1
|
Liang M, Xu J, Luo Y, Qu J. Epidemiology, pathogenesis, clinical characteristics, and treatment of mucormycosis: a review. Ann Med 2024; 56:2396570. [PMID: 39221718 PMCID: PMC11370679 DOI: 10.1080/07853890.2024.2396570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This review aims to summarize the epidemiology, etiology, pathogenesis, clinical manifestations, and current diagnostic and therapeutic approaches for mucormycosis. The goal is to improve understanding of mucormycosis and promote early diagnosis and treatment to reduce mortality. METHODS A comprehensive literature review was conducted, focusing on recent studies and data on mucormycosis. The review includes an analysis of the disease's epidemiology, etiology, and pathogenesis, as well as current diagnostic techniques and therapeutic strategies. RESULTS Mucormycosis is increasingly prevalent due to the growing immunocompromised population, the COVID-19 pandemic, and advances in detection methods. The pathogenesis is closely associated with the host immune status, serum-free iron levels, and the virulence of Mucorales. However, the absence of typical clinical manifestations complicates diagnosis, leading to missed or delayed diagnoses and higher mortality. CONCLUSION An enhanced understanding of the epidemiology, pathogenesis, and clinical presentation of mucormycosis, along with the adoption of improved diagnostic and therapeutic approaches, is essential for reducing mortality rates associated with this opportunistic fungal infection. Early diagnosis and prompt treatment are critical to improving patient outcomes.
Collapse
Affiliation(s)
- Mei Liang
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Xu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanan Luo
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyan Qu
- Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Peppe S, Farrokhi M, Waite EA, Muhi M, Matthaiou EI. Nanoparticle-Mediated Delivery of Deferasirox: A Promising Strategy Against Invasive Aspergillosis. Bioengineering (Basel) 2024; 11:1115. [PMID: 39593775 PMCID: PMC11591955 DOI: 10.3390/bioengineering11111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is a deadly fungal lung infection. Antifungal resistance and treatment side effects are major concerns. Iron chelators are vital for IA management, but systemic use can cause side effects. We developed nanoparticles (NPs) to selectively deliver the iron chelator deferasirox (DFX) for IA treatment. METHODS DFX was encapsulated in poly(lactic-co-glycolic acid) (PLGA) NPs using a single emulsion solvent evaporation method. The NPs were characterized by light scattering and electron microscopy. DFX loading efficiency and release were assessed spectrophotometrically. Toxicity was evaluated using SRB, luciferase, and XTT assays. Therapeutic efficacy was tested in an IA mouse model, assessing fungal burden by qPCR and biodistribution via imaging. RESULTS DFX-NPs had a size of ~50 nm and a charge of ~-30 mV, with a loading efficiency of ~80%. Release kinetics showed DFX release via diffusion and bioerosion. The EC50 of DFX-NPs was significantly lower (p < 0.001) than the free drug, and they were significantly less toxic (p < 0.0001) in mammalian cell cultures. In vivo, NP treatment significantly reduced Af burden (p < 0.05). CONCLUSION The designed DFX-NPs effectively target and kill Af with minimal toxicity to mammalian cells. The significant in vivo therapeutic efficacy suggests these NPs could be a safe and effective treatment for IA.
Collapse
Affiliation(s)
- Sydney Peppe
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
- Albany Medical College, Washington and Lee University, Lexington, VA 24450, USA
| | - Moloud Farrokhi
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
| | - Evan A. Waite
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
- Albany Medical College, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Mustafa Muhi
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
| | - Efthymia Iliana Matthaiou
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (S.P.); (M.F.); (M.M.)
| |
Collapse
|
3
|
Hossain MS, Rahman MA, Dey PR, Khandocar MP, Ali MY, Snigdha M, Coutinho HDM, Islam MT. Natural Isatin Derivatives Against Black Fungus: In Silico Studies. Curr Microbiol 2024; 81:113. [PMID: 38472456 DOI: 10.1007/s00284-024-03621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/18/2024] [Indexed: 03/14/2024]
Abstract
During this coronavirus pandemic, when a lot of people are already severely afflicted with SARS-CoV-19, the dispersion of black fungus is making it worse, especially in the Indian subcontinent. Considering this situation, the idea for an in silico study to identify the potential inhibitor against black fungal infection is envisioned and computational analysis has been conducted with isatin derivatives that exhibit considerable antifungal activity. Through this in silico study, several pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity (ADMET) are estimated for various derivatives. Lipinski rules have been used to observe the drug likeliness property, and to study the electronic properties of the molecules, quantum mechanism was analyzed using the density functional theory (DFT). After applying molecular docking of the isatin derivatives with sterol 14-alpha demethylase enzyme of black fungus, a far higher docking affinity score has been observed for the isatin sulfonamide-34 (derivative 1) than the standard fluconazole. Lastly, molecular dynamic (MD) simulation has been performed for 100 ns to examine the stability of the proposed drug complex by estimating Root Mean Square Deviation (RMSD), Radius of gyration (Rg), Solvent accessible surface area (SASA), Root Mean Square Fluctuation (RMSF), as well as hydrogen bond. Listed ligands have precisely satisfied every pharmacokinetics requirement for a qualified drug candidate and they are non-toxic, non-carcinogenic, and have high stability. This natural molecule known as isatin derivative 1 has shown the potential of being a drug for fungal treatment. However, the impact of the chemicals on living cells requires more investigation and research.
