1
|
Godinho DP, Yanez RJR, Duque P. Pathogen-responsive alternative splicing in plant immunity. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00311-X. [PMID: 39701905 DOI: 10.1016/j.tplants.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Plant immunity involves a complex and finely tuned response to a wide variety of pathogens. Alternative splicing, a post-transcriptional mechanism that generates multiple transcripts from a single gene, enhances both the versatility and effectiveness of the plant immune system. Pathogen infection induces alternative splicing in numerous plant genes involved in the two primary layers of pathogen recognition: pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). However, the mechanisms underlying pathogen-responsive alternative splicing are just beginning to be understood. In this article, we review recent findings demonstrating that the interaction between pathogen elicitors and plant receptors modulates the phosphorylation status of splicing factors, altering their function, and that pathogen effectors target components of the host spliceosome, controlling the splicing of plant immunity-related genes.
Collapse
Affiliation(s)
- Diogo P Godinho
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Romana J R Yanez
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Paula Duque
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
2
|
Farooq T, Hussain MD, Wang Y, Kamran A, Umar M, Tang Y, He Z, She X. Enhanced antiviral defense against begomoviral infection in Nicotiana benthamiana through strategic utilization of fluorescent carbon quantum dots to activate plant immunity. J Nanobiotechnology 2024; 22:707. [PMID: 39543670 PMCID: PMC11562592 DOI: 10.1186/s12951-024-02994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Owing to their unique physiochemical properties, low toxicity, antipathogenic effects and tunability, fluorescent carbon quantum dots (CQDs) represent a new generation of carbon-based nanomaterials. Despite the mounting research on the efficacy of CQDs against resilient plant pathogens, their potential ability to mitigate viral pathogens and the underlying molecular mechanism(s) remain understudied. In this study, we optimized the CQDs to maximize their antiviral effects against a highly pathogenic Begomovirus (cotton leaf curl Multan virus, CLCuMuV) and elucidated the mechanistic pathways associated with CQDs-mediated viral inhibition. To fine-tune the CQDs-induced antiviral effects against CLCuMuV and investigate the underlying molecular mechanisms,we used HR-TEM, XRD, FT-IR, XPS, and UV‒Vis spectrophotometry to characterize the CQDs. SPAD and FluorCam were used for physiological and photosynthetic performance analysis. Transcriptome, RT‒qPCR, integrated bioinformatics and molecular biology were employed to investigate gene expression, viral quantification and data validation. RESULTS The application of fluorescent, hexagonal crystalline, UV-absorptive and water-soluble CQDs (0.01 mg/ml) significantly reduced the CLCuMuV titer and mitigated viral symptoms in N. benthamiana at the early (5 dpi) and late (20 dpi) stages of infection. CQDs significantly increased the morphophysiological properties, relative chlorophyll contents and photosynthetic (Fv/Fm, QY_max, NPQ and Rfd) performance of the CLCuMuV-infected plants. While CLCuMuV infection disrupted plant immunity, the CQDs improved the antiviral defense response by regulating important immunity-related genes involved in endocytosis/necroptosis, Tam3-transposase, the ABC transporter/sphingolipid signaling pathway and serine/threonine protein kinase activities. CQDs potentially triggered TSS and TTS alternative splicing events in CLCuMuV-infected plants. CONCLUSIONS Overall, these findings underscore the antiviral potential of CQDs, their impact on plant resilience, and their ability to modulate gene expression in response to viral stress. This study's molecular insights provide a foundation for further research on nanomaterial applications in plant virology and crop protection, emphasizing the promising role of CQDs in enhancing plant health and combating viral infections.
