1
|
De Donato R, Maiorana NV, Vergari M, De Sandi A, Naci A, Aglieco G, Albizzati T, Guidetti M, Ferrara R, Bocci T, Barbieri S, Ferrucci R, Priori A. 'Knock down the brain': a nonlinear analysis of electroencephalography to study the effects of sub-concussion in boxers. Eur J Neurol 2024:e16411. [PMID: 39275911 DOI: 10.1111/ene.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 09/16/2024]
Abstract
BACKGROUND AND PURPOSE Boxing is associated with a high risk of head injuries and increases the likelihood of chronic traumatic encephalopathy. This study explores the effects of sub-concussive impacts on boxers by applying both linear and nonlinear analysis methods to electroencephalogram (EEG) data. METHODS Twenty-one boxers were selected (mean ± SD, age 28.38 ± 5.5 years; weight 67.55 ± 8.90 kg; years of activity 6.76 ± 5.45; education 14.19 ± 3.08 years) and divided into 'beginner' and 'advanced' groups. The Montreal Cognitive Assessment and the Frontal Assessment Battery were administered; EEG data were collected in both eyes-open (EO) and eyes-closed (EC) conditions during resting states. Analyses of EEG data included normalized power spectral density (nPSD), power law exponent (PLE), detrended fluctuation analysis and multiscale entropy. Statistical analyses were used to compare the groups. RESULTS Significant differences in nPSD and PLE were observed between the beginner and advanced boxers, with advanced boxers showing decreased mean nPSD and PLE (nPSD 4-7 Hz, p = 0.013; 8-13 Hz, p = 0.003; PLE frontal lobe F3 EC, p = 0.010). Multiscale entropy analysis indicated increased entropy at lower frequencies and decreased entropy at higher frequencies in advanced boxers (F3 EC, p = 0.024; occipital lobe O1 EO, p = 0.029; occipital lobe O2 EO, p = 0.036). These changes are similar to those seen in Alzheimer's disease. CONCLUSION Nonlinear analysis of EEG data shows potential as a neurophysiological biomarker for detecting the asymptomatic phase of chronic traumatic encephalopathy in boxers. This methodology could help monitor athletes' health and reduce the risk of future neurological injuries in sports.
Collapse
Affiliation(s)
- Renato De Donato
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Aldo Ravelli Research Centre, Department of Health Science, University of Milan, Milan, Italy
| | | | - Maurizio Vergari
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelica De Sandi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anisa Naci
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giada Aglieco
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Albizzati
- Aldo Ravelli Research Centre, Department of Health Science, University of Milan, Milan, Italy
| | - Matteo Guidetti
- Aldo Ravelli Research Centre, Department of Health Science, University of Milan, Milan, Italy
| | - Rosanna Ferrara
- Aldo Ravelli Research Centre, Department of Health Science, University of Milan, Milan, Italy
| | - Tommaso Bocci
- Aldo Ravelli Research Centre, Department of Health Science, University of Milan, Milan, Italy
- ASST Santi Paolo e Carlo, University Hospital, Milan, Italy
| | - Sergio Barbieri
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Research Centre, Department of Health Science, University of Milan, Milan, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Emato-Oncology, University of Milan, Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Centre, Department of Health Science, University of Milan, Milan, Italy
- ASST Santi Paolo e Carlo, University Hospital, Milan, Italy
| |
Collapse
|
2
|
Tanaka H, Lee S, Martinez-Valbuena I, Couto B, Tartaglia MC, de Gordoa JSR, Erro ME, Lang AE, Forrest SL, Kovacs GG. Ageing-related tau astrogliopathy severely affecting the substantia nigra. Neuropathol Appl Neurobiol 2024; 50:e13000. [PMID: 39036836 DOI: 10.1111/nan.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
AIMS Astrocytic tau pathology is a major feature of tauopathies and ageing-related tau astrogliopathy (ARTAG). The substantia nigra (SN) is one of the important degenerative areas in tauopathies with parkinsonism. Nigral tau pathology is usually reported as neuronal predominant with less prominent astrocytic involvement. We aimed to identify cases with prominent astrocytic tau pathology in the SN. METHODS We use the term nigral tau-astrogliopathy (NITAG) to describe cases showing an unusually high density of ARTAG with less neuronal tau pathology in the SN. We collected clinical information and studied the distribution of tau pathology, morphological features and immunostaining profiles in three cases. RESULTS Three cases, all males with parkinsonism, were identified with the following clinicopathological diagnoses: (i) atypical parkinsonism with tau pathology reminiscent to that in postencephalitic parkinsonism (69-year-old); (ii) multiple system atrophy (73-year-old); (iii) traumatic encephalopathy syndrome/chronic traumatic encephalopathy (84-year-old). Double-labelling immunofluorescence confirmed co-localization of GFAP and phosphorylated tau in affected astrocytes. Staining profiles of NITAG revealed immunopositivity for various phosphorylated tau antibodies. Some astrocytic tau lesions were also seen in other brainstem regions and cerebral grey matter. CONCLUSIONS We propose NITAG is a rare neuropathological feature, and not a distinct disease entity, in the frame of multiple system ARTAG, represented by abundant tau-positive astrocytes in various brain regions but having the highest density in the SN. The concept of NITAG allows the stratification of cases with various background pathologies to understand its relevance and contribution to neuronal dysfunction.