Collapse
Affiliation(s)
- Md Saddam Hossain
- Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Anisur Rahman
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | - Prithbey Raj Dey
- Department of Industrial and Production Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Parvez Khandocar
- Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Yeakub Ali
- Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Mahajabin Snigdha
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
4
|
Pintye A, Bacsó R, Kovács GM. Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Front Microbiol 2024; 15:1354757. [PMID: 38410389 PMCID: PMC10896089 DOI: 10.3389/fmicb.2024.1354757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Azole antifungals are abundantly used in the environment and play an important role in managing fungal diseases in clinics. Due to the widespread use, azole resistance is an emerging global problem for all applications in several fungal species, including trans-kingdom pathogens, capable of infecting plants and humans. Azoles used in agriculture and clinics share the mode of action and facilitating cross-resistance development. The extensive use of azoles in the environment, e.g., for plant protection and wood preservation, contributes to the spread of resistant populations and challenges using these antifungals in medical treatments. The target of azoles is the cytochrome p450 lanosterol 14-α demethylase encoded by the CYP51 (called also as ERG11 in the case of yeasts) gene. Resistance mechanisms involve mainly the mutations in the coding region in the CYP51 gene, resulting in the inadequate binding of azoles to the encoded Cyp51 protein, or mutations in the promoter region causing overexpression of the protein. The World Health Organization (WHO) has issued the first fungal priority pathogens list (FPPL) to raise awareness of the risk of fungal infections and the increasingly rapid spread of antifungal resistance. Here, we review the main issues about the azole antifungal resistance of trans-kingdom pathogenic fungi with the ability to cause serious human infections and included in the WHO FPPL. Methods for the identification of these species and detection of resistance are summarized, highlighting the importance of these issues to apply the proper treatment.
Collapse
Affiliation(s)
- Alexandra Pintye
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Renáta Bacsó
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
| | - Gábor M. Kovács
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
5
|
Velumani K, Arasu A, Issac PK, Kishore Kumar MS, Guru A, Arockiaraj J. Advancements of fish-derived peptides for mucormycosis: a novel strategy to treat diabetic compilation. Mol Biol Rep 2023; 50:10485-10507. [PMID: 37917415 DOI: 10.1007/s11033-023-08882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
6
|
Itoh K, Tsutani H, Mitsuke Y, Iwasaki H. Potential additional effects of iron chelators on antimicrobial- impregnated central venous catheters. Front Microbiol 2023; 14:1210747. [PMID: 37608951 PMCID: PMC10442153 DOI: 10.3389/fmicb.2023.1210747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Kazuhiro Itoh
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| | - Hiroshi Tsutani
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
| | - Yasuhiko Mitsuke
- Department of Internal Medicine, National Hospital Organization Awara Hospital, Awara, Japan
| | - Hiromichi Iwasaki
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
7
|
Pham D, Howard-Jones AR, Sparks R, Stefani M, Sivalingam V, Halliday CL, Beardsley J, Chen SCA. Epidemiology, Modern Diagnostics, and the Management of Mucorales Infections. J Fungi (Basel) 2023; 9:659. [PMID: 37367595 DOI: 10.3390/jof9060659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Mucormycosis is an uncommon, yet deadly invasive fungal infection caused by the Mucorales moulds. These pathogens are a WHO-assigned high-priority pathogen group, as mucormycosis incidence is increasing, and there is unacceptably high mortality with current antifungal therapies. Current diagnostic methods have inadequate sensitivity and specificity and may have issues with accessibility or turnaround time. Patients with diabetes mellitus and immune compromise are predisposed to infection with these environmental fungi, but COVID-19 has established itself as a new risk factor. Mucorales also cause healthcare-associated outbreaks, and clusters associated with natural disasters have also been identified. Robust epidemiological surveillance into burden of disease, at-risk populations, and emerging pathogens is required. Emerging serological and molecular techniques may offer a faster route to diagnosis, while newly developed antifungal agents show promise in preliminary studies. Equitable access to these emerging diagnostic techniques and antifungal therapies will be key in identifying and treating mucormycosis, as delayed initiation of therapy is associated with higher mortality.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Annaleise R Howard-Jones
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sparks
- Douglass Hanly Moir Pathology, Sydney, NSW 2113, Australia
| | - Maurizio Stefani
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Varsha Sivalingam
