1
|
Díaz-Pérez S, DeLong JH, Rivier CA, Lee CY, Askenase MH, Zhu B, Zhang L, Brennand KJ, Martins AJ, Sansing LH. Single-nucleus RNA sequencing of human periventricular white matter in vascular dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627202. [PMID: 39713290 PMCID: PMC11661092 DOI: 10.1101/2024.12.06.627202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Vascular dementia (VaD) refers to a variety of dementias driven by cerebrovascular disease and is the second leading cause of dementia globally. VaD may be caused by ischemic strokes, intracerebral hemorrhage, and/or cerebral small vessel disease, commonly identified as white matter hyperintensities on MRI. The mechanisms underlying these white matter lesions in the periventricular brain are poorly understood. In this study we perform an extensive transcriptomic analysis on human postmortem periventricular white matter lesions in patients with VaD with the goal of identifying molecular pathways in the disease. We find increased cellular stress responses in astrocytes, oligodendrocytes, and oligodendrocyte precursor cells as well as transcriptional and translational repression in microglia in our dataset. We show that several genes identified by GWAS as being associated with white matter disease are differentially expressed in cells in VaD. Finally, we compare our dataset to an independent snRNAseq dataset of PVWM in VaD and a scRNAseq dataset on human iPSC-derived microglia exposed to oxygen glucose deprivation (OGD). We identify the increase of the heat shock protein response as a conserved feature of VaD across celltypes and show that this increase is not linked to OGD exposure. Overall, our study is the first to show that increased heat shock protein responses are a common feature of lesioned PVWM in VaD and may represent a potential therapeutic target.
Collapse
Affiliation(s)
| | - Jonathan H. DeLong
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Cyprien A. Rivier
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Chia-Yi Lee
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Michael H. Askenase
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT
| | - Le Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Kristen J. Brennand
- Department of Genetics, Yale University School of Medicine, New Haven, CT
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Andrew J. Martins
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Lauren H. Sansing
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
2
|
Li X, Wu X, Zhou G, Mo D, Lin X, Wang P, Zeng Y, Luo M. Estimated bone mineral density and white matter hyperintensities: A bidirectional Mendelian randomization study. Bone 2024; 187:117138. [PMID: 38914213 DOI: 10.1016/j.bone.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Greater white matter hyperintensities (WMH) in older adults have been associated with reduced bone mineral density (BMD) and increased fractures and falls. However, it is unclear whether there is a causal relationship between BMD reduction and WMH. In this study, Mendelian randomization (MR) was used to find the causality between WMH and estimated BMD (eBMD). METHODS We performed a two-sample bidirectional MR analysis using statistical data obtained from publicly available genome-wide association studies (GWAS). The main method of MR analysis is the inverse-variance weighted (IVW) method. To identify and account for the impact of horizontal pleiotropy, we also employed MR-Egger regression, MR pleiotropy residual sum, and outlier (MR-PRESSO). RESULTS MR analysis found a causal relationship between eBMD and WMH (IVW OR = 0.938, 95 % CI: 0.889-0.990, p = 0.020). Our causal estimates are unlikely to be distorted by horizontal pleiotropy according to heterogeneity test (both p > 0.05) and MR-Egger regression (p > 0.05). However, in the reverse MR analysis, there was no evidence that WMH was causally correlated with eBMD (IVW OR = 0.979, 95 % CI: 0.954-1.005, p = 0.109). CONCLUSION Our results suggest that low eBMD increased the risk of WMH; conversely, no evidence that WMH causally affects eBMD was found.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
| | - Xiaoju Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guoqiu Zhou
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Dongcan Mo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaozuo Lin
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
| | - Pingkai Wang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China
| | - Yinan Zeng
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Man Luo
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China; Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China.
| |
Collapse
|
3
|
Muir RT, Smith EE. The Spectrum of Cerebral Small Vessel Disease: Emerging Pathophysiologic Constructs and Management Strategies. Neurol Clin 2024; 42:663-688. [PMID: 38937035 DOI: 10.1016/j.ncl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Cerebral small vessel disease (CSVD) is a spectrum of disorders that affect small arterioles, venules, cortical and leptomeningeal vessels, perivascular spaces, and the integrity of neurovascular unit, blood brain barrier, and surrounding glia and neurons. CSVD is an important cause of lacunar ischemic stroke and sporadic hemorrhagic stroke, as well as dementia-which will constitute some of the most substantive population and public health challenges over the next century. This article provides an overview of updated pathophysiologic frameworks of CSVD; discusses common and underappreciated clinical and neuroimaging manifestations of CSVD; and reviews emerging genetic risk factors linked to sporadic CSVD.
