, and the management strategies to keep whiteflies under the economic damage threshold. Abstract By having an extensive territory and suitable climate conditions, South America is one of the most important agricultural regions in the world, providing different kinds of vegetable products to different regions of the world. However, such favorable conditions for plant production also allow the development of several pests, increasing production costs. Among them, whiteflies (Hemiptera: Aleyrodidae) stand out for their potential for infesting several crops and for being resistant to insecticides, having high rates of reproduction and dispersal, besides their efficient activity as virus vectors. Currently, the most important species occurring in South America are Bemisia afer, Trialeurodes vaporariorum, and the cryptic species Middle East-Asia Minor 1, Mediterranean, and New World, from Bemisia tabaci complex. In this review, a series of studies performed in South America were compiled in an attempt to unify the advances that have been developed in whitefly management in this continent. At first, a background of the current whitefly distribution in South American countries as well as factors affecting them are shown, followed by a background of the whitefly transmitted viruses in South America, addressing their location and association with whiteflies in each country. Afterwards, a series of management strategies are proposed to be implemented in South American fields, including cultural practices and biological and chemical control, finalizing with a section containing future perspectives and directions for further research.
Collapse
Affiliation(s)
- Renate Krause-Sakate
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
- Correspondence: ; Tel.: +55-14-3880-7487
| | - Luís Fernando Maranho Watanabe
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Eduardo Silva Gorayeb
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
- Facultad de Agronomía e Ingeniería, Pontificia Universidad Católica de Chile, Forestal, Vicuña Mackena, 4860, Macul, Santiago 7820436, Chile; (C.A.R.-B.); (M.R.)
| | - Felipe Barreto da Silva
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Daniel de Lima Alvarez
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Vinicius Henrique Bello
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Angélica Maria Nogueira
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | | | - Eduardo Vicentin
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Marcos Roberto Ribeiro-Junior
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Julio Massaharu Marubayashi
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Claudia Andrea Rojas-Bertini
- Facultad de Agronomía e Ingeniería, Pontificia Universidad Católica de Chile, Forestal, Vicuña Mackena, 4860, Macul, Santiago 7820436, Chile; (C.A.R.-B.); (M.R.)
| | | | - Regiane Cristina Oliveira de Freitas Bueno
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Marlene Rosales
- Facultad de Agronomía e Ingeniería, Pontificia Universidad Católica de Chile, Forestal, Vicuña Mackena, 4860, Macul, Santiago 7820436, Chile; (C.A.R.-B.); (M.R.)
| | - Murad Ghanim
- Department of Entomology, Institute of Plant Protection, The Volcani Center, Rishon LeZion 7505101, Israel;
| | - Marcelo Agenor Pavan
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| |
Collapse
|
43
|
Rodríguez-López MJ, Moriones E, Fernández-Muñoz R. An Acylsucrose-Producing Tomato Line Derived from the Wild Species Solanum pimpinellifolium Decreases Fitness of the Whitefly Trialeurodes vaporariorum. INSECTS 2020; 11:insects11090616. [PMID: 32917019 PMCID: PMC7564115 DOI: 10.3390/insects11090616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary The greenhouse whitefly, Trialeurodes vaporariorum is an insect pest of many plant crops including tomato and is especially harmful because it is a vector for a number of plant viral diseases. In this paper, an improved tomato line bred to produce glandular trichomes that exudate the deterrent compounds acylsucroses, which was introgressed from a wild tomato species, was demonstrated to decrease fitness of the insect and showed as a means for controlling the pests and, indirectly, could be an aid to reduce virus transmission to tomato plants. Abstract A combination of biological control and host plant resistance would be desirable for optimally controlling the greenhouse whitefly, Trialeurodes vaporariorum in tomato crops. Whitefly settlement preference, oviposition, and survivorship were evaluated on ABL 10-4 and ‘Moneymaker’, two nearly-isogenic tomato lines with, and without, whitefly-resistance traits based on type IV leaf glandular trichomes derived from the tomato wild species Solanum pimpinellifolium, respectively. Significantly reduced preference of T. vaporariorum adult whiteflies for ABL 10-4 leaves was observed. Moreover, T. vaporariorum altered its abaxial–adaxial settling performance on leaves of ABL 10-4 plants. A significantly lower tendency to settle on abaxial leaf surface was observed in ABL 10-4 compared to Moneymaker plants. Furthermore, T. vaporariorum deposited fewer eggs and exhibited a significantly reduced egg to adult survivorship in ABL 10-4 than in Moneymaker plants. Therefore, reduced fitness and distorted performance were observed for T. vaporariorum on ABL 10-4 tomato plants supporting that type IV leaf glandular trichomes might protect them from this pest and, indirectly, from the viruses it transmits.