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
| | - Justin Beardsley
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases & Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2170, Australia
- Faculty of Medicine & Health, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Schwarz P. Mukormykosen - Epidemiologie, Diagnostik und Therapie*. INFO HÄMATOLOGIE + ONKOLOGIE 2023. [PMCID: PMC9943589 DOI: 10.1007/s15004-023-9818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
9
|
Serseg T, Benarous K, Serseg M, Rehman HM, El Bakri Y, Goumri-Said S. Discovery of inhibitors against SARS-CoV-2 associated fungal coinfections via virtual screening, ADMET evaluation, PASS, molecular docking, dynamics and pharmacophore studies. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1080/25765299.2022.2126588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Talia Serseg
- Natural Sciences department, Ecole Normale Supérieure Taleb Abderrahmane, Laghouat, Algeria
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
- Biology department, Amar Telidji University, Laghouat, Algeria
| | - Menaouar Serseg
- Laboratory of Hematology, Central Hospital of Army, Ain Naadja, Algiers, Algeria
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Alnoorians Group of Institutes 55-Elahi Bukhsh Park, Amir Road, Shad Bagh, Shad Bagh, Lahore, Pakistan
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Molecular Mechanisms of Antifungal Resistance in Mucormycosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6722245. [PMID: 36277891 PMCID: PMC9584669 DOI: 10.1155/2022/6722245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/25/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022]
Abstract
Mucormycosis is one among the life-threatening fungal infections with high morbidity and mortality. It is an uncommon and rare infection targeting people with altered immunity. This lethal infection induced by fungi belonging to the Mucorales family is very progressive in nature. The incidence has increased in recent decades owing to the rise in immunocompromised patients. Disease management involves a multimodal strategy including early administration of drugs and surgical removal of infected tissues. Among the antifungals, azoles and amphotericin B remain the gold standard drugs of choice for initial treatment. The order Mucorales are developing a high level of resistance to the available systemic antifungal drugs, and the efficacy still remains below par. Deciphering the molecular mechanisms behind the antifungal resistance in Mucormycosis would add vital information to our available antifungal armamentarium and design novel therapies. Therefore, in this review, we have discussed the mechanisms behind Mucormycosis antifungal resistance. Moreover, this review also highlights the basic mechanisms of action of antifungal drugs and the resistance landscape which is expected to augment future treatment strategies.
Collapse
|
11
|
Zhao Y, Tian W, Yang J, Li X, Lu H, Yu N, Zhang P, Liu C, Chen P, Lei G, Liu Y. Fungal Endophthalmitis in a Case of Rhino-Orbito-Cerebral Mucormycosis: Successfully Treated With Amphotericin B Colloidal Dispersion. Front Microbiol 2022; 13:910419. [PMID: 35783387 PMCID: PMC9240434 DOI: 10.3389/fmicb.2022.910419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background Rhino-orbito-cerebral mucormycosis (ROCM) is an acute, fulminant, opportunistic fungal infection that usually occurs in diabetes or immunocompromised patients. Amphotericin B combined with surgical debridement remains the standard treatment, although it is controversial due to its lager nephrotoxicity. Thus far, no studies have reported the treatment for ROCM-associated fungal endophthalmitis because the exact pathogenesis and transmission routes in ROCM remain unclear. Here, we reported a case of ROCM complicated with fungal endophthalmitis treated favorably with amphotericin B colloidal dispersion (ABCD) in combination with other antifungals and surgical debridement. Case Presentation A 34-year-old woman with diabetes was admitted to our hospital owing to right-sided headache for 8 days, blindness with swelling in the right eye for 5 days, and blindness in the left eye for 1 day. MRI showed that the patient had sphenoid sinus, sinuses, frontal lobe lesions, and proptosis of the right eye. Metagenomic sequencing revealed that the patient had Rhizopus oryzae infection. During hospitalization, the patient received intravenous ABCD, oral posaconazole, and topical amphotericin B and underwent surgical debridement. After 67 days of treatment, the patient’s condition was significantly improved, and limb muscle strength showed grade V. Rhizopus oryzae showed negative results, and conjunctival swelling decreased. Additionally, no nephrotoxicity occurred during treatment. After discharge, the patient’s treatment was transitioned to oral posaconazole and she was free of complaints during the 30-day follow-up without any additional treatment for ROCM. Conclusion Treatment with ABCD combined with other antifungal drugs and surgical debridement for ROCM complicated with fungal endophthalmitis showed remarkable efficacy and good safety. Hence, this regimen is a promising treatment strategy for this fatal disease.