Collapse
Affiliation(s)
- Ryan T Muir
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Eric E Smith
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
4
|
Smith EE. Advances in Cerebral Small Vessel Disease: Sandra E. Black Lecture to the Canadian Neurological Sciences Federation. Can J Neurol Sci 2024:1-8. [PMID: 38410042 DOI: 10.1017/cjn.2024.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cerebral small vessel diseases (CSVDs) are among the most common age-related pathologies of the brain. Arteriolosclerosis and cerebral amyloid angiopathy (CAA) are the most common CSVDs. In addition to causing stroke and dementia, CSVDs can have diverse covert radiological manifestations on computed tomography and magnetic resonance imaging including lacunes, T2-weighted white matter hyperintensities, increased density of visible perivascular spaces, microbleeds and cortical superficial siderosis. Because they cannot be visualized directly, research on the pathophysiology of CSVD has been difficult. However, advances in quantitative imaging methods, including physiological imaging such as measurement of cerebrovascular reactivity and increased vascular permeability, are beginning to allow investigation of the early effects of CSVD in living people. Furthermore, genomics, metabolomics and proteomics have the potential to illuminate previously unrecognized pathways to CSVD that could be important targets for new clinical trials.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences, Radiology and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Jochems ACC, Muñoz Maniega S, Clancy U, Arteaga C, Jaime Garcia D, Chappell FM, Hewins W, Locherty R, Backhouse EV, Barclay G, Jardine C, McIntyre D, Gerrish I, Kampaite A, Sakka E, Valdés Hernández M, Wiseman S, Bastin ME, Stringer MS, Thrippleton MJ, Doubal FN, Wardlaw JM. Magnetic Resonance Imaging Tissue Signatures Associated With White Matter Changes Due to Sporadic Cerebral Small Vessel Disease Indicate That White Matter Hyperintensities Can Regress. J Am Heart Assoc 2024; 13:e032259. [PMID: 38293936 PMCID: PMC11056146 DOI: 10.1161/jaha.123.032259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND White matter hyperintensities (WMHs) might regress and progress contemporaneously, but we know little about underlying mechanisms. We examined WMH change and underlying quantitative magnetic resonance imaging tissue measures over 1 year in patients with minor ischemic stroke with sporadic cerebral small vessel disease. METHODS AND RESULTS We defined areas of stable normal-appearing white matter, stable WMHs, progressing and regressing WMHs based on baseline and 1-year brain magnetic resonance imaging. In these areas we assessed tissue characteristics with quantitative T1, fractional anisotropy (FA), mean diffusivity (MD), and neurite orientation dispersion and density imaging (baseline only). We compared tissue signatures cross-sectionally between areas, and longitudinally within each area. WMH change masks were available for N=197. Participants' mean age was 65.61 years (SD, 11.10), 59% had a lacunar infarct, and 68% were men. FA and MD were available for N=195, quantitative T1 for N=182, and neurite orientation dispersion and density imaging for N=174. Cross-sectionally, all 4 tissue classes differed for FA, MD, T1, and Neurite Density Index. Longitudinally, in regressing WMHs, FA increased with little change in MD and T1 (difference estimate, 0.011 [95% CI, 0.006-0.017]; -0.002 [95% CI, -0.008 to 0.003] and -0.003 [95% CI, -0.009 to 0.004]); in progressing and stable WMHs, FA decreased (-0.022 [95% CI, -0.027 to -0.017] and -0.009 [95% CI, -0.011 to -0.006]), whereas MD and T1 increased (progressing WMHs, 0.057 [95% CI, 0.050-0.063], 0.058 [95% CI, 0.050 -0.066]; stable WMHs, 0.054 [95% CI, 0.045-0.063], 0.049 [95% CI, 0.039-0.058]); and in stable normal-appearing white matter, MD increased (0.004 [95% CI, 0.003-0.005]), whereas FA and T1 slightly decreased and increased (-0.002 [95% CI, -0.004 to -0.000] and 0.005 [95% CI, 0.001-0.009]). CONCLUSIONS Quantitative magnetic resonance imaging shows that WMHs that regress have less abnormal microstructure at baseline than stable WMHs and follow trajectories indicating tissue improvement compared with stable and progressing WMHs.
