1
|
He J, Zhong J, Jin L, Long Y, Situ J, He C, Kong G, Jiang Z, Li M. A virulent milRNA inhibits host immunity by silencing a host receptor-like kinase MaLYK3 and facilitates infection by Fusarium oxysporum f. sp. cubense. MOLECULAR PLANT PATHOLOGY 2024; 25:e70016. [PMID: 39394779 PMCID: PMC11470196 DOI: 10.1111/mpp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
MicroRNA-like RNAs (milRNAs) play a significant role in the infection process by plant-pathogenic fungi. However, the specific functions and regulatory mechanisms of fungal milRNAs remain insufficiently elucidated. This study investigated the function of Foc-milR138, an infection-induced milRNA secreted by Fusarium oxysporum f. sp. cubense (Foc), which is the causal agent of Fusarium wilt of banana. Initially, through precursor gene knockout and phenotypic assessments, we confirmed that Foc-milR138 acts as a virulent milRNA prominently upregulated during the early stages of Foc infection. Subsequent bioinformatic analyses and transient expression assays in Nicotiana benthamiana leaves identified a host receptor-like kinase gene, MaLYK3, as the direct target of Foc-milR138. Functional investigations of MaLYK3 revealed its pivotal role in triggering immune responses of N. benthamiana by upregulating a suite of resistance genes, bolstering reactive oxygen species (ROS) accumulation and callose deposition, thereby fortifying disease resistance. This response was markedly subdued upon co-expression with Foc-milR138. Expression pattern analysis further verified the specific suppression of MaLYK3 by Foc-milR138 during the early root infection by Foc. In conclusion, Foc secretes a virulent milRNA (Foc-milR138) to enter the host banana cells and inhibit the expression of the plant surface receptor-like kinase MaLYK3, subverting the disease resistance activated by MaLYK3, and ultimately facilitating pathogen invasion. These findings shed light on the roles of fungal milRNAs and their targets in resistance and pathogenicity, offering promising avenues for the development of disease-resistant banana cultivars.
Collapse
Affiliation(s)
- Jiahui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Jiaqi Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Longqi Jin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Yike Long
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Chengcheng He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Minhui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Li W, Li P, Deng Y, Zhang Z, Situ J, Huang J, Li M, Xi P, Jiang Z, Kong G. Litchi aspartic protease LcAP1 enhances plant resistance via suppressing cell death triggered by the pectate lyase PlPeL8 from Peronophythora litchii. THE NEW PHYTOLOGIST 2024; 242:2682-2701. [PMID: 38622771 DOI: 10.1111/nph.19755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zijing Zhang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Ji Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
3
|
Xiong J, Luo M, Chen Y, Hu Q, Fang Y, Sun T, Hu G, Zhang CJ. Subtilisin-like proteases from Fusarium graminearum induce plant cell death and contribute to virulence. PLANT PHYSIOLOGY 2024; 195:1681-1693. [PMID: 38478507 DOI: 10.1093/plphys/kiae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 06/02/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, causes huge annual economic losses in cereal production. To successfully colonize host plants, pathogens secrete hundreds of effectors that interfere with plant immunity and facilitate infection. However, the roles of most secreted effectors of F. graminearum in pathogenesis remain unclear. We analyzed the secreted proteins of F. graminearum and identified 255 candidate effector proteins by liquid chromatography-mass spectrometry (LC-MS). Five subtilisin-like family proteases (FgSLPs) were identified that can induce cell death in Nicotiana benthamiana leaves. Further experiments showed that these FgSLPs induced cell death in cotton (Gossypium barbadense) and Arabidopsis (Arabidopsis thaliana). A signal peptide and light were not essential for the cell death-inducing activity of FgSLPs. The I9 inhibitor domain and the entire C-terminus of FgSLPs were indispensable for their self-processing and cell death-inducing activity. FgSLP-induced cell death occurred independent of the plant signal transduction components BRI-ASSOCIATED KINASE 1 (BAK1), SUPPRESSOR OF BIR1 1 (SOBIR1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4). Reduced virulence was observed when FgSLP1 and FgSLP2 were simultaneously knocked out. This study reveals a class of secreted toxic proteins essential for F. graminearum virulence.
Collapse
Affiliation(s)
- Jiang Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mingyu Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yunshen Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Qianyong Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Fang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guanjing Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
Ghimire B, Gogoi A, Poudel M, Stensvand A, Brurberg MB. Transcriptome analysis of Phytophthora cactorum infecting strawberry identified RXLR effectors that induce cell death when transiently expressed in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1379970. [PMID: 38855473 PMCID: PMC11157022 DOI: 10.3389/fpls.2024.1379970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
Phytophthora cactorum is a plant pathogenic oomycete that causes crown rot in strawberry leading to significant economic losses every year. To invade the host, P. cactorum secretes an arsenal of effectors that can manipulate host physiology and impair its defense system promoting infection. A transcriptome analysis was conducted on a susceptible wild strawberry genotype (Fragaria vesca) 48 hours post inoculation with P. cactorum to identify effectors expressed during the early infection stage. The analysis revealed 4,668 P. cactorum genes expressed during infection of F. vesca. A total of 539 secreted proteins encoded by transcripts were identified, including 120 carbohydrate-active enzymes, 40 RXLRs, 23 proteolytic enzymes, nine elicitins, seven cysteine rich proteins, seven necrosis inducing proteins and 216 hypothetical proteins with unknown function. Twenty of the 40 RXLR effector candidates were transiently expressed in Nicotiana benthamiana using agroinfiltration and five previously unreported RXLR effector genes (Pc741, Pc8318, Pc10890, Pc20813, and Pc22290) triggered cell death when transiently expressed. The identified cell death inducing RXLR effectors showed 31-66% identity to known RXLR effectors in different Phytophthora species having roles in pathogenicity including both activation and suppression of defense response in the host. Furthermore, homology analysis revealed that these cell death inducing RXLR effectors were highly conserved (82 - 100% identity) across 23 different strains of P. cactorum originating from apple or strawberry.
Collapse
Affiliation(s)
- Bikal Ghimire
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Mandeep Poudel
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
5
|
Situ J, Song Y, Feng D, Wan L, Li W, Ning Y, Huang W, Li M, Xi P, Deng Y, Jiang Z, Kong G. Oomycete pathogen pectin acetylesterase targets host lipid transfer protein to reduce salicylic acid signaling. PLANT PHYSIOLOGY 2024; 194:1779-1793. [PMID: 38039157 DOI: 10.1093/plphys/kiad638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.