Collapse
Affiliation(s)
- Yinlong Zhao
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenbin Tian
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiankai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueqing Li
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huaihai Lu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ning Yu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pei Zhang
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pengfei Chen
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guang Lei
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ya Liu,
| |
Collapse
|
12
|
Sabt A, Abdelrahman MT, Abdelraof M, Rashdan HRM. Investigation of Novel Mucorales Fungal Inhibitors: Synthesis, In‐Silico Study and Anti‐Fungal Potency of Novel Class of Coumarin‐6‐Sulfonamides‐Thiazole and Thiadiazole Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202200691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department National Research Center Dokki Giza 12622 Egypt
| | - Mohamad T. Abdelrahman
- Radioisotopes Department Nuclear Research Centre Egyptian Atomic Energy Authority Cairo Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department Biotechnology Research Institute National Research Centre 33 El Bohouth St. (Former El Tahrir St.) Giza P.O. 12622 Egypt
| | - Huda R. M. Rashdan
- Chemistry of Natural and Microbial Products Department Pharmaceutical and Drug Industries Research Institute National Research Centre, Dokki Cairo 12622 Egypt E-mail: hr.rashdan.nrc.sci.eg
| |
Collapse
|
13
|
Schwarz P, Nikolskiy I, Bidaud AL, Sommer F, Bange G, Dannaoui E. In Vitro Synergy of Isavuconazole Combined With Colistin Against Common Candida Species. Front Cell Infect Microbiol 2022; 12:892893. [PMID: 35573795 PMCID: PMC9100415 DOI: 10.3389/fcimb.2022.892893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Interactions of isavuconazole and colistin were evaluated against 57 common Candida strains belonging to the species Candida albicans (n = 10), Candida glabrata (n = 10), Candida kefyr (n = 8), Candida krusei (n = 10), Candida parapsilosis (n = 9), and Candida tropicalis (n = 10) by a broth microdilution checkerboard technique based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) reference methodology for antifungal susceptibility testing. Results were analyzed with the fractional inhibitory concentration index and by the response surface analysis. Interpretation by the fractional inhibitory concentration index showed synergy for 50%, 80%, 90%, and 90% of the C. kefyr, C. krusei, C. glabrata, and C. tropicalis strains, respectively. Combination of isavuconazole with colistin against C. albicans and C. parapsilosis exhibited only indifference for 100% and 90% of the strains, respectively. The results were confirmed by response surface analysis for all species except for C. glabrata, for which an indifferent interaction was found for the majority of strains. Antagonistic interaction was never seen regardless of the interpretation model was used.
Collapse
Affiliation(s)
- Patrick Schwarz
- Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, Marburg, Germany
- Center for Invasive Mycoses and Antifungals, Faculty of Medicine, Philipps University Marburg, Marburg, Germany
| | - Ilya Nikolskiy
- Center for Invasive Mycoses and Antifungals, Faculty of Medicine, Philipps University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Anne-Laure Bidaud
- Unité de Parasitologie-Mycologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Frank Sommer
- Department of Microbiology, University Hospital Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, Philipps University Marburg, Marburg, Germany
- Max Planck Fellow Group, Molecular Physiology of Microbes, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eric Dannaoui
- Unité de Parasitologie-Mycologie, Hôpital Européen Georges-Pompidou, Paris, France
- Dynamyc Research Group (EA 7380), Faculté de Médecine de Créteil, Université Paris-Est-Créteil-Val-de-Marne, Créteil, France
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
14
|
Improved In Vitro Anti-Mucorales Activity and Cytotoxicity of Amphotericin B with a Pegylated Surfactant. J Fungi (Basel) 2022; 8:jof8020121. [PMID: 35205875 PMCID: PMC8876526 DOI: 10.3390/jof8020121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to evaluate the effect of the combination of amphotericin B (AmB) and various non-ionic surfactants on the anti-Mucorales activity of AmB, the toxicity of the combination on eukaryotic cells and the modification of AmB aggregation states. Checkerboards were performed on five genera of Mucorales (12 strains) using several combinations of different surfactants and AmB. These data were analyzed by an Emax model. The effect of surfactants on the cytotoxic activity of AmB was then evaluated for red blood cells and two eukaryotic cell lines by absorbance and propidium iodide internalization. Finally, the effect of polyethylene glycol (15)-hydroxystearate (PEG15HS) on the aggregation states of AmB was evaluated by UV-visible spectrometry. PEG15HS increased the efficacy of AmB on four of the five Mucorales genera, and MICs of AmB were decreased up to 68-fold for L. ramosa. PEG15HS was the only surfactant to not increase the cytotoxic activity of AmB. Finally, the analysis of AmB aggregation states showed that the increased efficacy of AmB and the absence of toxicity are related to an increase in monomeric and polyaggregated forms of AmB at the detriment of the dimeric form. In conclusion, PEG15HS increases the in vitro efficacy of AmB against Mucorales at low concentration, without increasing its toxicity; this combination could therefore be evaluated in the treatment of mucormycosis.