Collapse
Affiliation(s)
- Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Muhammad Dilshad Hussain
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, P. R. China
| | - Yuan Wang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Ali Kamran
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, P. R. China
| | - Muhammad Umar
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, 13 St. Johns Avenue, New Town, Hobart, TAS, 7008, Australia
| | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China.
| | - Xiaoman She
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China.
| |
Collapse
|
3
|
Hao J, Wen X, Zhu Y. A Genome-Wide Alternative Splicing Analysis of Gossypium arboreum and Gossypium raimondii During Fiber Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2816. [PMID: 39409686 PMCID: PMC11479146 DOI: 10.3390/plants13192816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024]
Abstract
Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism that contributes to proteome complexity and versatility in different plant species. However, detailed AS exploration in diploid cotton during fiber development has not been reported. In this study, we comparatively analyzed G. arboreum and G. raimondii AS events during fiber development using transcriptome data and identified 9690 and 7617 AS events that were distributed in 6483 and 4859 genes, respectively. G. arboreum had more AS genes and AS events than G. raimondii, and most AS genes were distributed at both ends of all 13 chromosomes in both diploid cotton species. Four major AS types, including IR, SE, A3SS, and A5SS, were all experimentally validated through RT-PCR assays. G. arboreum and G. raimondii had only 1888 AS genes in common, accounting for one-third and one-half of the total number of AS genes, respectively. Furthermore, we found a lysine-specific demethylase coding gene with a different AS mechanism in G. arboreum and G. raimondii, in which AS isoforms lacked part of a key conserved domain. Our findings may provide new directions for the discovery of functional genes involved in cotton species differentiation.
Collapse
Affiliation(s)
- Jianfeng Hao
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.)
| | - Xingpeng Wen
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.)
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.)
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Zhao P, Peng M, Zhang S, Dong Z, Liu M, Xing X, Shi Y, Li H, Chen L. Alternative splicing of the conserved drug-resistant orthologue FpNcb2 is associated with its nuclear accumulation of products and full virulence of Fusarium pseudograminearum. PEST MANAGEMENT SCIENCE 2024; 80:4993-5004. [PMID: 38860488 DOI: 10.1002/ps.8219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Negative cofactor 2 NC2β (Ncb2 or Dr1) is the beta subunit of a conserved heterodimeric regulator of transcription negative cofactor 2 (NC2) complex that has been identified as key regulator of drug resistance in model fungi. However, its role in plant pathogens is still unclear. RESULTS We identified an NC2β orthologue, FpNcb2, in Fusarium pseudograminearum, which is not only a significant regulatory function in drug resistance, but also essential for growth, conidiation and penetration. Moreover, FpNcb2 undergoes alternative splicing which creates two mRNA isoforms. As a putative CCAAT binding protein, FpNcb2 concentrates in the nuclei, contributing to the expression of two spliced mRNA of FpNcb2 in hypha, conidiophores and conidia, with exception of FpNcb2ISOA in germlings. Expression of each spliced mRNA of FpNcb2 in Δfpncb2 mutant could full complement the defects on growth, conidiation and fungicides sensitivity to that of wild type. However, FpNcb2ISOA and FpNcb2ISOB have different effects on virulence. FpNcb2 acts as a regulator for the transcription of some genes encoding drug efflux and hydrolases. CONCLUSION Our analysis showed the existence of alternative mRNA splicing in the NC2β orthologue, which is associated with protein subcellular localization and fungal virulence. The further elucidation of the target genes of NC2β will provide insights into the potential regulation mechanisms in the antifungal resistance and pathogenesis of F. pseudograminearum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peiyi Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengya Peng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiyu Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zaifang Dong
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Min Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiaoping Xing
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
5
|
Ozdemir S, Piya S, Lopes-Caitar VS, Coffey N, Rice JH, Hewezi T. Local and systemic transcriptome and spliceome reprogramming induced by the root-knot nematode Meloidogyne incognita in tomato. HORTICULTURE RESEARCH 2024; 11:uhae206. [PMID: 39286358 PMCID: PMC11403207 DOI: 10.1093/hr/uhae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024]
Abstract
Root-knot nematodes (Meloidogyne spp.) are widely spread root parasites that infect thousands of vascular plant species. These highly polyphagous nematodes engage in sophisticated interactions with host plants that results in the formation of knot-like structures known as galls whose ontogeny remains largely unknown. Here, we determined transcriptome changes and alternative splicing variants induced by Megalaima incognita in galls and neighboring root cells at two distinct infective stages. M. incognita induced substantial transcriptome changes in tomato roots both locally in galls and systemically in neighboring cells. A considerable parallel regulation of gene expression in galls and neighboring cells were detected, indicative of effective intercellular communications exemplified by suppression of basal defense responses particularly during the early stage of infection. The transcriptome analysis also revealed that M. incognita exerts a tight control over the cell cycle process as a whole that results in an increase of ploidy levels in the feeding sites and accelerated mitotic activity of the gall cells. Alternative splicing analysis indicated that M. incognita significantly modulates pre-mRNA splicing as a total of 9064 differentially spliced events from 2898 genes were identified where intron retention and exon skipping events were largely suppressed. Furthermore, a number of differentially spliced events were functionally validated using transgenic hairy root system and found to impact gall formation and nematode egg mass production. Together, our data provide unprecedented insights into the transcriptome and spliceome reprogramming induced by M. incognita in tomato with respect to gall ontogeny and nematode parasitism.