Collapse
Affiliation(s)
- Hidetomo Tanaka
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Seojin Lee
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Martinez-Valbuena
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- University Health Network Memory Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
- Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | | | - M Elena Erro
- Department of Neurology, Hospital Universitario de Navarra and Biobank, Navarrabiomed, Pamplona, Navarra, Spain
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Shelley L Forrest
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine/Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Barbas H, Garcia-Cabezas MA, John Y, Bautista J, McKee A, Zikopoulos B. Cortical circuit principles predict patterns of trauma induced tauopathy in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592271. [PMID: 38746103 PMCID: PMC11092596 DOI: 10.1101/2024.05.02.592271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Connections in the cortex of diverse mammalian species are predicted reliably by the Structural Model for direction of pathways and signal processing (reviewed in 1,2). The model is rooted in the universal principle of cortical systematic variation in laminar structure and has been supported widely for connection patterns in animals but has not yet been tested for humans. Here, in postmortem brains of individuals neuropathologically diagnosed with chronic traumatic encephalopathy (CTE) we studied whether the hyperphosphorylated tau (p-tau) pathology parallels connection sequence in time by circuit mechanisms. CTE is a progressive p-tau pathology that begins focally in perivascular sites in sulcal depths of the neocortex (stages I-II) and later involves the medial temporal lobe (MTL) in stages III-IV. We provide novel quantitative evidence that the p-tau pathology in MTL A28 and nearby sites in CTE stage III closely follows the graded laminar patterns seen in homologous cortico-cortical connections in non-human primates. The Structural Model successfully predicted the laminar distribution of the p-tau neurofibrillary tangles and neurites and their density, based on the relative laminar (dis)similarity between the cortical origin (seed) and each connection site. The findings were validated for generalizability by a computational progression model. By contrast, the early focal perivascular pathology in the sulcal depths followed local columnar connectivity rules. These findings support the general applicability of a theoretical model to unravel the direction and progression of p-tau pathology in human neurodegeneration via a cortico-cortical mechanism. Cortical pathways converging on medial MTL help explain the progressive spread of p-tau pathology from focal cortical sites in early CTE to widespread lateral MTL areas and beyond in later disease stages.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA 022152
- Graduate Program in Neuroscience, Boston Univ. and School of Medicine
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| | - Miguel Angel Garcia-Cabezas
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yohan John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA 022152
| | - Julied Bautista
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA 022152
| | - Ann McKee
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston Univ. and School of Medicine
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University
| |
Collapse
|
4
|
Hageman G, Hageman I, Nihom J. Chronic Traumatic Encephalopathy in Soccer Players: Review of 14 Cases. Clin J Sport Med 2024; 34:69-80. [PMID: 37403989 DOI: 10.1097/jsm.0000000000001174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/22/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVE Exposure to repetitive sports-related concussions or (sub)concussive head trauma may lead to chronic traumatic encephalopathy (CTE). Which impact (heading or concussion) poses the greatest risk of CTE development in soccer players? DESIGN Narrative review. SETTING Teaching hospital and University of Applied sciences. PATIENTS A literature search (PubMed) was conducted for neuropathologic studies in the period 2005-December 2022, investigating soccer players with dementia and a CTE diagnosis, limited to English language publications. 210 papers were selected for final inclusion, of which 7 papers described 14 soccer players. ASSESSMENT Magnetic resonance imaging studies in soccer players show that lifetime estimates of heading numbers are inversely correlated with cortical thickness, grey matter volume, and density of the anterior temporal cortex. Using diffusion tensor imaging-magnetic resonance imaging, higher frequency of headings-particularly with rotational accelerations-are associated with impaired white matter integrity. Serum neurofilament light protein is elevated after heading. MAIN OUTCOME MEASURES Chronic traumatic encephalopathy pathology, history of concussion, heading frequency. RESULTS In 10 of 14 soccer players, CTE was the primary diagnosis. In 4 cases, other dementia types formed the primary diagnosis and CTE pathology was a concomitant finding. Remarkably, 6 of the 14 cases had no history of concussion, suggesting that frequent heading may be a risk for CTE in patients without symptomatic concussion. Rule changes in heading duels, management of concussion during the game, and limiting the number of high force headers during training are discussed. CONCLUSIONS Data suggest that heading frequency and concussions are associated with higher risk of developing CTE in (retired) soccer players. However based on this review of only 14 players, questions persist as to whether or not heading is a risk factor for CTE or long-term cognitive decline.
Collapse
Affiliation(s)
- Gerard Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| | - Ivar Hageman
- Saxion University of Applied Sciences, Enschede, the Netherlands
| | - Jik Nihom
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, the Netherlands; and
| |
Collapse
|
5
|
Roberta de Souza Mendes Kawamura L, Ferreira Lima Mota I, Santos Vasconcelos A, Renata Mortari M. Challenges in the pharmacological treatment of patients under suspicion of chronic traumatic encephalopathy: A review. Brain Res 2023; 1799:148176. [PMID: 36503890 DOI: 10.1016/j.brainres.2022.148176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is caused by progressive neurodegeneration associated with repetitive head impacts. This disease is more common in professionals who practice contact sports, resulting in a concussion and subconcussive trauma. CTE is characterized by the accumulation of hyperphosphorylated tau protein in neurons, astrocytes, and frontotemporal lobe degeneration. Symptoms are usually nonspecific and overlap with other neurodegenerative diseases, such as Alzheimer's disease and frontotemporal dementia, making it difficult to provide drug treatment for patients with this comorbidity. Therefore, the objective of this article is to present an updated review of the pharmacological treatment of chronic traumatic encephalopathy and its challenges.
