1
|
Schrader JM, Majchrzak M, Xu F, Lee H, Agostinucci K, Davis J, Benveniste H, Van Nostrand WE. Cerebral Proteomic Changes in the rTg-D Rat Model of Cerebral Amyloid Angiopathy Type-2 With Cortical Microhemorrhages and Cognitive Impairments. Neurosci Insights 2024; 19:26331055241288172. [PMID: 39386146 PMCID: PMC11462563 DOI: 10.1177/26331055241288172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a novel transgenic rat model (rTg-D) that produces human familial CAA Dutch E22Q mutant amyloid β-protein (Aβ) in brain and develops arteriolar CAA type-2. Here, we show that deposition of fibrillar Aβ promotes arteriolar smooth muscle cell loss and cerebral microhemorrhages that can be detected by magnetic resonance imaging and confirmed by histopathology. Aged rTg-D rats also present with cognitive deficits. Cerebral proteomic analyses revealed 241 proteins that were significantly elevated with an increase of >50% in rTg-D rats presenting with CAA compared to wild-type rats. Fewer proteins were significantly decreased in rTg-D rats. Of note, high temperature requirement peptidase A (HTRA1), a proteinase linked to transforming growth factor beta 1 (TGF-β1) signaling, was elevated and found to accumulate in cerebral vessels harboring amyloid deposits. Pathway analysis indicated elevation of the TGF-β1 pathway and increased TGF-β1 levels were detected in rTg-D rats. In conclusion, the present findings provide new molecular insights into the pathogenesis of CAA and suggest a role for interactions between HTRA1 and TGF-β1 in the disease process.
Collapse
Affiliation(s)
- Joseph M Schrader
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Mark Majchrzak
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Kevin Agostinucci
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Judianne Davis
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - William E Van Nostrand
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
2
|
Laslo A, Laslo L, Arbănași EM, Ujlaki-Nagi AA, Chinezu L, Ivănescu AD, Arbănași EM, Cărare RO, Cordoș BA, Popa IA, Brînzaniuc K. Pathways to Alzheimer's Disease: The Intersecting Roles of Clusterin and Apolipoprotein E in Amyloid-β Regulation and Neuronal Health. PATHOPHYSIOLOGY 2024; 31:545-558. [PMID: 39449522 PMCID: PMC11503414 DOI: 10.3390/pathophysiology31040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) within the extracellular spaces of the brain as plaques and along the blood vessels in the brain, a condition also known as cerebral amyloid angiopathy (CAA). Clusterin (CLU), or apolipoprotein J (APOJ), is a multifunctional glycoprotein that has a role in many physiological and neurological conditions, including AD. The apolipoprotein E (APOE) is a significant genetic factor in AD, and while the primary physiological role of APOE in the brain and peripheral tissues is to regulate lipid transport, it also participates in various other biological processes, having three basic human forms: APOE2, APOE3, and APOE4. Notably, the APOE4 allele substantially increases the risk of developing late-onset AD. The main purpose of this review is to examine the roles of CLU and APOE in AD pathogenesis in order to acquire a better understanding of AD pathogenesis from which to develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alexandru Laslo
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Laura Laslo
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
| | - Eliza-Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | | | - Laura Chinezu
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Adrian Dumitru Ivănescu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| | - Emil-Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | | | - Bogdan Andrei Cordoș
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
- Centre for Experimental Medical and Imaging Studies, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ioana Adriana Popa
- Clinic of Radiology, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Klara Brînzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| |
Collapse
|
3
|
Bonaterra-Pastra A, Solé M, Lope-Piedrafita S, Lucas-Parra M, Castellote L, Marazuela P, Pancorbo O, Rodríguez-Luna D, Hernández-Guillamon M. The presence of circulating human apolipoprotein J reduces the occurrence of cerebral microbleeds in a transgenic mouse model with cerebral amyloid angiopathy. Alzheimers Res Ther 2024; 16:169. [PMID: 39069622 DOI: 10.1186/s13195-024-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β (Aβ) deposition in cerebral vessels, leading to lobar cerebral microbleeds (CMB) and intracerebral hemorrhages (ICH). Apolipoprotein J (ApoJ) is a multifunctional chaperone related to Aβ aggregation and clearance. Our study investigated the vascular impact of chronic recombinant human Apolipoprotein J (rhApoJ) treatment in a transgenic mouse model of β-amyloidosis with prominent CAA. METHODS Twenty-month-old APP23 C57BL/6 mice received 25 doses of rhApoJ (1 mg/kg) (n = 9) or saline (n = 8) intraperitoneally for 13 weeks, while Wild-type (WT) mice received saline (n = 13). Postmortem brains underwent T2*-weighted magnetic resonance imaging (MRI) to detect hemorrhagic lesions. Aβ levels and distribution, cerebral fibrinogen leakage, brain smooth muscle actin (sma), and plasma matrix metalloproteinases and inflammatory markers were analyzed after treatments. Additionally, plasma samples from 22 patients with lobar ICH were examined to determine the clinical relevance of the preclinical findings. RESULTS rhApoJ-treated APP23 presented fewer cortical CMBs (50-300 μm diameter) (p = 0.012) and cortical larger hemorrhages (> 300 μm) (p = 0.002) than saline-treated mice, independently of Aβ brain levels. MRI-detected hemorrhagic lesions correlated with fibrinogen cerebral extravasation (p = 0.011). Additionally, rhApoJ-treated mice presented higher number of sma-positive vessels than saline-treated mice (p = 0.038). In rhApoJ-treated mice, human ApoJ was detected in plasma and in occasional leptomeningeal vessels, but not in the parenchyma, suggesting that its mechanism of action operates through the periphery. The administration of rhApoJ induced an increase in plasma Groα (p = 0.035) and MIP-1α (p = 0.035) levels, while lower MMP-12 (p = 0.046) levels, compared to the saline-treated group. In acute lobar ICH patients, MMP-12 plasma levels correlated with larger hemorrhage volume (p = 0.040) and irregular ICH shape (p = 0.036). CONCLUSIONS Chronic rhApoJ treatment in aged APP23 mice ameliorated CAA-related neurovascular damage by reducing the occurrence of CMB. We propose that rhApoJ may prevent blood-brain barrier (BBB) leakage and CMB appearance partly through circulating MMP-12 modulation.
Collapse
Affiliation(s)
- Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
- Department of Bioquímica i Biologia Molecular i Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Silvia Lope-Piedrafita
- Nuclear Magnetic Resonance Service, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Lucas-Parra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
| | - Laura Castellote
- Department of Clinical Biochemistry, Clinical Laboratories, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
| | - Olalla Pancorbo
- Stroke Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain.
| |
Collapse
|
4
|
Leitner D, Kavanagh T, Kanshin E, Balcomb K, Pires G, Thierry M, Suazo JI, Schneider J, Ueberheide B, Drummond E, Wisniewski T. Differences in the cerebral amyloid angiopathy proteome in Alzheimer's disease and mild cognitive impairment. Acta Neuropathol 2024; 148:9. [PMID: 39039355 PMCID: PMC11263258 DOI: 10.1007/s00401-024-02767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid beta (Aβ) deposition in cerebrovasculature. It is prevalent with aging and Alzheimer's disease (AD), associated with intracerebral hemorrhage, and contributes to cognitive deficits. To better understand molecular mechanisms, CAA(+) and CAA(-) vessels were microdissected from paraffin-embedded autopsy temporal cortex of age-matched Control (n = 10), mild cognitive impairment (MCI; n = 4), and sporadic AD (n = 6) cases, followed by label-free quantitative mass spectrometry. 257 proteins were differentially abundant in CAA(+) vessels compared to neighboring CAA(-) vessels in MCI, and 289 in AD (p < 0.05, fold-change > 1.5). 84 proteins changed in the same direction in both groups, and many changed in the same direction among proteins significant in at least one group (p < 0.0001, R2 = 0.62). In CAA(+) vessels, proteins significantly increased in both AD and MCI were particularly associated with collagen-containing extracellular matrix, while proteins associated with ribonucleoprotein complex were significantly decreased in both AD and MCI. In neighboring CAA(-) vessels, 61 proteins were differentially abundant in MCI, and 112 in AD when compared to Control cases. Increased proteins in CAA(-) vessels were associated with extracellular matrix, external encapsulating structure, and collagen-containing extracellular matrix in MCI; collagen trimer in AD. Twenty two proteins were increased in CAA(-) vessels of both AD and MCI. Comparison of the CAA proteome with published amyloid-plaque proteomic datasets identified many proteins similarly enriched in CAA and plaques, as well as a protein subset hypothesized as preferentially enriched in CAA when compared to plaques. SEMA3G emerged as a CAA specific marker, validated immunohistochemically and with correlation to pathology levels (p < 0.0001; R2 = 0.90). Overall, the CAA(-) vessel proteomes indicated changes in vessel integrity in AD and MCI in the absence of Aβ, and the CAA(+) vessel proteome was similar in MCI and AD, which was associated with vascular matrix reorganization, protein translation deficits, and blood brain barrier breakdown.
Collapse
Affiliation(s)
- Dominique Leitner
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey Pires
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Manon Thierry
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jianina I Suazo
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Department Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Beatrix Ueberheide
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Thomas Wisniewski
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Schrader JM, Xu F, Agostinucci KJ, DaSilva NA, Van Nostrand WE. Longitudinal markers of cerebral amyloid angiopathy and related inflammation in rTg-DI rats. Sci Rep 2024; 14:8441. [PMID: 38600214 PMCID: PMC11006668 DOI: 10.1038/s41598-024-59013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a prevalent vascular dementia and common comorbidity of Alzheimer's disease (AD). While it is known that vascular fibrillar amyloid β (Aβ) deposits leads to vascular deterioration and can drive parenchymal CAA related inflammation (CAA-ri), underlying mechanisms of CAA pathology remain poorly understood. Here, we conducted brain regional proteomic analysis of early and late disease stages in the rTg-DI CAA rat model to gain molecular insight to mechanisms of CAA/CAA-ri progression and identify potential brain protein markers of CAA/CAA-ri. Longitudinal brain regional proteomic analysis revealed increased differentially expressed proteins (DEP) including ANXA3, HTRA1, APOE, CST3, and CLU, shared between the cortex, hippocampus, and thalamus, at both stages of disease in rTg-DI rats. Subsequent pathway analysis indicated pathway enrichment and predicted activation of TGF-β1, which was confirmed by immunolabeling and ELISA. Further, we identified numerous CAA related DEPs associate with astrocytes (HSPB1 and MLC1) and microglia (ANXA3, SPARC, TGF-β1) not previously associated with astrocytes or microglia in other AD models, possibly indicating that they are specific to CAA-ri. Thus, the data presented here identify several potential brain protein biomarkers of CAA/CAA-ri while providing novel molecular and mechanistic insight to mechanisms of CAA and CAA-ri pathological progression and glial cell mediated responses.
