1
|
Chen PY, Huang YS, Chuang YC, Wang JT, Sheng WH, Chen YC, Chang SC. Implication of genotypes for prognosis of Candida glabrata bloodstream infections. J Antimicrob Chemother 2024; 79:2008-2016. [PMID: 38906829 PMCID: PMC11290879 DOI: 10.1093/jac/dkae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Genotyping isolates of a specific pathogen may demonstrate unique patterns of antimicrobial resistance, virulence or outcomes. However, evidence for genotype-outcome association in Candida glabrata is scarce. We aimed to characterize the mycological and clinical relevance of genotypes on C. glabrata bloodstream infections (BSIs). METHODS Non-duplicated C. glabrata blood isolates from hospitalized adults were genotyped by MLST, and further clustered by the unweighted pair group method with arithmetic averages (UPGMA). A clonal complex (CC) was defined by UPGMA similarities of >90%. Antifungal susceptibility testing was performed by a colorimetric microdilution method and interpreted following CLSI criteria. RESULTS Of 48 blood isolates evaluated, 13 STs were identified. CC7 was the leading CC (n = 14; 29.2%), including 13 ST7. The overall fluconazole and echinocandin resistance rates were 6.6% and 0%, respectively. No specific resistance patterns were associated with CC7 or other CCs. Charlson comorbidity index (adjusted OR, 1.49; 95% CI, 1.05-3.11) was the only predictor for CC7. By multivariable Cox regression analyses, CC7 was independently associated with 28 day mortality [adjusted HR (aHR), 3.28; 95% CI, 1.31-8.23], even after considering potential interaction with neutropenia (aHR, 3.41; 95% CI, 1.23-9.42; P for interaction, 0.24) or limited to 34 patients with monomicrobial BSIs (aHR, 2.85; 95% CI, 1.15-7.08). Also, the Kaplan-Meier estimate showed greater mortality with CC7 (P = 0.003). Fluconazole resistance or echinocandin therapy had no significant impact on mortality. CONCLUSIONS Our data suggested comorbid patients were at risk of developing CC7 BSIs. Further, CC7 was independently associated with worse outcomes.
Collapse
Affiliation(s)
- Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Taipei City, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Department of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Taipei City, Taiwan
- Department of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Department of Medicine, National Taiwan University College of Medicine, Taipei City, Taiwan
| |
Collapse
|
2
|
Beardsley J, Kim HY, Dao A, Kidd S, Alastruey-Izquierdo A, Sorrell TC, Tacconelli E, Chakrabarti A, Harrison TS, Bongomin F, Gigante V, Galas M, Siswanto S, Dagne DA, Roitberg F, Sati H, Morrissey CO, Alffenaar JW. Candida glabrata (Nakaseomyces glabrata): A systematic review of clinical and microbiological data from 2011 to 2021 to inform the World Health Organization Fungal Priority Pathogens List. Med Mycol 2024; 62:myae041. [PMID: 38935913 PMCID: PMC11210615 DOI: 10.1093/mmy/myae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/03/2023] [Accepted: 04/27/2024] [Indexed: 06/29/2024] Open
Abstract
Recognising the growing global burden of fungal infections, the World Health Organization (WHO) established an advisory group consisting of experts in fungal diseases to develop a Fungal Priority Pathogen List. Pathogens were ranked based on their research and development needs and perceived public health importance using a series of global surveys and pathogen characteristics derived from systematic reviews. This systematic review evaluates the features and global impact of invasive disease caused by Candida glabrata (Nakaseomyces glabrata). PubMed and Web of Science were searched for studies reporting on mortality, morbidity (hospitalization and disability), drug resistance (including isolates from sterile and non-sterile sites, since these reflect the same organisms causing invasive infections), preventability, yearly incidence, diagnostics, treatability, and distribution/emergence in the last 10 years. Candida glabrata (N. glabrata) causes difficult-to-treat invasive infections, particularly in patients with underlying conditions such as immunodeficiency, diabetes, or those who have received broad-spectrum antibiotics or chemotherapy. Beyond standard infection prevention and control measures, no specific preventative measures have been described. We found that infection is associated with high mortality rates and that there is a lack of data on complications and sequelae. Resistance to azoles is common and well described in echinocandins-in both cases, the resistance rates are increasing. Candida glabrata remains mostly susceptible to amphotericin and flucytosine. However, the incidence of the disease is increasing, both at the population level and as a proportion of all invasive yeast infections, and the increases appear related to the use of antifungal agents.
Collapse
Affiliation(s)
- Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Hannah Yejin Kim
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- School of Pharmacy, University of Sydney, Sydney, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, Australia
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
| | | | - Tania C Sorrell
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | | | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Thomas S Harrison
- Institute of Infection and Immunity, St. George's, University of London, London, and MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Valeria Gigante
- Impact Initiatives and Research Coordination Unit, Global Coordination and Partnership Department, Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | - Marcelo Galas
- Antimicrobial Resistance Special Program, Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization, Washington, DC, USA
| | - Siswanto Siswanto
- World Health Organization, South East Asia Region Office, New Delhi, India
| | - Daniel Argaw Dagne
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Felipe Roitberg
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- Impact Initiatives and Research Coordination Unit, Global Coordination and Partnership Department, Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | - C Orla Morrissey
- Alfred Health/ Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Jan-Willem Alffenaar
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- School of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
4
|
Fattouh N, Khalaf RA, Husni R. Candida glabrata hospital isolate from Lebanon reveals micafungin resistance associated with increased chitin and resistance to a cell-surface-disrupting agent. J Glob Antimicrob Resist 2024; 37:62-68. [PMID: 38408565 DOI: 10.1016/j.jgar.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVES This study aimed to identify the resistance mechanisms to micafungin and fluconazole in a clinical isolate of Candida glabrata. METHODS The isolate was whole-genome sequenced to identify amino acid changes in key proteins involved in antifungal resistance, and the isolate was further characterised by pathogenicity-related phenotypic assays that supported the sequencing results. RESULTS Amino acid substitutions were detected in 8 of 17 protein candidates. Many of these substitutions were novel, including in CHS3, CHS3B, and KRE5, which are involved in the development of micafungin resistance. Regarding fluconazole resistance, overexpression of efflux pumps was observed. Our isolate did not exhibit an increased virulence potential compared with the control strain; however, a significant increase in chitin content and potential to resist the cell surface disruptant sodium dodecyl sulphate was observed. CONCLUSIONS This clinical Candida glabrata isolate experienced a change in cell wall architecture, which correlates with the development of micafungin resistance.