Collapse
Affiliation(s)
- Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yu Song
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Dinan Feng
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lang Wan
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yue Ning
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Weixiong Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Cui JR, Zhou B, Tang YJ, Zhou JY, Ren L, Liu F, Hoffmann AA, Hong XY. A new spider mite elicitor triggers plant defence and promotes resistance to herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1493-1509. [PMID: 37952109 DOI: 10.1093/jxb/erad452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Herbivore-associated elicitors (HAEs) are active molecules produced by herbivorous insects. Recognition of HAEs by plants induces defence that resist herbivore attacks. We previously demonstrated that the tomato red spider mite Tetranychus evansi triggered defence in Nicotiana benthamiana. However, our knowledge of HAEs from T. evansi remains limited. Here, we characterize a novel HAE, Te16, from T. evansi and dissect its function in mite-plant interactions. We investigate the effects of Te16 on spider mites and plants by heterologous expression, virus-induced gene silencing assay, and RNA interference. Te16 induces cell death, reactive oxygen species (ROS) accumulation, callose deposition, and jasmonate (JA)-related responses in N. benthamiana leaves. Te16-mediated cell death requires a calcium signalling pathway, cytoplasmic localization, the plant co-receptor BAK1, and the signalling components SGT1 and HSP90. The active region of Te16-induced cell death is located at amino acids 114-293. Moreover, silencing Te16 gene in T. evansi reduces spider mite survival and hatchability, but expressing Te16 in N. benthamiana leaves enhances plant resistance to herbivores. Finally, Te16 gene is specific to Tetranychidae species and is highly conserved in activating plant immunity. Our findings reveal a novel salivary protein produced by spider mites that elicits plant defence and resistance to insects, providing valuable clues for pest management.
Collapse
Affiliation(s)
- Jia-Rong Cui
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bin Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Jing Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Yi Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lu Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiao-Yue Hong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
7
|
Li W, Li P, Deng Y, Situ J, He Z, Zhou W, Li M, Xi P, Liang X, Kong G, Jiang Z. A plant cell death-inducing protein from litchi interacts with Peronophythora litchii pectate lyase and enhances plant resistance. Nat Commun 2024; 15:22. [PMID: 38167822 PMCID: PMC10761943 DOI: 10.1038/s41467-023-44356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis). These proteins enhance plant susceptibility to oomycete pathogens in a PeL enzymatic activity-dependent manner. However, LcPIP1, a plant immune regulator secreted by litchi, binds to PlPeL1/PlPeL1-like, and attenuates PlPeL1/PlPeL1-like induced plant susceptibility to Phytophthora capsici. LcPIP1 also induces cell death and various immune responses in Nicotiana benthamiana. Conserved in plants, LcPIP1 homologs bear a conserved "VDMASG" motif and exhibit immunity-inducing activity. Furthermore, SERK3 interacts with LcPIP1 and is required for LcPIP1-induced cell death. NbPIP1 participates in immune responses triggered by the PAMP protein INF1. In summary, our study reveals the dual roles of PlPeL1/PlPeL1-like in plant-pathogen interactions: enhancing pathogen virulence through PeL enzymatic activity while also being targeted by LcPIP1, thus enhancing plant immunity.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhuoyuan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Wenzhe Zhou
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xiangxiu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Bai Y, Wang H, Zhu K, Cheng ZM. The dynamic arms race during the early invasion of woodland strawberry by Botrytis cinerea revealed by dual dense high-resolution RNA-seq analyses. HORTICULTURE RESEARCH 2023; 10:uhad225. [PMID: 38143486 PMCID: PMC10745266 DOI: 10.1093/hr/uhad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/29/2023] [Indexed: 12/26/2023]
Abstract
Necrotrophic pathogens replicate massively upon colonizing plants, causing large-scale wilting and death of plant tissues. Understanding both mechanisms of pathogen invasion and host response processes prior to symptom appearance and their key regulatory networks is therefore important for defense against pathogen attack. Here, we investigated the mechanisms of interaction between woodland strawberry (Fragaria vesca) leaves and gray mold pathogen (Botrytis cinerea) at 14 infection time points during the first 12 hours of the infection period using a dense, high-resolution time series dual transcriptomic analysis, characterizing the arms race between strawberry F. vesca and B. cinerea before the appearance of localized lesions. Strawberry leaves rapidly initiated strong systemic defenses at the first sign of external stimulation and showed lower levels of transcriptomic change later in the infection process. Unlike the host plants, B. cinerea showed larger-scale transcriptomic changes that persisted throughout the infection process. Weighted gene co-expression network analysis identified highly correlated genes in 32 gene expression modules between B. cinerea and strawberry. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that the disease response protein FvRLP2 from woodland strawberry interacted with the cell death inducing proteins BcXYG1 and BcPG3 from B. cinerea. Overexpression of FvRLP2 in both strawberry and Arabidopsis inhibited B. cinerea infection, confirming these genes' respective functions. These findings shed light on the arms race process by which B. cinerea invades host plants and strawberry to defend against pathogen infection.
Collapse
Affiliation(s)
- Yibo Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaikai Zhu
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Fan X, Xie H, Huang X, Zhang S, Nie Y, Chen H, Xie X, Tang M. A module centered on the transcription factor Msn2 from arbuscular mycorrhizal fungus Rhizophagus irregularis regulates drought stress tolerance in the host plant. THE NEW PHYTOLOGIST 2023; 240:1497-1518. [PMID: 37370253 DOI: 10.1111/nph.19077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can form mutualistic endosymbiosis with > 70% of land plants for obtaining fatty acids and sugars, in return, AM fungi promote plant nutrients and water acquisition to enhance plant fitness. However, how AM fungi orchestrate its own signaling components in response to drought stress remains elusive. Here, we identify a transcription factor containing C2H2 zinc finger domains, RiMsn2 from Rhizophagus irregularis. To characterize the RiMsn2, we combined heterologous expression, subcellular localization in yeasts, and biochemical and molecular studies with reverse genetics approaches during the in planta phase. The results indicate that RiMsn2 is highly conserved across AM fungal species and induced during the early stages of symbiosis. It is significantly upregulated in mycorrhizal roots under severe drought conditions. The nucleus-localized RiMsn2 regulates osmotic homeostasis and trehalose contents of yeasts. Importantly, gene silencing analyses indicate that RiMsn2 is essential for arbuscule formation and enhances plant tolerance to drought stress. Results from yeasts and biochemical experiments suggest that the RiHog1-RiMsn2-STREs module controls the drought stress-responsive genes in AM fungal symbiont. In conclusion, our findings reveal that a module centered on the transcriptional activator RiMsn2 from AM fungus regulates drought stress tolerance in host plant.