Collapse
Affiliation(s)
- Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, Rhode Island, 02881, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, Rhode Island, 02881, USA
| | - Kevin J Agostinucci
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, Rhode Island, 02881, USA
| | - Nicholas A DaSilva
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, Rhode Island, 02881, USA.
| |
Collapse
|
6
|
Walker RC, Harrington J, Breininger SP, Pickering O, Hill SL, Sharpe BP, Grace B, Reddin I, Rajak R, Manousopoulou A, Garbis SD, Walters ZS, Rose-Zerilli MJJ, Underwood TJ. Residual cancer cells after apparent complete pathological response to neoadjuvant therapy in oesophageal adenocarcinoma. Br J Surg 2024; 111:znae103. [PMID: 38630793 PMCID: PMC11023542 DOI: 10.1093/bjs/znae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/19/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Robert C Walker
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jack Harrington
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Stella P Breininger
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Oliver Pickering
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Samuel L Hill
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin P Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ben Grace
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rushda Rajak
- Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Antigoni Manousopoulou
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasedena, California, USA
| | - Spiros D Garbis
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasedena, California, USA
| | - Zoë S Walters
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Timothy J Underwood
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Hung JH, Tsai PH, Aala WJF, Chen CC, Chiou SH, Wong TW, Tsai KJ, Hsu SM, Wu LW. TIMP3/Wnt axis regulates gliosis of Müller glia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167087. [PMID: 38369214 DOI: 10.1016/j.bbadis.2024.167087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Previous studies have confirmed the expression of tissue inhibitor of metalloproteinase-3 (TIMP3) in Müller glia (MG). However, the role of TIMP3 in MG remains unknown. METHODS A mouse model of laser-induced retinal damage and gliosis was generated using wild-type C57BL/6 mice. TIMP3 and associated proteins were detected using Western blotting and immunofluorescence microscopy. RNA sequencing (GSE132140) of mouse laser-induced gliosis was utilized for pathway analysis. TIMP3 overexpression was induced in human MG. Human vitreous samples were obtained from patients with proliferative diabetic retinopathy (PDR) and healthy controls for protein analysis. RESULTS TIMP3 levels increased in mouse eyes after laser damage. Morphology and spatial location of TIMP3 indicated its presence in MG. TIMP3-overexpressing MG showed increased cellular proliferation, migration, and cell nuclei size, suggesting TIMP3-induced gliosis for retinal repair. Glial fibrillary acidic protein (GFAP) and vimentin levels were elevated in TIMP3-overexpressing MG and laser-damaged mouse retinas. RNA sequencing and Western blotting suggested a role for β-catenin in mediating TIMP3 effects on the retina. Human vitreous samples from patients with PDR showed a positive correlation between TIMP3 and GFAP levels, both of which were elevated in patients with PDR. CONCLUSIONS TIMP3 is associated with MG gliosis to enhance the repair ability of damaged retinas and is mediated by the canonical Wnt/β-catenin. Changes in TIMP3 could potentially be used to control gliosis in a range of retinal diseases However, given the multifaceted nature of TIMP3, care must be taken when developing treatments that aim solely to boost the function of TIMP3. FUNDING National Cheng Kung University Hospital, Taiwan (NCKUH-10604009 and NCKUH-11202007); the Ministry of Science and Technology (MOST 110-2314-B-006-086-MY3).
Collapse
Affiliation(s)
- Jia-Horung Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wilson Jr F Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chung Chen
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Xiong H, Zheng Z, Zhao C, Zhao M, Wang Q, Zhang P, Li Y, Zhu Y, Zhu S, Li J. Insight into the underlying molecular mechanism of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics. Proteome Sci 2023; 21:13. [PMID: 37740197 PMCID: PMC10517512 DOI: 10.1186/s12953-023-00214-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND DCM is a common cardiomyopathy worldwide, which is characterized by ventricular dilatation and systolic dysfunction. DCM is one of the most widespread diseases contributing to sudden death and heart failure. However, our understanding of its molecular mechanisms is limited because of its etiology and underlying mechanisms. Hence, this study explored the underlying molecular mechanism of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics METHODS: DCM target genes were downloaded from the public databases. Next, DCM was induced in 20 rats by 8 weeks doxorubicin treatment (2.5 mg/kg/week). We applied isobaric tags for a relative and absolute quantification (iTRAQ) coupled with proteomics approach to identify differentially expressed proteins (DEPs) in myocardial tissue. After association analysis of the DEPs and the key target genes, subsequent analyses, including functional annotation, pathway enrichment, validation, were performed. RESULTS Nine hundred thirty-five genes were identified as key target genes from public databases. Meanwhile, a total of 782 DEPs, including 348 up-regulated and 434 down-regulated proteins, were identified in our animal experiment. The functional annotation of these DEPs revealed complicated molecular mechanisms including TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction. Moreover, the DEPs were analyzed for association with the key target genes screened in the public dataset. We further determined the importance of these three pathways. CONCLUSION Our results demonstrate that TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction played important roles in the detailed molecular mechanisms of DCM.
Collapse
Affiliation(s)
- Hongli Xiong
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Zheng
- Department of Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Congcong Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Wang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou, 571100, China
| | - Yongguo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ying Zhu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Shisheng Zhu
- Faculty of Basic Medical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Vervuurt M, de Kort AM, Jäkel L, Kersten I, Abdo WF, Schreuder FHBM, Rasing I, Terwindt GM, Wermer MJH, Greenberg SM, Klijn CJM, Kuiperij HB, Verbeek MM. Decreased ratios of matrix metalloproteinases to tissue-type inhibitors in cerebrospinal fluid in sporadic and hereditary cerebral amyloid angiopathy. Alzheimers Res Ther 2023; 15:26. [PMID: 36717932 PMCID: PMC9885599 DOI: 10.1186/s13195-023-01171-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND To evaluate the potential of cerebrospinal fluid (CSF) levels of matrix metalloproteinases and tissue-type inhibitors (MMP; TIMP), and ratios of MMPs to TIMPs, to function as biomarkers for sporadic or hereditary cerebral amyloid angiopathy (CAA). METHODS CSF concentrations of the matrix metalloproteinases MMP-2, MMP-9 and MMP-14, as well as the tissue inhibitors of metalloproteinases TIMP-1, TIMP-2 and TIMP-3, were determined using immunoassays. These assays were applied to two, independent study groups of sporadic CAA (sCAA) (n = 28/43) and control subjects (n = 40/40), as well as to groups of pre-symptomatic (n = 11) and symptomatic hereditary Dutch-CAA (D-CAA) patients (n = 12), and age-matched controls (n = 22/28, respectively). RESULTS In the sCAA/control cohorts, inconsistent differences were found for individual MMPs and TIMPs, but MMP-2/TIMP-2 (discovery/validation: p = 0.004; p = 0.02) and MMP-14/TIMP-2 ratios (discovery/validation: p < 0.001; p = 0.04) were consistently decreased in sCAA, compared to controls. Moreover, MMP-14 was decreased in symptomatic D-CAA (p = 0.03), compared to controls. The MMP-14/TIMP-1 (p = 0.03) and MMP-14/TIMP-2 (p = 0.04) ratios were decreased in symptomatic D-CAA compared to controls and also compared to pre-symptomatic D-CAA (p = 0.004; p = 0.005, respectively). CONCLUSION CSF MMP-2/TIMP-2 and MMP-14/TIMP-2 were consistently decreased in sCAA, compared to controls. Additionally, MMP-14/TIMP-2 levels were also decreased in symptomatic D-CAA, compared to both pre-symptomatic D-CAA and controls, and can therefore be considered a biomarker for sporadic and late-stage hereditary forms of CAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Catharina J M Klijn
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Arneson D, Zhang G, Ahn IS, Ying Z, Diamante G, Cely I, Palafox-Sanchez V, Gomez-Pinilla F, Yang X. Systems spatiotemporal dynamics of traumatic brain injury at single-cell resolution reveals humanin as a therapeutic target. Cell Mol Life Sci 2022; 79:480. [PMID: 35951114 PMCID: PMC9372016 DOI: 10.1007/s00018-022-04495-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The etiology of mild traumatic brain injury (mTBI) remains elusive due to the tissue and cellular heterogeneity of the affected brain regions that underlie cognitive impairments and subsequent neurological disorders. This complexity is further exacerbated by disrupted circuits within and between cell populations across brain regions and the periphery, which occur at different timescales and in spatial domains. METHODS We profiled three tissues (hippocampus, frontal cortex, and blood leukocytes) at the acute (24-h) and subacute (7-day) phases of mTBI at single-cell resolution. RESULTS We demonstrated that the coordinated gene expression patterns across cell types were disrupted and re-organized by TBI at different timescales with distinct regional and cellular patterns. Gene expression-based network modeling implied astrocytes as a key regulator of the cell-cell coordination following mTBI in both hippocampus and frontal cortex across timepoints, and mt-Rnr2, which encodes the mitochondrial peptide humanin, as a potential target for intervention based on its broad regional and dynamic dysregulation following mTBI. Treatment of a murine mTBI model with humanin reversed cognitive impairment caused by mTBI through the restoration of metabolic pathways within astrocytes. CONCLUSIONS Our results offer a systems-level understanding of the dynamic and spatial regulation of gene programs by mTBI and pinpoint key target genes, pathways, and cell circuits that are amenable to therapeutics.
Collapse
Affiliation(s)
- Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
11
|
Beliakova-Bethell N, Manousopoulou A, Deshmukh S, Mukim A, Richman DD, Garbis SD, Spina CA. Integrated proteomics and transcriptomics analyses identify novel cell surface markers of HIV latency. Virology 2022; 573:50-58. [PMID: 35714458 PMCID: PMC10427345 DOI: 10.1016/j.virol.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Elimination of the latent HIV cell reservoir may be possible, if the molecular identity of latently infected cells were fully elucidated. We conducted comprehensive molecular profiling, at the protein and RNA levels, of primary T cells latently infected with HIV in vitro. Isobaric labelling quantitative proteomics and RNA sequencing identified 1453 proteins and 618 genes, altered in latently infected cells compared to mock-infected controls (p < 0.05). Biomarker selection was based on results from integrated data analysis. Relative enrichment for latently infected cells was monitored using flow cytometric sorting and the HIV integrant assay. Antibodies against selected proteins, encoded by CEACAM1 and PLXNB2, enabled enrichment of latently infected cells from cell mixtures by 3-10 fold (5.8 average, p < 0.001), comparable to levels obtained with biomarkers reported previously. Individual biomarkers are likely linked to subsets of latently infected cells, and an extended antibody panel will be required to inclusively target the latent HIV reservoir.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA; University of California at San Diego, CA, USA.
| | - Antigoni Manousopoulou
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK; Proteas Bioanalytics Inc., BioLabs at the Lundquist Institute, Torrance, CA, USA
| | | | - Amey Mukim
- University of California at San Diego, CA, USA
| | - Douglas D Richman
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA; University of California at San Diego, CA, USA
| | - Spiros D Garbis
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK; Proteas Bioanalytics Inc., BioLabs at the Lundquist Institute, Torrance, CA, USA
| | - Celsa A Spina
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA; University of California at San Diego, CA, USA
| |
Collapse
|
12
|
Schrader JM, Stanisavljevic A, Xu F, Van Nostrand WE. Distinct Brain Proteomic Signatures in Cerebral Small Vessel Disease Rat Models of Hypertension and Cerebral Amyloid Angiopathy. J Neuropathol Exp Neurol 2022; 81:731-745. [PMID: 35856898 PMCID: PMC9803909 DOI: 10.1093/jnen/nlac057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cerebral small vessel diseases (CSVDs) are prominent contributors to vascular cognitive impairment and dementia and can arise from a range of etiologies. Cerebral amyloid angiopathy (CAA) and hypertension (HTN), both prevalent in the elderly population, lead to cerebral microhemorrhages, macrohemorrhages, and white matter damage. However, their respective underlying mechanisms and molecular events are poorly understood. Here, we show that the transgenic rat model of CAA type 1 (rTg-DI) exhibits perivascular inflammation that is lacking in the spontaneously hypertensive stroke-prone (SHR-SP) rat model of HTN. Alternatively, SHR-SP rats display notable dilation of arteriolar perivascular spaces. Comparative proteomics analysis revealed few shared altered proteins, with key proteins such as ANXA3, H2A, and HTRA1 unique to rTg-DI rats, and Nt5e, Flot-1 and Flot-2 unique to SHR-SP rats. Immunolabeling confirmed that upregulation of ANXA3, HTRA1, and neutrophil extracellular trap proteins were distinctly associated with rTg-DI rats. Pathway analysis predicted activation of TGF-β1 and TNFα in rTg-DI rat brain, while insulin signaling was reduced in the SHR-SP rat brain. Thus, we report divergent protein signatures associated with distinct cerebral vessel pathologies in the SHR-SP and rTg-DI rat models and provide new mechanistic insight into these different forms of CSVD.