Collapse
Affiliation(s)
| | - Isabela Ferreira Lima Mota
- Neuropharmacology Laboratory, Institute of Biological Sciences, Department of Physiological Sciences, University of Brasilia, Brazil
| | | | - Márcia Renata Mortari
- Neuropharmacology Laboratory, Institute of Biological Sciences, Department of Physiological Sciences, University of Brasilia, Brazil
| |
Collapse
|
6
|
Butler MLMD, Dixon E, Stein TD, Alvarez VE, Huber B, Buckland ME, McKee AC, Cherry JD. Tau Pathology in Chronic Traumatic Encephalopathy is Primarily Neuronal. J Neuropathol Exp Neurol 2022; 81:773-780. [PMID: 35903039 PMCID: PMC9487650 DOI: 10.1093/jnen/nlac065] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Millions of individuals are exposed to repetitive head impacts (RHI) each year through contact sports, military blast, and interpersonal violence. RHI is the major risk factor for developing chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy. Recent consensus criteria defined the pathognomonic lesion in CTE as perivascular, hyperphosphorylated tau (p-tau) in neuronal aggregates. Astroglial p-tau is an inconsistent supporting feature and not in itself diagnostic of CTE. This study quantitated the spatial and cellular distribution of p-tau pathology in postmortem dorsolateral frontal cortex of 150 individuals with CTE, from ages 21 to 80 years old, without comorbid pathology. p-Tau-immunoreactive cells were quantitated in the gray matter sulcus, crest, subpial region, and within pathognomonic CTE lesions. Significantly more neuronal p-tau than astrocytic p-tau was found across all cortical regions (p < 0.0001). Sulcal astrocytic p-tau was primarily (75%, p < 0.0001) localized to subpial regions as thorn-shaped astrocytes, a form of age-related tau astrogliopathy. Neuronal p-tau was significantly associated with age, years of RHI exposure, and CTE severity; astrocytic p-tau pathology was only significantly associated with age. These findings strongly support neuronal degeneration as a driving feature of CTE and will help inform future research and the development of fluid biomarkers for the detection of neuronal degeneration in CTE.
Collapse
Affiliation(s)
- Morgane L M D Butler
- From the Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Erin Dixon
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Thor D Stein
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Bertrand Huber
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Ann C McKee
- From the Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jonathan D Cherry
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Murray HC, Osterman C, Bell P, Vinnell L, Curtis MA. Neuropathology in chronic traumatic encephalopathy: a systematic review of comparative post-mortem histology literature. Acta Neuropathol Commun 2022; 10:108. [PMID: 35933388 PMCID: PMC9356428 DOI: 10.1186/s40478-022-01413-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive head trauma and is characterised by the perivascular accumulation of hyperphosphorylated tau (p-tau) in the depths of cortical sulci. CTE can only be diagnosed postmortem and the cellular mechanisms of disease causation remain to be elucidated. Understanding the full scope of the pathological changes currently identified in CTE is necessary to identify areas requiring further research. This systematic review summarises the current literature on CTE pathology from postmortem human tissue histology studies published until 31 December 2021. Publications were included if they quantitively or qualitatively compared postmortem human tissue pathology in CTE to neuropathologically normal cases or other neurodegenerative diseases such as Alzheimer's disease (AD). Pathological entities investigated included p-tau, beta-amyloid, TDP-43, Lewy bodies, astrogliosis, microgliosis, axonopathy, vascular dysfunction, and cell stress. Of these pathologies, p-tau was the most frequently investigated, with limited reports on other pathological features such as vascular dysfunction, astrogliosis, and microgliosis. Consistent increases in p-tau, TDP-43, microgliosis, axonopathy, and cell stress were reported in CTE cases compared to neuropathologically normal cases. However, there was no clear consensus on how these pathologies compared to AD. The CTE cases used for these studies were predominantly from the VA-BU-CLF brain bank, with American football and boxing as the most frequent sources of repetitive head injury exposure. Overall, this systematic review highlights gaps in the literature and proposes three priorities for future research including: 1. The need for studies of CTE cases with more diverse head injury exposure profiles to understand the consistency of pathology changes between different populations. 2. The need for more studies that compare CTE with normal ageing and AD to further clarify the pathological signature of CTE for diagnostic purposes and to understand the disease process. 3. Further research on non-aggregate pathologies in CTE, such as vascular dysfunction and neuroinflammation. These are some of the least investigated features of CTE pathology despite being implicated in the acute phase response following traumatic head injury.