Collapse
Affiliation(s)
- Nour Fattouh
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon; Department of Biology, Saint George University of Beirut, Beirut, Lebanon
| | - Roy A Khalaf
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Rola Husni
- School of Medicine, Lebanese American University, Beirut, Lebanon; Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| |
Collapse
|
5
|
Arastehfar A, Daneshnia F, Floyd DJ, Jeffries NE, Salehi M, Perlin DS, Ilkit M, Lass-Flöerl C, Mansour MK. Echinocandin persistence directly impacts the evolution of resistance and survival of the pathogenic fungus Candida glabrata. mBio 2024; 15:e0007224. [PMID: 38501869 PMCID: PMC11005346 DOI: 10.1128/mbio.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Recent epidemiological studies documented an alarming increase in the prevalence of echinocandin-resistant (ECR) Candida glabrata blood isolates. ECR isolates are known to arise from a minor subpopulation of a clonal population, termed echinocandin persisters. Although it is believed that isolates with a higher echinocandin persistence (ECP) are more likely to develop ECR, the implication of ECP needs to be better understood. Moreover, replacing laborious and time-consuming traditional approaches to determine ECP levels with rapid, convenient, and reliable tools is imperative to advance our understanding of this emerging concept in clinical practice. Herein, using extensive ex vivo and in vivo systemic infection models, we showed that high ECP isolates are less effectively cleared by micafungin treatment and exclusively give rise to ECR colonies. Additionally, we developed a flow cytometry-based tool that takes advantage of a SYTOX-based assay for the stratification of ECP levels. Once challenged with various collections of echinocandin-susceptible blood isolates, our assay reliably differentiated ECP levels in vitro and predicted ECP levels in real time under ex vivo and in vivo conditions when compared to traditional methods relying on colony-forming unit counting. Given the high and low ECP predictive values of 92.3% and 82.3%, respectively, our assay showed a high agreement with traditional approach. Collectively, our study supports the concept of ECP level determination in clinical settings and provides a robust tool scalable for high-throughput settings. Application of this tool facilitates the interrogation of mutant and drug libraries to further our understanding of persister biology and designing anti-persister therapeutics. IMPORTANCE Candida glabrata is a prevalent fungal pathogen able to replicate inside macrophages and rapidly develop resistance against frontline antifungal echinocandins. Multiple studies have shown that echinocandin resistance is fueled by the survival of a small subpopulation of susceptible cells surviving lethal concentrations of echinocandins. Importantly, bacterial pathogens that exhibit high antibiotic persistence also impose a high burden and generate more antibiotic-resistant colonies. Nonetheless, the implications of echinocandin persistence (ECP) among the clinical isolates of C. glabrata have not been defined. Additionally, ECP level determination relies on a laborious and time-consuming method, which is prone to high variation. By exploiting in vivo systemic infection and ex vivo models, we showed that C. glabrata isolates with a higher ECP are associated with a higher burden and more likely develop echinocandin resistance upon micafungin treatment. Additionally, we developed an assay that reliably determines ECP levels in real time. Therefore, our study identified C. glabrata isolates displaying high ECP levels as important entities and provided a reliable and convenient tool for measuring echinocandin persistence, which is extendable to other fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Farnaz Daneshnia
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel J. Floyd
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Mostafa Salehi
- Department Industrial Engineering Faculty of K.N., Toosi University of Technology, Tehran, Iran
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Türkiye
| | - Cornelia Lass-Flöerl
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Innsbruck, Austria
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Misas E, Seagle E, Jenkins EN, Rajeev M, Hurst S, Nunnally NS, Bentz ML, Lyman MM, Berkow E, Harrison LH, Schaffner W, Markus TM, Pierce R, Farley MM, Chow NA, Lockhart SR, Litvintseva AP. Genomic description of acquired fluconazole- and echinocandin-resistance in patients with serial Candida glabrata isolates. J Clin Microbiol 2024; 62:e0114023. [PMID: 38265207 PMCID: PMC10865870 DOI: 10.1128/jcm.01140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Candida glabrata is one of the most common causes of systemic candidiasis, often resistant to antifungal medications. To describe the genomic context of emerging resistance, we conducted a retrospective analysis of 82 serially collected isolates from 33 patients from population-based candidemia surveillance in the United States. We used whole-genome sequencing to determine the genetic relationships between isolates obtained from the same patient. Phylogenetic analysis demonstrated that isolates from 29 patients were clustered by patient. The median SNPs between isolates from the same patient was 30 (range: 7-96 SNPs), while unrelated strains infected four patients. Twenty-one isolates were resistant to echinocandins, and 24 were resistant to fluconazole. All echinocandin-resistant isolates carried a mutation either in the FKS1 or FKS2 HS1 region. Of the 24 fluconazole-resistant isolates, 17 (71%) had non-synonymous polymorphisms in the PDR1 gene, which were absent in susceptible isolates. In 11 patients, a genetically related resistant isolate was collected after recovering susceptible isolates, indicating in vivo acquisition of resistance. These findings allowed us to estimate the intra-host diversity of C. glabrata and propose an upper boundary of 96 SNPs for defining genetically related isolates, which can be used to assess donor-to-host transmission, nosocomial transmission, or acquired resistance. IMPORTANCE In our study, mutations associated to azole resistance and echinocandin resistance were detected in Candida glabrata isolates using a whole-genome sequence. C. glabrata is the second most common cause of candidemia in the United States, which rapidly acquires resistance to antifungals, in vitro and in vivo.
Collapse
Affiliation(s)
- E. Misas
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - E. Seagle
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - E. N. Jenkins
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- ASRT, Inc., Atlanta, Georgia, USA
| | - M. Rajeev
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S. Hurst
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - N. S. Nunnally
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M. L. Bentz
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M. M. Lyman
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - E. Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - L. H. Harrison
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - W. Schaffner
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - T. M. Markus
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - R. Pierce
- Oregon Public Health Division, Oregon Health Authority, Portland, USA
| | - M. M. Farley
- Emory University School of Medicine, Decatur, Georgia, USA
| | - N. A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S. R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - A. P. Litvintseva
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Cabrera N, Ilkit M, Desai JV, Gabaldón T, Shor E, Perlin DS. A multidimensional assessment of in-host fitness costs of drug resistance in the opportunistic fungal pathogen Candida glabrata. FEMS Yeast Res 2024; 24:foae035. [PMID: 39545363 PMCID: PMC11631428 DOI: 10.1093/femsyr/foae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Drug-resistant microbes typically carry mutations in genes involved in critical cellular functions and may therefore be less fit under drug-free conditions than susceptible strains. Candida glabrata is a prevalent opportunistic yeast pathogen with a high rate of fluconazole resistance (FLZR), echinocandin resistance (ECR), and multidrug resistance (MDR) relative to other Candida. However, the fitness of C. glabrata MDR isolates, particularly in the host, is poorly characterized, and studies of FLZR isolate fitness have produced contradictory findings. Two important host niches for C. glabrata are macrophages, in which it survives and proliferates, and the gut. Herein, we used a collection of clinical and lab-derived C. glabrata isolates to show that FLZR C. glabrata isolates are less fit inside macrophages than susceptible isolates and that this fitness cost is reversed by acquiring ECR mutations. Interestingly, dual-RNAseq revealed that macrophages infected with drug-resistant isolates mount an inflammatory response whereas intracellular drug-resistant cells downregulate processes required for in-host adaptation. Furthermore, drug-resistant isolates were outcompeted by their susceptible counterparts during gut colonization and in infected kidneys, while showing comparable fitness in the spleen. Collectively, our study shows that macrophage-rich organs, such as the spleen, favor the retention of MDR isolates of C. glabrata.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, United States
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam1012 WX, The Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Nathaly Cabrera
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, 01330 Adana, Turkey
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC 20057, United States
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC 20057, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| |
Collapse
|
8
|
Wang Y, Xu J, Ben Abid F, Salah H, Sundararaju S, Al Ismail K, Wang K, Sara Matthew L, Taj-Aldeen S, Ibrahim EB, Tang P, Perez-Lopez A, Tsui CKM. Population genomic analyses reveal high diversity, recombination and nosocomial transmission among Candida glabrata ( Nakaseomyces glabrata) isolates causing invasive infections. Microb Genom 2024; 10:001179. [PMID: 38226964 PMCID: PMC10868614 DOI: 10.1099/mgen.0.001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Candida glabrata is a commensal yeast of the gastrointestinal tract and skin of humans. However, it causes opportunistic infections in immunocompromised patients, and is the second most common Candida pathogen causing bloodstream infections. Although there are many studies on the epidemiology of C. glabrata infections, the fine- and large-scale geographical nature of C. glabrata remain incompletely understood. Here we investigated both the fine- and large-scale population structure of C. glabrata through genome sequencing of 80 clinical isolates obtained from six tertiary hospitals in Qatar and by comparing with global collections. Our fine-scale analyses revealed high genetic diversity within the Qatari population of C. glabrata and identified signatures of recombination, inbreeding and clonal expansion within and between hospitals, including evidence for nosocomial transmission among coronavirus disease 2019 (COVID-19) patients. In addition to signatures of recombination at the population level, both MATa and MATα alleles were detected in most hospitals, indicating the potential for sexual reproduction in clinical environments. Comparisons with global samples showed that the Qatari C. glabrata population was very similar to those from other parts of the world, consistent with the significant role of recent anthropogenic activities in shaping its population structure. Genome-wide association studies identified both known and novel genomic variants associated with reduced susceptibilities to fluconazole, 5-flucytosine and echinocandins. Together, our genomic analyses revealed the diversity, transmission patterns and antifungal drug resistance mechanisms of C. glabrata in Qatar as well as the relationships between Qatari isolates and those from other parts of the world.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Fatma Ben Abid
- Department of Medicine, Division of Infectious Diseases, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Communicable Disease Centre, Hamad Medical Corporation, Doha, Qatar
| | - Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | | | - Khalil Al Ismail
- Communicable Disease Centre, Hamad Medical Corporation, Doha, Qatar
| | - Kun Wang
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Saad Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Emad B. Ibrahim
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Patrick Tang
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Andres Perez-Lopez
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Clement K. M. Tsui
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Infectious Diseases Research Laboratory, National Center for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Fuentes D, Cabrera N, Quinteros C, Ilkit M, Ünal N, Hilmioğlu-Polat S, Jabeen K, Zaka S, Desai JV, Lass-Flörl C, Shor E, Gabaldon T, Perlin DS. Overlooked Candida glabrata petites are echinocandin tolerant, induce host inflammatory responses, and display poor in vivo fitness. mBio 2023; 14:e0118023. [PMID: 37772846 PMCID: PMC10653939 DOI: 10.1128/mbio.01180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite." This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omics technologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and, therefore, are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, which can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego Fuentes
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nathaly Cabrera
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Nevzat Ünal
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | | | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sadaf Zaka
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Toni Gabaldon
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| |
Collapse
|
10
|
Asadzadeh M, Ahmad S, Al-Sweih N, Khan Z. Molecular fingerprinting by multi-locus sequence typing identifies microevolution and nosocomial transmission of Candida glabrata in Kuwait. Front Public Health 2023; 11:1242622. [PMID: 37744513 PMCID: PMC10515652 DOI: 10.3389/fpubh.2023.1242622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Backgrounds Candida glabrata is a frequently isolated non-albicans Candida species and invasive C. glabrata infections in older patients are associated with high mortality rates. Opportunistic Candida infections in critically ill patients may be either endogenous or nosocomial in origin and this distinction is critical for effective intervention strategies. This study performed multi-locus sequence typing (MLST) to study genotypic relatedness among clinical C. glabrata isolates in Kuwait. Methods Candida glabrata isolates (n = 91) cultured from 91 patients were analyzed by MLST. Repeat isolates (n = 16) from 9 patients were also used. Antifungal susceptibility testing for fluconazole, voriconazole, caspofungin and amphotericin B (AMB) was determined by Etest. Genetic relatedness was determined by constructing phylogenetic tree and minimum spanning tree by using BioNumerics software. Results Resistance to fluconazole, voriconazole and AMB was detected in 7, 2 and 10 C. glabrata isolates, respectively. MLST identified 28 sequence types (STs), including 12 new STs. ST46 (n = 33), ST3 (n = 8), ST7 (n = 6) and ST55 (n = 6) were prevalent in ≥4 hospitals. Repeat isolates obtained from same or different site yielded identical ST. No association of ST46 with source of isolation or resistance to antifungals was apparent. Microevolution and cross-transmission of infection was indicated in two hospitals that yielded majority (57 of 91, 67%) of C. glabrata. Conclusion Our data suggest that C. glabrata undergoes microevolution in hospital environment and can be nosocomially transmitted to other susceptible patients. Thus, proper infection control practices during routine procedures on C. glabrata-infected patients may prevent transmission of this pathogen to other hospitalized patients.
