1
|
Lee SY, Hsiung NH, Chapman KB, Cheng YK, Huang CL, Chen KB, Chang CH, Wen YR. A pilot study of novel ultrahigh-frequency dorsal root ganglia stimulation for chronic lower limb pain: Focusing on safety and feasibility. Pain Pract 2025; 25:e13436. [PMID: 39560335 DOI: 10.1111/papr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
OBJECTIVES This single-arm, open-label, single-center observational pilot study assessed the safety and efficacy of ultrahigh-frequency dorsal root ganglia (UHF-DRG) stimulation in patients with chronic leg pain with or without low back pain. Such high-frequency electrostimulation had not been conducted in the human central nervous system previously. MATERIALS AND METHODS The primary objective was to evaluate the safety of UHF-DRG stimulation (2 Hz pulses with 50 msec pulse-width and 500 kHz intrapulse sine waves, 5-min duration per stimulation) by identifying incident adverse events (AE) and severe adverse events (SAE) during the trial. The secondary objectives included assessment of pain reduction using a numerical rating score (NRS), presence of paraesthesia, and changes in four pain medications (weak opioids, anticonvulsants, antidepressants, and non-steroid-anti-inflammatory drugs). One DRG lead was implanted for one day then removed, and the patients received maximal three times of UHF stimulation in total. RESULTS The study focused on ten cases. Two of them did not complete the study due to difficulty of lead implantation. There was no SAE in this trial. Among the ten cases, AEs occurred in eight, three experienced injection-related local pain and one of them had a post-dural-puncture headache, others had symptoms un-related to implantation procedure or UHF stimulation. The average NRS was reduced from 6.4 ± 1.1 at baseline to 2.9 ± 1.1 on the second-day post-implantation, and it was striking that the NRS was maintained at 3.6 ± 2.8 until 2 days after lead removal. The results showed a trend of lower frequency in medication use for all types of analgesics. CONCLUSIONS In this first-in-human pilot study, we discovered that intermittent pulsed UHF-DRG stimulations ameliorated chronic lower limb pain for an extended period in humans. Our finding opens up a new neuromodulatory concept and may initiate a novel paradigm for treating intractable pain.
Collapse
Affiliation(s)
- Shang-Yi Lee
- Department of Anesthesiology, Taichung Veterans General Hospital Puli Branch, Nantou, Taiwan
| | - Nai-Huan Hsiung
- Department of Nursing and Graduate Institute of Nursing, Asia University, Taichung, Taiwan
| | - Kenneth B Chapman
- Department of Anesthesiology, New York University Langone Medical Center, New York City, New York, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Yu-Kai Cheng
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Liang Huang
- Department of Psychiatry, Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuen-Bao Chen
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | | | - Yeong-Ray Wen
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- Gimer Medical Co. Ltd., Taipei, Taiwan
- Chun Chuan Orthopedic and Pain Specialty Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Nurmikko T, Mugan D, Leitner A, Huygen FJPM. Quantitative Sensory Testing in Spinal Cord Stimulation: A Narrative Review. Neuromodulation 2024; 27:1026-1034. [PMID: 38639705 DOI: 10.1016/j.neurom.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Quantitative sensory testing (QST) has been used for decades to study sensory abnormalities in multiple conditions in which the somatosensory system is compromised, including pain. It is commonly used in pharmacologic studies on chronic pain but less so in conjunction with neuromodulation. This review aims to assess the utility of QST in spinal cord stimulation (SCS) protocols. MATERIALS AND METHODS For this narrative review, we searched PubMed for records of studies in which sensory testing has been performed as part of a clinical study on SCS from 1975 onward until October 2023. We focused on studies in which QST has been used to explore the effect of SCS on neuropathic, neuropathic-like, or mixed pain. RESULTS Our search identified 22 useful studies, all small and exploratory, using heterogeneous methods. Four studies used the full battery of validated German Research Network on Neuropathic Pain QST. There is emerging evidence that assessment dynamic mechanical allodynia (eight studies), and mechanical/thermal temporal summation of pain (eight studies) may have a role in quantifying the response to various SCS waveforms. There also were sporadic reports of improvement of sensory deficits in a proportion of patients with neuropathic pain that warrant further study. CONCLUSIONS We recommend the adoption of QST into future clinical research protocols, using either the full QST protocol or a less time-demanding short-form QST.
Collapse
Affiliation(s)
- Turo Nurmikko
- Department of Pain Medicine, The Walton Centre NHS Trust, Liverpool, UK.
| | - Dave Mugan
- Saluda Medical Europe Ltd, Harrogate, UK
| | - Angela Leitner
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Frank J P M Huygen
- Center for Pain Medicine, Erasmus University Medical Center, Rotterdam and UMCU, Utrecht, The Netherlands
| |
Collapse
|
3
|
Sivanesan E, North RB, Russo MA, Levy RM, Linderoth B, Hayek SM, Eldabe S, Lempka SF. A Definition of Neuromodulation and Classification of Implantable Electrical Modulation for Chronic Pain. Neuromodulation 2024; 27:1-12. [PMID: 37952135 DOI: 10.1016/j.neurom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Neuromodulation therapies use a variety of treatment modalities (eg, electrical stimulation) to treat chronic pain. These therapies have experienced rapid growth that has coincided with escalating confusion regarding the nomenclature surrounding these neuromodulation technologies. Furthermore, studies are often published without a complete description of the effective stimulation dose, making it impossible to replicate the findings. To improve clinical care and facilitate dissemination among the public, payors, research groups, and regulatory bodies, there is a clear need for a standardization of terms. APPROACH We formed an international group of authors comprising basic scientists, anesthesiologists, neurosurgeons, and engineers with expertise in neuromodulation. Because the field of neuromodulation is extensive, we chose to focus on creating a taxonomy and standardized definitions for implantable electrical modulation of chronic pain. RESULTS We first present a consensus definition of neuromodulation. We then describe a classification scheme based on the 1) intended use (the site of modulation and its indications) and 2) physical properties (waveforms and dose) of a neuromodulation therapy. CONCLUSIONS This framework will help guide future high-quality studies of implantable neuromodulatory treatments and improve reporting of their findings. Standardization with this classification scheme and clear definitions will help physicians, researchers, payors, and patients better understand the applications of implantable electrical modulation for pain and guide informed treatment decisions.