Collapse
Affiliation(s)
- Angela C. C. Jochems
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Susana Muñoz Maniega
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Una Clancy
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Carmen Arteaga
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Daniela Jaime Garcia
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Francesca M. Chappell
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Will Hewins
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Rachel Locherty
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Ellen V. Backhouse
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Gayle Barclay
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Charlotte Jardine
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Donna McIntyre
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Iona Gerrish
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Agniete Kampaite
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Eleni Sakka
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Maria Valdés Hernández
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Stewart Wiseman
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Fergus N. Doubal
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Hainsworth AH, Markus HS, Schneider JA. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension 2024; 81:75-86. [PMID: 38044814 PMCID: PMC10734789 DOI: 10.1161/hypertensionaha.123.19943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hypertension-associated cerebral small vessel disease is a common finding in older people. Strongly associated with age and hypertension, small vessel disease is found at autopsy in over 50% of people aged ≥65 years, with a spectrum of clinical manifestations. It is the main cause of lacunar stroke and a major source of vascular contributions to cognitive impairment and dementia. The brain areas affected are subcortical and periventricular white matter and deep gray nuclei. Neuropathological sequelae are diffuse white matter lesions (seen as white matter hyperintensities on T2-weighted magnetic resonance imaging), small ischemic foci (lacunes or microinfarcts), and less commonly, subcortical microhemorrhages. The most common form of cerebral small vessel disease is concentric, fibrotic thickening of small penetrating arteries (up to 300 microns outer diameter) termed arteriolosclerosis. Less common forms are small artery atheroma and lipohyalinosis (the lesions described by C. Miller Fisher adjacent to lacunes). Other microvascular lesions that are not reviewed here include cerebral amyloid angiopathy and venous collagenosis. Here, we review the epidemiology, neuropathology, clinical management, genetics, preclinical models, and pathogenesis of hypertensive small vessel disease. Knowledge gaps include initiating factors, molecular pathogenesis, relationships between arterial pathology and tissue damage, possible reversibility, pharmacological targets, and molecular biomarkers. Progress is anticipated from multicell transcriptomic and proteomic profiling, novel experimental models and further target-finding and interventional clinical studies.
Collapse
Affiliation(s)
- Atticus H. Hainsworth
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.H.H.)
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom (A.H.H.)
| | - Hugh S. Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.S.M.)
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, IL (J.A.S.)
| |
Collapse
|
7
|
Sri S, Greenstein A, Granata A, Collcutt A, Jochems ACC, McColl BW, Castro BD, Webber C, Reyes CA, Hall C, Lawrence CB, Hawkes C, Pegasiou-Davies CM, Gibson C, Crawford CL, Smith C, Vivien D, McLean FH, Wiseman F, Brezzo G, Lalli G, Pritchard HAT, Markus HS, Bravo-Ferrer I, Taylor J, Leiper J, Berwick J, Gan J, Gallacher J, Moss J, Goense J, McMullan L, Work L, Evans L, Stringer MS, Ashford MLJ, Abulfadl M, Conlon N, Malhotra P, Bath P, Canter R, Brown R, Ince S, Anderle S, Young S, Quick S, Szymkowiak S, Hill S, Allan S, Wang T, Quinn T, Procter T, Farr TD, Zhao X, Yang Z, Hainsworth AH, Wardlaw JM. A multi-disciplinary commentary on preclinical research to investigate vascular contributions to dementia. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100189. [PMID: 37941765 PMCID: PMC10628644 DOI: 10.1016/j.cccb.2023.100189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder.
Collapse
Affiliation(s)
- Sarmi Sri
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Adam Greenstein
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alex Collcutt
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Angela C C Jochems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Blanca Díaz Castro
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Caleb Webber
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Carmen Arteaga Reyes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Catherine Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cheryl Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | | | - Claire Gibson
- School of Psychology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Colin L Crawford
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM UMR-S U1237, , GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), Caen, France
- Department of clinical research, Caen-Normandie University Hospital, Caen, France
| | - Fiona H McLean
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Frances Wiseman
- UK Dementia Research Institute, University College London, London WC1N 3BG, UK
| | - Gaia Brezzo
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Giovanna Lalli
- UK Dementia Research Institute Headquarters, 6th Floor Maple House, London W1T 7NF, UK
| | - Harry A T Pritchard
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hugh S Markus
- Stroke Research Group, Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Isabel Bravo-Ferrer
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Jade Taylor
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Leiper
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Jian Gan
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - John Gallacher
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Jonathan Moss
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Jozien Goense
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- School of Psychology and Neuroscience, University of Glasgow, UK
| | - Letitia McMullan
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Lorraine Work
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow; Glasgow; UK
| | - Lowri Evans
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| | - MLJ Ashford
- Division of Systems Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Mohamed Abulfadl
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Nina Conlon
- Division of Cardiovascular Sciences, The University of Manchester, Manchester M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Paresh Malhotra
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurology, Imperial College Healthcare NHS Trust, London, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, UK
| | - Philip Bath
- Stroke Trials Unit, University of Nottingham, Nottingham, UK; Stroke, Medicine Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rebecca Canter
- Dementia Discovery Fund, SV Health Managers LLP, London, UK
| | - Rosalind Brown
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Selvi Ince
- Dementia Research Group, Department of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Falmer, Brighton, East Sussex, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - Simon Young
- Dementias Platform UK, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Sophie Quick
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Stefan Szymkowiak
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Steve Hill
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tao Wang
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Terry Quinn
- College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Tessa Procter
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Tracy D Farr
- School of Life Sciences, Physiology, Pharmacology, and Neuroscience Division, Medical School, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xiangjun Zhao
- Division of Evolution, Infection and Genomic Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St George's University of London SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Dougherty RJ, Wanigatunga AA, An Y, Tian Q, Simonsick EM, Albert MS, Resnick SM, Schrack JA. Walking energetics and white matter hyperintensities in mid-to-late adulthood. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12501. [PMID: 38026756 PMCID: PMC10646278 DOI: 10.1002/dad2.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION White matter hyperintensities (WMHs) increase with age and contribute to cognitive and motor function decline. Energy costs for mobility worsen with age, as the energetic cost of walking increases and energetic capacity declines. We examined the cross-sectional associations of multiple measures of walking energetics with WMHs in mid- to late-aged adults. METHODS A total of 601 cognitively unimpaired adults (mean age 66.9 ± 15.3 years, 54% women) underwent brain magnetic resonance imaging scans and completed standardized slow- and peak-paced walking assessments with metabolic measurement (V̇O2). T1-weighted scans and fluid-attenuated inversion recovery images were used to quantify WMHs. Separate multivariable linear regression models examined associations adjusted for covariates. RESULTS Lower slow-paced V̇O2 (B = 0.07; P = 0.030), higher peak-paced V̇O2 (B = -0.10; P = 0.007), and lower cost-to-capacity ratio (B = .12; P < 0.0001) were all associated with lower WMH volumes. DISCUSSION The cost-to-capacity ratio, which describes the percentage of capacity required for ambulation, was the walking energetic measure most strongly associated with WMHs.