Collapse
|
6
|
Hewezi T. Phytopathogens Reprogram Host Alternative mRNA Splicing. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:173-192. [PMID: 38691872 DOI: 10.1146/annurev-phyto-121423-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Alternative splicing (AS) is an evolutionarily conserved cellular process in eukaryotes in which multiple messenger RNA (mRNA) transcripts are produced from a single gene. The concept that AS adds to transcriptome complexity and proteome diversity introduces a new perspective for understanding how phytopathogen-induced alterations in host AS cause diseases. Recently, it has been recognized that AS represents an integral component of the plant immune system during parasitic, commensalistic, and symbiotic interactions. Here, I provide an overview of recent progress detailing the reprogramming of plant AS by phytopathogens and the functional implications on disease phenotypes. Additionally, I discuss the vital function of AS of immune receptors in regulating plant immunity and how phytopathogens use effector proteins to target key components of the splicing machinery and exploit alternatively spliced variants of immune regulators to negate defense responses. Finally, the functional association between AS and nonsense-mediated mRNA decay in the context of plant-pathogen interface is recapitulated.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
7
|
Ranty-Roby S, Pontvianne F, Quentin M, Favery B. The overlooked manipulation of nucleolar functions by plant pathogen effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1445097. [PMID: 39175483 PMCID: PMC11339880 DOI: 10.3389/fpls.2024.1445097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
Pathogens need to manipulate plant functions to facilitate the invasion of their hosts. They do this by secreting a cocktail of molecules called effectors. Studies of these molecules have mostly focused on the mechanisms underlying their recognition and the subsequent transcriptional reprogramming of cells, particularly in the case of R gene-dependent resistance. However, the roles of these effectors are complex, as they target all cell compartments and their plant targets remain largely uncharacterized. An understanding of the mechanisms involved would be a considerable asset for plant breeding. The nucleolus is the site of many key cellular functions, such as ribosome biogenesis, cellular stress regulation and many other functions that could be targets for pathogenicity. However, little attention has been paid to effectors targeting nucleolar functions. In this review, we aim to fill this gap by providing recent findings on pathogen effectors that target and manipulate nucleolar functions and dynamics to promote infection. In particular, we look at how some effectors hijack ribosome biogenesis, the modulation of transcription or alternative splicing, all key functions occurring at least partially in the nucleolus. By shedding light on the role of the plant nucleolus in pathogen interactions, this review highlights the importance of understanding nucleolar biology in the context of plant immunity and the mechanisms manipulated by plant pathogens.