Collapse
Affiliation(s)
- Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Richard B North
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Marc A Russo
- Hunter Pain Specialists, Broadmeadow, New South Wales, Australia
| | - Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Salim M Hayek
- Division of Pain Medicine, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Fabregat-Cid G, Cedeño DL, Harutyunyan A, Rodríguez-López R, Monsalve-Dolz V, Mínguez-Martí A, Hernández-Cádiz MJ, Escrivá-Matoses N, Villanueva-Pérez V, Asensio Samper JM, De Andrés J, Vallejo R. Effect of Conventional Spinal Cord Stimulation on Serum Protein Profile in Patients With Persistent Spinal Pain Syndrome: A Case-Control Study. Neuromodulation 2023; 26:1441-1449. [PMID: 37516956 DOI: 10.1016/j.neurom.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/30/2023] [Accepted: 05/30/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Spinal cord stimulation (SCS) provides pain relief for most patients with persistent spinal pain syndrome type 2 (PSPS 2). Evidence is mounting on molecular changes induced by SCS as one of the mechanisms to explain pain improvement. We report the SCS effect on serum protein expression in vivo in patients with PSPS 2. MATERIALS AND METHODS Serum proteins were identified and quantified using mass spectrometry. Proteins with significantly different expression among patients with PSPS 2 relative to controls, responders, and nonresponders to SCS, or significantly modulated by SCS relative to baseline, were identified. Those most correlated with the presence and time course of pain were selected using multivariate discriminant analysis. Bioinformatic tools were used to identify related biological processes. RESULTS Thirty patients with PSPS 2, of whom 23 responded to SCS, were evaluated, together with 14 controls with no pain who also had undergone lumbar spinal surgery. A significant improvement in pain intensity, disability, and quality of life was recorded among responders. Five proteins differed significantly at baseline between patients with PSPS 2 and controls, with three proteins, mostly involved in immune processes and inflammation, being downregulated and two, mostly involved in vitamin metabolism, synaptic transmission, and restorative processes, being upregulated. In addition, four proteins, mostly related to immune processes and inflammation, decreased significantly, and three, mostly related to iron metabolism and containment of synaptic sprouting, increased significantly during SCS. CONCLUSION This study identifies various biological processes that may underlie PSPS 2 pain and SCS therapeutic effects, including the modulation of neuroimmune response and inflammation, synaptic sprouting, vitamin and iron metabolism, and restorative processes.
Collapse
Affiliation(s)
- Gustavo Fabregat-Cid
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain; Surgery Department, Medical School, University of Valencia, Valencia, Spain.
| | | | - Anushik Harutyunyan
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain
| | | | - Vicente Monsalve-Dolz
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain
| | - Ana Mínguez-Martí
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain
| | | | | | | | - Juan Marcos Asensio Samper
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain; Surgery Department, Medical School, University of Valencia, Valencia, Spain
| | - José De Andrés
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain; Surgery Department, Medical School, University of Valencia, Valencia, Spain
| | | |
Collapse
|
5
|
Calvert JS, Darie R, Parker SR, Shaaya E, Syed S, McLaughlin BL, Fridley JS, Borton DA. Spatiotemporal Distribution of Electrically Evoked Spinal Compound Action Potentials During Spinal Cord Stimulation. Neuromodulation 2023; 26:961-974. [PMID: 35551869 PMCID: PMC9643656 DOI: 10.1016/j.neurom.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Recent studies using epidural spinal cord stimulation (SCS) have demonstrated restoration of motor function in individuals previously diagnosed with chronic spinal cord injury (SCI). In parallel, the spinal evoked compound action potentials (ECAPs) induced by SCS have been used to gain insight into the mechanisms of SCS-based chronic pain therapy and to titrate closed-loop delivery of stimulation. However, the previous characterization of ECAPs recorded during SCS was performed with one-dimensional, cylindrical electrode leads. Herein, we describe the unique spatiotemporal distribution of ECAPs induced by SCS across the medial-lateral and rostral-caudal axes of the spinal cord, and their relationship to polysynaptic lower-extremity motor activation. MATERIALS AND METHODS In each of four sheep, two 24-contact epidural SCS arrays were placed on the lumbosacral spinal cord, spanning the L3 to L6 vertebrae. Spinal ECAPs were recorded during SCS from nonstimulating contacts of the epidural arrays, which were synchronized to bilateral electromyography (EMG) recordings from six back and lower-extremity muscles. RESULTS We observed a triphasic P1, N1, P2 peak morphology and propagation in the ECAPs during midline and lateral stimulation. Distinct regions of lateral stimulation resulted in simultaneously increased ECAP and EMG responses compared with stimulation at adjacent lateral contacts. Although EMG responses decreased during repetitive stimulation bursts, spinal ECAP amplitude did not significantly change. Both spinal ECAP responses and EMG responses demonstrated preferential ipsilateral recruitment during lateral stimulation compared with midline stimulation. Furthermore, EMG responses were correlated with stimulation that resulted in increased ECAP amplitude on the ipsilateral side of the electrode array. CONCLUSIONS These results suggest that ECAPs can be used to investigate the effects of SCS on spinal sensorimotor networks and to inform stimulation strategies that optimize the clinical benefit of SCS in the context of managing chronic pain and the restoration of sensorimotor function after SCI.