Collapse
Affiliation(s)
- Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Chelsie Osterman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Paige Bell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Luca Vinnell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| |
Collapse
|
8
|
Tau seeding in chronic traumatic encephalopathy parallels disease severity. Acta Neuropathol 2021; 142:951-960. [PMID: 34626223 DOI: 10.1007/s00401-021-02373-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022]
Abstract
Chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy, is associated with behavioral, mood and cognitive impairment, including dementia. Tauopathies are neurodegenerative diseases whose neuropathological phenotypes are characterized by distinct histopathologic features of tau pathology, which progressively deposit throughout the brain. In certain tauopathies, especially Alzheimer's disease (AD), tau deposition appears to follow brain network connections. Experimental evidence suggests that the progression of tau pathology in humans, mouse and cell models could be explained by tau seeds that adopt distinct conformations and serve as templates for their own amplification to mediate transcellular propagation of pathology. Tau seeds are efficiently detected by the induction of aggregation in cell-based "biosensors" that express tau repeat domain (RD) with a disease-associated mutation (P301S) fused to complementary fluorescent protein tags (cyan and yellow fluorescent protein). Biosensors enable quantification of tau seeding in fixed and fresh-frozen brain tissue. Phospho-tau deposition in CTE follows progressive stages (I-IV), but the relationship of seeding to this deposition is unclear. We have used an established biosensor assay to independently quantify tau seeding as compared to AT8 phospho-tau histopathology in thin sections of fixed tissues of 11 brain regions from 27 patients with CTE, 5 with other tauopathies, and 5 negative controls. In contrast to prior studies of AD, we detected tau seeding late in the course of CTE (predominantly stages III and IV). It was less anatomically prevalent than AT8-positive inclusions, which were relatively widespread. We especially observed seeding in the limbic system (amygdala, thalamus, basal ganglia), which may explain the dominant cognitive and behavior impairments that characterize CTE.
Collapse
|
9
|
Ishida C, Kato-Motozaki Y, Noto D, Komai K, Hasegawa M, Ikeuchi T, Yamada M. An autopsy case of corticobasal degeneration with inferior olivary hypertrophy. Neuropathology 2021; 41:226-235. [PMID: 33847035 DOI: 10.1111/neup.12725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
We report autopsy results of a female patient who was confirmed pathologically as having corticobasal degeneration (CBD). This patient presented with progressive gait disturbance at the age of 66 years, and subsequently showed parkinsonism with a right-sided predominance and dementia. She was clinically diagnosed as having possible corticobasal syndrome without palatal myoclonus throughout the disease course. An autopsy at 72 years of age revealed that neuronal loss with gliosis was severe in the substantia nigra and the portion from hippocampal cornu ammonis (CA1) region to the parahippocampal gyrus, and mild-to-moderate in the basal ganglia, thalamus, red nucleus, dentate nucleus, and cerebral cortices, predominantly in the frontal lobe. Myelin pallor was observed in the pyramidal tract of the brainstem and central tegmental tract. Neurodegenerative or axonal degenerative findings were observed predominantly on the left side, except for the dentate nucleus, which was more affected on the right side. The inferior olivary nucleus exhibited hypertrophic degeneration predominantly on the left side. The topography of neurodegeneration was likely to correspond to the dentate nucleus and inferior olivary nucleus. Phosphorylated tau-immunoreactive pretangles, neurofibrillary tangles, coiled bodies, and threads were diffusely observed in the whole brain. The distribution of tau deposits was prominent in the deeper affected lesions of the dentate nucleus and inferior olivary nucleus. Inferior olivary hypertrophy is unusual in patients with CBD. It is highly possible that the neurodegeneration of the inferior olivary nucleus followed that of the dentate nucleus in our patient. Moreover, these results indicate not only the severity of neurodegenerative changes, but also that of tau deposition that could be related to the topography of the projections of the dentato-olivary pathway. Tau propagation and subsequent neurodegeneration along the fiber connections may have occurred. Our results support the possibility that progression of CBD lesions can be mediated by tau propagation.
Collapse
Affiliation(s)
- Chiho Ishida
- Department of Neurology, National Hospital Organization Iou National Hospital, Hokuriku Brain and Neuromuscular Disease Center, Kanazawa, Japan
| | - Yuko Kato-Motozaki
- Department of Neurology, National Hospital Organization Iou National Hospital, Hokuriku Brain and Neuromuscular Disease Center, Kanazawa, Japan
| | - Daisuke Noto
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kiyonobu Komai
- Department of Neurology, National Hospital Organization Iou National Hospital, Hokuriku Brain and Neuromuscular Disease Center, Kanazawa, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
10
|
Arena JD, Johnson VE, Lee EB, Gibbons GS, Smith DH, Trojanowski JQ, Stewart W. Astroglial tau pathology alone preferentially concentrates at sulcal depths in chronic traumatic encephalopathy neuropathologic change. Brain Commun 2020; 2:fcaa210. [PMID: 33426528 PMCID: PMC7784042 DOI: 10.1093/braincomms/fcaa210] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Current diagnostic criteria for the neuropathological evaluation of the traumatic brain injury-associated neurodegeneration, chronic traumatic encephalopathy, define the pathognomonic lesion as hyperphosphorylated tau-immunoreactive neuronal and astroglial profiles in a patchy cortical distribution, clustered around small vessels and showing preferential localization to the depths of sulci. However, despite adoption into diagnostic criteria, there has been no formal assessment of the cortical distribution of the specific cellular components defining chronic traumatic encephalopathy neuropathologic change. To address this, we performed comprehensive mapping of hyperphosphorylated