Collapse
Affiliation(s)
- Joseph M Schrader
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Aleksandra Stanisavljevic
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Feng Xu
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - William E Van Nostrand
- Send correspondence to: William E. Van Nostrand, PhD, George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI 02881, USA; E-mail:
| |
Collapse
|
13
|
Park JH, Cho SJ, Jo C, Park MH, Han C, Kim EJ, Huh GY, Koh YH. Altered TIMP-3 Levels in the Cerebrospinal Fluid and Plasma of Patients with Alzheimer’s Disease. J Pers Med 2022; 12:jpm12050827. [PMID: 35629249 PMCID: PMC9144624 DOI: 10.3390/jpm12050827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment and is suggested to play an indirect role in regulating Aβ production and the pathophysiology of Aβ deposition in brains. However, studies on the amount of TIMP-3 in bodily fluids of Alzheimer’s disease (AD) patients have not been conducted. Here, we investigated the relationship between fluid TIMP-3 levels and AD pathology. We first showed that the fluid levels of TIMP-3 were lower in AD dementia patients compared with in non-AD patients. ELISA results revealed that plasma levels of TIMP-3 in 65 patients with AD were significantly lower than those in 115 healthy control subjects and 71 mild cognitive impairment (MCI) subjects. Furthermore, we found that cerebrospinal fluid (CSF) level of TIMP-3 was decreased in AD compared with that in healthy control. These data suggest that fluid TIMP-3 levels negatively correlated with progress of cognitive decline. Collectively, our study suggests that alterations of fluid TIMP-3 levels might be associated with AD pathology.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Chronic Disease Convergence Research, Division of Brain Disease Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.H.P.); (S.-J.C.); (C.J.)
| | - Sun-Jung Cho
- Department of Chronic Disease Convergence Research, Division of Brain Disease Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.H.P.); (S.-J.C.); (C.J.)
| | - Chulman Jo
- Department of Chronic Disease Convergence Research, Division of Brain Disease Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.H.P.); (S.-J.C.); (C.J.)
| | - Moon Ho Park
- Departments of Neurology, Korea University Medical College, Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Korea;
| | - Changsu Han
- Departments of Psychiatry, Korea University Medical College, Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Korea;
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, Korea;
| | - Gi Yeong Huh
- Department of Forensic Medicine, Pusan National University School of Medicine, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Korea;
| | - Young Ho Koh
- Department of Chronic Disease Convergence Research, Division of Brain Disease Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.H.P.); (S.-J.C.); (C.J.)
- Correspondence:
| |
Collapse
|
14
|
Hußler W, Höhn L, Stolz C, Vielhaber S, Garz C, Schmitt FC, Gundelfinger ED, Schreiber S, Seidenbecher CI. Brevican and Neurocan Cleavage Products in the Cerebrospinal Fluid - Differential Occurrence in ALS, Epilepsy and Small Vessel Disease. Front Cell Neurosci 2022; 16:838432. [PMID: 35480959 PMCID: PMC9036369 DOI: 10.3389/fncel.2022.838432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The neural extracellular matrix (ECM) composition shapes the neuronal microenvironment and undergoes substantial changes upon development and aging, but also due to cerebral pathologies. In search for potential biomarkers, cerebrospinal fluid (CSF) and serum concentrations of brain ECM molecules have been determined recently to assess ECM changes during neurological conditions including Alzheimer’s disease or vascular dementia. Here, we measured the levels of two signature proteoglycans of brain ECM, neurocan and brevican, in the CSF and serum of 96 neurological patients currently understudied regarding ECM alterations: 16 cases with amyotrophic lateral sclerosis (ALS), 26 epilepsy cases, 23 cerebral small vessel disease (CSVD) patients and 31 controls. Analysis of total brevican and neurocan was performed via sandwich Enzyme-linked immunosorbent assays (ELISAs). Major brevican and neurocan cleavage products were measured in the CSF using semiquantitative immunoblotting. Total brevican and neurocan concentrations in serum and CSF did not differ between groups. The 60 kDa brevican fragment resulting from cleavage by the protease ADAMTS-4 was also found unchanged among groups. The presumably intracellularly generated 150 kDa C-terminal neurocan fragment, however, was significantly increased in ALS as compared to all other groups. This group also shows the highest correlation between cleaved and total neurocan in the CSF. Brevican and neurocan levels strongly correlated with each other across all groups, arguing for a joint but yet unknown transport mechanism from the brain parenchyma into CSF. Conclusively our findings suggest an ALS-specific pattern of brain ECM remodeling and may thus contribute to new diagnostic approaches for this disorder.
Collapse
Affiliation(s)
- Wilhelm Hußler
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lukas Höhn
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Cornelia Garz
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Friedhelm C. Schmitt
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Eckart D. Gundelfinger
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Constanze I. Seidenbecher
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- *Correspondence: Constanze I. Seidenbecher,
| |
Collapse
|
15
|
Schrader JM, Xu F, Lee H, Barlock B, Benveniste H, Van Nostrand WE. Emergent White Matter Degeneration in the rTg-DI Rat Model of Cerebral Amyloid Angiopathy Exhibits Unique Proteomic Changes. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:426-440. [PMID: 34896071 PMCID: PMC8895424 DOI: 10.1016/j.ajpath.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022]
Abstract
Cerebral amyloid angiopathy (CAA), characterized by cerebral vascular amyloid accumulation, neuroinflammation, microbleeds, and white matter (WM) degeneration, is a common comorbidity in Alzheimer disease and a prominent contributor to vascular cognitive impairment and dementia. WM loss was recently reported in the corpus callosum (CC) in the rTg-DI rat model of CAA. The current study shows that the CC exhibits a much lower CAA burden compared with the adjacent cortex. Sequential Window Acquisition of All Theoretical Mass Spectra tandem mass spectrometry was used to show specific proteomic changes in the CC with emerging WM loss and compare them with the proteome of adjacent cortical tissue in rTg-DI rats. In the CC, annexin A3, heat shock protein β1, and cystatin C were elevated at 4 months (M) before WM loss and at 12M with evident WM loss. Although annexin A3 and cystatin C were also enhanced in the cortex at 12M, annexin A5 and the leukodystrophy-associated astrocyte proteins megalencephalic leukoencephalopathy with subcortical cysts 1 and GlialCAM were distinctly elevated in the CC. Pathway analysis indicated neurodegeneration of axons, reflected by reduced expression of myelin and neurofilament proteins, was common to the CC and cortex; activation of Tgf-β1 and F2/thrombin was restricted to the CC. This study provides new insights into the proteomic changes that accompany WM loss in the CC of rTg-DI rats.
Collapse
Affiliation(s)
- Joseph M Schrader
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Hedok Lee
- Department of Anesthesiology, Yale University, New Haven, Connecticut
| | - Benjamin Barlock
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island
| | - Helene Benveniste
- Department of Anesthesiology, Yale University, New Haven, Connecticut
| | - William E Van Nostrand
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island.
| |
Collapse
|
16
|
Zellner A, Müller SA, Lindner B, Beaufort N, Rozemuller AJM, Arzberger T, Gassen NC, Lichtenthaler SF, Kuster B, Haffner C, Dichgans M. Proteomic profiling in cerebral amyloid angiopathy reveals an overlap with CADASIL highlighting accumulation of HTRA1 and its substrates. Acta Neuropathol Commun 2022; 10:6. [PMID: 35074002 PMCID: PMC8785498 DOI: 10.1186/s40478-021-01303-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related condition and a major cause of intracerebral hemorrhage and cognitive decline that shows close links with Alzheimer's disease (AD). CAA is characterized by the aggregation of amyloid-β (Aβ) peptides and formation of Aβ deposits in the brain vasculature resulting in a disruption of the angioarchitecture. Capillaries are a critical site of Aβ pathology in CAA type 1 and become dysfunctional during disease progression. Here, applying an advanced protocol for the isolation of parenchymal microvessels from post-mortem brain tissue combined with liquid chromatography tandem mass spectrometry (LC-MS/MS), we determined the proteomes of CAA type 1 cases (n = 12) including a patient with hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D), and of AD cases without microvascular amyloid pathology (n = 13) in comparison to neurologically healthy controls (n = 12). ELISA measurements revealed microvascular Aβ1-40 levels to be exclusively enriched in CAA samples (mean: > 3000-fold compared to controls). The proteomic profile of CAA type 1 was characterized by massive enrichment of multiple predominantly secreted proteins and showed significant overlap with the recently reported brain microvascular proteome of patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebral small vessel disease (SVD) characterized by the aggregation of the Notch3 extracellular domain. We found this overlap to be largely attributable to the accumulation of high-temperature requirement protein A1 (HTRA1), a serine protease with an established role in the brain vasculature, and several of its substrates. Notably, this signature was not present in AD cases. We further show that HTRA1 co-localizes with Aβ deposits in brain capillaries from CAA type 1 patients indicating a pathologic recruitment process. Together, these findings suggest a central role of HTRA1-dependent protein homeostasis in the CAA microvasculature and a molecular connection between multiple types of brain microvascular disease.
Collapse
Affiliation(s)
- Andreas Zellner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Barbara Lindner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nils C Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
17
|
Marazuela P, Solé M, Bonaterra-Pastra A, Pizarro J, Camacho J, Martínez-Sáez E, Kuiperij HB, Verbeek MM, de Kort AM, Schreuder FHBM, Klijn CJM, Castillo-Ribelles L, Pancorbo O, Rodríguez-Luna D, Pujadas F, Delgado P, Hernández-Guillamon M. MFG-E8 (LACTADHERIN): a novel marker associated with cerebral amyloid angiopathy. Acta Neuropathol Commun 2021; 9:154. [PMID: 34530925 PMCID: PMC8444498 DOI: 10.1186/s40478-021-01257-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023] Open
Abstract
Brain accumulation of amyloid-beta (Aβ) is a crucial feature in Alzheimer´s disease (AD) and cerebral amyloid angiopathy (CAA), although the pathophysiological relationship between these diseases remains unclear. Numerous proteins are associated with Aβ deposited in parenchymal plaques and/or cerebral vessels. We hypothesized that the study of these proteins would increase our understanding of the overlap and biological differences between these two pathologies and may yield new diagnostic tools and specific therapeutic targets. We used a laser capture microdissection approach combined with mass spectrometry in the APP23 transgenic mouse model of cerebral-β-amyloidosis to specifically identify vascular Aβ-associated proteins. We focused on one of the main proteins detected in the Aβ-affected cerebrovasculature: MFG-E8 (milk fat globule-EGF factor 8), also known as lactadherin. We first validated the presence of MFG-E8 in mouse and human brains. Immunofluorescence and immunoblotting studies revealed that MFG-E8 brain levels were higher in APP23 mice than in WT mice. Furthermore, MFG-E8 was strongly detected in Aβ-positive vessels in human postmortem CAA brains, whereas MFG-E8 was not present in parenchymal Aβ deposits. Levels of MFG-E8 were additionally analysed in serum and cerebrospinal fluid (CSF) from patients diagnosed with CAA, patients with AD and control subjects. Whereas no differences were found in MFG-E8 serum levels between groups, MFG-E8 concentration was significantly lower in the CSF of CAA patients compared to controls and AD patients. Finally, in human vascular smooth muscle cells MFG-E8 was protective against the toxic effects of the treatment with the Aβ40 peptide containing the Dutch mutation. In summary, our study shows that MFG-E8 is highly associated with CAA pathology and highlights MFG-E8 as a new CSF biomarker that could potentially be used to differentiate cerebrovascular Aβ pathology from parenchymal Aβ deposition.