Collapse
Affiliation(s)
- Jonathan S Calvert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Radu Darie
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Samuel R Parker
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Elias Shaaya
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Sohail Syed
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | | | - Jared S Fridley
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - David A Borton
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA; Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Ahmadi S, Vojdani P, MortezaBagi HR. The study of nurses' knowledge and attitudes regarding pain management and control in emergency departments. BMC Emerg Med 2023; 23:26. [PMID: 36907850 PMCID: PMC10009925 DOI: 10.1186/s12873-023-00793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Given the importance and pivotal role of nurses in pain management and control, this study was conducted to determine the nurses' knowledge and attitudes toward in emergency departments. METHODS This study was designed and conducted as a descriptive-analytical cross-sectional study. Nurses' attitude and knowledge towards pain management and control and relationship between their demographic characteristics have been assessed. Nurse Attitude Survey (NAS) and Pain management and control principles assessment Test (PMPAT) questionnaires were used. RESULTS Totally 400 volunteers, including 148 (37.2%) male and 250 (62.8%) female nurses recruited from 23 hospitals in East Azerbaijan, Iran, with a mean age of 30.88 years (± 6.04 SD) and age range between 22 and 53 years old. The crude mean score of participants' knowledge of pain management and control was 12.51 (± 2.77 SD), and standardized mean score was 40.34 (± 8.92 SD), which was low at 84.8% and moderate in 15.3% of the participants. Older nurses and nurses who previously participated in pain retraining courses had significantly less knowledge about pain management and control (r= -0.104, P = 0.038), and (r= -0.148, P = 0.003) respectively. The crude mean score of participants' attitudes toward pain control and management was 15.22 (± 2.56 SD), and standardized mean score was 60.87 (± 10.26 SD). Nurses' attitudes have become more negative with the increase of their work experience (r = -0.168, P = 0.001), and previously participation in pain retraining courses (r =-0.207, P < 0.001). Older nurses and highly educated nurses had significantly more negative attitudes towards pain control and management (r = -0.153, P = 0.002), and (r= -0.126, P = 0.005), respectively. CONCLUSIONS The current study revealed that pain management and control knowledge in most emergency nurses was low, and most of them had a moderate attitude. We need more scientific and comprehensive pain management and control training courses to improve knowledge and attitude among health workers and nurses.
Collapse
Affiliation(s)
- Sajjad Ahmadi
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parya Vojdani
- Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Carayannopoulos AG, Scarfo KA, Abd-Elsayed A, Lee AC. Use of Accelerometry as an Educational Tool for Spinal Cord Stimulation: A Pilot Study. J Pain Res 2022; 15:3597-3604. [PMID: 36415657 PMCID: PMC9676001 DOI: 10.2147/jpr.s366973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/01/2022] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) is an important option for patients with chronic neuropathic pain. In the United States, a successful SCS trial determines eligibility for SCS implant. Metrics to determine success are often self-reported and subjective, which may limit achievement of patient goals. This study aimed to assess whether patients undergoing SCS implant after successful trial felt that use of external accelerometry prior to implant was a useful educational tool to objectively appraise function and achievement of treatment goals. METHODS This was a single center, prospective, pilot study. Sixteen subjects with persistent spinal pain syndrome type 2 underwent a percutaneous SCS trial. Five subjects did not have a successful trial, one expired after the SCS trial, before implant, and one dropped out prior to completion of post-implant follow-up visits. Nine subjects underwent SCS implant and completed the required follow-up visits. All subjects were provided an Actigraph GT3X external accelerometer, worn 7 days prior to the trial to determine baseline physical activity and during the 7-day trial to assess for change in activity from baseline. Results were shared with subjects to individualize goals for therapy. Goal attainment was assessed at 1, 3, and 6 months after implant. Subjects wore the accelerometer again 24 hours before visits to update progress in meeting treatment goals. The primary outcome was satisfaction with using accelerometry as an educational tool to appraise function and guide treatment goals for SCS therapy. Secondary outcomes included physical activity, as captured via accelerometry, as well as validated patient-reported measures of pain severity, physical functioning, and quality-of-life. RESULTS Eight of nine subjects were satisfied with accelerometry as an educational tool. Secondary outcomes were not reliably assessed due to poor stewardship and study execution. CONCLUSION External accelerometry may assist patients in developing individualized functional treatment goals for SCS therapy.
Collapse
Affiliation(s)
- Alexios G Carayannopoulos
- Department of Physical Medicine and Rehabilitation, Rhode Island Hospital, Brown University Medical School, Providence, RI, USA
| | - Keith A Scarfo
- Department of Neurosurgery, Rhode Island Hospital, Brown University Medical School, Providence, RI, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Augustine C Lee
- Department of Physical Medicine and Rehabilitation, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Poply K, Haroon A, Ganeshan B, Nikolic S, Sharma S, Ahmad A, Ellamushi H, Parsai A, Mehta V. Dynamic Brain Imaging Response to Spinal Cord Stimulation Differential Frequencies DiFY SCS-PET clinical trial. Neuromodulation 2022:S1094-7159(22)00773-5. [DOI: 10.1016/j.neurom.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 10/14/2022]
|
9
|
Graham RD, Sankarasubramanian V, Lempka SF. Dorsal Root Ganglion Stimulation for Chronic Pain: Hypothesized Mechanisms of Action. THE JOURNAL OF PAIN 2022; 23:196-211. [PMID: 34425252 PMCID: PMC8943693 DOI: 10.1016/j.jpain.2021.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Dorsal root ganglion stimulation (DRGS) is a neuromodulation therapy for chronic pain that is refractory to conventional medical management. Currently, the mechanisms of action of DRGS-induced pain relief are unknown, precluding both our understanding of why DRGS fails to provide pain relief to some patients and the design of neurostimulation technologies that directly target these mechanisms to maximize pain relief in all patients. Due to the heterogeneity of sensory neurons in the dorsal root ganglion (DRG), the analgesic mechanisms could be attributed to the modulation of one or many cell types within the DRG and the numerous brain regions that process sensory information. Here, we summarize the leading hypotheses of the mechanisms of DRGS-induced analgesia, and propose areas of future study that will be vital to improving the clinical implementation of DRGS. PERSPECTIVE: This article synthesizes the evidence supporting the current hypotheses of the mechanisms of action of DRGS for chronic pain and suggests avenues for future interdisciplinary research which will be critical to fully elucidate the analgesic mechanisms of the therapy.