Collapse
Affiliation(s)
- Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinru Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuyuan Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuying Nie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Sardar A. Genetic amelioration of fruit and vegetable crops to increase biotic and abiotic stress resistance through CRISPR Genome Editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1260102. [PMID: 37841604 PMCID: PMC10570431 DOI: 10.3389/fpls.2023.1260102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Environmental changes and increasing population are major concerns for crop production and food security as a whole. To address this, researchers had focussed on the improvement of cereals and pulses and have made considerable progress till the beginning of this decade. However, cereals and pulses together, without vegetables and fruits, are inadequate to meet the dietary and nutritional demands of human life. Production of good quality vegetables and fruits is highly challenging owing to their perishable nature and short shelf life as well as abiotic and biotic stresses encountered during pre- and post-harvest. Genetic engineering approaches to produce good quality, to increase shelf life and stress-resistance, and to change the time of flowering and fruit ripening by introducing foreign genes to produce genetically modified crops were quite successful. However, several biosafety concerns, such as the risk of transgene-outcrossing, limited their production, marketing, and consumption. Modern genome editing techniques, like the CRISPR/Cas9 system, provide a perfect solution in this scenario, as it can produce transgene-free genetically edited plants. Hence, these genetically edited plants can easily satisfy the biosafety norms for crop production and consumption. This review highlights the potential of the CRISPR/Cas9 system for the successful generation of abiotic and biotic stress resistance and thereby improving the quality, yield, and overall productivity of vegetables and fruits.
Collapse
Affiliation(s)
- Atish Sardar
- Department of Botany, Jogesh Chandra Chaudhuri College, West Bengal, Kolkata, India
| |
Collapse
|
11
|
Li P, Li W, Zhou X, Situ J, Xie L, Xi P, Yang B, Kong G, Jiang Z. Peronophythora litchii RXLR effector P. litchii avirulence homolog 202 destabilizes a host ethylene biosynthesis enzyme. PLANT PHYSIOLOGY 2023; 193:756-774. [PMID: 37232407 DOI: 10.1093/plphys/kiad311] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Oomycete pathogens can secrete hundreds of effectors into plant cells to interfere with the plant immune system during infection. Here, we identified a Arg-X-Leu-Arg (RXLR) effector protein from the most destructive pathogen of litchi (Litchi chinensis Sonn.), Peronophythora litchii, and named it P. litchii avirulence homolog 202 (PlAvh202). PlAvh202 could suppress cell death triggered by infestin 1 or avirulence protein 3a/resistance protein 3a in Nicotiana benthamiana and was essential for P. litchii virulence. In addition, PlAvh202 suppressed plant immune responses and promoted the susceptibility of N. benthamiana to Phytophthora capsici. Further research revealed that PlAvh202 could suppress ethylene (ET) production by targeting and destabilizing plant S-adenosyl-L-methionine synthetase (SAMS), a key enzyme in the ET biosynthesis pathway, in a 26S proteasome-dependent manner without affecting its expression. Transient expression of LcSAMS3 induced ET production and enhanced plant resistance, whereas inhibition of ET biosynthesis promoted P. litchii infection, supporting that litchi SAMS (LcSAMS) and ET positively regulate litchi immunity toward P. litchii. Overall, these findings highlight that SAMS can be targeted by the oomycete RXLR effector to manipulate ET-mediated plant immunity.
Collapse
Affiliation(s)
- Peng Li
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen Li
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Junjian Situ
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lizhu Xie
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Pinggen Xi
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Bo Yang
- College of Grassland Science/Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghui Kong
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zide Jiang
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Zhang S, Wang X, He J, Zhang S, Zhao T, Fu S, Zhou C. A Sec-dependent effector, CLIBASIA_04425, contributes to virulence in ' Candidatus Liberibater asiaticus'. FRONTIERS IN PLANT SCIENCE 2023; 14:1224736. [PMID: 37554557 PMCID: PMC10405523 DOI: 10.3389/fpls.2023.1224736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide, mainly caused by 'Candidatus Liberibacter asiaticus' (CLas). It encodes a large number of Sec-dependent effectors that contribute to HLB progression. In this study, an elicitor triggering ROS burst and cell death in Nicotiana benthamiana, CLIBASIA_04425 (CLas4425), was identified. Of particular interest, its cell death-inducing activity is associated with its subcellular localization and the cytoplasmic receptor Botrytis-induced kinase 1 (BIK1). Compared with CLas infected psyllids, CLas4425 showed higher expression level in planta. The transient expression of CLas4425 in N. benthamiana and its overexpression in Citrus sinensis enhanced plant susceptibility to Pseudomonas syringae pv. tomato DC3000 ΔhopQ1-1 and CLas, respectively. Furthermore, the salicylic acid (SA) level along with the expression of genes NPR1/EDS1/NDR1/PRs in SA signal transduction was repressed in CLas4425 transgenic citrus plants. Taken together, CLas4425 is a virulence factor that promotes CLas proliferation, likely by interfering with SA-mediated plant immunity. The results obtained facilitate our understanding of CLas pathogenesis.
Collapse
Affiliation(s)
- Shushe Zhang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agriculture Sciences, Institute of Plant Protection, Beijing, China
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jun He
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Song Zhang
- Guangxi Citrus Breeding and Cultivation Engineering Technology Center Academy of Specialty Crops, Guangxi, Guilin, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agriculture Sciences, Institute of Plant Protection, Beijing, China
| | - Shimin Fu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Changyong Zhou
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
13
|
Gu B, Gao W, Liu Z, Shao G, Peng Q, Mu Y, Wang Q, Zhao H, Miao J, Liu X. A single region of the Phytophthora infestans avirulence effector Avr3b functions in both cell death induction and plant immunity suppression. MOLECULAR PLANT PATHOLOGY 2023; 24:317-330. [PMID: 36696541 PMCID: PMC10013827 DOI: 10.1111/mpp.13298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
As a destructive plant pathogen, Phytophthora infestans secretes diverse host-entering RxLR effectors to facilitate infection. One critical RxLR effector, PiAvr3b, not only induces effector-triggered immunity (ETI), which is associated with the potato resistance protein StR3b, but also suppresses pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). To date, the molecular basis underlying such dual activities remains unknown. Based on phylogenetic analysis of global P. infestans isolates, we found two PiAvr3b isoforms that differ by three amino acids. Despite this sequence variation, the two isoforms retain the same properties in activating the StR3b-mediated hypersensitive response (HR) and inhibiting necrosis induced by three PAMPs (PiNpp, PiINF1, and PsXeg1) and an RxLR effector (Pi10232). Using a combined mutagenesis approach, we found that the dual activities of PiAvr3b were tightly linked and determined by 88 amino acids at the C-terminus. We further determined that either the W60 or the E134 residue of PiAvr3b was essential for triggering StR3b-associated HR and inhibiting PiNpp- and Pi10232-associated necrosis, while the S99 residue partially contributed to PTI suppression. Additionally, nuclear localization of PiAvr3b was required to stimulate HR and suppress PTI, but not to inhibit Pi10232-associated cell death. Our study revealed that PiAvr3b suppresses the plant immune response at different subcellular locations and provides an example in which a single amino acid of an RxLR effector links ETI induction and cell death suppression.