Collapse
Affiliation(s)
- Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jessica Camacho
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Castillo-Ribelles
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olalla Pancorbo
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Rodríguez-Luna
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Pujadas
- Neurology Department, Dementia Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
18
|
Chatterjee P, Fagan AM, Xiong C, McKay M, Bhatnagar A, Wu Y, Singh AK, Taddei K, Martins I, Gardener SL, Molloy MP, Multhaup G, Masters CL, Schofield PR, Benzinger TLS, Morris JC, Bateman RJ, Greenberg SM, Wermer MJH, van Buchem MA, Sohrabi HR, Martins RN. Presymptomatic Dutch-Type Hereditary Cerebral Amyloid Angiopathy-Related Blood Metabolite Alterations. J Alzheimers Dis 2021; 79:895-903. [PMID: 33361604 DOI: 10.3233/jad-201267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is one of the major causes of intracerebral hemorrhage and vascular dementia in older adults. Early diagnosis will provide clinicians with an opportunity to intervene early with suitable strategies, highlighting the importance of pre-symptomatic CAA biomarkers. OBJECTIVE Investigation of pre-symptomatic CAA related blood metabolite alterations in Dutch-type hereditary CAA mutation carriers (D-CAA MCs). METHODS Plasma metabolites were measured using mass-spectrometry (AbsoluteIDQ® p400 HR kit) and were compared between pre-symptomatic D-CAA MCs (n = 9) and non-carriers (D-CAA NCs, n = 8) from the same pedigree. Metabolites that survived correction for multiple comparisons were further compared between D-CAA MCs and additional control groups (cognitively unimpaired adults). RESULTS 275 metabolites were measured in the plasma, 22 of which were observed to be significantly lower in theD-CAAMCs compared to D-CAA NCs, following adjustment for potential confounding factors age, sex, and APOE ε4 (p < 00.05). After adjusting for multiple comparisons, only spermidine remained significantly lower in theD-CAAMCscompared to theD-CAA NCs (p < 0.00018). Plasma spermidine was also significantly lower in D-CAA MCs compared to the cognitively unimpaired young adult and older adult groups (p < 0.01). Spermidinewas also observed to correlate with CSF Aβ40 (rs = 0.621, p = 0.024), CSF Aβ42 (rs = 0.714, p = 0.006), and brain Aβ load (rs = -0.527, p = 0.030). CONCLUSION The current study provides pilot data on D-CAA linked metabolite signals, that also associated with Aβ neuropathology and are involved in several biological pathways that have previously been linked to neurodegeneration and dementia.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anne M Fagan
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Division of Biostatistics, Washington University, St. Louis, MO, USA
| | - Matthew McKay
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Atul Bhatnagar
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Abhay K Singh
- Macquarie Business School, Macquarie University, North Ryde, NSW, Australia
| | - Kevin Taddei
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Ian Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samantha L Gardener
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia.,Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, St Leonards, NSW, Australia
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VA, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Tammie L S Benzinger
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marieke J H Wermer
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.,Centre for Healthy Ageing, School of Psychology and Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,The KaRa Institute of Neurological Diseases, Macquarie Park, NSW, Australia
| | | |
Collapse
|
19
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer's disease and age-matched non-demented brains. Mol Brain 2021; 14:110. [PMID: 34238312 PMCID: PMC8268468 DOI: 10.1186/s13041-021-00803-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular dysfunction is a hallmark feature of Alzheimer's disease (AD). One of the greatest risk factors for AD is the apolipoprotein E4 (E4) allele. The APOE4 genotype has been shown to negatively impact vascular amyloid clearance, however, its direct influence on the molecular integrity of the cerebrovasculature compared to other APOE variants (APOE2 and APOE3) has been largely unexplored. To address this, we employed a 10-plex tandem isobaric mass tag approach in combination with an ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method, to interrogate unbiased proteomic changes in cerebrovessels from AD and healthy control brains with different APOE genotypes. We first interrogated changes between healthy control cases to identify underlying genotype specific effects in cerebrovessels. EIF2 signaling, regulation of eIF4 and 70S6K signaling and mTOR signaling were the top significantly altered pathways in E4/E4 compared to E3/E3 cases. Oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction were the top significant pathways in E2E2 vs E3/E3cases. We also identified AD-dependent changes and their interactions with APOE genotype and found the highest number of significant proteins from this interaction was observed in the E3/E4 (192) and E4/E4 (189) cases. As above, EIF2, mTOR signaling and eIF4 and 70S6K signaling were the top three significantly altered pathways in E4 allele carriers (i.e. E3/E4 and E4/E4 genotypes). Of all the cerebrovascular cell-type specific markers identified in our proteomic analyses, endothelial cell, astrocyte, and smooth muscle cell specific protein markers were significantly altered in E3/E4 cases, while endothelial cells and astrocyte specific protein markers were altered in E4/E4 cases. These proteomic changes provide novel insights into the longstanding link between APOE4 and cerebrovascular dysfunction, implicating a role for impaired autophagy, ER stress, and mitochondrial bioenergetics. These APOE4 dependent changes we identified could provide novel cerebrovascular targets for developing disease modifying strategies to mitigate the effects of APOE4 genotype on AD pathogenesis.
Collapse
Affiliation(s)
- Joseph O Ojo
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA. .,The Open University, Milton Keynes, UK.
| | - Jon M Reed
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Gogce Crynen
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | | | - James Evans
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Benjamin Shackleton
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Maximillian Eisenbaum
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Charis Ringland
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Anastasia Edsell
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA
| | - Michael Mullan
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK
| | - Fiona Crawford
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA.,The Open University, Milton Keynes, UK
| | - Corbin Bachmeier
- Department of Experimental Neuropathology, Roskamp Institute, Sarasota, FL, 34243, USA.,The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
20
|
Schrader JM, Xu F, Van Nostrand WE. Distinct brain regional proteome changes in the rTg-DI rat model of cerebral amyloid angiopathy. J Neurochem 2021; 159:273-291. [PMID: 34218440 DOI: 10.1111/jnc.15463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022]
Abstract
Cerebral amyloid angiopathy (CAA), a prevalent cerebral small vessel disease in the elderly and a common comorbidity of Alzheimer's disease, is characterized by cerebral vascular amyloid accumulation, cerebral infarction, microbleeds, and intracerebral hemorrhages and is a prominent contributor to vascular cognitive impairment and dementia. Here, we investigate proteome changes associated with specific pathological features in several brain regions of rTg-DI rats, a preclinical model of CAA. Whereas varying degrees of microvascular amyloid and associated neuroinflammation are found in several brain regions, the presence of microbleeds and occluded small vessels is largely restricted to the thalamic region of rTg-DI rats, indicating different levels of CAA and associated pathologies occur in distinct brain regions in this model. Here, using SWATHLC-MS/MS, we report specific proteomic analysis of isolated brain regions and employ pathway analysis to correlate regionally specific proteomic changes with uniquely implicated molecular pathways. Pathway analysis suggested common activation of tumor necrosis factor α (TNFα), abnormal nervous system morphology, and neutrophil degranulation in all three regions. Activation of transforming growth factor-β1 (TGF-β1) was common to the hippocampus and thalamus, which share high CAA loads, while the thalamus, which uniquely exhibits thrombotic events, additionally displayed activation of thrombin and aggregation of blood cells. Thus, we present significant and new insight into the cerebral proteome changes found in distinct brain regions with differential CAA-related pathologies of rTg-DI rats and provide new information on potential pathogenic mechanisms associated with these regional disease processes.
Collapse
Affiliation(s)
- Joseph M Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
21
|
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, Eisenbaum M, Ringland C, Edsell A, Mullan M, Crawford F, Bachmeier C. Molecular Pathobiology of the Cerebrovasculature in Aging and in Alzheimers Disease Cases With Cerebral Amyloid Angiopathy. Front Aging Neurosci 2021; 13:658605. [PMID: 34079449 PMCID: PMC8166206 DOI: 10.3389/fnagi.2021.658605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular dysfunction and cerebral amyloid angiopathy (CAA) are hallmark features of Alzheimer's disease (AD). Molecular damage to cerebrovessels in AD may result in alterations in vascular clearance mechanisms leading to amyloid deposition around blood vessels and diminished neurovascular-coupling. The sequelae of molecular events leading to these early pathogenic changes remains elusive. To address this, we conducted a comprehensive in-depth molecular characterization of the proteomic changes in enriched cerebrovessel fractions isolated from the inferior frontal gyrus of autopsy AD cases with low (85.5 ± 2.9 yrs) vs. high (81 ± 4.4 yrs) CAA score, aged-matched control (87.4 ± 1.5 yrs) and young healthy control (47 ± 3.3 yrs) cases. We employed a 10-plex tandem isobaric mass tag approach in combination with our ultra-high pressure liquid chromatography MS/MS (Q-Exactive) method. Enriched cerebrovascular fractions showed very high expression levels of proteins specific to endothelial cells, mural cells (pericytes and smooth muscle cells), and astrocytes. We observed 150 significantly regulated proteins in young vs. aged control cerebrovessels. The top pathways significantly modulated with aging included chemokine, reelin, HIF1α and synaptogenesis signaling pathways. There were 213 proteins significantly regulated in aged-matched control vs. high CAA cerebrovessels. The top three pathways significantly altered from this comparison were oxidative phosphorylation, Sirtuin signaling pathway and TCA cycle II. Comparison between low vs. high CAA cerebrovessels identified 84 significantly regulated proteins. Top three pathways significantly altered between low vs. high CAA cerebrovessels included TCA Cycle II, Oxidative phosphorylation and mitochondrial dysfunction. Notably, high CAA cases included more advanced AD pathology thus cerebrovascular effects may be driven by the severity of amyloid and Tangle pathology. These descriptive proteomic changes provide novel insights to explain the age-related and AD-related cerebrovascular changes contributing to AD pathogenesis. Particularly, disturbances in energy bioenergetics and mitochondrial biology rank among the top AD pathways altered in cerebrovessels. Targeting these failed mechanisms in endothelia and mural cells may provide novel disease modifying targets for developing therapeutic strategies against cerebrovascular deterioration and promoting cerebral perfusion in AD. Our future work will focus on interrogating and validating these novel targets and pathways and their functional significance.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | | | | | - James Evans
- Roskamp Institute, Sarasota, FL, United States
| | - Benjamin Shackleton
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Maximillian Eisenbaum
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Charis Ringland
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | | | - Michael Mullan
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans' Hospital, Tampa, FL, United States
- The Open University, Milton Keynes, United Kingdom
| | - Corbin Bachmeier
- Roskamp Institute, Sarasota, FL, United States
- The Open University, Milton Keynes, United Kingdom
- Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
22
|
Inoue Y, Ando Y, Misumi Y, Ueda M. Current Management and Therapeutic Strategies for Cerebral Amyloid Angiopathy. Int J Mol Sci 2021; 22:ijms22083869. [PMID: 33918041 PMCID: PMC8068954 DOI: 10.3390/ijms22083869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by accumulation of amyloid β (Aβ) in walls of leptomeningeal vessels and cortical capillaries in the brain. The loss of integrity of these vessels caused by cerebrovascular Aβ deposits results in fragile vessels and lobar intracerebral hemorrhages. CAA also manifests with progressive cognitive impairment or transient focal neurological symptoms. Although development of therapeutics for CAA is urgently needed, the pathogenesis of CAA remains to be fully elucidated. In this review, we summarize the epidemiology, pathology, clinical and radiological features, and perspectives for future research directions in CAA therapeutics. Recent advances in mass spectrometric methodology combined with vascular isolation techniques have aided understanding of the cerebrovascular proteome. In this paper, we describe several potential key CAA-associated molecules that have been identified by proteomic analyses (apolipoprotein E, clusterin, SRPX1 (sushi repeat-containing protein X-linked 1), TIMP3 (tissue inhibitor of metalloproteinases 3), and HTRA1 (HtrA serine peptidase 1)), and their pivotal roles in Aβ cytotoxicity, Aβ fibril formation, and vessel wall remodeling. Understanding the interactions between cerebrovascular Aβ deposits and molecules that accumulate with Aβ may lead to discovery of effective CAA therapeutics and to the identification of biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (Y.M.); (M.U.)
- Correspondence: ; Tel.: +81-96-373-5893; Fax: +81-96-373-5895
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo 859-3298, Japan;
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (Y.M.); (M.U.)