Collapse
Affiliation(s)
- Robert D. Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States,Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, United States,Corresponding author: Scott F. Lempka, PhD, Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Road, NCRC 14-184, Ann Arbor, MI 48109-2800,
| |
Collapse
|
10
|
Ha JH, Huh R, Kim SG, Im SB, Jeong JH, Hwang SC, Shin DS, Kim BT, Chung M. Clinical Outcomes after Spinal Cord Stimulation According to Pain Characteristics. J Korean Neurosurg Soc 2022; 65:276-286. [PMID: 34979629 PMCID: PMC8918249 DOI: 10.3340/jkns.2021.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Spinal cord stimulation (SCS) is an effective treatment for chronic neuropathic pain. However, its clinical efficacy in regard to specific types of pain has not been well studied. The primary objective of this study was to retrospectively analyze the clinical outcomes of paddle-type SCS according to the type of neuropathic pain.
Methods Seventeen patients who underwent paddle-lead SCS at our hospital were examined. Clinical outcomes were evaluated pre- and postoperatively (3 months, 1 year, and last follow-up) using the Neuropathic Pain Symptom Inventory (NPSI). The NPSI categorizes pain as superficial, deep, paroxysmal, evoked, or dysesthesia and assess the duration of the pain (pain time score). Changes in NPSI scores were compared with change in Visual analogue scale (VAS) scores.
Results After SCS, the pain time score improved by 45% (independent t-test, p=0.0002) and the deep pain score improved by 58% (independent t-test, p=0.001). Improvements in the pain time score significantly correlated with improvements in the VAS score (r=0.667, p=0.003, Spearman correlation). Additionally, the morphine milligram equivalent value was markedly lower after vs. before surgery (~49 mg, pared t-test, p=0.002). No preoperative value was associated with clinical outcome.
Conclusion The NPSI is a useful tool for evaluating the therapeutic effects of SCS. Chronic use of a paddle-type spinal cord stimulation improved the deep pain and the pain time scores.
Collapse
Affiliation(s)
- Jong-Ho Ha
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Bucheon, Korea
| | - Ryoong Huh
- Department of Neurosurgery, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Shin-Gyeom Kim
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Bucheon, Korea
| | - Soo-Bin Im
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Bucheon, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Bucheon, Korea
| | - Sun-Chul Hwang
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Bucheon, Korea
| | - Dong-Seong Shin
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Bucheon, Korea
| | - Bum-Tae Kim
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Bucheon, Korea
| | - Moonyoung Chung
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Bucheon, Korea
| |
Collapse
|
11
|
Saber M, Schwabe D, Park HJ, Tessmer J, Khan Z, Ding Y, Robinson M, Hogan QH, Pawela CP. Tonic, Burst, and Burst-Cycle Spinal Cord Stimulation Lead to Differential Brain Activation Patterns as Detected by Functional Magnetic Resonance Imaging. Neuromodulation 2022; 25:53-63. [PMID: 35041588 DOI: 10.1111/ner.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The objective of this preclinical study was to examine the responses of the brain to noxious stimulation in the presence and absence of different modes of spinal cord stimulation (SCS) using blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD-fMRI). MATERIALS AND METHODS Sprague-Dawley rats were randomized to groups based on the mode of SCS delivered which included tonic stimulation (n = 27), burst stimulation (n = 30), and burst-cycle stimulation (n = 29). The control (sham) group (n = 28) received no SCS. The SCS electrode was inserted between T10 and T12 spinal levels prior to fMRI session. The experimental protocol for fMRI acquisition consisted of an initial noxious stimulation phase, a treatment phase wherein the SCS was turned on concurrently with noxious stimulation, and a residual effect phase wherein the noxious stimulation alone was turned on. The responses were statistically analyzed through paired t-test and the results were presented as z-scores for the quantitative analysis of the fMRI data. RESULTS The treatment with different SCS modes attenuated the BOLD brain responses to noxious hindlimb stimulation. The tonic, burst, and burst-cycle SCS treatment attenuated BOLD responses in the caudate putamen (CPu), insula (In), and secondary somatosensory cortex (S2). There was little to no corresponding change in sham control in these three regions. The burst and burst-cycle SCS demonstrated greater attenuation of BOLD signals in CPu, In, and S2 compared to tonic stimulation. CONCLUSION The high-resolution fMRI study using a rat model demonstrated the potential of different SCS modes to act on several pain-matrix-related regions of the brain in response to noxious stimulation. The burst and burst-cycle SCS exhibited greater brain activity reduction in response to noxious hindlimb stimulation in the caudate putamen, insula, and secondary somatosensory cortex compared to tonic stimulation.