Collapse
|
15
|
In Vitro Activity of Amphotericin B in Combination with Colistin against Fungi Responsible for Invasive Infections. J Fungi (Basel) 2022; 8:jof8020115. [PMID: 35205869 PMCID: PMC8880464 DOI: 10.3390/jof8020115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The in vitro interaction of amphotericin B in combination with colistin was evaluated against a total of 86 strains comprising of 47 Candida species (10 Candida albicans, 15 Candida auris, five Candida glabrata, three Candida kefyr, five Candida krusei, four Candida parapsilosis and five Candida tropicalis), 29 Aspergillus species (five Aspergillus flavus, 10 Aspergillus fumigatus, four Aspergillus nidulans, five Aspergillus niger, and five Aspergillus terreus), and 10 Rhizopus species (seven Rhizopus arrhizus, one Rhizopus delemar and two Rhizopus microsporus) strains. For the determination of the interaction, a microdilution checkerboard technique based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) reference method for antifungal susceptibility testing was used. Results of the checkerboard technique were evaluated by the fractional inhibitory concentration index (FICI) based on the Loewe additivity model for all isolates. Different inhibition endpoints were used to capture both the interaction at MIC and sub-MIC levels. Additionally, checkerboard technique results for Candida species were evaluated by response surface analysis based on the Bliss independence model. Against common Candida species, the combination was synergistic for 75% of the strains by FICI and for 66% of the strains by response surface analysis. For C. tropicalis, the interaction was antagonistic for three isolates by FICI, but antagonism was not confirmed by response surface analysis. Interestingly, synergistic and antagonistic FICIs were simultaneously present on checkboard microplates of all three strains. Against C. auris the combination was synergistic for 73% of the strains by response surface analysis and for 33% of the strains by FICI. This discrepancy could be related to the insensitivity of the FICI to detect weak interactions. Interaction for all other strains was indifferent. For Aspergillus and Rhizopus species combination exhibited only indifferent interactions against all tested strains.
Collapse
|
16
|
Dogra S, Arora A, Aggarwal A, Passi G, Sharma A, Singh G, Barnwal RP. Mucormycosis Amid COVID-19 Crisis: Pathogenesis, Diagnosis, and Novel Treatment Strategies to Combat the Spread. Front Microbiol 2022; 12:794176. [PMID: 35058909 PMCID: PMC8763841 DOI: 10.3389/fmicb.2021.794176] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The havoc unleashed by COVID-19 pandemic has paved way for secondary ominous fungal infections like Mucormycosis. It is caused by a class of opportunistic pathogens from the order Mucorales. Fatality rates due to this contagious infection are extremely high. Numerous clinical manifestations result in damage to multiple organs subject to the patient's underlying condition. Lack of a proper detection method and reliable treatment has made the management of this infection troublesome. Several reports studying the behavior pattern of Mucorales inside the host by modulation of its defense mechanisms have helped in understanding the pathogenesis of this angio-invasive infection. Many recent advances in diagnosis and treatment of this fungal infection have not been much beneficial. Therefore, there is a need to foster more viable strategies. This article summarizes current and imminent approaches that could aid effective management of these secondary infections in these times of global pandemic. It is foreseen that the development of newer antifungal drugs, antimicrobial peptides, and nanotechnology-based approaches for drug delivery would help combat this infection and curb its spread.
Collapse
Affiliation(s)
- Shreya Dogra
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akanksha Arora
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Aashni Aggarwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ravi P. Barnwal
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
17
|
Zautner AE, Frickmann H, Podbielski A. Risk Assessment for Molds in the Vicinity of a Child Requiring Peritoneal Dialysis Living in a Rural Northern German Area. Microorganisms 2021; 9:microorganisms9112292. [PMID: 34835418 PMCID: PMC8623174 DOI: 10.3390/microorganisms9112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
As well as severe immunosuppression, other predisposing factors may facilitate invasive mycosis caused by molds. Chronic kidney disease and the resulting peritoneal dialysis have been reported as factors putting patients at risk of fungal infections from environmental sources. We describe an environmental investigation undertaken to guide exposure prevention for a peritoneal dialysis patient with transient colonization of her nostrils by Lichtheimia corymbifera in a rural area of northern Germany. Systematic screening for airborne and surface-deposited molds enabled targeted recommendations to be made, although Lichtheimia corymbifera itself was not grown from the collected environmental samples. This communication is intended to illustrate how such an investigation can be performed on the basis of the environmental distribution of the molds and how preventive recommendations can be derived from the results.
Collapse
Affiliation(s)
- Andreas Erich Zautner
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-15859
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany;
- Institute for Medical Microbiology, Virology and Hospital Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Andreas Podbielski
- Institute for Medical Microbiology, Virology and Hospital Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| |
Collapse
|
18
|
León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR. Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens 2021; 10:pathogens10101303. [PMID: 34684252 PMCID: PMC8539376 DOI: 10.3390/pathogens10101303] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/23/2022] Open
Abstract
Over the last years, invasive infections caused by filamentous fungi have constituted a serious threat to public health worldwide. Aspergillus, Coccidioides, Mucorales (the most common filamentous fungi), and Candida auris (non-filamentous fungus) can cause infections in humans. They are able to cause critical life-threatening illnesses in immunosuppressed individuals, patients with HIV/AIDS, uncontrolled diabetes, hematological diseases, transplantation, and chemotherapy. In this review, we describe the available nanoformulations (both metallic and polymers-based nanoparticles) developed to increase efficacy and reduce the number of adverse effects after the administration of conventional antifungals. To treat aspergillosis and infections caused by Candida, multiple strategies have been used to develop new therapeutic alternatives, such as incorporating coating materials, complexes synthesized by green chemistry, or coupled with polymers. However, the therapeutic options for coccidioidomycosis and mucormycosis are limited; most of them are in the early stages of development. Therefore, more research needs to be performed to develop new therapeutic alternatives that contribute to the progress of this field.