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (Y.M.); (M.U.)
| |
Collapse
|
23
|
Xu L, Tian S, Peng X, Hua Y, Yang W, Chen L, Liu S, Wu W, Zhao J, He J, Wu L, Yang J, Zheng Y. Clusterin inhibits Aβ 42 aggregation through a "strawberry model" as detected by FRET-FCS. J Neurochem 2021; 158:444-454. [PMID: 33694231 DOI: 10.1111/jnc.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 11/28/2022]
Abstract
Extracellular plaque deposits of β-amyloid peptide (Aβ) are one of the main pathological features of Alzheimer's disease (AD). The aggregation of Aβ42 species, especially Aβ42 oligomers, is still an active research field in AD pathogenesis. Secretory clusterin protein (sCLU), an extracellular chaperone, plays an important role in AD pathogenesis. Although sCLU interacts directly with Aβ42 in vitro and in vivo, the mechanism is not clear. In this paper, His-tagged sCLU (sCLU-His) was cloned, expressed and purified, and we applied florescence resonance energy transfer-fluorescence correlation spectroscopy (FRET-FCS) to investigate the direct interaction of sCLU-His and Aβ42 at the single-molecule fluorescence level in vitro. Here, we chose four different fluorescently labeled Aβ42 oligomers to form two different groups of aggregation models, easy or difficult to aggregate. The results showed that sCLU-His could form complexes with both aggregation models, and sCLU-His inhibited the aggregation of Aβ42/RB ~ Aβ42/Atto647 (easy to aggregate model). The complexes were produced as the Aβ42/Label adhered to the sCLU-His, which is similar to a "strawberry model," as strawberry seeds are dotted on the outer surface of strawberries. This work provided additional insight into the interaction mechanism of sCLU and Aβ42 .
Collapse
Affiliation(s)
- Lingwan Xu
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Shijun Tian
- Hebei Agriculture University, Baoding, China
| | - Xianglei Peng
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Ying Hua
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Wenxuan Yang
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Longwei Chen
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Shilei Liu
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Wenzheng Wu
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Jiang Zhao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jinsheng He
- School of Sciences, Beijing Jiaotong University, Beijing, China
| | - Liqing Wu
- National Institute of Metrology, Beijing, China
| | - Jingfa Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanpeng Zheng
- School of Sciences, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
24
|
Comparison of Plasma Lipoprotein Composition and Function in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9010072. [PMID: 33445800 PMCID: PMC7828227 DOI: 10.3390/biomedicines9010072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) refers to beta-amyloid (Aβ) deposition in brain vessels and is clinically the main cause of lobar intracerebral hemorrhage (ICH). Aβ can also accumulate in brain parenchyma forming neuritic plaques in Alzheimer’s disease (AD). Our study aimed to determine whether the peripheral lipid profile and lipoprotein composition are associated with cerebral beta-amyloidosis pathology and may reflect biological differences in AD and CAA. For this purpose, lipid and apolipoproteins levels were analyzed in plasma from 51 ICH-CAA patients (collected during the chronic phase of the disease), 60 AD patients, and 60 control subjects. Lipoproteins (VLDL, LDL, and HDL) were isolated and their composition and pro/antioxidant ability were determined. We observed that alterations in the lipid profile and lipoprotein composition were remarkable in the ICH-CAA group compared to control subjects, whereas the AD group presented no specific alterations compared with controls. ICH-CAA patients presented an atheroprotective profile, which consisted of lower total and LDL cholesterol levels. Plasma from chronic ICH-CAA patients also showed a redistribution of ApoC-III from HDL to VLDL and a higher ApoE/ApoC-III ratio in HDL. Whether these alterations reflect a protective response or have a causative effect on the pathology requires further investigation.
Collapse
|
25
|
Young KZ, Xu G, Keep SG, Borjigin J, Wang MM. Overlapping Protein Accumulation Profiles of CADASIL and CAA: Is There a Common Mechanism Driving Cerebral Small-Vessel Disease? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:1871-1887. [PMID: 33387456 DOI: 10.1016/j.ajpath.2020.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral amyloid angiopathy (CAA) are two distinct vascular angiopathies that share several similarities in clinical presentation and vascular pathology. Given the clinical and pathologic overlap, the molecular overlap between CADASIL and CAA was explored. CADASIL and CAA protein profiles from recently published proteomics-based and immuno-based studies were compared to investigate the potential for shared disease mechanisms. A comparison of affected proteins in each disease highlighted 19 proteins that are regulated in both CADASIL and CAA. Functional analysis of the shared proteins predicts significant interaction between them and suggests that most enriched proteins play roles in extracellular matrix structure and remodeling. Proposed models to explain the observed enrichment of extracellular matrix proteins include both increased protein secretion and decreased protein turnover by sequestration of chaperones and proteases or formation of stable protein complexes. Single-cell RNA sequencing of vascular cells in mice suggested that the vast majority of the genes accounting for the overlapped proteins between CADASIL and CAA are expressed by fibroblasts. Thus, our current understanding of the molecular profiles of CADASIL and CAA appears to support potential for common mechanisms underlying the two disorders.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gang Xu
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Simon G Keep
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Jimo Borjigin
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan.
| |
Collapse
|
26
|
Cisternas P, Taylor X, Perkins A, Maldonado O, Allman E, Cordova R, Marambio Y, Munoz B, Pennington T, Xiang S, Zhang J, Vidal R, Atwood B, Lasagna‐Reeves CA. Vascular amyloid accumulation alters the gabaergic synapse and induces hyperactivity in a model of cerebral amyloid angiopathy. Aging Cell 2020; 19:e13233. [PMID: 32914559 PMCID: PMC7576303 DOI: 10.1111/acel.13233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of β‐amyloid (Aβ), other amyloids are known to associate with the vasculature. Alzheimer's disease (AD) is characterized by parenchymal Aβ deposition and intracellular accumulation of tau as neurofibrillary tangles (NFTs), affecting synapses directly, leading to behavioral and physical impairment. CAA increases with age and is present in 70%–97% of individuals with AD. Studies have overwhelmingly focused on the connection between parenchymal amyloid accumulation and synaptotoxicity; thus, the contribution of vascular amyloid is mostly understudied. Here, synaptic alterations induced by vascular amyloid accumulation and their behavioral consequences were characterized using a mouse model of Familial Danish dementia (FDD), a neurodegenerative disease characterized by the accumulation of Danish amyloid (ADan) in the vasculature. The mouse model (Tg‐FDD) displays a hyperactive phenotype that potentially arises from impairment in the GABAergic synapses, as determined by electrophysiological analysis. We demonstrated that the disruption of GABAergic synapse organization causes this impairment and provided evidence that GABAergic synapses are impaired in patients with CAA pathology. Understanding the mechanism that CAA contributes to synaptic dysfunction in AD‐related dementias is of critical importance for developing future therapeutic interventions.
Collapse
Affiliation(s)
- Pablo Cisternas
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Xavier Taylor
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Abigail Perkins
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Orlando Maldonado
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Elysabeth Allman
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Ricardo Cordova
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Yamil Marambio
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Braulio Munoz
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Taylor Pennington
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Shunian Xiang
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Ruben Vidal
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pathology and Laboratory Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Brady Atwood
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Cristian A. Lasagna‐Reeves
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
27
|
Jang E, Robert J, Rohrer L, von Eckardstein A, Lee WL. Transendothelial transport of lipoproteins. Atherosclerosis 2020; 315:111-125. [PMID: 33032832 DOI: 10.1016/j.atherosclerosis.2020.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The accumulation of low-density lipoproteins (LDL) in the arterial wall plays a pivotal role in the initiation and pathogenesis of atherosclerosis. Conversely, the removal of cholesterol from the intima by cholesterol efflux to high density lipoproteins (HDL) and subsequent reverse cholesterol transport shall confer protection against atherosclerosis. To reach the subendothelial space, both LDL and HDL must cross the intact endothelium. Traditionally, this transit is explained by passive filtration. This dogma has been challenged by the identification of several rate-limiting factors namely scavenger receptor SR-BI, activin like kinase 1, and caveolin-1 for LDL as well as SR-BI, ATP binding cassette transporter G1, and endothelial lipase for HDL. In addition, estradiol, vascular endothelial growth factor, interleukins 6 and 17, purinergic signals, and sphingosine-1-phosphate were found to regulate transendothelial transport of either LDL or HDL. Thorough understanding of transendothelial lipoprotein transport is expected to elucidate new therapeutic targets for the treatment or prevention of atherosclerotic cardiovascular disease and the development of strategies for the local delivery of drugs or diagnostic tracers into diseased tissues including atherosclerotic lesions.
Collapse
Affiliation(s)
- Erika Jang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Jerome Robert
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland.
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
28
|
Jäkel L, Kuiperij HB, Gerding LP, Custers EEM, van den Berg E, Jolink WMT, Schreuder FHBM, Küsters B, Klijn CJM, Verbeek MM. Disturbed balance in the expression of MMP9 and TIMP3 in cerebral amyloid angiopathy-related intracerebral haemorrhage. Acta Neuropathol Commun 2020; 8:99. [PMID: 32631441 PMCID: PMC7336459 DOI: 10.1186/s40478-020-00972-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of the amyloid β (Aβ) protein in the cerebral vasculature and poses a major risk factor for the development of intracerebral haemorrhages (ICH). However, only a minority of patients with CAA develops ICH (CAA-ICH), and to date it is unclear which mechanisms determine why some patients with CAA are more susceptible to haemorrhage than others. We hypothesized that an imbalance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) contributes to vessel wall weakening. MMP9 plays a role in the degradation of various components of the extracellular matrix as well as of Aβ and increased MMP9 expression has been previously associated with CAA. TIMP3 is an inhibitor of MMP9 and increased TIMP3 expression in cerebral vessels has also been associated with CAA. In this study, we investigated the expression of MMP9 and TIMP3 in occipital brain tissue of CAA-ICH cases (n = 11) by immunohistochemistry and compared this to the expression in brain tissue of CAA cases without ICH (CAA-non-haemorrhagic, CAA-NH, n = 18). We showed that MMP9 expression is increased in CAA-ICH cases compared to CAA-NH cases. Furthermore, we showed that TIMP3 expression is increased in CAA cases compared to controls without CAA, and that TIMP3 expression is reduced in a subset of CAA-ICH cases compared to CAA-NH cases. In conclusion, in patients with CAA, a disbalance in cerebrovascular MMP9 and TIMP3 expression is associated with CAA-related ICH.
Collapse
|
29
|
Robert J, Button EB, Martin EM, McAlary L, Gidden Z, Gilmour M, Boyce G, Caffrey TM, Agbay A, Clark A, Silverman JM, Cashman NR, Wellington CL. Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E. Mol Neurodegener 2020; 15:23. [PMID: 32213187 PMCID: PMC7093966 DOI: 10.1186/s13024-020-00366-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
Collapse
Affiliation(s)
- Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada. .,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada. .,Present address: Institute of Clinical Chemistry, University Hospital Zurich, 8000, Zurich, Switzerland.
| | - Emily B Button
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Emma M Martin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Luke McAlary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zoe Gidden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Megan Gilmour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Guilaine Boyce
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Tara M Caffrey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Andrew Agbay
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Amanda Clark
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Judith M Silverman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Neurology, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Neil R Cashman
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 1M9, Canada
| |
Collapse
|
30
|
Kuiperij HB, Hondius DC, Kersten I, Versleijen AAM, Rozemuller AJM, Greenberg SM, Schreuder FHBM, Klijn CJM, Verbeek MM. Apolipoprotein D: a potential biomarker for cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2020; 46:431-440. [PMID: 31872472 DOI: 10.1111/nan.12595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023]
Abstract
AIMS We investigated the potential of apolipoprotein D (apoD) as cerebrospinal fluid (CSF) biomarker for cerebral amyloid angiopathy (CAA) after confirmation of its association with CAA pathology in human brain tissue. METHODS The association of apoD with CAA pathology was analysed in human occipital lobe tissue of CAA (n = 9), Alzheimer's disease (AD) (n = 11) and healthy control cases (n = 11). ApoD levels were quantified in an age- and sex-matched CSF cohort of CAA patients (n = 31), AD patients (n = 27) and non-neurological controls (n = 67). The effects of confounding factors (age, sex, serum levels) on apoD levels were studied using CSF of non-neurological controls (age range 16-85 years), and paired CSF and serum samples. RESULTS ApoD was strongly associated with amyloid deposits in vessels, but not with parenchymal plaques in human brain tissue. CSF apoD levels correlated with age and were higher in men than women in subjects >50 years. The apoD CSF/serum ratio correlated with the albumin ratio. When controlling for confounding factors, CSF apoD levels were significantly lower in CAA patients compared with controls and compared with AD patients (P = 0.0008). CONCLUSIONS Our data show that apoD is specifically associated with CAA pathology and may be a CSF biomarker for CAA, but clinical application is complicated due to dependency on age, sex and blood-CSF barrier integrity. Well-controlled follow-up studies are required to determine whether apoD can be used as reliable biomarker for CAA.