Collapse
Affiliation(s)
- Ryan J. Dougherty
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
- Center on Aging and HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Amal A. Wanigatunga
- Center on Aging and HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Yang An
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Qu Tian
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | | | - Marilyn S. Albert
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Susan M. Resnick
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Jennifer A. Schrack
- Center on Aging and HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| |
Collapse
|
9
|
Terracciano A, Cenatus B, Zhu X, Karakose S, Stephan Y, Marcolini S, De Deyn PP, Luchetti M, Sutin AR. Neuroticism and white matter hyperintensities. J Psychiatr Res 2023; 165:174-179. [PMID: 37506413 PMCID: PMC10528519 DOI: 10.1016/j.jpsychires.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Neuroticism is a major risk factor for neurodegenerative disorders, such as Alzheimer's disease and related dementias. This study investigates whether neuroticism is associated with white matter hyperintensities and whether this measure of brain integrity is a mediator between neuroticism and cognitive function. Middle-aged and older adults from the UK Biobank (N = 40,602; aged 45-82 years, M = 63.97, SD = 7.66) provided information on demographic and health covariates, completed measures of neuroticism and cognition, and underwent magnetic resonance imaging from which the volume of white matter hyperintensities was derived. Regression analyses that included age and sex as covariates found that participants who scored higher on neuroticism had more white matter hyperintensities (β = 0.024, 95% CI 0.015 to 0.032; p < .001), an association that was consistent across peri-ventricular and deep brain regions. The association was reduced by about 40% when accounting for vascular risk factors (smoking, obesity, diabetes, high blood pressure, heart attack, angina, and stroke). The association was not moderated by age, sex, college education, deprivation index, or APOE e4 genotype, and remained unchanged in sensitivity analyses that excluded individuals with dementia or those younger than 65. The mediation analysis revealed that white matter hyperintensities partly mediated the association between neuroticism and cognitive function. These findings identify white matter integrity as a potential neurobiological pathway that accounts for a small proportion of the association between neuroticism and cognitive health.
Collapse
Affiliation(s)
- Antonio Terracciano
- Department of Geriatrics, Florida State University College of Medicine, Tallahassee, FL, USA.
| | - Bertin Cenatus
- Department of Geriatrics, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Xianghe Zhu
- Department of Psychology, School of Mental Health, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Selin Karakose
- Department of Geriatrics, Florida State University College of Medicine, Tallahassee, FL, USA
| | | | - Sofia Marcolini
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Martina Luchetti
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Angelina R Sutin
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
10
|
Wu H, Hong H, Wu C, Qin J, Zhou C, Tan S, DuanMu X, Guan X, Bai X, Guo T, Wu J, Chen J, Wen J, Cao Z, Gao T, Gu L, Huang P, Xu X, Zhang B, Zhang M. Regional white matter hyperintensity volume in Parkinson's disease and associations with the motor signs. Ann Clin Transl Neurol 2023; 10:1502-1512. [PMID: 37353980 PMCID: PMC10502622 DOI: 10.1002/acn3.51839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVE To determine whether white matter hyperintensity (WMH) volumes in specific regions are associated with Parkinson's disease (PD) compared to non-PD controls, and to assess their impact on motor signs through cross-sectional and longitudinal analyses. METHODS A total of 50 PD participants and 47 age- and gender-matched controls were enrolled. All PD participants were followed up for at least 2 years. To detect regions of greater WMH in the PD, the WMH volume of each region was compared with the corresponding region in the control group. Linear regression and linear mixed effects models were respectively used for cross-sectional and longitudinal analyses of the impact of increases in WMH volume on motor signs. RESULTS The PD group had greater WMH volume in the occipital region compared with the control group. Cross-sectional analyses only detected a significant correlation between occipital WMH volume and motor function in PD. Occipital WMH volume positively correlated with the severity of tremor, and gait and posture impairments, in the PD group. During the follow-up period, the participants' motor signs progressed and the WMH volumes remained stable, no longitudinal association was detected between them. The baseline occipital WMH volume cannot predict the progression of signs after adjustment for baseline disease duration and the presence of vascular risk factors. INTERPRETATION PD participants in this study were characterized by greater WMH at the occipital region, and greater occipital WMH volume had cross-sectional associations with worse motor signs, while its longitudinal impact on motor signs progression was limited.