Collapse
Affiliation(s)
- Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Wenxin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Zeqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Guangda Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qin Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yinyu Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Hua Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
14
|
Wang S, Xie X, Che X, Lai W, Ren Y, Fan X, Hu W, Tang M, Chen H. Host- and virus-induced gene silencing of HOG1-MAPK cascade genes in Rhizophagus irregularis inhibit arbuscule development and reduce resistance of plants to drought stress. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:866-883. [PMID: 36609693 PMCID: PMC10037146 DOI: 10.1111/pbi.14006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can form beneficial associations with the most terrestrial vascular plant species. AM fungi not only facilitate plant nutrient acquisition but also enhance plant tolerance to various environmental stresses such as drought stress. However, the molecular mechanisms by which AM fungal mitogen-activated protein kinase (MAPK) cascades mediate the host adaptation to drought stimulus remains to be investigated. Recently, many studies have shown that virus-induced gene silencing (VIGS) and host-induced gene silencing (HIGS) strategies are used for functional studies of AM fungi. Here, we identify the three HOG1 (High Osmolarity Glycerol 1)-MAPK cascade genes RiSte11, RiPbs2 and RiHog1 from Rhizophagus irregularis. The expression levels of the three HOG1-MAPK genes are significantly increased in mycorrhizal roots of the plant Astragalus sinicus under severe drought stress. RiHog1 protein was predominantly localized in the nucleus of yeast in response to 1 M sorbitol treatment, and RiPbs2 interacts with RiSte11 or RiHog1 directly by pull-down assay. Importantly, VIGS or HIGS of RiSte11, RiPbs2 or RiHog1 hampers arbuscule development and decreases relative water content in plants during AM symbiosis. Moreover, silencing of HOG1-MAPK cascade genes led to the decreased expression of drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3) in the AM fungal symbiont in response to drought stress. Taken together, this study demonstrates that VIGS or HIGS of AM fungal HOG1-MAPK cascade inhibits arbuscule development and expression of AM fungal drought-resistant genes under drought stress.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
15
|
Combier M, Evangelisti E, Piron MC, Schornack S, Mestre P. Candidate effector proteins from the oomycetes Plasmopara viticola and Phytophthora parasitica share similar predicted structures and induce cell death in Nicotiana species. PLoS One 2022; 17:e0278778. [PMID: 36459530 PMCID: PMC9718384 DOI: 10.1371/journal.pone.0278778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Effector proteins secreted by plant pathogens are essential for infection. Cytoplasmic RXLR effectors from oomycetes are characterized by the presence of RXLR and EER motifs that are frequently linked to WY- and/or LWY-domains, folds that are exclusive to this effector family. A related family of secreted candidate effector proteins, carrying WY-domains and the EER motif but lacking the canonical RXLR motif, has recently been described in oomycetes and is mainly found in downy mildew pathogens. Plasmopara viticola is an obligate biotrophic oomycete causing grapevine downy mildew. Here we describe a conserved Pl. viticola secreted candidate non-RXLR effector protein with cell death-inducing activity in Nicotiana species. A similar RXLR effector candidate from the broad host range oomycete pathogen Phytophthora parasitica also induces cell death in Nicotiana. Through comparative tertiary structure modelling, we reveal that both proteins are predicted to carry WY- and LWY-domains. Our work supports the presence of LWY-domains in non-RXLR effectors and suggests that effector candidates with similar domain architecture may exert similar activities.
Collapse
Affiliation(s)
- Maud Combier
- SVQV, UMR-A 1131, Université de Strasbourg, INRAE, Colmar, France
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | | | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Pere Mestre
- SVQV, UMR-A 1131, Université de Strasbourg, INRAE, Colmar, France
- * E-mail:
| |
Collapse
|
16
|
ThSCSP_12: Novel Effector in Tilletia horrida That Induces Cell Death and Defense Responses in Non-Host Plants. Int J Mol Sci 2022; 23:ijms232314752. [PMID: 36499087 PMCID: PMC9736266 DOI: 10.3390/ijms232314752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The basidiomycete fungus Tilletia horrida causes rice kernel smut (RKS), a crucial disease afflicting hybrid-rice-growing areas worldwide, which results in significant economic losses. However, few studies have investigated the pathogenic mechanisms and functions of effectors in T. horrida. In this study, we found that the candidate effector ThSCSP_12 caused cell necrosis in the leaves of Nicotiana benthamiana. The predicted signal peptide (SP) of this protein has a secreting function, which is required for ThSCSP_12 to induce cell death. The 1- 189 amino acid (aa) sequences of ThSCSP_12 are sufficient to confer it the ability to trigger cell death in N. benthamiana. The expression of ThSCSP_12 was induced and up-regulated during T. horrida infection. In addition, we also found that ThSCSP_12 localized in both the cytoplasm and nucleus of plant cells and that nuclear localization of this protein is required to induce cell death. Furthermore, the ability of ThSCSP_12 to trigger cell death in N. benthamiana depends on the (RAR1) protein required for Mla12 resistance but not on the suppressor of the G2 allele of Skp1 (SGT1), heat shock protein 90 (HSP90), or somatic embryogenesis receptor-like kinase (SERK3). Crucially, however, ThSCSP_12 induced a defense response in N. benthamiana leaves; yet, the expression of multiple defense-related genes was suppressed in response to heterologous expression in host plants. To sum up, these results strongly suggest that ThSCSP_12 operates as an effector in T. horrida-host interactions.
Collapse
|
17
|
Qian Y, Zheng X, Wang X, Yang J, Zheng X, Zeng Q, Li J, Zhuge Q, Xiong Q. Systematic identification and functional characterization of the CFEM proteins in poplar fungus Marssonina brunnea. Front Cell Infect Microbiol 2022; 12:1045615. [PMID: 36439212 PMCID: PMC9684206 DOI: 10.3389/fcimb.2022.1045615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/21/2022] [Indexed: 01/10/2024] Open
Abstract
Proteins containing Common in Fungal Extracellular Membrane (CFEM) domains uniquely exist in fungi and play significant roles in their whole life history. In this study, a total of 11 MbCFEM proteins were identified from Marssonina brunnea f. sp. multigermtubi (MULT), a hemibiotrophic pathogenic fungus on poplars that causes severe leaf diseases. Phylogenic analysis showed that the 11 proteins (MbCFEM1-11) were divided into three clades based on the trans-membrane domain and the CFEM domain. Sequence alignment and WebLogo analysis of CFEM domains verified the amino acids conservatism therein. All of them possess eight cysteines except MbCFEM4 and MbCFEM11, which lack two cysteines each. Six MbCFEM proteins with a signal peptide and without trans-membrane domain were considered as candidate effectors for further functional analysis. Three-dimensional (3D) models of their CFEM domains presented a helical-basket structure homologous to the crucial virulence factor Csa2 of Candida albicans. Afterward, four (MbCFEM1, 6, 8, and 9) out of six candidate effectors were successfully cloned and a yeast signal sequence trap (YSST) assay confirmed their secretion activity. Pathogen challenge assays demonstrated that the transient expression of four candidate MbCFEM effectors in Nicotiana benthamiana promoted Fusarium proliferatum infection, respectively. In an N. benthamiana heterogeneous expression system, MbCFEM1, MbCFEM6, and MbCFEM9 appeared to suppress both BAX/INF1-triggered PCD, whereas MbCFEM8 could only defeat BAX-triggered PCD. Additionally, subcellular localization analysis indicated that the four candidate MbCFEM effectors accumulate in the cell membrane, nucleus, chloroplast, and cytosolic bodies. These results demonstrate that MbCFEM1, MbCFEM6, MbCFEM8, and MbCFEM9 are effectors of M. brunnea and provide valuable targets for further dissection of the molecular mechanisms underlying the poplar-M. brunnea interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
18
|
Situ J, Xi P, Lin L, Huang W, Song Y, Jiang Z, Kong G. Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol 2022; 13:984672. [PMID: 36160220 PMCID: PMC9500583 DOI: 10.3389/fmicb.2022.984672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.