Collapse
Affiliation(s)
- H B Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D C Hondius
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - I Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A A M Versleijen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A J M Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - S M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 2020; 16:30-42. [PMID: 31827267 PMCID: PMC7268202 DOI: 10.1038/s41582-019-0281-2] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
The shared role of amyloid-β (Aβ) deposition in cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD) is arguably the clearest instance of crosstalk between neurodegenerative and cerebrovascular processes. The pathogenic pathways of CAA and AD intersect at the levels of Aβ generation, its circulation within the interstitial fluid and perivascular drainage pathways and its brain clearance, but diverge in their mechanisms of brain injury and disease presentation. Here, we review the evidence for and the pathogenic implications of interactions between CAA and AD. Both pathologies seem to be driven by impaired Aβ clearance, creating conditions for a self-reinforcing cycle of increased vascular Aβ, reduced perivascular clearance and further CAA and AD progression. Despite the close relationship between vascular and plaque Aβ deposition, several factors favour one or the other, such as the carboxy-terminal site of the peptide and specific co-deposited proteins. Amyloid-related imaging abnormalities that have been seen in trials of anti-Aβ immunotherapy are another probable intersection between CAA and AD, representing overload of perivascular clearance pathways and the effects of removing Aβ from CAA-positive vessels. The intersections between CAA and AD point to a crucial role for improving vascular function in the treatment of both diseases and indicate the next steps necessary for identifying therapies.
Collapse
Affiliation(s)
- Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeremy Pruzin
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Dewing JM, Carare RO, Lotery AJ, Ratnayaka JA. The Diverse Roles of TIMP-3: Insights into Degenerative Diseases of the Senescent Retina and Brain. Cells 2019; 9:cells9010039. [PMID: 31877820 PMCID: PMC7017234 DOI: 10.3390/cells9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment, where it mediates diverse processes including matrix regulation/turnover, inflammation and angiogenesis. Rare TIMP-3 risk alleles and mutations are directly linked with retinopathies such as age-related macular degeneration (AMD) and Sorsby fundus dystrophy, and potentially, through indirect mechanisms, with Alzheimer's disease. Insights into TIMP-3 activities may be gleaned from studying Sorsby-linked mutations. However, recent findings do not fully support the prevailing hypothesis that a gain of function through the dimerisation of mutated TIMP-3 is responsible for retinopathy. Findings from Alzheimer's patients suggest a hitherto poorly studied relationship between TIMP-3 and the Alzheimer's-linked amyloid-beta (A) proteins that warrant further scrutiny. This may also have implications for understanding AMD as aged/diseased retinae contain high levels of A. Findings from TIMP-3 knockout and mutant knock-in mice have not led to new treatments, particularly as the latter does not satisfactorily recapitulate the Sorsby phenotype. However, recent advances in stem cell and in vitro approaches offer novel insights into understanding TIMP-3 pathology in the retina-brain axis, which has so far not been collectively examined. We propose that TIMP-3 activities could extend beyond its hitherto supposed functions to cause age-related changes and disease in these organs.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Roxana O. Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
33
|
Haffner C. Proteostasis in Cerebral Small Vessel Disease. Front Neurosci 2019; 13:1142. [PMID: 31798396 PMCID: PMC6874119 DOI: 10.3389/fnins.2019.01142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/10/2019] [Indexed: 01/02/2023] Open
Abstract
Maintaining the homeostasis of proteins (proteostasis) by controlling their synthesis, folding and degradation is a central task of cells and tissues. The gradual decline of the capacity of the various proteostasis machineries, frequently in combination with their overload through mutated, aggregation-prone proteins, is increasingly recognized as an important catalyst of age-dependent pathologies in the brain, most prominently neurodegenerative disorders. A dysfunctional proteostasis might also contribute to neurovascular disease as indicated by the occurrence of excessive protein accumulation or massive extracellular matrix expansion within vessel walls in conditions such as cerebral small vessel disease (SVD), a major cause of ischemic stroke, and cerebral amyloid angiopathy. Recent advances in brain vessel isolation techniques and mass spectrometry methodology have facilitated the analysis of cerebrovascular proteomes and fueled efforts to determine the proteomic signatures associated with neurovascular disease. In several studies in humans and mice considerable differences between healthy and diseased vessel proteomes were observed, emphasizing the critical contribution of an impaired proteostasis to disease pathogenesis. These findings highlight the important role of a balanced proteostasis for cerebrovascular health.
Collapse
Affiliation(s)
- Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
34
|
Li KW, Ganz AB, Smit AB. Proteomics of neurodegenerative diseases: analysis of human post-mortem brain. J Neurochem 2019; 151:435-445. [PMID: 30289976 PMCID: PMC6899881 DOI: 10.1111/jnc.14603] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Dementias are prevalent brain disorders in the aged population. Dementias pose major socio-medical burden, but currently there is no cure available. Novel proteomics approaches hold promise to identify alterations of the brain proteome that could provide clues on disease etiology, and identify candidate proteins to develop further as a biomarker. In this review, we focus on recent proteomics findings from brains affected with Alzheimer's Disease, Parkinson Disease Dementia, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis. These studies confirmed known cellular changes, and in addition identified novel proteins that may underlie distinct aspects of the diseases. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- K. W. Li
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije UniversiteitAmsterdamThe Netherlands
| | - Andrea B. Ganz
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije UniversiteitAmsterdamThe Netherlands
| | - August B. Smit
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije UniversiteitAmsterdamThe Netherlands
| |
Collapse
|
35
|
Drummond E, Goñi F, Liu S, Prelli F, Scholtzova H, Wisniewski T. Potential Novel Approaches to Understand the Pathogenesis and Treat Alzheimer's Disease. J Alzheimers Dis 2019; 64:S299-S312. [PMID: 29562516 DOI: 10.3233/jad-179909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing genetic and proteomic data highlighting the complexity of Alzheimer's disease (AD) pathogenesis. Greater use of unbiased "omics" approaches is being increasingly recognized as essential for the future development of effective AD research, that need to better reflect the multiple distinct pathway abnormalities that can drive AD pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. We highlight our recent efforts to increase use of human tissue to gain a better understanding of the AD pathogenesis subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity. These therapeutic approaches include the blocking of the Aβ/apoE interaction, stimulation of innate immunity, and the simultaneous blocking of Aβ/tau oligomer toxicity. We believe that future successful therapeutic approaches will need to be combined to better reflect the complexity of the abnormal pathways triggered in AD pathogenesis.
Collapse
Affiliation(s)
- Eleanor Drummond
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Shan Liu
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Frances Prelli
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Henrieta Scholtzova
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW We review current knowledge regarding HDL and Alzheimer's disease, focusing on HDL's vasoprotective functions and potential as a biomarker and therapeutic target for the vascular contributions of Alzheimer's disease. RECENT FINDINGS Many epidemiological studies have observed that circulating HDL levels associate with decreased Alzheimer's disease risk. However, it is now understood that the functions of HDL may be more informative than levels of HDL cholesterol (HDL-C). Animal model studies demonstrate that HDL protects against memory deficits, neuroinflammation, and cerebral amyloid angiopathy (CAA). In-vitro studies using state-of-the-art 3D models of the human blood-brain barrier (BBB) confirm that HDL reduces vascular Aβ accumulation and attenuates Aβ-induced endothelial inflammation. Although HDL-based therapeutics have not been tested in clinical trials for Alzheimer's disease , several HDL formulations are in advanced phase clinical trials for coronary artery disease and atherosclerosis and could be leveraged toward Alzheimer's disease . SUMMARY Evidence from human studies, animal models, and bioengineered arteries supports the hypothesis that HDL protects against cerebrovascular dysfunction in Alzheimer's disease. Assays of HDL functions relevant to Alzheimer's disease may be desirable biomarkers of cerebrovascular health. HDL-based therapeutics may also be of interest for Alzheimer's disease, using stand-alone or combination therapy approaches.
Collapse
Affiliation(s)
- Emily B. Button
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jérôme Robert
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tara M. Caffrey
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenchen Zhao
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Contu L, Carare RO, Hawkes CA. Knockout of apolipoprotein A-I decreases parenchymal and vascular β-amyloid pathology in the Tg2576 mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2019; 45:698-714. [PMID: 31002190 DOI: 10.1111/nan.12556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
AIMS Apolipoprotein A-I (apoA-I), the principal apolipoprotein associated with high-density lipoproteins in the periphery, is also found at high concentrations in the cerebrospinal fluid. Previous studies have reported either no impact or vascular-specific effects of apoA-I knockout (KO) on β-amyloid (Aβ) pathology. However, the putative mechanism(s) by which apoA-I may influence Aβ deposition is unknown. METHODS We evaluated the effect of apoA-I deletion on Aβ pathology, Aβ production and clearance from the brain in the Tg2576 mouse model of Alzheimer's disease (AD). RESULTS Contrary to previous reports, deletion of the APOA1 gene significantly reduced concentrations of insoluble Aβ40 and Aβ42 and reduced plaque load in both the parenchyma and blood vessels of apoA-I KO × Tg2576 mice compared to Tg2576 animals. This was not due to decreased Aβ production or alterations in Aβ species. Levels of soluble clusterin/apoJ were significantly higher in neurons of apoA-I KO mice compared to both wildtype (WT) and apoA-I KO × Tg2576 mice. In addition, clearance of Aβ along intramural periarterial drainage pathways was significantly higher in apoA-I KO mice compared to WT animals. CONCLUSION These data suggest that deletion of apoA-I is associated with increased clearance of Aβ and reduced parenchymal and vascular Aβ pathology in the Tg2576 model. These results suggest that peripheral dyslipidaemia can modulate the expression of apolipoproteins in the brain and may influence Aβ clearance and aggregation in AD.
Collapse
Affiliation(s)
- L Contu
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, UK
| | - R O Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C A Hawkes
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, UK
| |
Collapse
|
38
|
Lofthouse EM, Torrens C, Manousopoulou A, Nahar M, Cleal JK, O'Kelly IM, Sengers BG, Garbis SD, Lewis RM. Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta. FASEB J 2019; 33:8211-8220. [PMID: 30922127 PMCID: PMC6593889 DOI: 10.1096/fj.201900015rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) causes increased transfer of maternal bile acids to the fetus and an increased incidence of sudden fetal death. Treatment includes ursodeoxycholic acid (UDCA), but it is not clear if UDCA protects the fetus. This study explores the placental transport of the bile acid taurocholate (TC) by the organic anion-transporting polypeptide, (OATP)4A1, its effects on the placental proteome and vascular function, and how these are modified by UDCA. Various methodological approaches including placental villous fragments and Xenopus laevis oocytes were used to investigate UDCA transport. Placental perfusions and myography investigated the effect of TC on vasculature. The effects of acute TC exposure on placental tissue were investigated using quantitative proteomics. UDCA inhibited OATP4A1 activity in placental villous fragments and oocytes. TC induced vasoconstriction in placental and rat vasculature, which was attenuated by UDCA. Quantitative proteomic analysis of villous fragments showed direct effects of TC on multiple placental pathways, including oxidative stress and autophagy. The effects of TC on the placental proteome and vasculature demonstrate how bile acids may cause fetal distress in ICP. UDCA inhibition of OATP4A1 suggests it will protect the mother and fetus against the vascular effects of TC by inhibiting its cellular uptake. UDCA may protect the fetus in ICP by inhibiting OATP4A1-mediated bile acid transfer and TC-induced placental vasoconstriction. Understanding the physiologic mechanisms of UDCA may allow better therapeutic interventions to be designed specifically for the fetus in the future.-Lofthouse, E. M., Torrens, C., Manousopoulou, A., Nahar, M., Cleal, J. K., O'Kelly, I. M., Sengers, B. G., Garbis, S. D., Lewis, R. M. Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta.