Collapse
Affiliation(s)
- Sarah Ranty-Roby
- INRAE, Université Côte d’Azur, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis F-06903, Sophia Antipolis, France
| | | | - Michaël Quentin
- INRAE, Université Côte d’Azur, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis F-06903, Sophia Antipolis, France
| | - Bruno Favery
- INRAE, Université Côte d’Azur, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis F-06903, Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Liu F, Cai S, Dai L, Ai N, Feng G, Wang N, Zhang W, Liu K, Zhou B. SR45a plays a key role in enhancing cotton resistance to Verticillium dahliae by alternative splicing of immunity genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:137-152. [PMID: 38569053 DOI: 10.1111/tpj.16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Alternative splicing (AS) of pre-mRNAs increases the diversity of transcriptome and proteome and plays fundamental roles in plant development and stress responses. However, the prevalent changes in AS events and the regulating mechanisms of plants in response to pathogens remain largely unknown. Here, we show that AS changes are an important mechanism conferring cotton immunity to Verticillium dahliae (Vd). GauSR45a, encoding a serine/arginine-rich RNA binding protein, was upregulated expression and underwent AS in response to Vd infection in Gossypium australe, a wild diploid cotton species highly resistant to Vd. Silencing GauSR45a substantially reduced the splicing ratio of Vd-induced immune-associated genes, including GauBAK1 (BRI1-associated kinase 1) and GauCERK1 (chitin elicitor receptor kinase 1). GauSR45a binds to the GAAGA motif that is commonly found in the pre-mRNA of genes essential for PTI, ETI, and defense. The binding between GauSR45a and the GAAGA motif in the pre-mRNA of BAK1 was enhanced by two splicing factors of GauU2AF35B and GauU1-70 K, thereby facilitating exon splicing; silencing either AtU2AF35B or AtU1-70 K decreased the resistance to Vd in transgenic GauSR45a Arabidopsis. Overexpressing the short splicing variant of BAK1GauBAK1.1 resulted in enhanced Verticillium wilt resistance rather than the long one GauBAK1.2. Vd-induced far more AS events were in G. barbadense (resistant tetraploid cotton) than those in G. hirsutum (susceptible tetraploid cotton) during Vd infection, indicating resistance divergence in immune responses at a genome-wide scale. We provided evidence showing a fundamental mechanism by which GauSR45a enhances cotton resistance to Vd through global regulation of AS of immunity genes.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Institue of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50#, Nanjing, 210014, China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Nanjing Forestry University, 159 Longpan Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Nijiang Ai
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Guoli Feng
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Ningshan Wang
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Wang Y, Xu X, Zhang A, Yang S, Li H. Role of alternative splicing in fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109601. [PMID: 38701992 DOI: 10.1016/j.fsi.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.
Collapse
Affiliation(s)
- Yunchao Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinyi Xu
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Ailong Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
10
|
Wang H, Wei X, Mo C, Wei M, Li Y, Fan Y, Gu X, Zhang X, Zhang Y, Kong Q. Integrated full-length transcriptome and metabolome analysis reveals the defence response of melon to gummy stem blight. PLANT, CELL & ENVIRONMENT 2024; 47:1997-2010. [PMID: 38379450 DOI: 10.1111/pce.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Gummy stem blight (GSB), a widespread disease causing great loss to cucurbit production, has become a major threat to melon cultivation. However, the melon-GSB interaction remains largely unknown. Here, full-length transcriptome and widely targeted metabolome were used to investigate the defence responses of resistant (PI511089) and susceptible (Payzawat) melon accessions to GSB pathogen infection at 24 h. The biosynthesis of secondary metabolites and MAPK signalling pathway were specifically enriched for differentially expressed genes in PI511890, while carbohydrate metabolism and amino acid metabolism were specifically enriched in Payzawat. More than 1000 novel genes were identified and MAPK signalling pathway was specifically enriched for them in PI511890. There were 11 793 alternative splicing events involving in the defence response to GSB. Totally, 910 metabolites were identified in Payzawat and PI511890, and flavonoids were the dominant metabolites. Integrated full-length transcriptome and metabolome analysis showed eriodictyol and oxalic acid were the potential marker metabolites for GSB resistance in melon. Moreover, posttranscription regulation was widely involved in the defence response of melon to GSB pathogen infection. These results not only improve our understanding on the interaction between melon and GSB, but also facilitate the genetic improvement of melon with GSB resistance.