Collapse
Affiliation(s)
| | - Suhail Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | | | | |
Collapse
|
11
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Fuentes D, Cabrera N, Quintin C, Ilkit M, Ünal N, Hilmioğlu-Polat S, Jabeen K, Zaka S, Desai JV, Lass-Flörl C, Shor E, Gabaldon T, Perlin DS. Overlooked Candida glabrata petites are echinocandin tolerant, induce host inflammatory responses, and display poor in vivo fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545195. [PMID: 37398397 PMCID: PMC10312775 DOI: 10.1101/2023.06.15.545195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Small colony variants (SCVs) are relatively common among some bacterial species and are associated with poor prognosis and recalcitrant infections. Similarly, Candida glabrata - a major intracellular fungal pathogen - produces small and slow-growing respiratory-deficient colonies, termed "petite." Despite reports of clinical petite C . glabrata strains, our understanding of petite behavior in the host remains obscure. Moreover, controversies exist regarding in-host petite fitness and its clinical relevance. Herein, we employed whole-genome sequencing (WGS), dual-RNAseq, and extensive ex vivo and in vivo studies to fill this knowledge gap. WGS identified multiple petite-specific mutations in nuclear and mitochondrially-encoded genes. Consistent with dual-RNAseq data, petite C . glabrata cells did not replicate inside host macrophages and were outcompeted by their non-petite parents in macrophages and in gut colonization and systemic infection mouse models. The intracellular petites showed hallmarks of drug tolerance and were relatively insensitive to the fungicidal activity of echinocandin drugs. Petite-infected macrophages exhibited a pro-inflammatory and type I IFN-skewed transcriptional program. Interrogation of international C . glabrata blood isolates ( n =1000) showed that petite prevalence varies by country, albeit at an overall low prevalence (0-3.5%). Collectively, our study sheds new light on the genetic basis, drug susceptibility, clinical prevalence, and host-pathogen responses of a clinically overlooked phenotype in a major fungal pathogen. Importance Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite". This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omicstechnologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and therefore are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex-vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam1012 WX, The Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego Fuentes
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nathaly Cabrera
- Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
| | | | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Nevzat Ünal
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | | | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sadaf Zaka
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | | | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Toni Gabaldon
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington DC 20057, USA
| |
Collapse
|
12
|
Guner Ozenen G, Sahbudak Bal Z, Avcu G, Ozkaya Yazici P, Karakoyun M, Metin DY, Hilmioglu Polat S. Evaluation of candidemia in children at a university hospital: A retrospective cohort. Mycoses 2023; 66:367-377. [PMID: 36597951 DOI: 10.1111/myc.13564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/01/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Candidemia is a life-threatening infection in hospitalied children. This study aimed to evaluate candidemia's demographic and clinical characteristics and identify the risk factors and outcomes of Candida albicans (CA) and non-albicans Candida (NAC) spp. METHODS A retrospective cohort was designed to evaluate paediatric patients with candidemia between January 2008 and December 2020. RESULTS A total of 342 episodes in 311 patients were evaluated. The median age of the patients was 2.1 years (1 month-17 years and 6 months), and 59.6% were male. The prevalence of NAC (67.5%) candidemia was higher than that of CA (32.5%). The most commonly isolated Candida species was Candida parapsilosis (43.3%), followed by C. albicans (32.5%), Candida glabrata (6.1%) and Candida tropicalis (5.0%). The length of hospital stay prior to the positive culture and the total length of hospital stay were longer in the NAC group (p = .003 and p = .006). The neutrophil count was lower in the NAC group (p = .007). In the multivariate analysis, total parenteral nutrition, antifungal prophylaxis and a history of coagulase-negative staphylococci (CoNS) culture positivity in the past month were risk factors for developing candidemia due to NAC (p values were .003, .003 and .045). C. albicans and C. parapsilosis fluconazole resistance were 9.5% and 46.6%, respectively. The rates of amphotericin B resistance were 1.1% and 7.6% in C. albicans and C. parapsilosis, respectively. Mortality (14-day and 30-day) rates did not differ between the groups. CONCLUSIONS A history of CoNS culture positivity in the past month, total parenteral nutrition, and antifungal prophylaxis increases the risk of NAC candidemia.
Collapse
Affiliation(s)
- Gizem Guner Ozenen
- Division of Infectious Disease, Department of Pediatrics, Medical School of Ege University, Izmir, Turkey
| | - Zumrut Sahbudak Bal
- Division of Infectious Disease, Department of Pediatrics, Medical School of Ege University, Izmir, Turkey
| | - Gulhadiye Avcu
- Division of Infectious Disease, Department of Pediatrics, Medical School of Ege University, Izmir, Turkey
| | - Pinar Ozkaya Yazici
- Division of Intensive Care Unit, Department of Pediatrics, Medical School of Ege University, Izmir, Turkey
| | - Miray Karakoyun
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Medical School of Ege University, Izmir, Turkey
| | - Dilek Yesim Metin
- Department of Medical Microbiology, Medical School of Ege University, Izmir, Turkey
| | | |
Collapse
|
13
|
Memon S, Ghanchi NK, Zafar U, Farooqi J, Zaka S, Jabeen K. Analysis of
fks1
and
fks2
gene mutations in invasive
Candida glabrata
strains from Pakistan. Mycoses 2022; 66:52-58. [DOI: 10.1111/myc.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Saba Memon
- Department of Pathology & Laboratory Medicine Aga Khan University Karachi Pakistan
- Department of Microbiology University of Karachi Karachi Pakistan
| | - Najia Karim Ghanchi
- Department of Pathology & Laboratory Medicine Aga Khan University Karachi Pakistan
| | - Urooj Zafar
- Department of Microbiology University of Karachi Karachi Pakistan
| | - Joveria Farooqi
- Department of Pathology & Laboratory Medicine Aga Khan University Karachi Pakistan
| | - Sadaf Zaka
- Department of Pathology & Laboratory Medicine Aga Khan University Karachi Pakistan
| | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine Aga Khan University Karachi Pakistan
| |
Collapse
|
14
|
Hoenigl M, Sprute R, Arastehfar A, Perfect JR, Lass-Flörl C, Bellmann R, Prattes J, Thompson GR, Wiederhold NP, Al Obaidi MM, Willinger B, Arendrup MC, Koehler P, Oliverio M, Egger M, Schwartz IS, Cornely OA, Pappas PG, Krause R. Invasive candidiasis: Investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opin Investig Drugs 2022; 31:795-812. [PMID: 35657026 PMCID: PMC9339492 DOI: 10.1080/13543784.2022.2086120] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The epidemiology of invasive Candida infections is evolving. Infections caused by non-albicans Candida spp. are increasing; however, the antifungal pipeline is more promising than ever and is enriched with repurposed drugs and agents that have new mechanisms of action. Despite progress, unmet needs in the treatment of invasive candidiasis remain and there are still too few antifungals that can be administered orally or that have CNS penetration. AREAS COVERED The authors shed light on those antifungal agents active against Candida that are in late-stage clinical development. Mechanisms of action and key pharmacokinetic and pharmacodynamic properties are discussed. Insights are offered on the potential future roles of the investigational agents MAT-2203, oteseconazole, ATI-2307, VL-2397, NP-339, and the repurposed drug miltefosine. EXPERT OPINION Ibrexafungerp and fosmanogepix have novel mechanisms of action and will provide effective options for the treatment of Candida infections (including those caused by multiresistant Candida spp). Rezafungin, an echinocandin with an extended half-life allowing for once weekly administration, will be particularly valuable for outpatient treatment and prophylaxis. Despite this, there is an urgent need to garner clinical data on investigational drugs, especially in the current rise of azole-resistant and multi-drug resistant Candida spp.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA.,Clinical and Translational Fungal - Working Group, University of California San Diego, La Jolla, CA
| | - Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - John R Perfect
- Division of Infectious Diseases and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Excellence Center for Medical Mycology (ECMM), Medical University of Innsbruck, Innsbruck, Austria
| | - Romuald Bellmann
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases and Department of Medical Microbiology and Immunology, University of California Davis Medical Center
| | - Nathan P Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohanad M Al Obaidi
- Division of Infectious Diseases, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Maiken C Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Matteo Oliverio
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Peter G Pappas
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Krause
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria
| |
Collapse
|
15
|
Candidemia among Hospitalized Pediatric Patients Caused by Several Clonal Lineages of Candida parapsilosis. J Fungi (Basel) 2022; 8:jof8020183. [PMID: 35205937 PMCID: PMC8880282 DOI: 10.3390/jof8020183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Candida parapsilosis is the second most common cause of candidemia in some geographical areas and in children in particular. Yet, the proportion among children varies, for example, from 10.4% in Denmark to 24.7% in Tehran, Iran. As this species is also known to cause hospital outbreaks, we explored if the relatively high number of C. parapsilosis pediatric cases in Tehran could in part be explained by undiscovered clonal outbreaks. Among 56 C. parapsilosis complex isolates, 50 C. parapsilosis were genotyped by Amplified Fragment Length Polymorphism (AFLP) fingerprinting and microsatellite typing and analyzed for nucleotide polymorphisms by FKS1 and ERG11 sequencing. AFLP fingerprinting grouped Iranian isolates in two main clusters. Microsatellite typing separated the isolates into five clonal lineages, of which four were shared with Danish isolates, and with no correlation to the AFLP patterns. ERG11 and FKS1 sequencing revealed few polymorphisms in ERG11 leading to amino-acid substitutions (D133Y, Q250K, I302T, and R398I), with no influence on azole-susceptibilities. Collectively, this study demonstrated that there were no clonal outbreaks at the Iranian pediatric ward. Although possible transmission of a diverse C. parapsilosis community within the hospital cannot be ruled out, the study also emphasizes the necessity of applying appropriately discriminatory methods for outbreak investigation.
Collapse
|
16
|
Szymankiewicz M, Kamecki K, Jarzynka S, Koryszewska-Bagińska A, Olędzka G, Nowikiewicz T. Case Report: Echinocandin-Resistance Candida glabrata FKS Mutants From Patient Following Radical Cystoprostatectomy Due to Muscle-Invasive Bladder Cancer. Front Oncol 2022; 11:794235. [PMID: 34976835 PMCID: PMC8714647 DOI: 10.3389/fonc.2021.794235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Invasive Candida glabrata infections are not common complications after radical cystoprostatectomy. Furthermore, resistance to echinocandins arising during the course of a patient’s treatment is rarely recognised. We described a case of development of echinocandin resistance in a patient with muscle-invasive bladder cancer (pT2b N0 M0, high grade) diagnosis, subjected to radical cystoprostatectomy and exposed to echinocandins. A male patient with a previous surgical history after a traffic accident, who was operated on due to bladder cancer, underwent an episode of candidemia and mixed postoperative wound and urinary tract infection caused by C. glabrata and extended spectrum β-lactamase (ESBL)-producing Escherichia coli during hospital treatment. The patient was started on caspofungin. Repeat blood cultures showed clearance of the bloodstream infection; however, infection persisted at the surgical site. Resistance to echinocandins developed within 2 months from the day of initiation of therapy with caspofungin in the C. glabrata strain obtained from the surgical site. The isolates sequentially obtained during the patient’s treatment demonstrated resistance to echinocandins due to the mutation in hotspot 1 FKS2. Although resistance to echinocandins is relatively rare, it should be considered in oncological patients with increased complexity of treatment and intestinal surgery.
Collapse
Affiliation(s)
- Maria Szymankiewicz
- Department of Microbiology, Prof. F. Łukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Krzysztof Kamecki
- Department of Urological Oncology, Prof. F. Łukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | | | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Nowikiewicz
- Department of Surgical Oncology, Nicolaus Copernicus University Ludwik Rydygier's Collegium Medicum, Bydgoszcz, Poland.,Department of Clinical Breast Cancer and Reconstructive Surgery, Prof. F. Łukaszczyk Oncology Centre, Bydgoszcz, Poland
| |
Collapse
|
17
|
Antifungal Resistance in Clinical Isolates of Candida glabrata in Ibero-America. J Fungi (Basel) 2021; 8:jof8010014. [PMID: 35049954 PMCID: PMC8781625 DOI: 10.3390/jof8010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
In different regions worldwide, there exists an intra-and inter-regional variability in the rates of resistance to antifungal agents in Candida glabrata, highlighting the importance of understanding the epidemiology and antifungal susceptibility profiles of C. glabrata in each region. However, in some regions, such as Ibero-America, limited data are available in this context. Therefore, in the present study, a systematic review was conducted to determine the antifungal resistance in C. glabrata in Ibero-America over the last five years. A literature search for articles published between January 2015 and December 2020 was conducted without language restrictions, using the PubMed, Embase, Cochrane Library, and LILACS databases. The search terms that were used were "Candida glabrata" AND "antifungal resistance" AND "Country", and 22 publications were retrieved from different countries. The use of azoles (fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole, ketoconazole, and miconazole) varied between 4.0% and 100%, and that of echinocandins (micafungin, caspofungin, and anidulafungin) between 1.1% and 10.0%. The limited information on this subject in the region of Ibero-America emphasizes the need to identify the pathogens at the species level and perform antifungal susceptibility tests that may lead to the appropriate use of these drugs and the optimal doses in order to avoid the development of antifungal resistance or multi-resistance.
Collapse
|
18
|
Hoenigl M, Sprute R, Egger M, Arastehfar A, Cornely OA, Krause R, Lass-Flörl C, Prattes J, Spec A, Thompson GR, Wiederhold N, Jenks JD. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021; 81:1703-1729. [PMID: 34626339 PMCID: PMC8501344 DOI: 10.1007/s40265-021-01611-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
The epidemiology of invasive fungal infections is changing, with new populations at risk and the emergence of resistance caused by the selective pressure from increased usage of antifungal agents in prophylaxis, empiric therapy, and agriculture. Limited antifungal therapeutic options are further challenged by drug-drug interactions, toxicity, and constraints in administration routes. Despite the need for more antifungal drug options, no new classes of antifungal drugs have become available over the last 2 decades, and only one single new agent from a known antifungal class has been approved in the last decade. Nevertheless, there is hope on the horizon, with a number of new antifungal classes in late-stage clinical development. In this review, we describe the mechanisms of drug resistance employed by fungi and extensively discuss the most promising drugs in development, including fosmanogepix (a novel Gwt1 enzyme inhibitor), ibrexafungerp (a first-in-class triterpenoid), olorofim (a novel dihyroorotate dehydrogenase enzyme inhibitor), opelconazole (a novel triazole optimized for inhalation), and rezafungin (an echinocandin designed to be dosed once weekly). We focus on the mechanism of action and pharmacokinetics, as well as the spectrum of activity and stages of clinical development. We also highlight the potential future role of these drugs and unmet needs.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA.