Collapse
Affiliation(s)
- Emma M Lofthouse
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Christopher Torrens
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Monica Nahar
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jane K Cleal
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Faculty of Engineering, University of Southampton, Southampton, United Kingdom; and
| | - Ita M O'Kelly
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Bram G Sengers
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,Faculty of Engineering, University of Southampton, Southampton, United Kingdom; and
| | - Spiros D Garbis
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,Division of Biology and Biological Engineering, Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
39
|
Camacho J, Moliné T, Bonaterra-Pastra A, Ramón Y Cajal S, Martínez-Sáez E, Hernández-Guillamon M. Brain ApoA-I, ApoJ and ApoE Immunodetection in Cerebral Amyloid Angiopathy. Front Neurol 2019; 10:187. [PMID: 30918495 PMCID: PMC6424885 DOI: 10.3389/fneur.2019.00187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a common cause of lobar intracerebral hemorrhage (ICH) in elderly individuals and it is the result of the cerebrovascular deposition of beta-amyloid (Aβ) protein. CAA is frequently found in patients with Alzheimer's disease (AD), although it has an independent contribution to the cognitive deterioration associated with age. Specific apolipoproteins (Apo) have been associated with Aβ fibrillization and clearance from the brain. In this regard, in the present study, we analyzed the brain levels of ApoE, ApoA-I, and ApoJ/clusterin in autopsy brains from 20 post-mortem cases with CAA type I, CAA type II, with parenchymal Aβ deposits or without Aβ deposits. Our objective was to find a possible differential pattern of apolipoproteins distribution in the brain depending on the CAA pathological presentation. The protein expression levels were adjusted by the APOE genotype of the patients included in the study. We found that ApoE and ApoJ were abundantly present in meningeal, cortical, and capillary vessels of the brains with vascular Aβ accumulation. ApoE and ApoJ also deposited extracellularly in the parenchyma, especially in cases presenting Aβ diffuse and neuritic parenchymal deposits. In contrast, ApoA-I staining was only relevant in capillary walls in CAA type I cases. On the other hand, ICH was the principal cause of death among CAA patients in our cohort. We found that CAA patients with ICH more commonly had APOEε2 compared with CAA patients without ICH. In addition, patients who suffered an ICH presented higher vascular ApoE levels in brain. However, higher ApoE presence in cortical arteries was the only independent predictor of suffering an ICH in our cohort after adjusting by age and APOE genotype. In conclusion, while ApoE and ApoJ appear to be involved in both vascular and parenchymal Aβ pathology, ApoA-I seems to be mainly associated with CAA, especially in CAA type I pathology. We consider that our study helps to molecularly characterize the distribution subtypes of Aβ deposition within the brain.
Collapse
Affiliation(s)
- Jessica Camacho
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Moliné
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Ramón Y Cajal
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Endo Y, Hasegawa K, Nomura R, Arishima H, Kikuta KI, Yamashita T, Inoue Y, Ueda M, Ando Y, Wilson MR, Hamano T, Nakamoto Y, Naiki H. Apolipoprotein E and clusterin inhibit the early phase of amyloid-β aggregation in an in vitro model of cerebral amyloid angiopathy. Acta Neuropathol Commun 2019; 7:12. [PMID: 30691533 PMCID: PMC6348632 DOI: 10.1186/s40478-019-0662-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Sporadic cerebral amyloid angiopathy (CAA) is characterized by cerebrovascular amyloid-β (Aβ) deposition, which leads to lobar hemorrhage and dementia. Biological molecules affecting the development of CAA have not been fully characterized. In this study, we performed proteome analysis of biopsied leptomeningeal and cortical vessels obtained from 6 CAA patients and 5 non-CAA patients who underwent surgery for large lobar hemorrhages. We found that 6 proteins, including Aβ, apolipoprotein E (apoE), clusterin (CLU), albumin, complement C4 and vitronectin were significantly upregulated in the vessels of CAA patients as compared to non-CAA patients. ApoE and CLU were found in all CAA patients. We next examined the effects of apoE and CLU on the early phase of Aβ aggregation, using a simple yet powerful in vitro model of CAA, which recapitulates the intramural periarterial drainage pathway model. We found that physiological concentrations of apoE and CLU delayed the initiation time of amyloid growth kinetics in a concentration-dependent manner. These data indicate that apoE and CLU may act as extracellular chaperones to inhibit Aβ amyloid deposition in CAA.
Collapse
|
41
|
Manousopoulou A, Hamdan M, Fotopoulos M, Garay‐Baquero DJ, Teng J, Garbis SD, Cheong Y. Integrated Eutopic Endometrium and Non‐Depleted Serum Quantitative Proteomic Analysis Identifies Candidate Serological Markers of Endometriosis. Proteomics Clin Appl 2018; 13:e1800153. [DOI: 10.1002/prca.201800153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/06/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mukhri Hamdan
- Department of Obstetrics and GynaecologyFaculty of MedicineUniversity Malaysia 50603 Kuala Lumpur Malaysia
| | | | | | - Jie Teng
- Institute for Life SciencesUniversity of Southampton Southampton, SO17 1BJ UK
- School of PharmacyTianjin Medical University Tianjin China
| | - Spiros D. Garbis
- Institute for Life SciencesUniversity of Southampton Southampton, SO17 1BJ UK
- Proteome Exploration Laboratory - Beckman InstituteDivision of Biology and Biological EngineeringCalifornia Institute of Technology Pasadena, CA 91125 USA
| | - Ying Cheong
- Human Development and HealthUniversity of Southampton Southampton SO16 UK
- Complete Fertility Centre SouthamptonPrincess Anne Hospital Coxford Road Southampton SO16 5YA UK
| |
Collapse
|
42
|
Zellner A, Scharrer E, Arzberger T, Oka C, Domenga-Denier V, Joutel A, Lichtenthaler SF, Müller SA, Dichgans M, Haffner C. CADASIL brain vessels show a HTRA1 loss-of-function profile. Acta Neuropathol 2018; 136:111-125. [PMID: 29725820 DOI: 10.1007/s00401-018-1853-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 01/06/2023]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and a phenotypically similar recessive condition (CARASIL) have emerged as important genetic model diseases for studying the molecular pathomechanisms of cerebral small vessel disease (SVD). CADASIL, the most frequent and intensely explored monogenic SVD, is characterized by a severe pathology in the cerebral vasculature including the mutation-induced aggregation of the Notch3 extracellular domain (Notch3ECD) and the formation of protein deposits of insufficiently determined composition in vessel walls. To identify key molecules and pathways involved in this process, we quantitatively determined the brain vessel proteome from CADASIL patient and control autopsy samples (n = 6 for each group), obtaining 95 proteins with significantly increased abundance. Intriguingly, high-temperature requirement protein A1 (HTRA1), the extracellular protease mutated in CARASIL, was found to be strongly enriched (4.9-fold, p = 1.6 × 10-3) and to colocalize with Notch3ECD deposits in patient vessels suggesting a sequestration process. Furthermore, the presence of increased levels of several HTRA1 substrates in the CADASIL proteome was compatible with their reduced degradation as consequence of a loss of HTRA1 activity. Indeed, a comparison with the brain vessel proteome of HTRA1 knockout mice (n = 5) revealed a highly significant overlap of 18 enriched proteins (p = 2.2 × 10-16), primarily representing secreted and extracellular matrix factors. Several of them were shown to be processed by HTRA1 in an in vitro proteolysis assay identifying them as novel substrates. Our study provides evidence for a loss of HTRA1 function as a critical step in the development of CADASIL pathology linking the molecular mechanisms of two distinct SVD forms.
Collapse
Affiliation(s)
- Andreas Zellner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Eva Scharrer
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chio Oka
- Laboratory of Gene Function in Animals, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Valérie Domenga-Denier
- Department of Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Anne Joutel
- Department of Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
| |
Collapse
|
43
|
Hondius DC, Eigenhuis KN, Morrema THJ, van der Schors RC, van Nierop P, Bugiani M, Li KW, Hoozemans JJM, Smit AB, Rozemuller AJM. Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer's disease. Acta Neuropathol Commun 2018; 6:46. [PMID: 29860944 PMCID: PMC5985582 DOI: 10.1186/s40478-018-0540-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 12/03/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by amyloid beta (Aβ) deposits as plaques in the parenchyma and in the walls of cortical and leptomeningeal blood vessels of the brain called cerebral amyloid angiopathy (CAA). It is suggested that CAA type-1, which refers to amyloid deposition in both capillaries and larger vessels, adds to the symptomatic manifestation of AD and correlates with disease severity. Currently, CAA cannot be diagnosed pre-mortem and disease mechanisms involved in CAA are elusive. To obtain insight in the disease mechanism of CAA and to identify marker proteins specifically associated with CAA we performed a laser dissection microscopy assisted mass spectrometry analysis of post-mortem human brain tissue of (I) AD cases with only amyloid deposits in the brain parenchyma and no vascular related amyloid, (II) AD cases with severe CAA type-1 and no or low numbers of parenchymal amyloid deposits and (III) cognitively healthy controls without amyloid deposits. By contrasting the quantitative proteomics data between the three groups, 29 potential CAA-selective proteins were identified. A selection of these proteins was analysed by immunoblotting and immunohistochemistry to confirm regulation and to determine protein localization and their relation to brain pathology. In addition, specificity of these markers in relation to other small vessel diseases including prion CAA, CADASIL, CARASAL and hypertension related small vessel disease was assessed using immunohistochemistry. Increased levels of clusterin (CLU), apolipoprotein E (APOE) and serum amyloid P-component (APCS) were observed in AD cases with CAA. In addition, we identified norrin (NDP) and collagen alpha-2(VI) (COL6A2) as highly selective markers that are clearly present in CAA yet virtually absent in relation to parenchymal amyloid plaque pathology. NDP showed the highest specificity to CAA when compared to other small vessel diseases. The specific changes in the proteome of CAA provide new insight in the pathogenesis and yields valuable selective biomarkers for the diagnosis of CAA.
Collapse
|
44
|
Manousopoulou A, Hayden A, Mellone M, Garay-Baquero DJ, White CH, Noble F, Lopez M, Thomas GJ, Underwood TJ, Garbis SD. Quantitative proteomic profiling of primary cancer-associated fibroblasts in oesophageal adenocarcinoma. Br J Cancer 2018; 118:1200-1207. [PMID: 29593339 PMCID: PMC5943522 DOI: 10.1038/s41416-018-0042-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) form the major stromal component of the tumour microenvironment (TME). The present study aimed to examine the proteomic profiles of CAFs vs. normal fibroblasts (NOFs) from patients with oesophageal adenocarcinoma to gain insight into their pro-oncogenic phenotype. METHODS CAFs/NOFs from four patients were sub-cultured and analysed using quantitative proteomics. Differentially expressed proteins (DEPs) were subjected to bioinformatics and compared with published proteomics and transcriptomics datasets. RESULTS Principal component analysis of all profiled proteins showed that CAFs had high heterogeneity and clustered separately from NOFs. Bioinformatics interrogation of the DEPs demonstrated inhibition of adhesion of epithelial cells, adhesion of connective tissue cells and cell death of fibroblast cell lines in CAFs vs. NOFs (p < 0.0001). KEGG pathway analysis showed a significant enrichment of the insulin-signalling pathway (p = 0.03). Gene ontology terms related with myofibroblast phenotype, metabolism, cell adhesion/migration, hypoxia/oxidative stress, angiogenesis, immune/inflammatory response were enriched in CAFs vs. NOFs. Nestin, a stem-cell marker up-regulated in CAFs vs. NOFs, was confirmed to be expressed in the TME with immunohistochemistry. CONCLUSIONS The identified pathways and participating proteins may provide novel insight on the tumour-promoting properties of CAFs and unravel novel adjuvant therapeutic targets in the TME.