Collapse
Affiliation(s)
- Mohammad Saber
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Schwabe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - John Tessmer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zan Khan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yujie Ding
- University of Kentucky College of Medicine, Lexington, KY, USA
| | - Maraika Robinson
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
12
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
13
|
Exhaled-Breath Testing Using an Electronic Nose during Spinal Cord Stimulation in Patients with Failed Back Surgery Syndrome: An Experimental Pilot Study. J Clin Med 2021; 10:jcm10132921. [PMID: 34209972 PMCID: PMC8269089 DOI: 10.3390/jcm10132921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The increased awareness of discrepancies between self-reporting outcome measurements and objective outcome measurements within the field of neuromodulation has accelerated the search towards more objective measurements. The aim of this study was to evaluate whether an electronic nose can differentiate between chronic pain patients in whom Spinal Cord Stimulation (SCS) was activated versus deactivated. Twenty-seven patients with Failed Back Surgery Syndrome (FBSS) participated in this prospective pilot study. Volatile organic compounds in exhaled breath were measured with electronic nose technology (Aeonose™) during SCS on and off states. Random forest was used with a leave-10%-out cross-validation method to determine accuracy of discriminating between SCS on and off states. Our random forest showed an accuracy of 0.56, with an area under the curve of 0.62, a sensitivity of 62% (95% CI: 41–79%) and a specificity of 50% (95% CI: 30–70%). Pain intensity scores were significantly different between both SCS states. Our findings indicate that we cannot discriminate between SCS off and on states based on exhaled breath with the Aeonose™ in patients with FBSS. In clinical practice, these findings imply that with a noninvasive electronic nose, exhaled breath cannot be used as an additional marker of the effect of neuromodulation.
Collapse
|
14
|
Goudman L, De Smedt A, Louis F, Stalmans V, Linderoth B, Rigoard P, Moens M. The Link Between Spinal Cord Stimulation and the Parasympathetic Nervous System in Patients With Failed Back Surgery Syndrome. Neuromodulation 2021; 25:128-136. [PMID: 33987891 DOI: 10.1111/ner.13400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES In patients with chronic pain, a relative lower parasympathetic activity is suggested based on heart rate variability measurements. It is hypothesized that spinal cord stimulation (SCS) is able to influence the autonomic nervous system. The aim of this study is to further explore the influence of SCS on the autonomic nervous system by evaluating whether SCS is able to influence skin conductance, blood volume pulse, heart rate, and respiration rate. MATERIALS AND METHODS Twenty-eight patients with Failed Back Surgery Syndrome (FBSS), who are treated with SCS, took part in this multicenter study. Skin conductance and cardiorespiratory parameters (blood volume pulse, heart rate, and respiration rate) were measured during on and off states of SCS. Paired statistics were performed on a 5-min recording segment for all parameters. RESULTS SCS significantly decreased back and leg pain intensity scores in patients with FBSS. Skin conductance level and blood volume pulse were not altered between on and off states of SCS. Heart rate and respiration rate significantly decreased when SCS was activated. CONCLUSIONS Parameters that are regulated by the sympathetic nervous system were not significantly different between SCS on and off states, leading to the hypothesis that SCS is capable of restoring the dysregulation of the autonomic nervous system by primarily increasing the activity of the parasympathetic system, in patients with FBSS.
Collapse
Affiliation(s)
- Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Pain in Motion International Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Ann De Smedt
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Jette, Belgium.,Department of Physical Medicine and Rehabilitation, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - Frédéric Louis
- Clinique de la douleur, Clinique Sainte-Elisabeth-CHC, Verviers, Belgium
| | - Virginie Stalmans
- Clinique de la douleur, Clinique Sainte-Elisabeth-CHC, Verviers, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Philippe Rigoard
- Department of Spine, Neuromodulation and Rehabilitation, Poitiers University Hospital, Poitiers, France.,Institut Pprime UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Poitiers, France.,PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Jette, Belgium.,Center for Neurosciences (C4N), Vrije Universiteit Brussel, Jette, Belgium.,Pain in Motion International Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium.,STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Jette, Belgium.,Department of Radiology, Universitair Ziekenhuis Brussel, Jette, Belgium
| |
Collapse
|
15
|
Sankarasubramanian V, Chiravuri S, Mirzakhalili E, Anaya CJ, Scott JR, Brummett CM, Clauw DJ, Patil PG, Harte SE, Lempka SF. Quantitative Sensory Testing of Spinal Cord and Dorsal Root Ganglion Stimulation in Chronic Pain Patients. Neuromodulation 2021; 24:672-684. [PMID: 33471409 DOI: 10.1111/ner.13329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/17/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES The physiological mechanisms underlying the pain-modulatory effects of clinical neurostimulation therapies, such as spinal cord stimulation (SCS) and dorsal root ganglion stimulation (DRGS), are only partially understood. In this pilot prospective study, we used patient-reported outcomes (PROs) and quantitative sensory testing (QST) to investigate the physiological effects and possible mechanisms of action of SCS and DRGS therapies. MATERIALS AND METHODS We tested 16 chronic pain patients selected for SCS and DRGS therapy, before and after treatment. PROs included pain intensity, pain-related symptoms (e.g., pain interference, pain coping, sleep interference) and disability, and general health status. QST included assessments of vibration detection theshold (VDT), pressure pain threshold (PPT) and tolerance (PPToL), temporal summation (TS), and conditioned pain modulation (CPM), at the most painful site. RESULTS Following treatment, all participants reported significant improvements in PROs (e.g., reduced pain intensity [p < 0.001], pain-related functional impairment [or pain interference] and disability [p = 0.001 for both]; better pain coping [p = 0.03], sleep [p = 0.002]), and overall health [p = 0.005]). QST showed a significant treatment-induced increase in PPT (p = 0.002) and PPToL (p = 0.011), and a significant reduction in TS (p = 0.033) at the most painful site, but showed no effects on VDT and CPM. We detected possible associations between a few QST measures and a few PROs. Notably, higher TS was associated with increased pain interference scores at pre-treatment (r = 0.772, p = 0.009), and a reduction in TS was associated with the reduction in pain interference (r = 0.669, p = 0.034) and pain disability (r = 0.690, p = 0.027) scores with treatment. CONCLUSIONS Our preliminary findings suggest significant clinical and therapeutic benefits associated with SCS and DRGS therapies, and the possible ability of these therapies to modulate pain processing within the central nervous system. Replication of our pilot findings in future, larger studies is necessary to characterize the physiological mechanisms of SCS and DRGS therapies.