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA.
| | - Rosanne Sprute
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Oliver A Cornely
- Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MI, USA
| | - George R Thompson
- Division of Infectious Diseases, Departments of Internal Medicine and Medical Microbiology and Immunology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Nathan Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jeffrey D Jenks
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, San Diego, CA, USA
- Division of General Internal Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| |
Collapse
|
19
|
Durand C, Maubon D, Cornet M, Wang Y, Aldebert D, Garnaud C. Can We Improve Antifungal Susceptibility Testing? Front Cell Infect Microbiol 2021; 11:720609. [PMID: 34568095 PMCID: PMC8461061 DOI: 10.3389/fcimb.2021.720609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic antifungal agents are increasingly used for prevention or treatment of invasive fungal infections, whose prognosis remains poor. At the same time, emergence of resistant or even multi-resistant strains is of concern as the antifungal arsenal is limited. Antifungal susceptibility testing (AFST) is therefore of key importance for patient management and antifungal stewardship. Current AFST methods, including reference and commercial types, are based on growth inhibition in the presence of an antifungal, in liquid or solid media. They usually enable Minimal Inhibitory Concentrations (MIC) to be determined with direct clinical application. However, they are limited by a high turnaround time (TAT). Several innovative methods are currently under development to improve AFST. Techniques based on MALDI-TOF are promising with short TAT, but still need extensive clinical validation. Flow cytometry and computed imaging techniques detecting cellular responses to antifungal stress other than growth inhibition are also of interest. Finally, molecular detection of mutations associated with antifungal resistance is an intriguing alternative to standard AFST, already used in routine microbiology labs for detection of azole resistance in Aspergillus and even directly from samples. It is still restricted to known mutations. The development of Next Generation Sequencing (NGS) and whole-genome approaches may overcome this limitation in the near future. While promising approaches are under development, they are not perfect and the ideal AFST technique (user-friendly, reproducible, low-cost, fast and accurate) still needs to be set up routinely in clinical laboratories.
Collapse
Affiliation(s)
| | - Danièle Maubon
- TIMC, Univ Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France.,Parasitology-Mycology, CHU Grenoble Alpes, Grenoble, France
| | - Muriel Cornet
- TIMC, Univ Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France.,Parasitology-Mycology, CHU Grenoble Alpes, Grenoble, France
| | | | | | - Cécile Garnaud
- TIMC, Univ Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France.,Parasitology-Mycology, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
20
|
Arastehfar A, Marcet-Houben M, Daneshnia F, Taj-Aldeen S, Batra D, Lockhart S, Shor E, Gabaldón T, Perlin D. Comparative genomic analysis of clinical Candida glabrata isolates identifies multiple polymorphic loci that can improve existing multilocus sequence typing strategy. Stud Mycol 2021; 100:100133. [PMID: 34909054 PMCID: PMC8640552 DOI: 10.1016/j.simyco.2021.100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Candida glabrata is the second leading cause of candidemia in many countries and is one of the most concerning yeast species of nosocomial importance due to its increasing rate of antifungal drug resistance and emerging multidrug-resistant isolates. Application of multilocus sequence typing (MLST) to clinical C. glabrata isolates revealed an association of certain sequence types (STs) with drug resistance and mortality. The current C. glabrata MLST scheme is based on single nucleotide polymorphisms (SNPs) at six loci and is therefore relatively laborious and costly. Furthermore, only a few high-quality C. glabrata reference genomes are available, limiting rapid analysis of clinical isolates by whole genome sequencing. In this study we provide long-read based assemblies for seven additional clinical strains belonging to three different STs and use this information to simplify the C. glabrata MLST scheme. Specifically, a comparison of these genomes identified highly polymorphic loci (HPL) defined by frequent insertions and deletions (indels), two of which proved to be highly resolutive for ST. When challenged with 53 additional isolates, a combination of TRP1 (a component of the current MLST scheme) with either of the two HPL fully recapitulated ST identification. Therefore, our comparative genomic analysis identified a new typing approach combining SNPs and indels and based on only two loci, thus significantly simplifying ST identification in C. glabrata. Because typing tools are instrumental in addressing numerous clinical and biological questions, our new MLST scheme can be used for high throughput typing of C. glabrata in clinical and research settings.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - F. Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | | | - D. Batra
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - S.R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - E. Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
| | - T. Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Department of Microbiology and Immunology, Washington, DC, 20057, USA
| |
Collapse
|
21
|
The Emergence of Echinocandin-Resistant Candida glabrata Exhibiting High MICs and Related FKS Mutations in Turkey. J Fungi (Basel) 2021; 7:jof7090691. [PMID: 34575729 PMCID: PMC8469111 DOI: 10.3390/jof7090691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
The frequency of invasive fungal infections shows a rising trend as well as a high morbidity and mortality. Among the causative agents, a shift toward the non-albicans Candida species including Candida glabrata species complex is being observed in several centers. Echinocandin resistance is increasingly published; however, isolates presenting with an in vitro resistance have not yet been reported from Turkey. We, herein, report the first FKS mutant and phenotypically echinocandin-resistant C. glabrata clinical strains from a single center in Turkey. In a 43-year-old female patient, several enterocutaneous fistulae developed after a long term hospitalization period and several complicated surgeries. She eventually required parenteral nutrition via a tunneled central venous catheter (CVC). Following a number of bacteremic and fungemic episodes as well as intensive antimicrobial interventions (including fluconazole, caspofungin and anidulafungin), a CVC-related candidemia caused by C. glabrata was detected. The isolated strain yielded high minimum inhibitory concentration (MIC) values for echinocandins and was categorized as resistant. A resistance-related mutation was detected in FKS2 HS1 (D666V). Blood cultures remained negative after the removal of the CVC and treatment with caspofungin and high-dose fluconazole. Following this first case, two additional C. glabrata strains with high echinocandin MICs were isolated from the urine cultures of two unrelated patients from different wards with different mutations in FKS2 HS1 (S663P and delF659). Our findings indicate that routine antifungal susceptibility testing is crucial and underlines the need for attention for the increasing trend of acquired echinocandin resistance in C. glabrata.
Collapse
|
22
|
Aldejohann AM, Herz M, Martin R, Walther G, Kurzai O. Emergence of resistant Candida glabrata in Germany. JAC Antimicrob Resist 2021; 3:dlab122. [PMID: 34377983 PMCID: PMC8346698 DOI: 10.1093/jacamr/dlab122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Background Candida glabrata is the second leading fungal pathogen causing candidaemia and invasive candidiasis in Europe. This yeast is recognized for its rapid ability to acquire antifungal drug resistance. Objectives We systematically evaluated 176 C. glabrata isolates submitted to the German National Reference Center for Invasive Fungal Infections (NRZMyk) between 2015 and 2019 with regard to echinocandin and fluconazole susceptibility. Methods Susceptibility testing was performed using a reference protocol (EUCAST) and a range of commercial assays. Hot spot regions of the echinocandin target FKS genes were sequenced using Sanger sequencing. Results In total, 84 of 176 isolates were initially classified as anidulafungin-resistant based on EUCAST testing. Of those, 71 harboured mutations in the glucan synthase encoding FKS genes (13% in FKS1, 87% in FKS2). Significant differences in anidulafungin MICs were found between distinct mutation sites. 11 FKS wild-type (WT) isolates initially classified as resistant exhibited anidulafungin MICs fluctuating around the interpretation breakpoint upon re-testing with multiple assays. Two FKS WT isolates consistently showed high anidulafungin MICs and thus must be considered resistant despite the absence of target gene mutations. Over one-third of echinocandin-resistant strains displayed concomitant fluconazole resistance. Of those, isolates linked to bloodstream infection carrying a change at Ser-663 were associated with adverse clinical outcome. Conclusions Resistant C. glabrata strains are emerging in Germany. Phenotypic echinocandin testing can result in misclassification of susceptible strains. FKS genotyping aids in detecting these strains, however, echinocandin resistance may occur despite a wild-type FKS genotype.