Collapse
Affiliation(s)
- Junjian Situ
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weixiong Huang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Song
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- *Correspondence: Guanghui Kong,
| |
Collapse
|
19
|
Li M, Xie L, Wang M, Lin Y, Zhong J, Zhang Y, Zeng J, Kong G, Xi P, Li H, Ma LJ, Jiang Z. FoQDE2-dependent milRNA promotes Fusarium oxysporum f. sp. cubense virulence by silencing a glycosyl hydrolase coding gene expression. PLoS Pathog 2022; 18:e1010157. [PMID: 35512028 PMCID: PMC9113603 DOI: 10.1371/journal.ppat.1010157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/17/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence, suggesting the involvement of milRNA biosynthesis in the Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly down-regulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR and Northern blot analysis. Compared to the wild-type, the deletion mutant of milR-87 was significantly reduced in virulence, while overexpression of milR-87 enhanced disease severity, confirming that milR-87 is crucial for Foc virulence in the infection process. We furthermore identified FOIG_15013 (a glycosyl hydrolase-coding gene) as the direct target of milR-87 based on the expression of FOIG_15013-GFP fusion protein. The FOIG_15013 deletion mutant displayed similar phenotypes as the overexpression of milR-87, with a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. However, knowledge about pathogenesis of Foc is limited. In particular, pathogenic regulatory mechanism of the microRNA like small RNAs (milRNAs) found in Foc is unknown. Here, we found that FoQDE2, an Argonaute coding gene, and two Dicer coding genes FoDCL1 and FoDCL2, which are involved in milRNA biosynthesis, are significantly induced during the early infection stage of Foc. The results suggested that the milRNAs biosynthesis mediated by these genes may play an active role in the infection process of Foc. Based on this assumption, we subsequently found a FoQDE2-dependent milRNA (milR-87) and identified its target gene. Functional analysis showed that FoQDE2, milR-87 and its target gene were involved in the pathogenicity of Foc in different degree. The studies help us gain insight into the pathogenesis with FoQDE2, milR-87, and its target gene as central axis in Foc. The identified pathogenicity-involved milRNA provides an active target for developing novel and efficient biocontrol agents against Banana Fusarium wilt.
Collapse
Affiliation(s)
- Minhui Li
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
- * E-mail: (ML); (LJM); (ZJ)
| | - Lifei Xie
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Meng Wang
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Yilian Lin
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Jiaqi Zhong
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Bioinformatics section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, United States of America
| | - Jing Zeng
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Guanghui Kong
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Pinggen Xi
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Huaping Li
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (ML); (LJM); (ZJ)
| | - Zide Jiang
- Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, PR China
- * E-mail: (ML); (LJM); (ZJ)
| |
Collapse
|
20
|
Xie X, Lai W, Che X, Wang S, Ren Y, Hu W, Chen H, Tang M. A SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. THE NEW PHYTOLOGIST 2022; 234:650-671. [PMID: 35037255 DOI: 10.1111/nph.17973] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/22/2021] [Indexed: 05/28/2023]
Abstract
Reciprocal symbiosis of > 70% of terrestrial vascular plants with arbuscular mycorrhizal (AM) fungi provides the fungi with fatty acids and sugars. In return, AM fungi facilitate plant phosphate (Pi) uptake from soil. However, how AM fungi handle Pi transport and homeostasis at the symbiotic interface of AM symbiosis is poorly understood. Here, we identify an SPX (SYG1/Pho81/XPR1) domain-containing phosphate transporter, RiPT7 from Rhizophagus irregularis. To characterize the RiPT7 transporter, we combined subcellular localization and heterologous expression studies in yeasts with reverse genetics approaches during the in planta phase. The results show that RiPT7 is conserved across fungal species and expressed in the intraradical mycelia. It is expressed in the arbuscules, intraradical hyphae and vesicles, independently of Pi availability. The plasma membrane-localized RiPT7 facilitates bidirectional Pi transport, depending on Pi gradient across the plasma membrane, whereas the SPX domain of RiPT7 inhibits Pi transport activity and mediates the vacuolar targeting of RiPT7 in yeast in response to Pi starvation. Importantly, RiPT7 silencing hampers arbuscule development of R. irregularis and symbiotic Pi delivery under medium- to low-Pi conditions. Collectively, our findings reveal a role for RiPT7 in fine-tuning of Pi homeostasis across the fungal membrane to maintain the AM development.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
21
|
A C 2H 2 Zinc Finger Protein PlCZF1 Is Necessary for Oospore Development and Virulence in Peronophythora litchii. Int J Mol Sci 2022; 23:ijms23052733. [PMID: 35269874 PMCID: PMC8910974 DOI: 10.3390/ijms23052733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
C2H2 zinc finger is one of the most common motifs found in the transcription factors (TFs) in eukaryotes organisms, which have a broad range of functions, such as regulation of growth and development, stress tolerance and pathogenicity. Here, PlCZF1 was identified to encode a C2H2 zinc finger in the litchi downy blight pathogen Peronophythora litchii. PlCZF1 is conserved in P. litchii and Phytophthora species. In P. litchii, PlCZF1 is highly expressed in sexual developmental and early infection stages. We generated Δplczf1 mutants using the CRISPR/Cas9 method. Compared with the wild type, the Δplczf1 mutants showed no significant difference in vegetative growth and asexual reproduction, but were defective in oospore development and virulence. Further experiments revealed that the transcription of PlM90, PlLLP and three laccase encoding genes were down-regulated in the Δplczf1 mutant. Our results demonstrated that PlCZF1 is a vital regulator for sexual development and pathogenesis in P. litchii.
Collapse
|
22
|
Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int J Biol Macromol 2022; 206:188-202. [PMID: 35227707 DOI: 10.1016/j.ijbiomac.2022.02.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Plant pathogenic fungi encode and secrete effector proteins to promote pathogenesis. In recent years, the important role of effector proteins in fungi and plant host interactions has become increasingly prominent. In this review, the functional characterization and molecular mechanisms by which fungal effector proteins modulate biological processes and suppress the defense of plant hosts are discussed, with an emphasis on cell localization during fungal infection. This paper also provides a comprehensive review of bioinformatic and experimental methods that are currently available for the identification of fungal effector proteins. We additionally summarize the secretion pathways and the methods for verifying the presence effector proteins in plant host cells. For future research, comparative genomic studies of different pathogens with varying life cycles will allow comprehensive and systematic identification of effector proteins. Additionally, functional analysis of effector protein interactions with a wider range of hosts (especially non-model crops) will provide more detailed repertoires of fungal effectors. Identifying effector proteins and verifying their functions will improve our understanding of their role in causing disease and in turn guide future strategies for combatting fungal infections.