Collapse
Affiliation(s)
- Haoting Wu
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Hui Hong
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Chenqing Wu
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Jianmei Qin
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Cheng Zhou
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia Tan
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Xiaojie DuanMu
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Xiaojun Guan
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Xueqin Bai
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Tao Guo
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Jingjing Wu
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Jingwen Chen
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Jiaqi Wen
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Zhengye Cao
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Ting Gao
- Department of NeurologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Luyan Gu
- Department of NeurologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Peiyu Huang
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Xiaojun Xu
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Baorong Zhang
- Department of NeurologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Minming Zhang
- Department of RadiologyThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| |
Collapse
|
11
|
Affleck AJ, Sachdev PS, Halliday GM. Past antihypertensive medication use is associated with lower levels of small vessel disease and lower Aβ plaque stage in the brains of older individuals. Neuropathol Appl Neurobiol 2023; 49:e12922. [PMID: 37431095 PMCID: PMC10947144 DOI: 10.1111/nan.12922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/22/2023] [Accepted: 06/24/2023] [Indexed: 07/12/2023]
Abstract
AIMS This study assesses the association of antihypertensive medication use on the severities of neuropathological cerebrovascular disease (CVD excluding lobar infarction) in older individuals. METHODS Clinical and neuropathological data were retrieved for 149 autopsy cases >75 years old with or without CVD or Alzheimer's disease and no other neuropathological diagnoses. Clinical data included hypertension status, hypertension diagnosis, antihypertensive medication use, antihypertensive medication dose (where available) and clinical dementia rating (CDR). Neuropathological CVD severity was evaluated for differences with anti-hypertensive medication usage. RESULTS Antihypertensive medication use was associated with less severe white matter small vessel disease (SVD, mainly perivascular dilatation and rarefaction), with a 5.6-14.4 times greater likelihood of less severe SVD if medicated. No significant relationship was detected between infarction (presence, type, number and size), lacunes or cerebral amyloid angiopathy and antihypertensive medication use. Only increased white matter rarefaction/oedema and not perivascular dilation was associated with Alzheimer's pathology, with a 4.3 times greater likelihood of reduced Aβ progression through the brain if white matter rarefaction severity was none or mild. Antihypertensive medication use was associated with reduced Aβ progression but only in those with moderate to severe white matter SVD. CONCLUSIONS This histopathological study provides further evidence that antihypertensive medication use in older individuals is associated with white matter SVD and not with other CVD pathologies. This is mainly due to a reduction in white matter perivascular dilation and rarefaction/oedema. Even in those with moderate to severe white matter SVD, antihypertensive medication use reduced rarefaction and Aβ propagation through the brain.