Collapse
|
44
|
Maluta NKP, Lopes JRS, Fiallo-Olivé E, Navas-Castillo J, Lourenção AL. Foliar Spraying of Tomato Plants with Systemic Insecticides: Effects on Feeding Behavior, Mortality and Oviposition of Bemisia tabaci (Hemiptera: Aleyrodidae) and Inoculation Efficiency of Tomato Chlorosis Virus. INSECTS 2020; 11:insects11090559. [PMID: 32842573 PMCID: PMC7565682 DOI: 10.3390/insects11090559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/22/2023]
Abstract
Simple Summary The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) causes serious losses to vegetable, ornamental and fiber crops, including tomato plants, mainly as a vector of economically important viruses. Among the most important viruses affecting tomato is the tomato chlorosis virus (ToCV) (Closteroviridae: Crinivirus), which is semi-persistently transmitted by whiteflies. Effective management of this pest is crucial to reduce the spread of vector-borne diseases and to reduce crop damage and losses. In this study we evaluated the effect of systemic insecticides (cyantraniliprole, acetamiprid and flupyradifurone) on the feeding behavior, mortality and oviposition of B. tabaci MEAM1 and their ability to interfere with the inoculation of ToCV in tomato plants. Our findings indicate that systemic insecticides cause high mortality when compared to untreated plants. Also, we found that flupyradifurone affects stylet activities of B. tabaci and significantly reduce phloem ingestion, a behavior that is closely linked to the transmission of ToCV. Overall, our findings indicate that flupyradifurone may contribute to management of this pest and ToCV in tomato crops. Abstract Tomato chlorosis virus (ToCV) is a phloem-limited crinivirus transmitted by whiteflies and seriously affects tomato crops worldwide. As with most vector-borne viral diseases, no cure is available, and the virus is managed primarily by the control of the vector. This study determined the effects of the foliar spraying with the insecticides, acetamiprid, flupyradifurone and cyantraniliprole, on the feeding behavior, mortality, oviposition and transmission efficiency of ToCV by B. tabaci MEAM1 in tomato plants. To evaluate mortality, oviposition and ToCV transmission in greenhouse conditions, viruliferous whiteflies were released on insecticide-treated plants at different time points (3, 24 and 72 h; 7 and 14 days) after spraying. Insect mortality was higher on plants treated with insecticides; however, only cyantraniliprole and flupyradifurone differed from them in all time points. The electrical penetration graph (DC-EPG) technique was used to monitor stylet activities of viruliferous B. tabaci in tomato plants 72 h after insecticide application. Only flupyradifurone affected the stylet activities of B. tabaci, reducing the number and duration of intracellular punctures (pd) and ingestion of phloem sap (E2), a behavior that possibly resulted in the lower percentage of ToCV transmission in this treatment (0–60%) in relation to the control treatment (60–90%) over the periods evaluated. Our results indicate that flupyradifurone may contribute to management of this pest and ToCV in tomato crops.
Collapse
Affiliation(s)
- Nathalie Kristine Prado Maluta
- Agronomic Institute (IAC), Centro de Fitossanidade, 13020-902 Campinas, SP, Brazil;
- Correspondence: ; Tel.: +55-19-3429-4199
| | - João Roberto Spotti Lopes
- Department of Entomology and Acarology, ESALQ, University of São Paulo, 13418-900 Piracicaba, SP, Brazil;
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain; (E.F.-O.); (J.N.-C.)