tau-immunoreactive neurofibrillary tangles and thorn-shaped astrocytes contributing to chronic traumatic encephalopathy neuropathologic change. From the Glasgow Traumatic Brain Injury Archive and the University of Pennsylvania Center for Neurodegenerative Disease Research Brain Bank, material was selected from patients with known chronic traumatic encephalopathy neuropathologic change, either following exposure to repetitive mild (athletes n = 17; non-athletes n = 1) or to single moderate or severe traumatic brain injury (n = 4), together with material from patients with previously confirmed Alzheimer's disease neuropathologic changes (n = 6) and no known exposure to traumatic brain injury. Representative sections were stained for hyperphosphorylated or Alzheimer's disease conformation-selective tau, after which stereotypical neurofibrillary tangles and thorn-shaped astrocytes were identified and mapped. Thorn-shaped astrocytes in chronic traumatic encephalopathy neuropathologic change were preferentially distributed towards sulcal depths [sulcal depth to gyral crest ratio of thorn-shaped astrocytes 12.84 ± 15.47 (mean ± standard deviation)], with this pathology more evident in material from patients with a history of survival from non-sport injury than those exposed to sport-associated traumatic brain injury (P = 0.009). In contrast, neurofibrillary tangles in chronic traumatic encephalopathy neuropathologic change showed a more uniform distribution across the cortex in sections stained for either hyperphosphorylated (sulcal depth to gyral crest ratio of neurofibrillary tangles 1.40 ± 0.74) or Alzheimer's disease conformation tau (sulcal depth to gyral crest ratio 1.64 ± 1.05), which was comparable to that seen in material from patients with known Alzheimer's disease neuropathologic changes (P = 0.82 and P = 0.91, respectively). Our data demonstrate that in chronic traumatic encephalopathy neuropathologic change the astroglial component alone shows preferential distribution to the depths of cortical sulci. In contrast, the neuronal pathology of chronic traumatic encephalopathy neuropathologic change is distributed more uniformly from gyral crest to sulcal depth and echoes that of Alzheimer's disease. These observations provide new insight into the neuropathological features of chronic traumatic encephalopathy that distinguish it from other tau pathologies and suggest that current diagnostic criteria should perhaps be reviewed and refined.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Abstract
With age, the presence of multiple neuropathologies in a single individual becomes increasingly common. Given that traumatic brain injury and the repetitive head impacts (RHIs) that occur in contact sports have been associated with the development of many neurodegenerative diseases, including chronic traumatic encephalopathy (CTE), Alzheimer's disease, Lewy body disease, and amyotrophic lateral sclerosis, it is becoming critical to understand the relationship and interactions between these pathologies. In fact, comorbid pathology is common in CTE and likely influenced by both age and the severity and type of exposure to RHI as well as underlying genetic predisposition. Here, we review the major comorbid pathologies seen with CTE and in former contact sports athletes and discuss what is known about the associations between RHI, age, and the development of neuropathologies. In addition, we examine the distinction between CTE and age-related pathology including primary age-related tauopathy and age-related tau astrogliopathy.
Collapse
Affiliation(s)
- Thor D. Stein
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts,Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts,Departments of Research and Pathology & Laboratory Medicine, VA Boston Healthcare System, Boston, Massachusetts,Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - John F. Crary
- Department of Pathology, Neuropathology Brain Bank & Research Core, Ronald M. Loeb Center for Alzheimer’s Disease, Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
12
|
Cho S, Park E, Telliyan T, Baker A, Reid AY. Zebrafish model of posttraumatic epilepsy. Epilepsia 2020; 61:1774-1785. [DOI: 10.1111/epi.16589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Sung‐Joon Cho
- Division of Fundamental Neurobiology Krembil Research Institute University Health Network Toronto Ontario Canada
- Collaborative Program in Neuroscience University of Toronto Toronto Ontario Canada
- Keenan Research Centre Li Ka Shing Knowledge Institute St. Michael's Hospital Toronto Ontario Canada
| | - Eugene Park
- Keenan Research Centre Li Ka Shing Knowledge Institute St. Michael's Hospital Toronto Ontario Canada
| | - Tamar Telliyan
- Keenan Research Centre Li Ka Shing Knowledge Institute St. Michael's Hospital Toronto Ontario Canada
| | - Andrew Baker
- Keenan Research Centre Li Ka Shing Knowledge Institute St. Michael's Hospital Toronto Ontario Canada
- Department of Anesthesia and Surgery University of Toronto Toronto Ontario Canada
| | - Aylin Y. Reid
- Division of Fundamental Neurobiology Krembil Research Institute University Health Network Toronto Ontario Canada
- Department of Medicine University of Toronto Toronto Ontario Canada
| |
Collapse
|
13
|
Iverson GL, Luoto TM, Karhunen PJ, Castellani RJ. Mild Chronic Traumatic Encephalopathy Neuropathology in People With No Known Participation in Contact Sports or History of Repetitive Neurotrauma. J Neuropathol Exp Neurol 2020; 78:615-625. [PMID: 31169877 DOI: 10.1093/jnen/nlz045] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has been asserted that chronic traumatic encephalopathy (CTE) pathology is only present in former athletes and others who have been exposed to repetitive concussions, subconcussive blows, or both. We hypothesized that CTE pathology would be present in men who had no known history of repetitive neurotrauma. Comprehensive medical record reviews and health surveys completed by a family member were available for the 8 men in this case series, none of whom had known exposure to repetitive neurotrauma but 2 of whom had a history of traumatic brain injury (TBI). Postmortem tissue was immunostained for hyperphosphorylated tau (p-tau) to assess for CTE pathology, Braak stage, and aging-related p-tau. The neuropathologist was blind to age, personal history, and clinical history. Six of the 8 cases (75%) showed p-tau in neurons, astrocytes, and cell processes around small blood vessels in an irregular pattern at the depths of the cortical sulci. The changes were focal and limited in terms of overall extent, and some of the cases had a clearer pattern of pathology and some could be considered equivocal. Two of the 8 cases had a history of TBI and one of them showed CTE pathology. Five of the 6 cases with no known history of neurotrauma appeared to meet consensus criteria for CTE. This study adds to the emerging literature indicating that CTE pathology is present in people not known to have experienced multiple concussions or subconcussive blows to the head.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School.,Spaulding Rehabilitation Hospital, Spaulding Research Institute.,MassGeneral Hospital for Children™ Sports Concussion Program.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts
| | - Teemu M Luoto
- Department of Neurosurgery, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Pekka J Karhunen
- Department of Forensic Medicine, Faculty of Medicine and Life Sciences, University of Tampere.,Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Tampere, Finland
| | - Rudolph J Castellani
- Department of Pathology, Anatomy and Laboratory Medicine.,Department of Neuroscience, Rockefeller Neuroscience Institute.,West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
14
|
Omalu B, Small GW, Bailes J, Ercoli LM, Merrill DA, Wong KP, Huang SC, Satyamurthy N, Hammers JL, Lee J, Fitzsimmons RP, Barrio JR. Postmortem Autopsy-Confirmation of Antemortem [F-18]FDDNP-PET Scans in a Football Player With Chronic Traumatic Encephalopathy. Neurosurgery 2019; 82:237-246. [PMID: 29136240 DOI: 10.1093/neuros/nyx536] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022] Open
Abstract
Currently, only presumptive diagnosis of chronic traumatic encephalopathy (CTE) can be made in living patients. We present a modality that may be instrumental to the definitive diagnosis of CTE in living patients based on brain autopsy confirmation of [F-18]FDDNP-PET findings in an American football player with CTE. [F-18]FDDNP-PET imaging was performed 52 mo before the subject's death. Relative distribution volume parametric images and binding values were determined for cortical and subcortical regions of interest. Upon death, the brain was examined to identify the topographic distribution of neurodegenerative changes. Correlation between neuropathology and [F-18]FDDNP-PET binding patterns was performed using Spearman rank-order correlation. Mood, behavioral, motor, and cognitive changes were consistent with chronic traumatic myeloencephalopathy with a 22-yr lifetime risk exposure to American football. There were tau, amyloid, and TDP-43 neuropathological substrates in the brain with a differential topographically selective distribution. [F-18]FDDNP-PET binding levels correlated with brain tau deposition (rs = 0.59, P = .02), with highest relative distribution volumes in the parasagittal and paraventricular regions of the brain and the brain stem. No correlation with amyloid or TDP-43 deposition was observed. [F-18]FDDNP-PET signals may be consistent with neuropathological patterns of tau deposition in CTE, involving areas that receive the maximal shearing, angular-rotational acceleration-deceleration forces in American football players, consistent with distinctive and differential topographic vulnerability and selectivity of CTE beyond brain cortices, also involving midbrain and limbic areas. Future studies are warranted to determine whether differential and selective [F-18]FDDNP-PET may be useful in establishing a diagnosis of CTE in at-risk patients.
Collapse
Affiliation(s)
- Bennet Omalu
- Department of Medical Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California
| | - Gary W Small
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, California
| | - Julian Bailes
- Department of Neurosurgery, North Shore University Health System and University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Linda M Ercoli
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, California
| | - David A Merrill
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, California
| | - Koon-Pong Wong
- Department of Molecular and Medical Pharmacology, The David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sung-Cheng Huang
- Department of Molecular and Medical Pharmacology, The David Geffen School of Medicine, University of California, Los Angeles, California
| | - Nagichettiar Satyamurthy
- Department of Molecular and Medical Pharmacology, The David Geffen School of Medicine, University of California, Los Angeles, California
| | | | - John Lee
- Department of Pathology, North Shore University Health System and University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | | | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, The David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
15
|
Armstrong RA, McKee AC, Stein TD, Alvarez VE, Cairns NJ. Cortical degeneration in chronic traumatic encephalopathy and Alzheimer's disease neuropathologic change. Neurol Sci 2019; 40:529-533. [PMID: 30564964 PMCID: PMC6433808 DOI: 10.1007/s10072-018-3686-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES An observational study to compare the laminar distributions in frontal and temporal cortex of the tau-immunoreactive pathologies in chronic traumatic encephalopathy (CTE) and Alzheimer's disease neuropathologic change (ADNC). PATIENTS Post-mortem material of (1) four cases of CTE without ADNC, (2) seven cases of CTE with ADNC (CTE/ADNC), and (3) seven cases of ADNC alone. RESULTS In CTE and CTE/ADNC, neurofibrillary tangles (NFT), neuropil threads (NT), and dot-like grains (DLG) were distributed either in upper cortex or across all layers. Low densities of astrocytic tangles (AT) and abnormally enlarged neurons (EN) were not localized to any specific layer. Surviving neurons exhibited peaks of density in both upper and lower cortex, and vacuole density was greatest in superficial layers. In ADNC, neuritic plaques (NP) were more frequent, AT rare, NFT and NT were more widely distributed, NT affected lower layers more frequently, and surviving neurons were less frequently bimodal than in CTE and CTE/ADNC. CONCLUSION Tau pathology in CTE and CTE/ADNC consistently affected the upper cortex but was more widely distributed in ADNC. The presence of CTE may encourage the development of ADNC pathology later in the course of the disease.