Collapse
Affiliation(s)
- Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
| | - Javier A. Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
| | - Diana Y. Gallegos-Alvarado
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
| | - Macario Osorio-Concepción
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
| | - José Ruben Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza C.P. 66455, Mexico; (A.L.-B.); (J.A.G.-C.); (D.Y.G.-A.); (M.O.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca C.P. 66628, Mexico
- Correspondence:
| |
Collapse
|
19
|
Schwarz P. Mukormykosen - frühe Abgrenzung zur Aspergillose besonders wichtig. PNEUMO NEWS 2021; 13:36-44. [PMID: 34691275 PMCID: PMC8526098 DOI: 10.1007/s15033-021-2754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Patrick Schwarz
- Klinik für Innere Medizin, Schwerpunkt Pneumologie, Universität Marburg, Baldingerstraße, 35043 Marburg, Germany
| |
Collapse
|
20
|
Investigational Agents for the Treatment of Resistant Yeasts and Molds. CURRENT FUNGAL INFECTION REPORTS 2021; 15:104-115. [PMID: 34075318 PMCID: PMC8162489 DOI: 10.1007/s12281-021-00419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Purpose of Review This review summarizes the investigational antifungals in clinical development with the potential to address rising drug resistance patterns. The relevant pharmacodynamics, spectrum of activity, preclinical studies, and latest clinical trial data are described. Recent Findings Agricultural and medicinal antifungal use has been selected for inherently drug-resistant fungi and acquired resistance mechanisms. The rates of fungal infections and immunocompromised populations continue to grow as few new antifungals have hit the market. Several agents with the potential to address the emergence of multidrug-resistant (MDR) molds and yeasts are in clinical development. Summary Evolved formulations of echinocandins, polyenes, and triazoles offer less toxicity, convenient dosing, and greater potency, potentially expanding these classes’ indications. Ibrexafungerp, olorofim, oteseconazole, and fosmanogepix possess novel mechanisms of actions with potent activity against MDR fungi. Successful clinical development is neither easy nor guaranteed; thus, perpetual efforts to discover new antifungals are needed.
Collapse
|
21
|
Jestin M, Azoulay E, Pène F, Bruneel F, Mayaux J, Murgier M, Darmon M, Valade S. Poor outcome associated with mucormycosis in critically ill hematological patients: results of a multicenter study. Ann Intensive Care 2021; 11:31. [PMID: 33569700 PMCID: PMC7876194 DOI: 10.1186/s13613-021-00818-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background Mucormycosis is an emerging fungal infection that may lead to multi-organ failure, especially in patients with hematological malignancies (HM). We performed a retrospective, cohort study, in five intensive care units (ICU) to assess the outcome of critically ill patients with HM and mucormycosis between 2002 and 2018. The secondary objective was to identify prognostic factors in this setting. Results Twenty-six patients were included with a median age of 38 years [IQR, 26–57]). Acute leukemia was the most frequent underlying disease (50%). Nine patients (35%) underwent allogeneic stem cell transplantation (SCT). Nineteen patients (73%) had neutropenia and 16 (62%) had received steroids. The main reason for admission was acute respiratory failure (n = 14, 54%) followed by shock (n = 5 19%). The median SOFA score at admission was 7 [5–8]. According to EORTC/MSG criteria, mucormycosis was "proven" in 14 patients (54%), "probable" in 5 (19%) and “possible” in 7 (27%) in whom diagnosis was made by qPCR. Rhizopus and Mucor were the most frequent documented species. Seven patients (27%) had concurrent Aspergillus infection. Mucormycosis was diagnosed 1 day [−4 to + 6] after ICU admission. Sixteen patients (62%) had pulmonary involvement and ten (38%) rhino-cerebral involvement. Infection was disseminated in eight patients (31%). Twenty-two patients (85%) were treated with liposomal amphotericin B; 12 (46%) received antifungal combination including posaconazole in 7. Eight patients (31%) underwent curative surgery. Twenty-one patients (81%) required invasive mechanical ventilation (IMV), 18 (69%) vasopressors, and 9 (35%) renal replacement therapy. ICU and hospital mortality rates were 77% and 88%, respectively. The median overall survival was 9 days [3–22]. IMV was strongly associated with ICU mortality (p < 0.001) Three variables were associated with day 90 mortality in a Cox model including allogeneic SCT (HR 4.84 [95% CI 1.64–14.32]), SOFA score (1.19 [1.02–1.39]) and dual therapy (3.02 [1.18–7.72]). Conclusions Mucormycosis is associated with a high mortality rate in patients with HM, especially in allogeneic SCT recipients. Benefit of ICU management in these patients should be assessed before admission and strategies aiming to improve these patients’ outcome are urgently needed.