Collapse
Affiliation(s)
| | - Michaela Herz
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ronny Martin
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Grit Walther
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knoell Institute, Jena, Germany
| |
Collapse
|
23
|
Arastehfar A, Daneshnia F, Hilmioglu-Polat S, Ilkit M, Yasar M, Polat F, Metin DY, Dokumcu ÜZ, Pan W, Hagen F, Boekhout T, Perlin DS, Lass-Flörl C. Genetically related micafungin-resistant Candida parapsilosis blood isolates harbouring novel mutation R658G in hotspot 1 of Fks1p: a new challenge? J Antimicrob Chemother 2021; 76:418-422. [PMID: 33175162 DOI: 10.1093/jac/dkaa419] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Echinocandin resistance rarely occurs in clinical Candida parapsilosis isolates and the underlying mechanism is unknown. OBJECTIVES To determine the prevalence of echinocandin resistance and the underlying mechanism for a large collection of C. parapsilosis blood isolates and to determine whether the echinocandin-resistant isolates were clonally related. METHODS C. parapsilosis blood isolates (n = 213) were subjected to antifungal susceptibility testing (CLSI M27), for micafungin, anidulafungin, amphotericin B and, if appropriate, caspofungin. Hotspot (HS) 1 and HS2 of FKS1 were sequenced for all isolates (n = 213) and microsatellite typing was performed for echinocandin-resistant isolates. RESULTS All isolates were susceptible to amphotericin B and two isolates were intermediate to anidulafungin (MIC = 4 mg/L), while micafungin resistance was noted in four isolates (MIC >8 mg/L); three of which were also fluconazole resistant and therefore were MDR. Interestingly, micafungin-resistant isolates, but not those intermediate to anidulafungin, carried novel mutation R658G in HS1 of Fks1p; three of which also harboured Y132F+K143R in Erg11. The first isolate (MICR1) was recovered in November 2017 from a patient admitted to paediatric gastroenterology who showed therapeutic failure under caspofungin treatment. MICR2-MICR4 were collected during 2018-19 and were recovered from three echinocandin-naive paediatric-surgery patients; the isolates shared the same genotype. CONCLUSIONS Herein, for the first time (to the best of our knowledge), we identified micafungin-resistant C. parapsilosis blood isolates harbouring a novel mutation in HS1 of FKS1, which was likely attributable to in vitro micafungin resistance and in vivo caspofungin therapeutic failure. The acquisition of micafungin-resistant C. parapsilosis isolates in echinocandin-naive patients likely implicates clonal expansion, as supported by the close genetic relatedness of MICR2-MICR4.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Macit Ilkit
- Divison of Mycology, University of Çukurova, Adana, Turkey
| | - Melike Yasar
- Division of Mycology, University of Ege, Izmir, Turkey
| | - Furkan Polat
- Division of Mycology, University of Ege, Izmir, Turkey
| | | | - Ülküm Zafer Dokumcu
- Department of Paediatric Surgery, Faculty of Medicine, University of Ege, Izmir, Turkey
| | - Weihua Pan
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Paediatric Surgery, Faculty of Medicine, University of Ege, Izmir, Turkey.,Institute of Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Arastehfar A, de Almeida Júnior JN, Perlin DS, Ilkit M, Boekhout T, Colombo AL. Multidrug-resistant Trichosporon species: underestimated fungal pathogens posing imminent threats in clinical settings. Crit Rev Microbiol 2021; 47:679-698. [PMID: 34115962 DOI: 10.1080/1040841x.2021.1921695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Species of Trichosporon and related genera are widely used in biotechnology and, hence, many species have their genome sequenced. Importantly, yeasts of the genus Trichosporon have been increasingly identified as a cause of life-threatening invasive trichosporonosis (IT) in humans and are associated with an exceptionally high mortality rate. Trichosporon spp. are intrinsically resistant to frontline antifungal agents, which accounts for numerous reports of therapeutic failure when echinocandins are used to treat IT. Moreover, these fungi have low sensitivity to polyenes and azoles and, therefore, are potentially regarded as multidrug-resistant pathogens. However, despite the clinical importance of Trichosporon spp., our understanding of their antifungal resistance mechanisms is quite limited. Furthermore, antifungal susceptibility testing is not standardized, and there is a lack of interpretive epidemiological cut-off values for minimal inhibitory concentrations to distinguish non-wild type Trichosporon isolates. The route of infection remains obscure and detailed clinical and environmental studies are required to determine whether the Trichosporon infections are endogenous or exogenous in nature. Although our knowledge on effective IT treatments is rather limited and future randomized clinical trials are required to identify the best antifungal agent, the current paradigm advocates the use of voriconazole, removal of central venous catheters and recovery from neutropenia.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - João N de Almeida Júnior
- Laboratorio de Micologia Medica (LIM 53), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.,Laboratório Central (LIM 03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, Adana, Turkey
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Lotfali E, Fattahi A, Sayyahfar S, Ghasemi R, Rabiei MM, Fathi M, Vakili K, Deravi N, Soheili A, Toreyhi H, Shirvani F. A Review on Molecular Mechanisms of Antifungal Resistance in Candida glabrata: Update and Recent Advances. Microb Drug Resist 2021; 27:1371-1388. [PMID: 33956513 DOI: 10.1089/mdr.2020.0235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Candida glabrata is the second frequent etiologic agent of mucosal and invasive candidiasis. Based on the recent developments in molecular methods, C. glabrata has been introduced as a complex composed of C. glabrata, Candida nivariensis, and Candida bracarensis. The four main classes of antifungal drugs effective against C. glabrata are pyrimidine analogs (flucytosine), azoles, echinocandins, and polyenes. Although the use of antifungal drugs is related to the predictable development of drug resistance, it is not clear why C. glabrata is able to rapidly resist against multiple antifungals in clinics. The enhanced incidence and antifungal resistance of C. glabrata and the high mortality and morbidity need more investigation regarding the resistance mechanisms and virulence associated with C. glabrata; additional progress concerning the drug resistance of C. glabrata has to be further prevented. The present review highlights the mechanism of resistance to antifungal drugs in C. glabrata.
Collapse
Affiliation(s)
- Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Sayyahfar
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ghasemi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Rabiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirali Soheili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Toreyhi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Shirvani
- Pediatric Infections Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Arastehfar A, Hilmioğlu-Polat S, Daneshnia F, Pan W, Hafez A, Fang W, Liao W, Şahbudak-Bal Z, Metin DY, Júnior JNDA, Ilkit M, Perlin DS, Lass-Flörl C. Clonal Candidemia Outbreak by Candida parapsilosis Carrying Y132F in Turkey: Evolution of a Persisting Challenge. Front Cell Infect Microbiol 2021; 11:676177. [PMID: 33968809 PMCID: PMC8101544 DOI: 10.3389/fcimb.2021.676177] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
As the second leading etiological agent of candidemia in Turkey and the cause of severe fluconazole-non-susceptible (FNS) clonal outbreaks, Candida parapsilosis emerged as a major health threat at Ege University Hospital (EUH). Evaluation of microbiological and pertinent clinical profiles of candidemia patients due to C. parapsilosis in EUH in 2019–2020. Candida parapsilosis isolates were collected from blood samples and identified by sequencing internal transcribed spacer ribosomal DNA. Antifungal susceptibility testing was performed in accordance with CLSI M60 protocol and ERG11 and HS1/HS2-FKS1 were sequenced to explore the fluconazole and echinocandin resistance, respectively. Isolates were typed using a multilocus microsatellite typing assay. Relevant clinical data were obtained for patients recruited in the current study. FNS C. parapsilosis isolates were recovered from 53% of the patients admitted to EUH in 2019–2020. Y132F was the most frequent mutation in Erg11. All patients infected with C. parapsilosis isolates carrying Y132F, who received fluconazole showed therapeutic failure and significantly had a higher mortality than those infected with other FNS and susceptible isolates (50% vs. 16.1%). All isolates carrying Y132F grouped into one major cluster and mainly recovered from patients admitted to chest diseases and pediatric surgery wards. The unprecedented increase in the number of Y132F C. parapsilosis, which corresponded with increased rates of fluconazole therapeutic failure and mortality, is worrisome and highlights the urgency for strict infection control strategies, antifungal stewardship, and environmental screening in EUH.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Suleyha Hilmioğlu-Polat
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Ege, Izmir, Turkey
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | - Dilek Yeşim Metin
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Ege, Izmir, Turkey
| | - João N de Almeida Júnior
- Laboratorio de Micologia Medica (LIM 53), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.,Laboratório Central (LIM 03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Binder U, Arastehfar A, Schnegg L, Hörtnagl C, Hilmioğlu-Polat S, Perlin DS, Lass-Flörl C. Efficacy of LAMB against Emerging Azole- and Multidrug-Resistant Candida parapsilosis Isolates in the Galleria mellonella Model. J Fungi (Basel) 2020; 6:E377. [PMID: 33353200 PMCID: PMC7767002 DOI: 10.3390/jof6040377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
While being the third leading cause of candidemia worldwide, numerous studies have shown severe clonal outbreaks due to fluconazole-resistant (FLCR) Candida parapsilosis isolates associated with fluconazole therapeutic failure (FTF) with enhanced mortality. More recently, multidrug resistant (MDR) C. parapsilosis blood isolates have also been identified that are resistant to both azole and echinocandin drugs. Amphotericin B (AMB) resistance is rarely reported among C. parapsilosis isolates and proper management of bloodstream infections due to FLZR and MDR isolates requires prompt action at the time of outbreak. Therefore, using a well-established Galleria mellonella model, we assessed whether (a) laboratory-based findings on azole or echinocandin (micafungin) resistance in C. parapsilosis lead to therapeutic failure, (b) LAMB could serve as an efficient salvage treatment option, and (c) distinct mutations in ERG11 impact mortality. Our in vivo data confirm fluconazole inefficacy against FLCR C. parapsilosis isolates carrying Y132F, Y132F + K143R, Y132F + G307A, and G307A + G458S in Erg11p, while LAMB proved to be an efficacious accessible option against both FLCR and MDR C. parapsilosis isolates. Moreover, positive correlation of in vitro and in vivo data further highlights the utility of G. melonella as a reliable model to investigate azole and polyene drug efficacy.
Collapse
Affiliation(s)
- Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria; (L.S.); (C.H.); (C.L.-F.)