Collapse
Affiliation(s)
| | - Ann C McKee
- VA Boston HealthCare System, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Thor D Stein
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, 01730, USA
| | - Victor E Alvarez
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, 01730, USA
| | - Nigel J Cairns
- Departments of Neurology and Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
16
|
Alosco ML, Stern RA. The long-term consequences of repetitive head impacts: Chronic traumatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:337-355. [PMID: 31753141 DOI: 10.1016/b978-0-12-804766-8.00018-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts (RHI). Although described in boxers for almost a century, scientific and public interest in CTE grew tremendously following a report of postmortem evidence of CTE in the first former professional American football player in 2005. Neuropathologic diagnostic criteria for CTE have been defined, with abnormal perivascular deposition of hyperphosphorylated tau at the sulcal depths as the pathognomonic feature. CTE can currently only be diagnosed postmortem, but clinical research criteria for the in vivo diagnosis of CTE have been proposed. The clinical phenotype of CTE is still ill-defined and there are currently no validated biomarkers to support an in-life diagnosis of "Probable CTE." Many knowledge gaps remain regarding the neuropathologic and clinical make-up of CTE. An increased understanding of CTE is critical given the millions that could potentially be impacted by this disease. This chapter describes the state of the literature on CTE. The historical origins of CTE are first presented, followed by a comprehensive description of the neuropathologic and clinical features. The chapter concludes with discussion on future research directions, emphasizing the importance of diagnosing CTE during life to facilitate development of preventative and intervention strategies.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Robert A Stern
- Boston University Alzheimer's Disease and CTE Centers, Department of Neurology, Boston University School of Medicine, Boston, MA, United States; Departments of Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
17
|
Gill J, Mustapic M, Diaz-Arrastia R, Lange R, Gulyani S, Diehl T, Motamedi V, Osier N, Stern RA, Kapogiannis D. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj 2018; 32:1277-1284. [PMID: 29913077 DOI: 10.1080/02699052.2018.1471738] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Identify biomarkers in peripheral blood that relate to chronic post-concussive and behavioural symptoms following traumatic brain injuries (TBIs) to ultimately improve clinical management. RESEARCH DESIGN We compared military personnel with mild TBIs (mTBIs) (n = 42) to those without TBIs (n = 22) in concentrations of tau, amyloid-beta (Aβ42) and cytokines (tumour necrosis factor alpha (TNFα, interleukin (IL)-6 and -10) in neuronal-derived exosomes from the peripheral blood. We utilized nanosight technology coupled with ultra-sensitivity immunoassay methods. We also examined the impact of post-concussive and behavioural symptoms including depression and post-traumatic stress disorder (PTSD) on these neuronal-derived markers. RESULTS We report that concentrations of exosomal tau (F1, 62 = 10.50), Aβ42 (F1, 61 = 5.32) and IL-10 (F1, 59 = 4.32) were elevated in the mTBI group compared to the controls. Within the mTBI group, regression models show that post-concussive symptoms were most related to exosomal tau elevations, whereas exosomal IL-10 levels were related to PTSD symptoms. CONCLUSIONS These findings suggest that chronic post-concussive symptoms following an mTBI relate to altered exosomal activity, and that greater tau pathology may underlie chronic post-concussive symptoms that develop following mTBIs. It also suggests that central inflammatory activity contributes to PTSD symptoms following an mTBI, providing necessary insights into the role of inflammation in chronic PTSD symptoms.