Collapse
Affiliation(s)
- Matthieu Jestin
- Service de Médecine Intensive Et Réanimation, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Elie Azoulay
- Service de Médecine Intensive Et Réanimation, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France.,Université de Paris, 85 Boulevard Saint-Germain, 75006, Paris, France
| | - Frédéric Pène
- Service de Médecine Intensive Et Réanimation, AP-HP, Hôpital Cochin, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Fabrice Bruneel
- Service de Réanimation Médico-Chirurgicale, Centre Hospitalier de Versailles, 177 Rue de Versailles, 78150, Le Chesnay, France
| | - Julien Mayaux
- Service de Pneumologie, Médecine Intensive Et Réanimation, Hôpital Universitaire Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Martin Murgier
- Service de Réanimation Polyvalente, Centre Hospitalo-Universitaire de Saint-Etienne, 25 Boulevard Pasteur, 42055, Saint-Etienne, France
| | - Michael Darmon
- Service de Médecine Intensive Et Réanimation, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France.,Université de Paris, 85 Boulevard Saint-Germain, 75006, Paris, France
| | - Sandrine Valade
- Service de Médecine Intensive Et Réanimation, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010, Paris, France. .,Université de Paris, 85 Boulevard Saint-Germain, 75006, Paris, France.
| |
Collapse
|
22
|
Schwarz P, Bidaud AL, Dannaoui E. In vitro synergy of isavuconazole in combination with colistin against Candida auris. Sci Rep 2020; 10:21448. [PMID: 33293607 PMCID: PMC7722718 DOI: 10.1038/s41598-020-78588-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
The in vitro interactions of isavuconazole with colistin were evaluated against 15 clinical Candida auris isolates by a microdilution checkerboard technique based on the EUCAST reference method for antifungal susceptibility testing and by agar diffusion using isavuconazole gradient concentration strips with or without colistin incorporated RPMI agar. Interpretation of the checkerboard results was done by the fractional inhibitory concentration index and by response surface analysis based on the Bliss model. By checkerboard, combination was synergistic for 93% of the isolates when interpretation of the data was done by fractional inhibitory concentration index, and for 80% of the isolates by response surface analysis interpretation. By agar diffusion test, although all MICs in combination decreased compared to isavuconazole alone, only 13% of the isolates met the definition of synergy. Essential agreement of EUCAST and gradient concentration strip MICs at +/− 2 log2 dilutions was 93.3%. Antagonistic interactions were never observed for any technique or interpretation model used.
Collapse
Affiliation(s)
- Patrick Schwarz
- Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, Baldingerstraße, 35043, Marburg, Germany. .,Center for Invasive Mycoses and Antifungals, Philipps University Marburg, 35037, Marburg, Germany.
| | - Anne-Laure Bidaud
- Unité de Parasitologie-Mycologie, Hôpital Européen Georges Pompidou, AP-HP, Faculté de Médecine, Université de Paris, 75015, Paris, France
| | - Eric Dannaoui
- Unité de Parasitologie-Mycologie, Hôpital Européen Georges Pompidou, AP-HP, Faculté de Médecine, Université de Paris, 75015, Paris, France.,EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole Nationale Vétérinaire D'Alfort, USC Anses, 94010, Maisons-Alfort, France
| |
Collapse
|
23
|
Stanford FA, Voigt K. Iron Assimilation during Emerging Infections Caused by Opportunistic Fungi with emphasis on Mucorales and the Development of Antifungal Resistance. Genes (Basel) 2020; 11:genes11111296. [PMID: 33143139 PMCID: PMC7693903 DOI: 10.3390/genes11111296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a key transition metal required by most microorganisms and is prominently utilised in the transfer of electrons during metabolic reactions. The acquisition of iron is essential and becomes a crucial pathogenic event for opportunistic fungi. Iron is not readily available in the natural environment as it exists in its insoluble ferric form, i.e., in oxides and hydroxides. During infection, the host iron is bound to proteins such as transferrin, ferritin, and haemoglobin. As such, access to iron is one of the major hurdles that fungal pathogens must overcome in an immunocompromised host. Thus, these opportunistic fungi utilise three major iron acquisition systems to overcome this limiting factor for growth and proliferation. To date, numerous iron acquisition pathways have been fully characterised, with key components of these systems having major roles in virulence. Most recently, proteins involved in these pathways have been linked to the development of antifungal resistance. Here, we provide a detailed review of our current knowledge of iron acquisition in opportunistic fungi, and the role iron may have on the development of resistance to antifungals with emphasis on species of the fungal basal lineage order Mucorales, the causative agents of mucormycosis.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology–Hans Knöll Institute, Jena, Adolf-Reichwein-Straße 23, 07745 Jena, Germany;