Collapse
|
23
|
Autophagy-Related Gene PlATG6a Is Involved in Mycelial Growth, Asexual Reproduction and Tolerance to Salt and Oxidative Stresses in Peronophythora litchii. Int J Mol Sci 2022; 23:ijms23031839. [PMID: 35163762 PMCID: PMC8836449 DOI: 10.3390/ijms23031839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Autophagy is ubiquitously present in eukaryotes. During this process, intracellular proteins and some waste organelles are transported into lysosomes or vacuoles for degradation, which can be reused by the cell to guarantee normal cellular metabolism. However, the function of autophagy-related (ATG) proteins in oomycetes is rarely known. In this study, we identified an autophagy-related gene, PlATG6a, encoding a 514-amino-acid protein in Peronophythora litchii, which is the most destructive pathogen of litchi. The transcriptional level of PlATG6a was relatively higher in mycelium, sporangia, zoospores and cysts. We generated PlATG6a knockout mutants using CRISPR/Cas9 technology. The P. litchii Δplatg6a mutants were significantly impaired in autophagy and vegetative growth. We further found that the Δplatg6a mutants displayed decreased branches of sporangiophore, leading to impaired sporangium production. PlATG6a is also involved in resistance to oxidative and salt stresses, but not in sexual reproduction. The transcription of peroxidase-encoding genes was down-regulated in Δplatg6a mutants, which is likely responsible for hypersensitivity to oxidative stress. Compared with the wild-type strain, the Δplatg6a mutants showed reduced virulence when inoculated on the litchi leaves using mycelia plugs. Overall, these results suggest a critical role for PlATG6a in autophagy, vegetative growth, sporangium production, sporangiophore development, zoospore release, pathogenesis and tolerance to salt and oxidative stresses in P. litchii.
Collapse
|
24
|
Xu Z, Xiong D, Han Z, Tian C. A Putative Effector CcSp84 of Cytospora chrysosperma Localizes to the Plant Nucleus to Trigger Plant Immunity. Int J Mol Sci 2022; 23:1614. [PMID: 35163540 PMCID: PMC8835870 DOI: 10.3390/ijms23031614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cytospora chrysosperma is the main causal agent of poplar canker disease in China, especially in some areas with poor site conditions. Pathogens secrete a large number of effectors to interfere the plant immunity and promote their infection and colonization. Nevertheless, the roles of effectors in C. chrysosperma remain poorly understood. In this study, we identified and functionally characterized a candidate effector CcSp84 from C. chrysosperma, which contained a nuclear localization signal motif at the C-terminal and was highly induced during infection stages. Transient expression of CcSp84 in Nicotiana benthamiana leaves could trigger cell death. Additionally, deletion of CcSp84 significantly reduced fungal virulence to the polar twigs, while no obvious defects were observed in fungal growth and sensitivity to H2O2. Confocal microscopy revealed that CcSp84 labeled with a green fluorescent protein (GFP) was mainly accumulated in the plant nucleus. Further analysis revealed that the plant nucleus localization of CcSp84 was necessary to trigger plant immune responses, including ROS accumulation, callose deposition, and induced expression of jasmonic acid and ethylene defense-related genes. Collectively, our results suggest that CcSp84 is a virulence-related effector, and plant nucleus localization is required for its functions.
Collapse
Affiliation(s)
- Zhiye Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhu Han
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Z.X.); (Z.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
25
|
Meng Y, Zeng F, Hu J, Li P, Xiao S, Zhou L, Gong J, Liu Y, Hao Z, Cao Z, Dong J. Novel factors contributing to fungal pathogenicity at early stages of Setosphaeria turcica infection. MOLECULAR PLANT PATHOLOGY 2022; 23:32-44. [PMID: 34628700 PMCID: PMC8659557 DOI: 10.1111/mpp.13140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/06/2023]
Abstract
The fungal pathogen Setosphaeria turcica causes leaf blight on maize, which leads to considerable crop losses. However, how S. turcica establishes sustained systemic infection is largely unknown. Here, we report several novel factors contributing to S. turcica pathogenicity, identified using a genomic and transcriptional screen at different stages of S. turcica appressorium development. We identified two cytoskeleton regulators, SLM1 and SLM2, that are crucial for hypha and appressorium development. The SLM1 and SLM2 transcripts accumulated during germling stage but their levels were notably reduced at the appressorium stage. Deletion of SLM2 dramatically affected cell morphology, penetration ability, and pathogenicity. We also identified three different types of S. turcica glycosyl hydrolases that are critical for plant cell wall degradation. Their transcripts accumulated during the appressorium infection stage induced by cellophane and maize leaf. Most importantly, we characterized a novel and specific S. turcica effector, appressorium-coupled effector 1 (StACE1), whose expression is coupled to appressorium formation in S. turcica. This protein is required for maize infection and induces cell death on expression in Nicotiana benthamiana. These observations suggest that the phytopathogen S. turcica is primed in advance with multiple strategies for maize infection, which are coupled to appressorium formation at the early infection stages.