Collapse
Affiliation(s)
- Andrew J. Affleck
- Neuroscience Research Australia (NeuRA)SydneyAustralia
- Centre for Health Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, Faculty of MedicineUniversity of New South WalesSydneyAustralia
| | - Perminder S. Sachdev
- Centre for Health Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, Faculty of MedicineUniversity of New South WalesSydneyAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalSydneyAustralia
| | - Glenda M. Halliday
- Neuroscience Research Australia (NeuRA)SydneyAustralia
- School of Medical Sciences, Faculty of MedicineUniversity of New South WalesSydneyAustralia
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical SciencesUniversity of SydneySydneyAustralia
| |
Collapse
|
12
|
Iadecola C, Smith EE, Anrather J, Gu C, Mishra A, Misra S, Perez-Pinzon MA, Shih AY, Sorond FA, van Veluw SJ, Wellington CL. The Neurovasculome: Key Roles in Brain Health and Cognitive Impairment: A Scientific Statement From the American Heart Association/American Stroke Association. Stroke 2023; 54:e251-e271. [PMID: 37009740 PMCID: PMC10228567 DOI: 10.1161/str.0000000000000431] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
BACKGROUND Preservation of brain health has emerged as a leading public health priority for the aging world population. Advances in neurovascular biology have revealed an intricate relationship among brain cells, meninges, and the hematic and lymphatic vasculature (the neurovasculome) that is highly relevant to the maintenance of cognitive function. In this scientific statement, a multidisciplinary team of experts examines these advances, assesses their relevance to brain health and disease, identifies knowledge gaps, and provides future directions. METHODS Authors with relevant expertise were selected in accordance with the American Heart Association conflict-of-interest management policy. They were assigned topics pertaining to their areas of expertise, reviewed the literature, and summarized the available data. RESULTS The neurovasculome, composed of extracranial, intracranial, and meningeal vessels, as well as lymphatics and associated cells, subserves critical homeostatic functions vital for brain health. These include delivering O2 and nutrients through blood flow and regulating immune trafficking, as well as clearing pathogenic proteins through perivascular spaces and dural lymphatics. Single-cell omics technologies have unveiled an unprecedented molecular heterogeneity in the cellular components of the neurovasculome and have identified novel reciprocal interactions with brain cells. The evidence suggests a previously unappreciated diversity of the pathogenic mechanisms by which disruption of the neurovasculome contributes to cognitive dysfunction in neurovascular and neurodegenerative diseases, providing new opportunities for the prevention, recognition, and treatment of these conditions. CONCLUSIONS These advances shed new light on the symbiotic relationship between the brain and its vessels and promise to provide new diagnostic and therapeutic approaches for brain disorders associated with cognitive dysfunction.
Collapse
|
13
|
Wouts L, Marijnissen RM, Oude Voshaar RC, Beekman ATF. Strengths and Weaknesses of the Vascular Apathy Hypothesis: A Narrative Review. Am J Geriatr Psychiatry 2023; 31:183-194. [PMID: 36283953 DOI: 10.1016/j.jagp.2022.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 10/07/2022]
Abstract
The vascular apathy hypothesis states that cerebral small vessel disease (CSVD) can cause apathy, even when no other symptoms of CSVD are present. In order to examine this hypothesis, the objectives of this narrative review are to evaluate the evidence for a pathophysiological mechanism linking CSVD to apathy and to examine whether CSVD can be a sole cause of apathy. The nature of the CSVD-apathy relationship was evaluated using the Bradford Hill criteria as a method for research on the distinction between association and causation. Pathological, neuroimaging, and behavioral studies show that CSVD can cause lesions in the reward network, which causes an apathy syndrome. Studies in healthy older individuals, stroke patients and cognitively impaired persons consistently show an association between CSVD markers and apathy, although studies in older persons suffering from depression are inconclusive. A biological gradient is confirmed, as well as a temporal relationship, although the evidence for the latter is still weak. The specificity of this causal relationship is low given there often are other contributing factors in CSVD patients with apathy, particularly depression and cognitive deterioration. Differentiating between vascular apathy and other apathy syndromes on the basis of clinical features is not yet possible, while in-depth knowledge about differences in the prognosis and efficacy of treatment options for apathy caused by CSVD and other apathy syndromes is lacking. Since we cannot differentiate between etiologically different apathy syndromes as yet, it is premature to use the term vascular apathy which would suggest a distinct clinical apathy syndrome.
Collapse
Affiliation(s)
- Lonneke Wouts
- Department of Old Age Psychiatry (L.W.), Pro Persona Mental Health Institute, Nijmegen, the Netherlands; Department of Psychiatry (L.W., R.M.M., R.C.O.), University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| | - Radboud M Marijnissen
- Department of Psychiatry (L.W., R.M.M., R.C.O.), University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Richard C Oude Voshaar
- Department of Psychiatry (L.W., R.M.M., R.C.O.), University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Aartjan T F Beekman
- Department of Psychiatry (A.T.F.B.), Amsterdam UMC, Vrije Universiteit, and GGZinGeest, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Wang S, Zhang F, Huang P, Hong H, Jiaerken Y, Yu X, Zhang R, Zeng Q, Zhang Y, Kikinis R, Rathi Y, Makris N, Lou M, Pasternak O, Zhang M, O'Donnell LJ. Superficial white matter microstructure affects processing speed in cerebral small vessel disease. Hum Brain Mapp 2022; 43:5310-5325. [PMID: 35822593 PMCID: PMC9812245 DOI: 10.1002/hbm.26004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/15/2023] Open
Abstract