Collapse
Affiliation(s)
- Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Chiravuri
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Ehsan Mirzakhalili
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Carlos J Anaya
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - John Ryan Scott
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Chad M Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Clauw
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Parag G Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Department of Neurological Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
De Groote S, Goudman L, Van Schuerbeek P, Peeters R, Sunaert S, Linderoth B, De Andrés J, Rigoard P, De Jaeger M, Moens M. Effects of spinal cord stimulation on voxel-based brain morphometry in patients with failed back surgery syndrome. Clin Neurophysiol 2020; 131:2578-2587. [PMID: 32927213 DOI: 10.1016/j.clinph.2020.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Despite the clinical effectiveness of Spinal Cord Stimulation (SCS), potential structural brain modifications have not been explored. Our aim was to identify structural volumetric changes during subsensory SCS, in patients with Failed Back Surgery Syndrome (FBSS). METHODS In this cohort study, twenty-two FBSS patients underwent a magnetic resonance imaging protocol before SCS and 3 months after SCS. Clinical parameters were correlated with volumetric changes, calculated with voxel-based morphometry. RESULTS After 3 months, a significant volume decrease was found in the inferior frontal gyrus, precuneus, cerebellar posterior lobe and middle temporal gyrus. Significant increases were found in the inferior temporal gyrus, precentral gyrus and the middle frontal gyrus after SCS. Additionally, significant increases in volume of superior frontal and parietal white matter and a significant decrease in volume of white matter underlying the premotor/middle frontal gyrus were revealed after SCS. A significant correlation was highlighted between white matter volume underlying premotor/middle frontal gyrus and leg pain relief. CONCLUSIONS This study revealed for the first time that SCS is able to induce volumetric changes in gray and white matter, suggesting the reversibility of brain alterations after chronic pain treatment. SIGNIFICANCE Volumetric brain alterations are observable after 3 months of subsensory SCS in FBSS patients.
Collapse
Affiliation(s)
- Sander De Groote
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; STIMULUS consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.; Pain in Motion International Research Group, Belgium; Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Peter Van Schuerbeek
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ronald Peeters
- Department of Radiology, Universitair Ziekenhuis Leuven, UZ Herestraat 49-bus 7003 54, 3000 Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, Universitair Ziekenhuis Leuven, UZ Herestraat 49-bus 7003 54, 3000 Leuven, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jose De Andrés
- Surgical Specialties Department Valencia University Medical School, and Department of Anesthesiology Critical Care and Pain Management, General University Hospital, Valencia, Spain
| | - Philippe Rigoard
- Department of Neurosurgery, Poitiers University Hospital, Poitiers, France; Institut Pprime UPR 3346, CNRS, University of Poitiers, Poitiers, ISAE-ENSMA, France; PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Mats De Jaeger
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; STIMULUS consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.; Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
17
|
Zander HJ, Graham RD, Anaya CJ, Lempka SF. Anatomical and technical factors affecting the neural response to epidural spinal cord stimulation. J Neural Eng 2020; 17:036019. [PMID: 32365340 PMCID: PMC8351789 DOI: 10.1088/1741-2552/ab8fc4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) is a common neurostimulation therapy to treat chronic pain. Computational models represent a valuable tool to study the potential mechanisms of action of SCS and to optimize the design and implementation of SCS technologies. However, it is imperative that these computational models include the appropriate level of detail to accurately predict the neural response to SCS and to correlate model predictions with clinical outcomes. Therefore, the goal of this study was to investigate several anatomic and technical factors that may affect model-based predictions of neural activation during thoracic SCS. APPROACH We developed computational models that consisted of detailed finite element models of the lower thoracic spinal cord, surrounding tissues, and implanted SCS electrode arrays. We positioned multicompartment models of sensory axons within the spinal cord to calculate the activation threshold for each sensory axon. We then investigated how activation thresholds changed as a function of several anatomical variables (e.g. spine geometry, dorsal rootlet anatomy), stimulation type (i.e. voltage-controlled vs. current-controlled), electrode impedance, lead position, lead type, and electrical properties of surrounding tissues (e.g. dura conductivity, frequency-dependent conductivity). MAIN RESULTS Several anatomic and modeling factors produced significant percent differences or errors in activation thresholds. Rostrocaudal positioning of the cathode with respect to the vertebrae had a large effect (up to 32%) on activation thresholds. Variability in electrode impedance produced significant changes in activation thresholds for voltage-controlled stimulation (38% to 51%), but had little effect on activation thresholds for current-controlled stimulation (less than 13%). Changing the dura conductivity also produced significant differences in activation thresholds. SIGNIFICANCE This study demonstrates several anatomic and technical factors that can affect the neural response to SCS. These factors should be considered in clinical implementation and in future computational modeling studies of thoracic SCS.
Collapse
Affiliation(s)
- Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America. Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | |
Collapse
|
18
|
Capogrosso M, Lempka SF. A computational outlook on neurostimulation. Bioelectron Med 2020; 6:10. [PMID: 32490037 PMCID: PMC7247210 DOI: 10.1186/s42234-020-00047-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
Efficient identification of effective neurostimulation strategies is critical due to the growing number of clinical applications and the increasing complexity of the corresponding technology. In consequence, investigators are encouraged to accelerate translational research of neurostimulation technologies and move quickly to clinical applications. However, this process is hampered by rigorous, but necessary, regulations and lack of a mechanistic understanding of the interactions between electric fields and neural circuits. Here we discuss how computational models have influenced the field of neurostimulation for pain and movement recovery, deep brain stimulation, and even device regulations. Finally, we propose our vision on how computational models will be key to accelerate clinical developments through mechanistic understanding.