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (D.S.P.)
| | - Lisa Schnegg
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria; (L.S.); (C.H.); (C.L.-F.)
| | - Caroline Hörtnagl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria; (L.S.); (C.H.); (C.L.-F.)
| | | | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (D.S.P.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria; (L.S.); (C.H.); (C.L.-F.)
| |
Collapse
|
28
|
Arastehfar A, Khanjari S, Zareshahrabadi Z, Fang W, Pan W, Asadpour E, Daneshnia F, Ilkit M, Boekhout T, Perlin DS, Zand F, Zomorodian K. Clinical and microbiological features of candiduria in critically ill adult patients in Shiraz, Iran (2016-2018): deviations from international guidelines and fluconazole therapeutic failure. Med Mycol 2020; 59:myaa092. [PMID: 33305331 DOI: 10.1093/mmy/myaa092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Candiduria is common among patients admitted to intensive care units (ICUs); however, clinical and microbiological data are limited, which accounts for non-compliance with international guidelines, including over treatment of asymptomatic candiduria that promotes antifungal resistance. This prospective study included adult patients admitted to ICUs of five referral hospitals in Shiraz, Iran, during 2016-2018. Species were identified by MALDI-TOF MS, and antifungal susceptibility was assessed according to CLSI M27-A3/S4. Among 2086 patients, 162 and 293 developed candiduria and bacteriuria, respectively. In total, 174 yeast isolates were collected; 88.5% were Candida albicans (91/174; 52.2%), C. glabrata (38/174; 21.8%), and C. tropicalis (25/174; 14.3%). Antifungal resistance was rare; only two isolates (one C. tropicalis and one C. krusei) were fluconazole resistant. Symptomatic candiduria was noted in 31.4% of patients (51/162); only 37% (19/51) of them were treated and 36.82% (7/19) showed fluconazole therapeutic failure. Two symptomatic patients developed candidemia shortly after candiduria. Among asymptomatic patients, 31.5% (35/111) were overtreated with fluconazole. The mortality rate was 25.3% (41/162); it did not differ between symptomatic and asymptomatic patients. Our results indicate that deviation from standard-of-care treatment for candiduria is a matter of concern given the high rate of fluconazole therapeutic failure among patients with symptomatic candiduria. LAY SUMMARY Candiduria is an underestimated clinical presentation among critically ill patients and detailed data are scarce in this regard. Given the high rate of fluconazole therapeutic failure and development of candidemia in some cases, the mistreatment of candiduria should not be overlooked by clinicians.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sara Khanjari
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wenjie Fang
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Elham Asadpour
- Shiraz Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Teun Boekhout
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystems Dynamics (IBED, University of Amsterdam, Amsterdam, The Netherlands
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Farid Zand
- Shiraz Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anesthesia and Critical Care Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Arastehfar A, Gabaldón T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJF, Ilkit M, Lass-Flörl C, Perlin DS. Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics (Basel) 2020; 9:antibiotics9120877. [PMID: 33302565 PMCID: PMC7764418 DOI: 10.3390/antibiotics9120877] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
The high clinical mortality and economic burden posed by invasive fungal infections (IFIs), along with significant agricultural crop loss caused by various fungal species, has resulted in the widespread use of antifungal agents. Selective drug pressure, fungal attributes, and host- and drug-related factors have counteracted the efficacy of the limited systemic antifungal drugs and changed the epidemiological landscape of IFIs. Species belonging to Candida, Aspergillus, Cryptococcus, and Pneumocystis are among the fungal pathogens showing notable rates of antifungal resistance. Drug-resistant fungi from the environment are increasingly identified in clinical settings. Furthermore, we have a limited understanding of drug class-specific resistance mechanisms in emerging Candida species. The establishment of antifungal stewardship programs in both clinical and agricultural fields and the inclusion of species identification, antifungal susceptibility testing, and therapeutic drug monitoring practices in the clinic can minimize the emergence of drug-resistant fungi. New antifungal drugs featuring promising therapeutic profiles have great promise to treat drug-resistant fungi in the clinical setting. Mitigating antifungal tolerance, a prelude to the emergence of resistance, also requires the development of effective and fungal-specific adjuvants to be used in combination with systemic antifungals.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies. Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | | | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| |
Collapse
|
30
|
Arastehfar A, Hilmioğlu-Polat S, Daneshnia F, Hafez A, Salehi M, Polat F, Yaşar M, Arslan N, Hoşbul T, Ünal N, Metin DY, Gürcan Ş, Birinci A, Koç AN, Pan W, Ilkit M, Perlin DS, Lass-Flörl C. Recent Increase in the Prevalence of Fluconazole-Non-susceptible Candida tropicalis Blood Isolates in Turkey: Clinical Implication of Azole-Non-susceptible and Fluconazole Tolerant Phenotypes and Genotyping. Front Microbiol 2020; 11:587278. [PMID: 33123116 PMCID: PMC7573116 DOI: 10.3389/fmicb.2020.587278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Candida tropicalis is the fourth leading cause of candidemia in Turkey. Although C. tropicalis isolates from 1997 to 2017 were characterized as fully susceptible to antifungals, the increasing global prevalence of azole-non-susceptible (ANS) C. tropicalis and the association between high fluconazole tolerance (HFT) and fluconazole therapeutic failure (FTF) prompted us to re-evaluate azole susceptibility of C. tropicalis in Turkey. In this study, 161 C. tropicalis blood isolates from seven clinical centers were identified by ITS rDNA sequencing, genotyped by multilocus microsatellite typing, and tested for susceptibility to five azoles, two echinocandins, and amphotericin B (AMB); antifungal resistance mechanisms were assessed by sequencing of ERG11 and FKS1 genes. The results indicated that C. tropicalis isolates, which belonged to 125 genotypes grouped into 11 clusters, were fully susceptible to echinocandins and AMB; however, 18.6% of them had the ANS phenotype but only two carried the ANS-conferring mutation (Y132F). HFT was recorded in 52 isolates, 10 of which were also ANS. Large proportions of patients infected with ANS and HFT isolates (89 and 40.7%, respectively) showed FTF. Patients infected with azole-susceptible or ANS isolates did not differ in mortality, which, however, was significantly lower for those infected with HFT isolates (P = 0.007). There were significant differences in mortality (P = 0.02), ANS (P = 0.012), and HFT (P = 0.007) among genotype clusters. The alarming increase in the prevalence of C. tropicalis blood isolates with ANS and HFT in Turkey and the notable FTF rate should be a matter of public health concern.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | | | | | | | - Mohammadreza Salehi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Furkan Polat
- Department of Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Melike Yaşar
- Department of Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Nazlı Arslan
- Department of Microbiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Tuğrul Hoşbul
- Department of Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Nevzat Ünal
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey.,Department of Microbiology, Adana City Hospital, University of Health Sciences, Adana, Turkey
| | - Dilek Yeşim Metin
- Department of Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Şaban Gürcan
- Department of Microbiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Asuman Birinci
- Department of Microbiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ayşe Nedret Koç
- Department of Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Weihua Pan
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Pan-Echinocandin-Resistant Candida glabrata Bloodstream Infection Complicating COVID-19: A Fatal Case Report. J Fungi (Basel) 2020; 6:jof6030163. [PMID: 32899996 PMCID: PMC7559523 DOI: 10.3390/jof6030163] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Coinfections with bacteria or fungi may be a frequent complication of COVID-19, but coinfections with Candida species in COVID-19 patients remain rare. We report the 53-day clinical course of a complicated type-2 diabetes patient diagnosed with COVID-19, who developed bloodstream infections initially due to methicillin-resistant Staphylococcus aureus, secondly due to multidrug-resistant Gram-negative bacteria, and lastly due to a possibly fatal Candida glabrata. The development of FKS-associated pan-echinocandin resistance in the C. glabrata isolated from the patient after 13 days of caspofungin treatment aggravated the situation. The patient died of septic shock shortly before the prospect of receiving potentially effective antifungal therapy. This case emphasizes the importance of early diagnosis and monitoring for antimicrobial drug-resistant coinfections to reduce their unfavorable outcomes in COVID-19 patients.