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain; (E.F.-O.); (J.N.-C.)
| | - André Luiz Lourenção
- Agronomic Institute (IAC), Centro de Fitossanidade, 13020-902 Campinas, SP, Brazil;
| |
Collapse
|
45
|
Trebicki P. Climate change and plant virus epidemiology. Virus Res 2020; 286:198059. [PMID: 32561376 DOI: 10.1016/j.virusres.2020.198059] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Changes in global climate driven by anthropogenic activities, especially the burning of fossil fuels and deforestation, have been progressively increasing and are projected to intensify. Increasing concentrations of atmospheric carbon dioxide and temperature will have significant consequences for future food production, quality, distribution and security. The epidemiology of plant viruses will be altered in the future as a result of climate change. Elevated atmospheric carbon dioxide, increased temperature, changes to water availability and more frequent extreme weather events will have direct and indirect effects on plant viruses through changes in hosts and vectors. Predicted climatic changes will affect the distribution and survival of plant viruses and their vectors, which are expected to increase in many geographic regions. Furthermore, climate change can affect the virulence and pathogenicity of plant viruses, consequently increasing the frequency and scale of disease outbreaks. Thus, greater understanding of plant virus epidemiology is needed to better anticipate challenges ahead and to develop effective and robust control strategies that will aid in securing global food production for the future.
Collapse
Affiliation(s)
- Piotr Trebicki
- Agriculture Victoria, 110 Natimuk Rd, Horsham, Victoria, 3400, Australia.
| |
Collapse
|
46
|
Non-Destructive Early Detection and Quantitative Severity Stage Classification of Tomato Chlorosis Virus (ToCV) Infection in Young Tomato Plants Using Vis–NIR Spectroscopy. REMOTE SENSING 2020. [DOI: 10.3390/rs12121920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tomato chlorosis virus (ToCV) is a serious, emerging tomato pathogen that has a significant impact on the quality and quantity of tomato production worldwide. Detecting ToCV via means of spectral measurements in an early pre-symptomatic stage offers an alternative to the existing laboratory methods, leading to better disease management in the field. In this study, leaf spectra from healthy and diseased leaves were measured with a spectrometer. The diseased leaves were subjected to RT-qPCR for the detection and quantification of the titer of ToCV. Neighborhood component analysis (NCA) algorithm was employed for the feature selection of the effective wavelengths and the most important vegetation indices out of the 24 that were tested. Two machine learning methods, namely XY-fusion network (XY-F) and multilayer perceptron with automated relevance determination (MLP–ARD), were employed for the estimation of the disease existence and viral load in the tomato leaves. The results showed that before outlier elimination, the MLP–ARD classifier generally outperformed the XY-F network with an overall accuracy of 92.1% against 88.3% for the XY-F. Outlier elimination contributed to the performance of the classifiers as the overall accuracy for both XY-F and MLP–ARD reached 100%.
Collapse
|
47
|
Zan N, Xie D, Li M, Jiang D, Song B. Design, Synthesis, and Anti-ToCV Activity of Novel Pyrimidine Derivatives Bearing a Dithioacetal Moiety that Targets ToCV Coat Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6280-6285. [PMID: 32330024 DOI: 10.1021/acs.jafc.0c00987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel pyrimidine sulfide derivatives containing a dithioacetal and strobilurin moiety were designed and synthesized. Their antiviral activities against tomato chlorosis virus (ToCV) were investigated through the tomato chlorosis virus coat protein (ToCVCP)-oriented screening method. Microscale thermophoresis was used to study the interaction between the compound and the ToCVCP. Compounds B13 and B23 interacted better with ToCVCP than the other compounds and had dissociation constant (Kd) values of 0.09 and 0.06 μM, respectively. These values were lower than those of the control agents, ningnanmycin (0.19 μM) and ribavirin (6.54 μM), which indicated that the compounds had a strong binding effect with ToCVCP. Quantitative real-time polymerase chain reaction was used to evaluate the role of compounds B13 and B23 in the gene regulation of ToCVCP. Both compounds significantly reduced the expression level of the ToCVCP gene in Nicotiana benthamiana with reduction values of 88 and 83%, which were better than those of ningnanmycin (65%) and lead compound C14 (73%). Pyrimidine sulfide containing a dithioacetal and strobilurin moiety is significant in the research and development of novel anti-ToCV agents.