Collapse
Affiliation(s)
- Marco Capogrosso
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA USA.,Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
19
|
Telkes L, Hancu M, Paniccioli S, Grey R, Briotte M, McCarthy K, Raviv N, Pilitsis JG. Differences in EEG patterns between tonic and high frequency spinal cord stimulation in chronic pain patients. Clin Neurophysiol 2020; 131:1731-1740. [PMID: 32504934 DOI: 10.1016/j.clinph.2020.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/20/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the differences in neural patterns between spinal cord stimulation (SCS) waveforms (60-Hz tonic vs 10-KHz high frequency stimulation, HFS) and their correlation to stimulation-induced pain relief. METHODS We recorded 10-channel electroencephalogram (EEG) in response to stimulation ON and OFF in 9 chronic pain patients (4 women, 5 men) during SCS surgery and examined the intraoperative spatio-spectral EEG features. RESULTS We discovered stronger relative alpha power in the somatosensory region and higher trend in alpha/theta peak power ratio in frontal cortex with HFS. We also observed a shift in peak frequency from theta to alpha rhythms in HFS as compared to baseline and tonic stimulation, where slower theta activity was maintained. Further, a positive correlation was found between changes in Oswestry disability index (ODI) scores (from preoperative to postoperative) and HFS-induced alpha/theta peak power ratio in frontal and somatosensory regions. CONCLUSIONS Altogether, our findings suggest that dynamic spectral interactions in theta-alpha band and their spatial distributions might be the first intraoperative neural signatures of pain relief induced by HFS in chronic pain. SIGNIFICANCE Examining electrophysiological changes intraoperatively has a potential to elucidate response to SCS therapy prior to device selection, reducing the healthcare expenditures associated with failed implants.
Collapse
Affiliation(s)
- Llknur Telkes
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, NY, USA
| | - Maria Hancu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, NY, USA
| | | | | | | | | | - Nataly Raviv
- Department of Neurosurgery, Albany Medical Center, NY, USA
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, NY, USA; Department of Neurosurgery, Albany Medical Center, NY, USA.
| |
Collapse
|
20
|
Varshney V, Deer T. "Required Investigations" in Evaluating Patients for Spinal Cord Stimulation: Investigating What Works. Pain Pract 2020; 20:697. [PMID: 32268441 DOI: 10.1111/papr.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Vishal Varshney
- Department of Anesthesia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Timothy Deer
- The Spine and Nerve Center of The Virginias, Charleston, West Virginia, U.S.A.,Anesthesiology and Pain Medicine, WVU School of Medicine, Morgantown, West Virginia, U.S.A,
| |
Collapse
|
21
|
Suppression of Superficial Microglial Activation by Spinal Cord Stimulation Attenuates Neuropathic Pain Following Sciatic Nerve Injury in Rats. Int J Mol Sci 2020; 21:ijms21072390. [PMID: 32235682 PMCID: PMC7177766 DOI: 10.3390/ijms21072390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/29/2022] Open
Abstract
We evaluated the mechanisms underlying the spinal cord stimulation (SCS)-induced analgesic effect on neuropathic pain following spared nerve injury (SNI). On day 3 after SNI, SCS was performed for 6 h by using electrodes paraspinally placed on the L4-S1 spinal cord. The effects of SCS and intraperitoneal minocycline administration on plantar mechanical sensitivity, microglial activation, and neuronal excitability in the L4 dorsal horn were assessed on day 3 after SNI. The somatosensory cortical responses to electrical stimulation of the hind paw on day 3 following SNI were examined by using in vivo optical imaging with a voltage-sensitive dye. On day 3 after SNI, plantar mechanical hypersensitivity and enhanced microglial activation were suppressed by minocycline or SCS, and L4 dorsal horn nociceptive neuronal hyperexcitability was suppressed by SCS. In vivo optical imaging also revealed that electrical stimulation of the hind paw-activated areas in the somatosensory cortex was decreased by SCS. The present findings suggest that SCS could suppress plantar SNI-induced neuropathic pain via inhibition of microglial activation in the L4 dorsal horn, which is involved in spinal neuronal hyperexcitability. SCS is likely to be a potential alternative and complementary medicine therapy to alleviate neuropathic pain following nerve injury.
Collapse
|
22
|
De Andrés J, Navarrete-Rueda F, Fabregat G, García-Gutiérrez MS, Monsalve-Dolz V, Harutyunyan A, Mínguez-Martí A, Rodriguez-Lopez R, Manzanares J. Differences in Gene Expression of Endogenous Opioid Peptide Precursor, Cannabinoid 1 and 2 Receptors and Interleukin Beta in Peripheral Blood Mononuclear Cells of Patients With Refractory Failed Back Surgery Syndrome Treated With Spinal Cord Stimulation: Markers of Therapeutic Outcomes? Neuromodulation 2020; 24:49-60. [PMID: 32027775 DOI: 10.1111/ner.13111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The use of spinal cord stimulation for patients with failed back surgery syndrome (FBSS) is very common. In order to better understand the mechanisms of action of spinal cord stimulation (SCS), our aim was to determine potential changes in relative gene and protein expression in the peripheral blood mononuclear cells (PBMCs) of patients as potential biomarkers of disease outcomes and potential new targets for therapy. METHODS Twenty-four patients with diagnosis of FBSS refractory to conservative therapy for at least six months were included in the study. Clinical evaluation in this study included validated questionnaires. Blood samples (10 mL) were collected five times from baseline until two months after implant of the leads. Proenkephalin (PENK), cannabinoid receptors CB1 and CB2, and interleukin 1β (IL 1β) were analyzed. Each patient served as his/her own control by comparing the samples collected at different time points against the baseline sample collected at T0. RESULTS A total of 16 patients met all relevant criteria during the whole study and were assessed. Only PENK showed significant changes over time (Friedman p = 0.000). A positive correlation was observed between changes in visual analog scale (VAS) scores and PENK and a negative correlation between changes in PENK and Short Form-12 (SF-12) mental component score (MCS) scores, as well as between changes in IL 1β and Pain Detect Questionnaire (PD-Q) scores. As PENK changes increased, so did pain (VAS). As changes in PENK increased, SF-12 MCS health worsened. As changes in IL 1β increased, PD-Q values decreased. No severe adverse events occurred. CONCLUSIONS Previously unknown effects of SCS on levels of PBMCs biomarkers are demonstrated. The findings of our research suggest a potential for useful integration of genome analysis and lymphocyte expression in the daily practice of neurostimulation for pain management and represent a novel road map in the light of the important questions that remain unanswered.