Collapse
Affiliation(s)
- Yanan Meng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Jingjing Hu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Pan Li
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Shenglin Xiao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Lihong Zhou
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Jiangang Gong
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Yuwei Liu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| |
Collapse
|
26
|
Li W, Li P, Zhou X, Situ J, Lin Y, Qiu J, Yuan Y, Xi P, Jiang Z, Kong G. A Cytochrome B 5-Like Heme/Steroid Binding Domain Protein, PlCB5L1, Regulates Mycelial Growth, Pathogenicity and Oxidative Stress Tolerance in Peronophythora litchii. FRONTIERS IN PLANT SCIENCE 2021; 12:783438. [PMID: 34899811 PMCID: PMC8655872 DOI: 10.3389/fpls.2021.783438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
As an electron transport component, cytochrome b5 is an essential component of the Class II cytochrome P450 monooxygenation system and widely present in animals, plants, and fungi. However, the roles of Cyt-b5 domain proteins in pathogenic oomycetes remain unknown. Peronophythora litchii is an oomycete pathogen that causes litchi downy blight, the most destructive disease of litchi. In this study, we identified a gene, designated PlCB5L1, that encodes a Cyt-b5 domain protein in P. litchii, and characterized its function. PlCB5L1 is highly expressed in the zoospores, cysts, germinated cysts, and during early stages of infection. PlCB5L1 knockout mutants showed reduced growth rate and β-sitosterol utilization. Importantly, we also found that PlCB5L1 is required for the full pathogenicity of P. litchii. Compared with the wild-type strain, the PlCB5L1 mutants exhibited significantly higher tolerance to SDS and sorbitol, but impaired tolerance to cell wall stress, osmotic stress, and oxidative stress. Further, the expression of genes involved in oxidative stress tolerance, including peroxidase, cytochrome P450, and laccase genes, were down-regulated in PlCB5L1 mutants under oxidative stress. This is the first report that a Cyt-b5 domain protein contributes to the development, stress response, and pathogenicity in plant pathogenic oomycetes.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Peng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yiming Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Jiahui Qiu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yuling Yuan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Yuan C, Li C, Zhao X, Yan C, Wang J, Mou Y, Sun Q, Shan S. Genome-Wide Identification and Characterization of HSP90-RAR1-SGT1-Complex Members From Arachis Genomes and Their Responses to Biotic and Abiotic Stresses. Front Genet 2021; 12:689669. [PMID: 34512718 PMCID: PMC8430224 DOI: 10.3389/fgene.2021.689669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular chaperone complex HSP90-RAR1-SGT1 (HRS) plays important roles in both biotic and abiotic stress responses in plants. A previous study showed that wild peanut Arachis diogoi SGT1 (AdSGT1) could enhance disease resistance in transgenic tobacco and peanut. However, no systematic analysis of the HRS complex in Arachis has been conducted to date. In this study, a comprehensive analysis of the HRS complex were performed in Arachis. Nineteen HSP90, two RAR1 and six SGT1 genes were identified from the allotetraploid peanut Arachis hypogaea, a number close to the sum of those from the two wild diploid peanut species Arachis duranensis and Arachis ipaensis. According to phylogenetic and chromosomal location analyses, thirteen orthologous gene pairs from Arachis were identified, all of which except AhHSP90-A8, AhHSP90-B9, AdHSP90-9, and AiHSP90-9 were localized on the syntenic locus, and they shared similar exon-intron structures, conserved motifs and expression patterns. Phylogenetic analysis showed that HSP90 and RAR1 from dicot and monocot plants diverged into different clusters throughout their evolution. Chromosomal location analysis indicated that AdSGT1 (the orthologous gene of AhSGT1-B3 in this study) might provide resistance to leaf late spot disease dependent on the orthologous genes of AhHSP90-B10 and AhRAR1-B in the wild peanut A. diogoi. Several HRS genes exhibited tissue-specific expression patterns, which may reflect the sites where they perform functions. By exploring published RNA-seq data, we found that several HSP90 genes play major roles in both biotic and abiotic stress responses, especially salt and drought responses. Autoactivation assays showed that AhSGT1-B1 could not be used as bait for yeast two-hybrid (Y2H) library screening. AhRAR1 and AhSGT1 could strongly interact with each other and interact with AhHSP90-B8. The present study represents the first systematic analysis of HRS complex genes in Arachis and provides valuable information for functional analyses of HRS complex genes. This study also offers potential stress-resistant genes for peanut improvement.
Collapse
Affiliation(s)
- Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, China
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, China
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
28
|
Yaroshko OM. TRANSIENT EXPRESSION OF REPORTER GENES IN CULTIVARS OF Amaranthus caudatus L. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Local cultivars of A. caudatus: Helios and Karmin were used as plant material. Amaranth is a new pseudocereal introduced in Ukraine. The plant biomass of amaranth is used in medicine, food industry and cosmetology industry. Aim. The purpose of the work was to identify the optimal conditions for the transient expression of reporter genes in Amaranthus caudatus cultivars. Methods. Biochemical and microscopy methods were used in the following work. Seedlings and adult plants of different age were infiltrated with agrobacterial suspensions separately (genetic vector pCBV19 with a uidA gene and genetic vector pNMD2501 with a gfp gene in Agrobacterium tumefaciens GV3101 strain). Results. Transient expression of the uidA and gfp genes was obtained in amaranth plants after conduction series of experiments. The most intensive transient expression of gfp and uidA genes was observed in seedlings infiltrated at the age of 1 day. The maximum fluorescence of the GFP protein was observed on 5th–6th days. Conclusions. It was shown that the cultivar Helios was more susceptible to agrobacterial infection than the cultivar Karmin. The effectiveness of Agrobacterium mediated transformation was from 16% to 95% for the Helios cultivar and from 12% to 93% for the Karmin cultivar. The obtained results indicate that the studied amaranth cultivars can potentially be used for obtaining transient expression of target genes and synthesizing target proteins in their tissues in the future.
Collapse
|
29
|
Liu G, Li H, Fu D. Applications of virus-induced gene silencing for identification of gene function in fruit. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
With the development of bioinformatics, it is easy to obtain information and data about thousands of genes, but the determination of the functions of these genes depends on methods for rapid and effective functional identification. Virus-induced gene silencing (VIGS) is a mature method of gene functional identification developed over the last 20 years, which has been widely used in many research fields involving many species. Fruit quality formation is a complex biological process, which is closely related to ripening. Here, we review the progress and contribution of VIGS to our understanding of fruit biology and its advantages and disadvantages in determining gene function.
Collapse
|
30
|
Ah‐Fong AM, Boyd AM, Matson ME, Judelson HS. A Cas12a-based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor. MOLECULAR PLANT PATHOLOGY 2021; 22:737-752. [PMID: 33724663 PMCID: PMC8126191 DOI: 10.1111/mpp.13051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive form in transformants, suggesting that the active nuclease is toxic. We were able to achieve editing with CRISPR/Cas12a using vectors in which the nuclease and its guide RNA were expressed from a single transcript. Using the elicitor gene Inf1 as a target, we observed editing of one or both alleles in up to 13% of transformants. Editing was more efficient when guide RNA processing relied on the Cas12a direct repeat instead of ribozyme sequences. INF1 protein was not made when both alleles were edited in the same transformant, but surprisingly also when only one allele was altered. We discovered that the isolate used for editing, 1306, exhibited monoallelic expression of Inf1 due to insertion of a copia-like element in the promoter of one allele. The element exhibits features of active retrotransposons, including a target site duplication, long terminal repeats, and an intact polyprotein reading frame. Editing occurred more often on the transcribed allele, presumably due to differences in chromatin structure. The Cas12a system not only provides a tool for modifying genes in P. infestans, but also for other members of the genus by expanding the number of editable sites. Our work also highlights a natural mechanism that remodels oomycete genomes.