White matter hyperintensities (WMH) are a typical feature of cerebral small vessel disease (CSVD), which contributes to about 50% of dementias worldwide. Microstructural alterations in deep white matter (DWM) have been widely examined in CSVD. However, little is known about abnormalities in superficial white matter (SWM) and their relevance for processing speed, the main cognitive deficit in CSVD. In 141 CSVD patients, processing speed was assessed using Trail Making Test Part A. White matter abnormalities were assessed by WMH burden (volume on T2-FLAIR) and diffusion MRI measures. SWM imaging measures had a large contribution to processing speed, despite a relatively low SWM WMH burden. Across all imaging measures, SWM free water (FW) had the strongest association with processing speed, followed by SWM mean diffusivity (MD). SWM FW was the only marker to significantly increase between two subgroups with the lowest WMH burdens. When comparing two subgroups with the highest WMH burdens, the involvement of WMH in the SWM was accompanied by significant differences in processing speed and white matter microstructure. Mediation analysis revealed that SWM FW fully mediated the association between WMH volume and processing speed, while no mediation effect of MD or DWM FW was observed. Overall, results suggest that the SWM has an important contribution to processing speed, while SWM FW is a sensitive imaging marker associated with cognition in CSVD. This study extends the current understanding of CSVD-related dysfunction and suggests that the SWM, as an understudied region, can be a potential target for monitoring pathophysiological processes.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fan Zhang
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Peiyu Huang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Hui Hong
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Yeerfan Jiaerken
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Xinfeng Yu
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Ruiting Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Qingze Zeng
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Yao Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Ron Kikinis
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nikos Makris
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Morphometric AnalysisMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Min Lou
- Department of Neurologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Ofer Pasternak
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Minming Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | | |
Collapse
|
15
|
Quick S, Procter TV, Moss J, Seeker L, Walton M, Lawson A, Baker S, Beletski A, Garcia DJ, Mohammad M, Mungall W, Onishi A, Tobola Z, Stringer M, Jansen MA, Vallatos A, Giarratano Y, Bernabeu MO, Wardlaw JM, Williams A. Loss of the heterogeneous expression of flippase ATP11B leads to cerebral small vessel disease in a normotensive rat model. Acta Neuropathol 2022; 144:283-303. [PMID: 35635573 PMCID: PMC9288385 DOI: 10.1007/s00401-022-02441-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/20/2023]
Abstract
Cerebral small vessel disease (SVD) is the leading cause of vascular dementia, causes a quarter of strokes, and worsens stroke outcomes. The disease is characterised by patchy cerebral small vessel and white matter pathology, but the underlying mechanisms are poorly understood. This microvascular and tissue damage has been classically considered secondary to extrinsic factors, such as hypertension, but this fails to explain the patchy nature of the disease, the link to endothelial cell (EC) dysfunction even when hypertension is absent, and the increasing evidence of high heritability to SVD-related brain damage. We have previously shown the link between deletion of the phospholipase flippase Atp11b and EC dysfunction in an inbred hypertensive rat model with SVD-like pathology and a single nucleotide polymorphism (SNP) in ATP11B associated with human sporadic SVD. Here, we generated a novel normotensive transgenic rat model, where Atp11b is deleted, and show pathological, imaging and behavioural changes typical of those in human SVD, but that occur without hypertension. Atp11bKO rat brain and retinal small vessels show ECs with molecular and morphological changes of dysfunction, with myelin disruption in a patchy pattern around some but not all brain small vessels, similar to the human brain. We show that ATP11B/ATP11B is heterogeneously expressed in ECs in normal rat and human brain even in the same transverse section of the same blood vessel, suggesting variable effects of the loss of ATP11B on each vessel and an explanation for the patchy nature of the disease. This work highlights a link between inherent EC dysfunction and vulnerability to SVD white matter damage with a marked heterogeneity of ECs in vivo which modulates this response, occurring even in the absence of hypertension. These findings refocus our strategies for therapeutics away from antihypertensive (and vascular risk factor) control alone and towards ECs in the effort to provide alternative targets to prevent a major cause of stroke and dementia.
Collapse
Affiliation(s)
- Sophie Quick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Tessa V Procter
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Jonathan Moss
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Luise Seeker
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Marc Walton
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Angus Lawson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Serena Baker
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Anna Beletski
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Daniela Jaime Garcia
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Mehreen Mohammad
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - William Mungall
- Bioresearch and Veterinary Services, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Ami Onishi
- Bioresearch and Veterinary Services, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Zuzanna Tobola
- Centre for Clinical Brain Sciences, Edinburgh Imaging, Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Michael Stringer
- Centre for Clinical Brain Sciences, Edinburgh Imaging, Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Maurits A Jansen
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Antoine Vallatos
- Centre for Clinical Brain Sciences, Edinburgh Imaging, Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Ylenia Giarratano
- College of Medicine and Veterinary Medicine, College of Science and Engineering, Bayes Centre, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Miguel O Bernabeu
- College of Medicine and Veterinary Medicine, College of Science and Engineering, Bayes Centre, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging, Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK.