Collapse
|
32
|
Arastehfar A, Lass-Flörl C, Garcia-Rubio R, Daneshnia F, Ilkit M, Boekhout T, Gabaldon T, Perlin DS. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J Fungi (Basel) 2020; 6:E138. [PMID: 32824785 PMCID: PMC7557958 DOI: 10.3390/jof6030138] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Human fungal pathogens are attributable to a significant economic burden and mortality worldwide. Antifungal treatments, although limited in number, play a pivotal role in decreasing mortality and morbidities posed by invasive fungal infections (IFIs). However, the recent emergence of multidrug-resistant Candida auris and Candida glabrata and acquiring invasive infections due to azole-resistant C. parapsilosis, C. tropicalis, and Aspergillus spp. in azole-naïve patients pose a serious health threat considering the limited number of systemic antifungals available to treat IFIs. Although advancing for major fungal pathogens, the understanding of fungal attributes contributing to antifungal resistance is just emerging for several clinically important MDR fungal pathogens. Further complicating the matter are the distinct differences in antifungal resistance mechanisms among various fungal species in which one or more mechanisms may contribute to the resistance phenotype. In this review, we attempt to summarize the burden of antifungal resistance for selected non-albicansCandida and clinically important Aspergillus species together with their phylogenetic placement on the tree of life. Moreover, we highlight the different molecular mechanisms between antifungal tolerance and resistance, and comprehensively discuss the molecular mechanisms of antifungal resistance in a species level.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey;
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Toni Gabaldon
- Life Sciences Programme, Barcelona, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
33
|
Arastehfar A, Daneshnia F, Salehi M, Yaşar M, Hoşbul T, Ilkit M, Pan W, Hagen F, Arslan N, Türk-Dağı H, Hilmioğlu-Polat S, Perlin DS, Lass-Flörl C. Low level of antifungal resistance of Candida glabrata blood isolates in Turkey: Fluconazole minimum inhibitory concentration and FKS mutations can predict therapeutic failure. Mycoses 2020; 63:911-920. [PMID: 32413170 PMCID: PMC7497236 DOI: 10.1111/myc.13104] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
Background Candida glabrata is the third leading cause of candidaemia in Turkey; however, the data regarding antifungal resistance mechanisms and genotypic diversity in association with their clinical implication are limited. Objectives To assess genotypic diversity, antifungal susceptibility and mechanisms of drug resistance of Cglabrata blood isolates and their association with patients' outcome in a retrospective multicentre study. Patients/Methods Isolates from 107 patients were identified by ITS sequencing and analysed by multilocus microsatellite typing, antifungal susceptibility testing, and sequencing of PDR1 and FKS1/2 hotspots (HSs). Results Candida glabrata prevalence in Ege University Hospital was twofold higher in 2014‐2019 than in 2005‐2014. Six of the analysed isolates had fluconazole MICs ≥ 32 µg/mL; of them, five harboured unique PDR1 mutations. Although echinocandin resistance was not detected, three isolates had mutations in HS1‐Fks1 (S629T, n = 1) and HS1‐Fks2 (S663P, n = 2); one of the latter was also fluconazole‐resistant. All patients infected with isolates carrying HS‐FKS mutations and/or demonstrating fluconazole MIC ≥ 32 µg/mL (except one without clinical data) showed therapeutic failure (TF) with echinocandin and fluconazole; seven such isolates were collected in Ege (n = 4) and Gulhane (n = 3) hospitals and six detected recently. Among 34 identified genotypes, none were associated with mortality or enriched for fluconazole‐resistant isolates. Conclusion Antifungal susceptibility testing should be supplemented with HS‐FKS sequencing to predict TF for echinocandins, whereas fluconazole MIC ≥ 32 µg/mL may predict TF. Recent emergence of C glabrata isolates associated with antifungal TF warrants future comprehensive prospective studies in Turkey.
Collapse
Affiliation(s)
- Amir Arastehfar
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Farnaz Daneshnia
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Mohammadreza Salehi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Melike Yaşar
- Department of Medical Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Tuğrul Hoşbul
- Department of Medical Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Weihua Pan
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, The Netherlands.,People's Hospital, Jining, China
| | - Nazlı Arslan
- Department of Medical Microbiology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | - Hatice Türk-Dağı
- Department of Microbiology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | | | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Arastehfar A, Yazdanpanah S, Bakhtiari M, Fang W, Pan W, Mahmoudi S, Pakshir K, Daneshnia F, Boekhout T, Ilkit M, Perlin DS, Zomorodian K, Zand F. Epidemiology of candidemia in Shiraz, southern Iran: A prospective multicenter study (2016-2018). Med Mycol 2020; 59:422-430. [PMID: 32692816 DOI: 10.1093/mmy/myaa059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Systematic candidemia studies, especially in southern Iran, are scarce. In the current prospective study, we investigated candidemia in three major healthcare centers of Shiraz, the largest city in southern Iran. Yeast isolates from blood and other sterile body fluids were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and subjected to antifungal susceptibility testing (AFST) using the broth microdilution method. Clinical data were retrieved from patients' medical records. In total, 113 yeast isolates were recovered from 109 patients, over 60% of whom received fluconazole. Antifungal drugs were prescribed without considering species identification or AFST. The all-cause mortality rate was 28%. Almost 30% of the patients were from intensive care units (ICUs). Candida albicans (56/113; 49.5%) was the most prevalent species followed by C. glabrata (26/113; 23%), C. parapsilosis (13/113; 11.5%), C. tropicalis (7/113; 6.2%), and C. dubliniensis (5/113; 4.4%). Only five isolates showed antifungal resistance or decreased susceptibility to fluconazole: one C. orthopsilosis isolate from an azole-naïve patient and two C. glabrata, one C. albicans, and one C. dubliniensis isolates from patients treated with azoles, who developed therapeutic failure against azoles later. Our results revealed a low level of antifungal resistance but a notable rate of azole therapeutic failure among patients with candidemia due to non-albicans Candida species, which threaten the efficacy of fluconazole, the most widely used antifungal in southern regions of Iran. Candidemia studies should not be confined to ICUs and treatment should be administered based on species identification and AFST results.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Samira Yazdanpanah
- Basic Sciences in Infectious Diseases Research Center, & Department of Medical Mycology & Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Bakhtiari
- Basic Sciences in Infectious Diseases Research Center, & Department of Medical Mycology & Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wenjie Fang
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Shahram Mahmoudi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Keyvan Pakshir
- Basic Sciences in Infectious Diseases Research Center, & Department of Medical Mycology & Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China.,Institute of Biodiversity and Ecosystems Dynamics (IBED, University of Amsterdam, Amsterdam, The Netherlands
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, & Department of Medical Mycology & Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Zand
- Department of Anesthesia and Critical Care Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Arastehfar A, Daneshnia F, Najafzadeh MJ, Hagen F, Mahmoudi S, Salehi M, Zarrinfar H, Namvar Z, Zareshahrabadi Z, Khodavaisy S, Zomorodian K, Pan W, Theelen B, Kostrzewa M, Boekhout T, Lass-Flörl C. Evaluation of Molecular Epidemiology, Clinical Characteristics, Antifungal Susceptibility Profiles, and Molecular Mechanisms of Antifungal Resistance of Iranian Candida parapsilosis Species Complex Blood Isolates. Front Cell Infect Microbiol 2020; 10:206. [PMID: 32509592 PMCID: PMC7253641 DOI: 10.3389/fcimb.2020.00206] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Clonal expansion of fluconazole resistant (FLZ-R) Candida parapsilosis isolates is increasingly being identified in many countries, while there is no study exploring the antifungal susceptibility pattern, genetic diversity, and clinical information for Iranian C. parapsilosis blood isolates. Candida parapsilosis species complex blood isolates (n = 98) were recovered from nine hospitals located in three major cities, identified by MALDI-TOF MS, and their genetic relatedness was examined by AFLP fingerprinting. Antifungal susceptibility testing followed CLSI-M27-A3 and ERG11, MRR1 and hotspots 1/2 (HS1/2) of FKS1 were sequenced to assess the azole and echinocandin resistance mechanisms, respectively. Ninety-four C. parapsilosis and four Candida orthopsilosis isolates were identified from 90 patients. Only 43 patients received systemic antifungal drugs with fluconazole as the main antifungal used. The overall mortality rate was 46.6% (42/90) and death mostly occurred for those receiving systemic antifungals (25/43) relative to those not treated (17/47). Although, antifungal-resistance was rare, one isolate was multidrug-resistant (FLZ = 16 μg/ml and micafungin = 8 μg/ml) and the infected patient showed therapeutic failure to FLZ prophylaxis. Mutations causing azole and echinocandin resistance were not found in the genes studied. AFLP revealed five genotypes (G) and G1 was the main one (59/94; 62.7%). Clinical outcome was significantly associated with city (P = 0.02, α <0.05) and Mashhad was significantly associated with mortality (P = 0.03, α <0.05). Overall, we found a low level of antifungal resistance for Iranian C. parapsilosis blood isolates, but the noted MDR strain can potentially become the source of future infections and challenge the antifungal therapy in antifungal-naïve patients. AFLP typing results warrants confirmation using other resolutive typing methods.
Collapse
Affiliation(s)
- Amir Arastehfar
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Farnaz Daneshnia
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ferry Hagen
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Shahram Mahmoudi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Namvar
- Department of Microbiology, School of Biological Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Weihua Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bart Theelen
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | | | - Teun Boekhout
- Yeast Biodiversity Department, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|