Collapse
Affiliation(s)
- Haiyan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xiaoying Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Changjuan Mo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Minghua Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yaqiong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuxin Fan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xuejun Zhang
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yongbing Zhang
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Jia M, Ni Y, Zhao H, Liu X, Yan W, Zhao X, Wang J, He B, Liu H. Full-length transcriptome and RNA-Seq analyses reveal the resistance mechanism of sesame in response to Corynespora cassiicola. BMC PLANT BIOLOGY 2024; 24:64. [PMID: 38262910 PMCID: PMC10804834 DOI: 10.1186/s12870-024-04728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. RESULTS The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. CONCLUSIONS This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
Collapse
Affiliation(s)
- Min Jia
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Hui Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Wenqing Yan
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xinbei Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Jing Wang
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Bipo He
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Hongyan Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
12
|
Xie JQ, Zhou X, Jia ZC, Su CF, Zhang Y, Fernie AR, Zhang J, Du ZY, Chen MX. Alternative Splicing, An Overlooked Defense Frontier of Plants with Respect to Bacterial Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37916838 DOI: 10.1021/acs.jafc.3c04163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Disease represents a major problem in sustainable agricultural development. Plants interact closely with various microorganisms during their development and in response to the prevailing environment. In particular, pathogenic microorganisms can cause plant diseases, affecting the fertility, yield, and longevity of plants. During the long coevolution of plants and their pathogens, plants have evolved both molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) signaling networks in order to regulate host cells in response to pathogen infestation. Additionally, in the postgenomic era, alternative splicing (AS) has become uncovered as one of the major drivers of proteome diversity, and abnormal RNA splicing is closely associated with bacterial infections. Currently, the complexity of host-bacteria interactions is a much studied area of research that has shown steady progress over the past decade. Although the development of high-throughput sequencing technologies and their application in transcriptomes have revolutionized our understanding of AS, many mechanisms related to host-bacteria interactions remain still unclear. To this end, this review summarizes the changes observed in AS during host-bacteria interactions and outlines potential therapeutics for bacterial diseases based on existing studies. In doing so, we hope to provide guidelines for plant disease management in agriculture.
Collapse
Affiliation(s)
- Ji-Qin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zi-Chang Jia
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chang-Feng Su
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Golm, Germany
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Jiang H, Zhang M, Yu F, Li X, Jin J, Zhou Y, Wang Q, Jing T, Wan X, Schwab W, Song C. A geraniol synthase regulates plant defense via alternative splicing in tea plants. HORTICULTURE RESEARCH 2023; 10:uhad184. [PMID: 37885816 PMCID: PMC10599320 DOI: 10.1093/hr/uhad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023]
Abstract
Geraniol is an important contributor to the pleasant floral scent of tea products and one of the most abundant aroma compounds in tea plants; however, its biosynthesis and physiological function in response to stress in tea plants remain unclear. The proteins encoded by the full-length terpene synthase (CsTPS1) and its alternative splicing isoform (CsTPS1-AS) could catalyze the formation of geraniol when GPP was used as a substrate in vitro, whereas the expression of CsTPS1-AS was only significantly induced by Colletotrichum gloeosporioides and Neopestalotiopsis sp. infection. Silencing of CsTPS1 and CsTPS1-AS resulted in a significant decrease of geraniol content in tea plants. The geraniol content and disease resistance of tea plants were compared when CsTPS1 and CsTPS1-AS were silenced. Down-regulation of the expression of CsTPS1-AS reduced the accumulation of geraniol, and the silenced tea plants exhibited greater susceptibility to pathogen infection than control plants. However, there was no significant difference observed in the geraniol content and pathogen resistance between CsTPS1-silenced plants and control plants in the tea plants infected with two pathogens. Further analysis showed that silencing of CsTPS1-AS led to a decrease in the expression of the defense-related genes PR1 and PR2 and SA pathway-related genes in tea plants, which increased the susceptibility of tea plants to pathogens infections. Both in vitro and in vivo results indicated that CsTPS1 is involved in the regulation of geraniol formation and plant defense via alternative splicing in tea plants. The results of this study provide new insights into geraniol biosynthesis and highlight the role of monoterpene synthases in modulating plant disease resistance via alternative splicing.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Feng Yu
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Xuehui Li
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Jieyang Jin