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena Microbial Resource Collection Adolf-Reichwein-Straße 23, 07745 Jena, Germany
- Correspondence: ; Tel.: +49-3641-532-1395; Fax: +49-3641-532-2395
| |
Collapse
|
24
|
|
25
|
In Vitro Interaction between Isavuconazole and Tacrolimus, Cyclosporin A, or Sirolimus against Aspergillus Species. J Fungi (Basel) 2020; 6:jof6030103. [PMID: 32650564 PMCID: PMC7560155 DOI: 10.3390/jof6030103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction of isavuconazole with immunosuppressors (tacrolimus, cyclosporin A, or sirolimus) against 30 Aspergillus isolates belonging to the most common species responsible for invasive aspergillosis in humans (Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, and Aspergillus terreus) was evaluated in vitro by a microdilution checkerboard technique based on the EUCAST reference method for antifungal susceptibility testing. The interpretation of the results was performed based on the fractional inhibitory concentration index. The combination of isavuconazole with tacrolimus, cyclosporin A, or sirolimus, was synergistic for 56, 20, or 10% of the isolates, respectively. Interestingly synergy of the combination of isavuconazole with tacrolimus was also achieved for the majority of azole-resistant isolates of A. fumigatus, and for all A. niger isolates with isavuconazole minimal inhibitory concentrations ≥ 8 µg/mL. Antagonistic interactions were never observed for any combination tested.
Collapse
|
26
|
Lax C, Pérez-Arques C, Navarro-Mendoza MI, Cánovas-Márquez JT, Tahiri G, Pérez-Ruiz JA, Osorio-Concepción M, Murcia-Flores L, Navarro E, Garre V, Nicolás FE. Genes, Pathways, and Mechanisms Involved in the Virulence of Mucorales. Genes (Basel) 2020; 11:E317. [PMID: 32188171 PMCID: PMC7140881 DOI: 10.3390/genes11030317] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
The order Mucorales is a group of ancient fungi with limited tools for gene manipulation. The main consequence of this manipulation unwillingness is the limited knowledge about its biology compared to other fungal groups. However, the emerging of mucormycosis, a fungal infection caused by Mucorales, is attracting the medical spotlight in recent years because the treatments available are not efficient in reducing the high mortality associated with this disease. The result of this renewed interest in Mucorales and mucormycosis is an extraordinarily productive effort to unveil their secrets during the last decade. In this review, we describe the most compelling advances related to the genetic study of virulence factors, pathways, and molecular mechanisms developed in these years. The use of a few genetic study models has allowed the characterization of virulence factors in Mucorales that were previously described in other pathogens, such as the uptake iron systems, the mechanisms of dimorphism, and azole resistances. More importantly, recent studies are identifying new genes and mechanisms controlling the pathogenic potential of Mucorales and their interactions with the host, offering new alternatives to develop specific strategies against mucormycosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francisco Esteban Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (C.L.); (C.P.-A.); (M.I.N.-M.); (J.T.C.-M.); (G.T.); (J.A.P.-R.); (M.O.-C.); (L.M.-F.); (V.G.)
| |
Collapse
|
27
|
Haque H, Nettboy S, Kumar S. Surgical-site mucormycosis infection in a solid-organ transplant recipient and a concise review of the literature. BMJ Case Rep 2019; 12:e229687. [PMID: 31826901 PMCID: PMC6936439 DOI: 10.1136/bcr-2019-229687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
Surgical-site mucormycosis infections in solid-organ transplant recipients are rare conditions, with only 15 previously reported cases. We describe a case of a 49-year-old man who received a liver transplant due to alcoholic cirrhosis. On postoperative day 14, necrosis was noticed at the surgical site. After mucormycosis was diagnosed, monotherapy with amphotericin was started along with surgical debridements. Due to continued clinical deterioration, triple antifungal therapy was started with amphotericin, micafungin and posaconazole. Treatment with a granulocyte-macrophage colony-stimulating factor was also started. Despite therapy, the patient expired on postoperative day 31. We review the risk factors for mucormycosis infection in solid-organ transplant recipients as well as evidence for current treatment options. We also review the 15 previously reported cases of surgical-site mucormycosis infections in solid-organ transplant recipients, including time to infection, infecting organisms, mortality and treatments.
Collapse
Affiliation(s)
- Husham Haque
- Internal Medicine, Broward Health Medical Center, Fort Lauderdale, Florida, USA
| | - Scott Nettboy
- Internal Medicine, Broward Health Medical Center, Fort Lauderdale, Florida, USA
| | - Sunil Kumar
- Pulmonary Critical Care, Broward Health Medical Center, Fort Lauderdale, Florida, USA
| |
Collapse
|