Collapse
Affiliation(s)
- Audrey M.V. Ah‐Fong
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Amy M. Boyd
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Michael E.H. Matson
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Howard S. Judelson
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
31
|
The Mitogen-Activated Protein Kinase PlMAPK2 Is Involved in Zoosporogenesis and Pathogenicity of Peronophythoralitchii. Int J Mol Sci 2021; 22:ijms22073524. [PMID: 33805371 PMCID: PMC8036616 DOI: 10.3390/ijms22073524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
As an evolutionarily conserved pathway, mitogen-activated protein kinase (MAPK) cascades function as the key signal transducers that convey information by protein phosphorylation. Here we identified PlMAPK2 as one of 14 predicted MAPKs encoding genes in the plant pathogenic oomycete Peronophythora litchii. PlMAPK2 is conserved in P.litchii and Phytophthora species. We found that PlMAPK2 was up-regulated in sporangium, zoospore, cyst, cyst germination and early stage of infection. We generated PlMAPK2 knockout mutants using the CRISPR/Cas9 method. Compared with wild-type strain, the PlMAPK2 mutants showed no significant difference in vegetative growth, oospore production and sensitivity to various abiotic stresses. However, the sporangium release was severely impaired. We further found that the cleavage of the cytoplasm into uninucleate zoospores was disrupted in the PlMAPK2 mutants, and this developmental phenotype was accompanied by reduction in the transcription levels of PlMAD1 and PlMYB1 genes. Meanwhile, the PlMAPK2 mutants exhibited lower laccase activity and reduced virulence to lychee leaves. Overall, this study identified a MAPK that is critical for zoosporogenesis by regulating the sporangial cleavage and pathogenicity of P.litchii, likely by regulating laccase activity.
Collapse
|
32
|
Chen J, Li Z, Lin B, Liao J, Zhuo K. A Meloidogyne graminicola Pectate Lyase Is Involved in Virulence and Activation of Host Defense Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:651627. [PMID: 33868351 PMCID: PMC8044864 DOI: 10.3389/fpls.2021.651627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 05/27/2023]
Abstract
Plant-parasitic nematodes secrete an array of cell-wall-degrading enzymes to overcome the physical barrier formed by the plant cell wall. Here, we describe a novel pectate lyase gene Mg-PEL1 from M. graminicola. Quantitative real-time PCR assay showed that the highest transcriptional expression level of Mg-PEL1 occurred in pre-parasitic second-stage juveniles, and it was still detected during the early parasitic stage. Using in situ hybridization, we showed that Mg-PEL1 was expressed exclusively within the subventral esophageal gland cells of M. graminicola. The yeast signal sequence trap system revealed that it possessed an N-terminal signal peptide with secretion function. Recombinant Mg-PEL1 exhibited hydrolytic activity toward polygalacturonic acid. Rice plants expressing RNA interference vectors targeting Mg-PEL1 showed an increased resistance to M. graminicola. In addition, using an Agrobacterium-mediated transient expression system and plant immune response assays, we demonstrated that the cell wall localization of Mg-PEL1 was required for the activation of plant defense responses, including programmed plant cell death, reactive oxygen species (ROS) accumulation and expression of defense-related genes. Taken together, our results indicated that Mg-PEL1 could enhance the pathogenicity of M. graminicola and induce plant immune responses during nematode invasion into plants or migration in plants. This provides a new insight into the function of pectate lyases in plants-nematodes interaction.
Collapse
Affiliation(s)
- Jiansong Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| | - Zhiwen Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Kan Zhuo
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Gu B, Shao G, Gao W, Miao J, Wang Q, Liu X, Tyler BM. Transcriptional Variability Associated With CRISPR-Mediated Gene Replacements at the Phytophthora sojae Avr1b-1 Locus. Front Microbiol 2021; 12:645331. [PMID: 33815332 PMCID: PMC8012851 DOI: 10.3389/fmicb.2021.645331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/02/2022] Open
Abstract
Transcriptional plasticity enables oomycetes to rapidly adapt to environmental challenges including emerging host resistance. For example, the soybean pathogen Phytophthora sojae can overcome resistance conferred by the host resistance gene Rps1b through natural silencing of its corresponding effector gene, Avr1b-1. With the Phytophthora CRISPR/Cas9 genome editing system, it is possible to generate site-specific knock-out (KO) and knock-in (KI) mutants and to investigate the biological functions of target genes. In this study, the Avr1b-1 gene was deleted from the P. sojae genome using a homology-directed recombination strategy that replaced Avr1b-1 with a gene encoding the fluorescent protein mCherry. As expected, all selected KO transformants gained virulence on Rps1b plants, while infection of plants lacking Rps1b was not compromised. When a sgRNA-resistant version of Avr1b-1 was reintroduced into the Avr1b-1 locus of an Avr1b KO transformant, KI transformants with a well-transcribed Avr1b-1 gene were unable to infect Rps1b-containing soybeans. However, loss of expression of the incoming Avr1b-1 gene was frequently observed in KI transformants, which resulted in these transformants readily infecting Rps1b soybeans. A similar variability in the expression levels of the incoming gene was observed with AVI- or mCherry-tagged Avr1b-1 constructs. Our results suggest that Avr1b-1 may be unusually susceptible to transcriptional variation.
Collapse
Affiliation(s)
- Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guangda Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenxin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Brett M Tyler
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
34
|
Anupriya C, Shradha N, Prasun B, Abha A, Pankaj S, Abdin MZ, Neeraj S. Genomic and Molecular Perspectives of Host-pathogen Interaction and Resistance Strategies against White Rust in Oilseed Mustard. Curr Genomics 2020; 21:179-193. [PMID: 33071612 PMCID: PMC7521032 DOI: 10.2174/1389202921999200508075410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 03/14/2020] [Indexed: 11/29/2022] Open
Abstract
Oilseed brassicas stand as the second most valuable source of vegetable oil and the third most traded one across the globe. However, the yield can be severely affected by infections caused by phytopathogens. White rust is a major oomycete disease of oilseed brassicas resulting in up to 60% yield loss globally. So far, success in the development of oomycete resistant Brassicas through conventional breeding has been limited. Hence, there is an imperative need to blend conventional and frontier biotechnological means to breed for improved crop protection and yield. This review provides a deep insight into the white rust disease and explains the oomycete-plant molecular events with special reference to Albugo candida describing the role of effector molecules, A. candida secretome, and disease response mechanism along with nucleotide-binding leucine-rich repeat receptor (NLR) signaling. Based on these facts, we further discussed the recent progress and future scopes of genomic approaches to transfer white rust resistance in the susceptible varieties of oilseed brassicas, while elucidating the role of resistance and susceptibility genes. Novel genomic technologies have been widely used in crop sustainability by deploying resistance in the host. Enrichment of NLR repertoire, over-expression of R genes, silencing of avirulent and disease susceptibility genes through RNA interference and CRSPR-Cas are technologies which have been successfully applied against pathogen-resistance mechanism. The article provides new insight into Albugo and Brassica genomics which could be useful for producing high yielding and WR resistant oilseed cultivars across the globe.
Collapse
Affiliation(s)
- Chatterjee Anupriya
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Nirwan Shradha
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Bandyopadhyay Prasun
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Agnihotri Abha
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Sharma Pankaj
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Malik Zainul Abdin
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| | - Shrivastava Neeraj
- 1Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201313, India; 2International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India; 3Centre for Agricultural Biotechnology, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida-201313, India; 4Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida-201313, India; 5Department of Biotechnology, Jamia Hamdard University, New Delhi-110062, India
| |
Collapse
|