Collapse
Affiliation(s)
- Jessica Gill
- a Tissue Injury Branch, National Institutes of Health, National Institute of Nursing Research , Bethesda , MD , United States
| | - Maja Mustapic
- b Aging, National Institutes of Health, National Institute of Aging , Baltimore , MD , United States
| | - Ramon Diaz-Arrastia
- c Department of Neurology, School of Medicine , University of Pennsylvania , Philadelphia , PA , United States
| | - Rael Lange
- d Defense and Veterans Brain Injury Center , Walter Reed National Military Medical Center , Bethesda , MD , United States
| | - Seema Gulyani
- b Aging, National Institutes of Health, National Institute of Aging , Baltimore , MD , United States
| | - Tom Diehl
- b Aging, National Institutes of Health, National Institute of Aging , Baltimore , MD , United States
| | - Vida Motamedi
- a Tissue Injury Branch, National Institutes of Health, National Institute of Nursing Research , Bethesda , MD , United States
| | - Nicole Osier
- a Tissue Injury Branch, National Institutes of Health, National Institute of Nursing Research , Bethesda , MD , United States
| | - Robert A Stern
- e Neurosurgery, and Anatomy & Neurobiology , Boston University, Boston University Alzheimer's Disease and CTE Center , Boston , MA , United States
| | - Dimitrios Kapogiannis
- b Aging, National Institutes of Health, National Institute of Aging , Baltimore , MD , United States
| |
Collapse
|
18
|
Lucke-Wold B, Seidel K, Udo R, Omalu B, Ornstein M, Nolan R, Rosen C, Ross J. Role of Tau Acetylation in Alzheimer's Disease and Chronic Traumatic Encephalopathy: The Way Forward for Successful Treatment. JOURNAL OF NEUROLOGY AND NEUROSURGERY 2017; 4. [PMID: 29276758 PMCID: PMC5738035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Progressive neurodegenerative diseases plague millions of individuals both in the United States and across the world. The current pathology of progressive neurodegenerative tauopathies, such as Alzheimer's disease (AD), Pick's disease, frontotemporal dementia (FTD), and progressive supranuclear palsy, primarily revolves around phosphorylation and hyperphosphorylation of the tau protein. However, more recent evidence suggests acetylation of tau protein at lysine 280 may be a critical step in molecular pathology of these neurodegenerative diseases prior to the tau hyperphosphorylation. Secondary injury cascades such as oxidative stress, endoplasmic reticulum stress, and neuroinflammation contribute to lasting damage within the brain and can be induced by a number of different risk factors. These injury cascades funnel into a common pathway of early tau acetylation, which may serve as the catalyst for progressive degeneration. The post translational modification of tau can result in production of toxic oligomers, contributing to reduced solubility as well as aggregation and formation of neurofibrillary tangles, the hallmark of AD pathology. Chronic Traumatic Encephalopathy (CTE), caused by repetitive brain trauma is also associated with a hyperphosphorylation of tau. We postulated acetylation of tau at lysine 280 in CTE disease could be present prior to the hyperphosphorylation and tested this hypothesis in CTE pathologic specimens. We also tested for ac-tau 280 in early stage Alzheimer's disease (Braak stage 1). Histopathological examination using the ac tau 280 antibody was performed in three Alzheimer's cases and three CTE patients. Presence of ac-tau 280 was confirmed in all cases at early sites of disease manifestation. These findings suggest that tau acetylation may precede tau phosphorylation and could be the first "triggering" event leading to neuronal loss. To the best of our knowledge, this is the first study to identify acetylation of the tau protein in CTE. Prevention of tau acetylation could possibly serve as a novel target for stopping neurodegeneration before it fully begins. In this study, we highlight what is known about tau acetylation and neurodegeneration.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV
| | - Kay Seidel
- Dr. Senckenberg Chronomedical Institute, J. W. Goethe University, Frankfurt am Main, Germany
| | - Rub Udo
- Dr. Senckenberg Chronomedical Institute, J. W. Goethe University, Frankfurt am Main, Germany
| | - Bennet Omalu
- Department of Pathology, University of California Davis Medical Center, Davis, CA
| | | | - Richard Nolan
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV
| | - Charles Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV
| | - Joel Ross
- Cogwellin LLC 4 Industrial Way W, Eatontown NJ, USA
| |
Collapse
|
19
|
Armstrong RA, McKee AC, Alvarez VE, Cairns NJ. Clustering of tau-immunoreactive pathology in chronic traumatic encephalopathy. J Neural Transm (Vienna) 2017; 124:185-192. [PMID: 27770214 PMCID: PMC5288283 DOI: 10.1007/s00702-016-1635-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may result from repetitive brain injury. A variety of tau-immunoreactive pathologies are present, including neurofibrillary tangles (NFT), neuropil threads (NT), dot-like grains (DLG), astrocytic tangles (AT), and occasional neuritic plaques (NP). In tauopathies, cellular inclusions in the cortex are clustered within specific laminae, the clusters being regularly distributed parallel to the pia mater. To determine whether a similar spatial pattern is present in CTE, clustering of the tau-immunoreactive pathology was studied in the cortex, hippocampus, and dentate gyrus in 11 cases of CTE and 7 cases of Alzheimer's disease neuropathologic change (ADNC) without CTE. In CTE: (1) all aspects of tau-immunoreactive pathology were clustered and the clusters were frequently regularly distributed parallel to the tissue boundary, (2) clustering was similar in two CTE cases with minimal co-pathology compared with cases with associated ADNC or TDP-43 proteinopathy, (3) in a proportion of cortical gyri, estimated cluster size was similar to that of cell columns of the cortico-cortical pathways, and (4) clusters of the tau-immunoreactive pathology were infrequently spatially correlated with blood vessels. The NFT and NP in ADNC without CTE were less frequently randomly or uniformly distributed and more frequently in defined clusters than in CTE. Hence, the spatial pattern of the tau-immunoreactive pathology observed in CTE is typical of the tauopathies but with some distinct differences compared to ADNC alone. The spread of pathogenic tau along anatomical pathways could be a factor in the pathogenesis of the disease.
Collapse
Affiliation(s)
| | - Ann C McKee
- VA Boston, Boston, MA, 02130, USA
- Veterans Affairs Medical Center, Bedford, MA, 01730, USA
- Department of Neurology and Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Victor E Alvarez
- VA Boston, Boston, MA, 02130, USA
- Veterans Affairs Medical Center, Bedford, MA, 01730, USA
| | - Nigel J Cairns
- Departments of Neurology and Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
20
|
Noy S, Krawitz S, Del Bigio MR. Chronic Traumatic Encephalopathy-Like Abnormalities in a Routine Neuropathology Service. J Neuropathol Exp Neurol 2016; 75:1145-1154. [DOI: 10.1093/jnen/nlw092] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|