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
16
|
Zhang R, Huang P, Wang S, Jiaerken Y, Hong H, Zhang Y, Yu X, Lou M, Zhang M. Decreased Cerebral Blood Flow and Delayed Arterial Transit Are Independently Associated With White Matter Hyperintensity. Front Aging Neurosci 2022; 14:762745. [PMID: 35711906 PMCID: PMC9197206 DOI: 10.3389/fnagi.2022.762745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
AimWhite matter hyperintensities (WMH) and lacunes were important features of cerebral small vessel disease (CSVD), which contributes to 25% of ischemic strokes and 45% of dementias. Currently, the underlying mechanisms of WMH and lacunes are not clear, and the role of hemodynamic changes is not fully investigated. In this study, we aimed to measure the cerebral blood flow (CBF) and arterial transit in CSVD patients and to investigate their association with WMH and lacunes.MethodsWe retrospectively analyzed the prospectively collected database of CSVD patients. Ninety-two CSVD patients with complete imaging data were included. We used arterial spin labeling (ASL) with post-labeling delay time (PLD) of 1,525 ms and 2,025 ms to measure CBF respectively, and the difference between CBFPLD1.5 and CBFPLD2.0 was recorded as δCBF. We performed regression analysis to understand the contribution of CBF, δCBF to CSVD imaging markers.ResultsWe found that CBF derived from both PLDs was associated with WMH volume and the presence of lacune. CBFPLD1.5 was significantly lower than CBFPLD2.0 in CSVD patients, and δCBF was correlated with WMH volume but not the presence of lacune. Furthermore, CBFPLD2.0 and δCBF were both associated with WMH in multiple regression analyses, suggesting an independent effect of delayed arterial transit. On an exploratory basis, we also investigated the relationship between venous disruption on δCBF, and we found that δCBF correlated with deep medullary veins score.ConclusionBoth CBF and arterial transit were associated with WMH. ASL with multiple PLDs could provide additional hemodynamic information to CSVD-related studies.
Collapse
Affiliation(s)
- Ruiting Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Hui Hong
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yao Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Min Lou
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- *Correspondence: Minming Zhang
| |
Collapse
|
17
|
Rudilosso S, Rodríguez-Vázquez A, Urra X, Arboix A. The Potential Impact of Neuroimaging and Translational Research on the Clinical Management of Lacunar Stroke. Int J Mol Sci 2022; 23:1497. [PMID: 35163423 PMCID: PMC8835925 DOI: 10.3390/ijms23031497] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Lacunar infarcts represent one of the most frequent subtypes of ischemic strokes and may represent the first recognizable manifestation of a progressive disease of the small perforating arteries, capillaries, and venules of the brain, defined as cerebral small vessel disease. The pathophysiological mechanisms leading to a perforating artery occlusion are multiple and still not completely defined, due to spatial resolution issues in neuroimaging, sparsity of pathological studies, and lack of valid experimental models. Recent advances in the endovascular treatment of large vessel occlusion may have diverted attention from the management of patients with small vessel occlusions, often excluded from clinical trials of acute therapy and secondary prevention. However, patients with a lacunar stroke benefit from early diagnosis, reperfusion therapy, and secondary prevention measures. In addition, there are new developments in the knowledge of this entity that suggest potential benefits of thrombolysis in an extended time window in selected patients, as well as novel therapeutic approaches targeting different pathophysiological mechanisms involved in small vessel disease. This review offers a comprehensive update in lacunar stroke pathophysiology and clinical perspective for managing lacunar strokes, in light of the latest insights from imaging and translational studies.
Collapse
Affiliation(s)
- Salvatore Rudilosso
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Alejandro Rodríguez-Vázquez
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Xabier Urra
- Comprehensive Stroke Center, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; (S.R.); (A.R.-V.); (X.U.)
| | - Adrià Arboix
- Cerebrovascular Division, Department of Neurology, Hospital Universitari del Sagrat Cor, Universitat de Barcelona, 08034 Barcelona, Spain
| |
Collapse
|
18
|
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of ischaemic and haemorrhagic stroke and a major contributor to dementia. Covert cSVD, which is detectable with brain MRI but does not manifest as clinical stroke, is highly prevalent in the general population, particularly with increasing age. Advances in technologies and collaborative work have led to substantial progress in the identification of common genetic variants that are associated with cSVD-related stroke (ischaemic and haemorrhagic) and MRI-defined covert cSVD. In this Review, we provide an overview of collaborative studies - mostly genome-wide association studies (GWAS) - that have identified >50 independent genetic loci associated with the risk of cSVD. We describe how these associations have provided novel insights into the biological mechanisms involved in cSVD, revealed patterns of shared genetic variation across cSVD traits, and shed new light on the continuum between rare, monogenic and common, multifactorial cSVD. We consider how GWAS summary statistics have been leveraged for Mendelian randomization studies to explore causal pathways in cSVD and provide genetic evidence for drug effects, and how the combination of findings from GWAS with gene expression resources and drug target databases has enabled identification of putative causal genes and provided proof-of-concept for drug repositioning potential. We also discuss opportunities for polygenic risk prediction, multi-ancestry approaches and integration with other omics data.
Collapse
|