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Youjia Zhou
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Qiang Wang
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biolog and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| |
Collapse
|
14
|
Liu Z, Du Y, Sun Z, Cheng B, Bi Z, Yao Z, Liang Y, Zhang H, Yao R, Kang S, Shi Y, Wan H, Qin D, Xiang L, Leng L, Chen S. Manual correction of genome annotation improved alternative splicing identification of Artemisia annua. PLANTA 2023; 258:83. [PMID: 37721598 DOI: 10.1007/s00425-023-04237-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Gene annotation is essential for genome-based studies. However, algorithm-based genome annotation is difficult to fully and correctly reveal genomic information, especially for species with complex genomes. Artemisia annua L. is the only commercial resource of artemisinin production though the content of artemisinin is still to be improved. Genome-based genetic modification and breeding are useful strategies to boost artemisinin content and therefore, ensure the supply of artemisinin and reduce costs, but better gene annotation is urgently needed. In this study, we manually corrected the newly released genome annotation of A. annua using second- and third-generation transcriptome data. We found that incorrect gene information may lead to differences in structural, functional, and expression levels compared to the original expectations. We also identified alternative splicing events and found that genome annotation information impacted identifying alternative splicing genes. We further demonstrated that genome annotation information and alternative splicing could affect gene expression estimation and gene function prediction. Finally, we provided a valuable version of A. annua genome annotation and demonstrated the importance of gene annotation in future research.
Collapse
Affiliation(s)
- Zhaoyu Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yupeng Du
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhihao Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bohan Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zenghao Bi
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhicheng Yao
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yuting Liang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Run Yao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shen Kang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dou Qin
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China
| | - Li Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China.
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shilin Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Su CF, Das D, Muhammad Aslam M, Xie JQ, Li XY, Chen MX. Eukaryotic splicing machinery in the plant-virus battleground. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1793. [PMID: 37198737 DOI: 10.1002/wrna.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Chang-Feng Su
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ji-Qin Xie
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Xiang-Yang Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Mo-Xian Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
16
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Ma C, Zhang C, Wang X, Zhu F, Wang X, Zhang M, Duan Y. Alternative Splicing Analysis Revealed the Role of Alpha-Linolenic Acid and Carotenoids in Fruit Development of Osmanthus fragrans. Int J Mol Sci 2023; 24:ijms24108666. [PMID: 37240011 DOI: 10.3390/ijms24108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alternative splicing refers to the process of producing different splicing isoforms from the same pre-mRNA through different alternative splicing events, which almost participates in all stages of plant growth and development. In order to understand its role in the fruit development of Osmanthus fragrans, transcriptome sequencing and alternative splicing analysis was carried out on three stages of O. fragrans fruit (O. fragrans "Zi Yingui"). The results showed that the proportion of skipping exon events was the highest in all three periods, followed by a retained intron, and the proportion of mutually exclusive exon events was the lowest and most of the alternative splicing events occurred in the first two periods. The results of enrichment analysis of differentially expressed genes and differentially expressed isoforms showed that alpha-Linolenic acid metabolism, flavonoid biosynthesis, carotenoid biosynthesis, photosynthesis, and photosynthetic-antenna protein pathways were significantly enriched, which may play an important role in the fruit development of O. fragrans. The results of this study lay the foundation for further study of the development and maturation of O. fragrans fruit and further ideas for controlling fruit color and improving fruit quality and appearance.
Collapse
Affiliation(s)
- Cancan Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyan Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Fuyuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Liu Z, Jian Y, Shan L. Disarm resistance: Fungal effectors target WAK alternative splicing variant for virulence. Cell Rep 2023; 42:111939. [PMID: 36640313 DOI: 10.1016/j.celrep.2022.111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Molecular interactions between pathogen effectors and plant immunity underpin the arms race of disease resistance and susceptibility. In a recently published Cell Reports paper, Zuo et al. reported the mechanistic characterization of Fusarium graminearum CFEM effectors that dampen ZmWAK17-mediated defenses in maize (Zea mays).
Collapse
Affiliation(s)
- Zunyong Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Yunqing Jian
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|