Collapse
Affiliation(s)
| | - Annette Hayden
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Massimiliano Mellone
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana J Garay-Baquero
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cory H White
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Merck Exploratory Science Center, Cambridge, MA, USA
| | - Fergus Noble
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Monette Lopez
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Gareth J Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Timothy J Underwood
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Spiros D Garbis
- Institute for Life Sciences, University of Southampton, Southampton, UK.
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
45
|
Zeidan B, Manousopoulou A, Garay-Baquero DJ, White CH, Larkin SET, Potter KN, Roumeliotis TI, Papachristou EK, Copson E, Cutress RI, Beers SA, Eccles D, Townsend PA, Garbis SD. Increased circulating resistin levels in early-onset breast cancer patients of normal body mass index correlate with lymph node negative involvement and longer disease free survival: a multi-center POSH cohort serum proteomics study. Breast Cancer Res 2018; 20:19. [PMID: 29566726 PMCID: PMC5863447 DOI: 10.1186/s13058-018-0938-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early-onset breast cancer (EOBC) affects about one in 300 women aged 40 years or younger and is associated with worse outcomes than later onset breast cancer. This study explored novel serum proteins as surrogate markers of prognosis in patients with EOBC. METHODS Serum samples from EOBC patients (stages 1-3) were analysed using agnostic high-precision quantitative proteomics. Patients received anthracycline-based chemotherapy. The discovery cohort (n = 399) either had more than 5-year disease-free survival (DFS) (good outcome group, n = 203) or DFS of less than 2 years (poor outcome group, n = 196). Expressed proteins were assessed for differential expression between the two groups. Bioinformatics pathway and network analysis in combination with literature research were used to determine clinically relevant proteins. ELISA analysis against an independent sample set from the Prospective study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) cohort (n = 181) was used to validate expression levels of the selected target. Linear and generalized linear modelling was applied to determine the effect of target markers, body mass index (BMI), lymph node involvement (LN), oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 status on patients' outcome. RESULTS A total of 5346 unique proteins were analysed (peptide FDR p ≤ 0.05). Of these, 812 were differentially expressed in the good vs poor outcome groups and showed significant enrichment for the insulin signalling (p = 0.01) and the glycolysis/gluconeogenesis (p = 0.01) pathways. These proteins further correlated with interaction networks involving glucose and fatty acid metabolism. A consistent nodal protein to these metabolic networks was resistin (upregulated in the good outcome group, p = 0.009). ELISA validation demonstrated resistin to be upregulated in the good outcome group (p = 0.04), irrespective of BMI and ER status. LN involvement was the only covariate with a significant association with resistin measurements (p = 0.004). An ancillary in-silico observation was the induction of the inflammatory response, leucocyte infiltration, lymphocyte migration and recruitment of phagocytes (p < 0.0001, z-score > 2). Survival analysis showed that resistin overexpression was associated with improved DFS. CONCLUSIONS Higher circulating resistin correlated with node-negative patients and longer DFS independent of BMI and ER status in women with EOBC. Overexpression of serum resistin in EOBC may be a surrogate indicator of improved prognosis.
Collapse
Affiliation(s)
- Bashar Zeidan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Diana J. Garay-Baquero
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cory H. White
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Present address: Merck Exploratory Science Center, Cambridge, MA USA
| | - Samantha E. T. Larkin
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kathleen N. Potter
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Theodoros I. Roumeliotis
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Present address: The Institute for Cancer Research, London, UK
| | - Evangelia K. Papachristou
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Present address: Cancer Research Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ellen Copson
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ramsey I. Cutress
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Stephen A. Beers
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana Eccles
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul A. Townsend
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science, Manchester Biomedical Research Centre, Health Innovation Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Spiros D. Garbis
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
46
|
Zhang P, Dai Y, Xiong J, Zhu S, Zhao M, Ding S, Li J. iTRAQ-based differential proteomic analysis of the brains in a rat model of delayedcarbon monoxide encephalopathy. Brain Res Bull 2018; 137:329-337. [PMID: 29355713 DOI: 10.1016/j.brainresbull.2018.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 11/26/2022]
Abstract
Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a difficult-to-manage neurological complication that can severely affect the life quality of patients. Although the central nervous system (CNS) injuries have been reported, the underlying molecular mechanisms are still unclear. Therefore, we established a rat model of DEACMP, applying isobaric tags for a relative and absolute quantification (iTRAQ)-based proteomics approach to identify differentially expressed proteins in cerebral tissue. A total of 170 proteins in the CO exposure groups were identified as differentially changed. Bioinformatics analysis suggested that these proteins are mainly involved in the biological processes, such as energy metabolism and many neurodegenerative diseases. Three proteins, Glial fibrillary acidic protein (GFAP), mitochondrial malate dehydrogenase (MDHM), and isocitrate dehydrogenase [NAD] subunit alpha (IDH3A), were identified as playing important roles in CNS injuries in DEACMP, and were successfully confirmed by immunohistochemistry analysis. Our study not only offers us new insights into the pathophysiological mechanisms of CNS injuries in DEACMP, but also may provide clinicians with important references in early prevention and treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yalei Dai
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jincheng Xiong
- Chongqing Wanzhou District Public Security Bureau, Chongqing 404000, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
47
|
Simon MJ, Murchison C, Iliff JJ. A transcriptome-based assessment of the astrocytic dystrophin-associated complex in the developing human brain. J Neurosci Res 2018; 96:180-193. [PMID: 28509351 PMCID: PMC5995340 DOI: 10.1002/jnr.24082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/23/2017] [Accepted: 04/20/2017] [Indexed: 11/10/2022]
Abstract
Astrocytes play a critical role in regulating the interface between the cerebral vasculature and the central nervous system. Contributing to this is the astrocytic endfoot domain, a specialized structure that ensheathes the entirety of the vasculature and mediates signaling between endothelial cells, pericytes, and neurons. The astrocytic endfoot has been implicated as a critical element of the glymphatic pathway, and changes in protein expression profiles in this cellular domain are linked to Alzheimer's disease pathology. Despite this, basic physiological properties of this structure remain poorly understood including the developmental timing of its formation, and the protein components that localize there to mediate its functions. Here we use human transcriptome data from male and female subjects across several developmental stages and brain regions to characterize the gene expression profile of the dystrophin-associated complex (DAC), a known structural component of the astrocytic endfoot that supports perivascular localization of the astroglial water channel aquaporin-4. Transcriptomic profiling is also used to define genes exhibiting parallel expression profiles to DAC elements, generating a pool of candidate genes that encode gene products that may contribute to the physiological function of the perivascular astrocytic endfoot domain. We found that several genes encoding transporter proteins are transcriptionally associated with DAC genes.
Collapse
Affiliation(s)
- Matthew J. Simon
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Charles Murchison
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey J. Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute. Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
48
|
Zhang P, Zhang L, Li Y, Zhu S, Zhao M, Ding S, Li J. Quantitative Proteomic Analysis To Identify Differentially Expressed Proteins in Myocardium of Epilepsy Using iTRAQ Coupled with Nano-LC-MS/MS. J Proteome Res 2017; 17:305-314. [PMID: 29090925 DOI: 10.1021/acs.jproteome.7b00579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epilepsy is a difficult-to-manage neurological disease that can result in organ damage, such as cardiac injury, that contributes to sudden unexpected death in epilepsy (SUDEP). Although recurrent seizure-induced cardiac dysregulation has been reported, the underlying molecular mechanisms are unclear. We established an epileptic model with Sprague-Dawley rats by applying isobaric tags for a relative and absolute quantification (iTRAQ)-based proteomics approach to identify differentially expressed proteins in myocardial tissue. A total of seven proteins in the acute epilepsy group and 60 proteins in the chronic epilepsy group were identified as differentially expressed. Bioinformatics analysis suggested that the pathogenesis of cardiac injury in acute and chronic epilepsy may be due to different molecular mechanisms. Three proteins, a receptor for activated protein kinase C1 (RACK1), aldehyde dehydrogenase 6 family member A1 (ALDH6A1), and glycerol uptake/transporter 1 (Hhatl), were identified as playing crucial roles in cardiac injury during epilepsy and were successfully confirmed by Western blot and immunohistochemistry analysis. Our study not only provides a deeper understanding of the pathophysiological mechanisms of myocardial damage in epilepsy, but also suggests some potential novel therapeutic targets for preventing cardiac injury and reducing the incidence of sudden death due to heart failure.
Collapse
Affiliation(s)
| | | | - Yongguo Li
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College , Chongqing 401331, China
| | - Minzhu Zhao
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Shijia Ding
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Jianbo Li
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| |
Collapse
|
49
|
Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 2017; 140:1829-1850. [PMID: 28334869 DOI: 10.1093/brain/awx047] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
Sporadic cerebral amyloid angiopathy is a common, well-defined small vessel disease and a largely untreatable cause of intracerebral haemorrhage and contributor to age-related cognitive decline. The term 'cerebral amyloid angiopathy' now encompasses not only a specific cerebrovascular pathological finding, but also different clinical syndromes (both acute and progressive), brain parenchymal lesions seen on neuroimaging and a set of diagnostic criteria-the Boston criteria, which have resulted in increasingly detected disease during life. Over the past few years, it has become clear that, at the pathophysiological level, cerebral amyloid angiopathy appears to be in part a protein elimination failure angiopathy and that this dysfunction is a feed-forward process, which potentially leads to worsening vascular amyloid-β accumulation, activation of vascular injury pathways and impaired vascular physiology. From a clinical standpoint, cerebral amyloid angiopathy is characterized by individual focal lesions (microbleeds, cortical superficial siderosis, microinfarcts) and large-scale alterations (white matter hyperintensities, structural connectivity, cortical thickness), both cortical and subcortical. This review provides an interdisciplinary critical outlook on various emerging and changing concepts in the field, illustrating mechanisms associated with amyloid cerebrovascular pathology and neurological dysfunction.
Collapse
Affiliation(s)
- Andreas Charidimou
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Gregoire Boulouis
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - M Edip Gurol
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| | - Matthew P Frosch
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA.,C.S. Kubik Laboratory for Neuropathology, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| | - Anand Viswanathan
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA.,Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| |
Collapse
|
50
|
Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc Natl Acad Sci U S A 2017; 114:E6962-E6971. [PMID: 28701379 DOI: 10.1073/pnas.1701137114] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) peptide deposition in brain parenchyma as plaques and in cerebral blood vessels as cerebral amyloid angiopathy (CAA). CAA deposition leads to several clinical complications, including intracerebral hemorrhage. The underlying molecular mechanisms that regulate plaque and CAA deposition in the vast majority of sporadic AD patients remain unclear. The clusterin (CLU) gene is genetically associated with AD and CLU has been shown to alter aggregation, toxicity, and blood-brain barrier transport of Aβ, suggesting it might play a key role in regulating the balance between Aβ deposition and clearance in both brain and blood vessels. Here, we investigated the effect of CLU on Aβ pathology using the amyloid precursor protein/presenilin 1 (APP/PS1) mouse model of AD amyloidosis on a Clu+/+ or Clu-/- background. We found a marked decrease in plaque deposition in the brain parenchyma but an equally striking increase in CAA within the cerebrovasculature of APP/PS1;Clu-/- mice. Surprisingly, despite the several-fold increase in CAA levels, APP/PS1;Clu-/- mice had significantly less hemorrhage and inflammation. Mice lacking CLU had impaired clearance of Aβ in vivo and exogenously added CLU significantly prevented Aβ binding to isolated vessels ex vivo. These findings suggest that in the absence of CLU, Aβ clearance shifts to perivascular drainage pathways, resulting in fewer parenchymal plaques but more CAA because of loss of CLU chaperone activity, complicating the potential therapeutic targeting of CLU for AD.
Collapse
|