Collapse
Affiliation(s)
- Ningning Zan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Dandan Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Miao Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Donghao Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
48
|
Yang H, Zu G, Liu Y, Xie D, Gan X, Song B. Tomato Chlorosis Virus Minor Coat Protein as a Novel Target To Screen Antiviral Drugs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3425-3433. [PMID: 32091891 DOI: 10.1021/acs.jafc.9b08215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Minor coat protein (mCP), an important component of tomato chlorosis virus (ToCV), plays a significant role in the process of virus assembly and movement and is directly related to the virus-insect transmission. Therefore, ToCV mCP could be considered as a potent target for anti-ToCV drugs. In this study, ToCV mCP was first cloned, expressed, purified, and a novel target to screen the antiviral agents. The results showed that some antiviral compounds bound to ToCV mCP with strongly affinities in vitro, including quinazoline derivatives 4a and 4b, Ningnanmycin, and Ribavirin. Subsequently, three-dimensional-quantitative structure-activity relationship (3D-QSAR) analysis was performed based on the binding affinities, and the model indicated that 4a and 4b had indeed stronger binding effects on ToCV mCP than other quinazoline derivatives. Finally, the anti-ToCV activities of compounds 4a and 4b were evaluated by quantitative real-time polymerase chain reaction in vivo. Compounds 4a and 4b inhibited infection of ToCV in the host and as well as reduced the level of ToCV mCP gene expression. Thus, ToCV mCP can be used as a novel drug target for screening anti-ToCV agents, and the ligand-based 3D-QSAR analysis of quinazoline derivatives provided new insights into the design and optimization of novel anti-ToCV drug molecules based on ToCV mCP.
Collapse
Affiliation(s)
- Huanyu Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangcheng Zu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuewen Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Dandan Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
49
|
Kimathi RH, Wilisiani F, Mashiko T, Neriya Y, Miinda AE, Nishigawa H, Natsuaki T. First report of Tomato chlorosis virus infecting tomato in Kenya. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Fortes IM, Fernández-Muñoz R, Moriones E. Host Plant Resistance to Bemisia tabaci to Control Damage Caused in Tomato Plants by the Emerging Crinivirus Tomato Chlorosis Virus. FRONTIERS IN PLANT SCIENCE 2020; 11:585510. [PMID: 33178251 PMCID: PMC7594678 DOI: 10.3389/fpls.2020.585510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/24/2020] [Indexed: 05/14/2023]
Abstract
Tomato chlorosis virus (genus Crinivirus, family Closteroviridae) (ToCV) is rapidly emerging, causing increased damage to tomato production worldwide. The virus is transmitted in a semipersistent manner by several whitefly (Hemiptera: Aleyrodidae) species and is expanding its geographical and host ranges associated with the emergence of whiteflies of the Bemisia tabaci complex. Control is based essentially on intensive insecticide applications against the insect vector but is largely ineffective. No virus-resistant or tolerant commercial tomato cultivars are available. Recently, a B. tabaci-resistant tomato line based on the introgression of type IV leaf glandular trichomes and secretion of acylsucroses from the wild tomato Solanum pimpinellifolium was shown to effectively control the spread of tomato yellow leaf curl virus, a begomovirus (genus Begomovirus, family Geminiviridae) persistently transmitted by B. tabaci. As short acquisition and transmission periods are associated to the semipersistent transmission of ToCV, its possible control by means of the B. tabaci-resistant tomato could be compromised. Moreover, if the antixenosis effect of the resistance trait present in those tomato plants results in increased B. tabaci mobility, an increased ToCV spread might even occur. We demonstrated, however, that the use of acylsugar-producing B. tabaci-resistant tomatoes effectively controls ToCV spread compared to a near-isogenic line without type IV trichomes and acylsugar secretion. No increase in the primary ToCV spread is observed, and secondary spread could be reduced significantly decreasing the incidence of this virus. The possible use of host plant resistance to whiteflies to limit spread of ToCV opens up new alternatives for a more effective control of this virus to reduce the damage caused in tomato crops.
Collapse
|