Collapse
Affiliation(s)
- Jose De Andrés
- Anesthesia Unit-Surgical specialties department. Valencia University Medical School. Department of Anesthesiology, Critical Care and Pain Management. General University Hospital, Valencia, Spain
| | | | - Gustavo Fabregat
- Multidisciplinary Pain Management Division, Department of Anesthesia, General University Hospital, Valencia, Spain
| | | | - Vincente Monsalve-Dolz
- Multidisciplinary Pain Management Division, Department of Anesthesia, General University Hospital, Valencia, Spain
| | - Anushik Harutyunyan
- Multidisciplinary Pain Management Division, Department of Anesthesia, General University Hospital, Valencia, Spain
| | - Ana Mínguez-Martí
- Multidisciplinary Pain Management Division, Department of Anesthesia, General University Hospital, Valencia, Spain
| | | | - Jorge Manzanares
- Institute of Neurosciences, Miguel Hernández University, CSIC, Alicante, Spain
| |
Collapse
|
23
|
De Groote S, Goudman L, Peeters R, Linderoth B, Van Schuerbeek P, Sunaert S, De Jaeger M, De Smedt A, De Andrés J, Moens M. The influence of High Dose Spinal Cord Stimulation on the descending pain modulatory system in patients with failed back surgery syndrome. NEUROIMAGE-CLINICAL 2019; 24:102087. [PMID: 31795057 PMCID: PMC6978217 DOI: 10.1016/j.nicl.2019.102087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/22/2022]
Abstract
For the first time, the influence of HD-SCS on the descending pathways was tested. rsfMRI and functional connectivity were used to evaluate this a priori hypothesis. HD-SCS does influence the descending pain modulatory system.
Collapse
Affiliation(s)
- Sander De Groote
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels 1090, Belgium; Pain in Motion International Research Group, www.paininmotion.be and Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ronald Peeters
- Department of Radiology, Universitair Ziekenhuis Leuven, UZ Herestraat 49-bus 7003, Leuven 3000, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Van Schuerbeek
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Stefan Sunaert
- Department of Radiology, Universitair Ziekenhuis Leuven, UZ Herestraat 49-bus 7003, Leuven 3000, Belgium
| | - Mats De Jaeger
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Ann De Smedt
- Department of Neurology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - José De Andrés
- Surgical Specialties Department Valencia University Medical School, Department of Anesthesiology Critical Care and Pain Management, General University Hospital, Valencia, Spain
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels 1090, Belgium; Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels 1090, Belgium; Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels 1090, Belgium.
| |
Collapse
|
24
|
Lempka SF, Zander HJ, Anaya CJ, Wyant A, Ozinga JG, Machado AG. Patient-Specific Analysis of Neural Activation During Spinal Cord Stimulation for Pain. Neuromodulation 2019; 23:572-581. [PMID: 31464040 DOI: 10.1111/ner.13037] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Despite the widespread use of spinal cord stimulation (SCS) for chronic pain management, its neuromodulatory effects remain poorly understood. Computational models provide a valuable tool to study SCS and its effects on axonal pathways within the spinal cord. However, these models must include sufficient detail to correlate model predictions with clinical effects, including patient-specific data. Therefore, the goal of this study was to investigate axonal activation at clinically relevant SCS parameters using a computer model that incorporated patient-specific anatomy and electrode locations. METHODS We developed a patient-specific computer model for a patient undergoing SCS to treat chronic pain. This computer model consisted of two main components: 1) finite element model of the extracellular voltages generated by SCS and 2) multicompartment cable models of axons in the spinal cord. To determine the potential significance of a patient-specific approach, we also performed simulations with standard canonical models of SCS. We used the computer models to estimate axonal activation at clinically measured sensory, comfort, and discomfort thresholds. RESULTS The patient-specific and canonical models predicted significantly different axonal activation. Relative to the canonical models, the patient-specific model predicted sensory threshold estimates that were more consistent with the corresponding clinical measurements. These results suggest that it is important to account for sources of interpatient variability (e.g., anatomy, electrode locations) in model-based analysis of SCS. CONCLUSIONS This study demonstrates the potential for patient-specific computer models to quantitatively describe the axonal response to SCS and to address scientific questions related to clinical SCS.
Collapse
Affiliation(s)
- Scott F Lempka
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.,Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Carlos J Anaya
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alexandria Wyant
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - John G Ozinga
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andre G Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
25
|
Goudman L, Brouns R, Linderoth B, Moens M. Effects of spinal cord stimulation on heart rate variability in patients with Failed Back Surgery Syndrome. PLoS One 2019; 14:e0219076. [PMID: 31260496 PMCID: PMC6602188 DOI: 10.1371/journal.pone.0219076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background Building on the recent finding that chronic pain patients with impaired functioning of the descending nociceptive inhibitory system (DNIS) present lower resting heart rate variability (HRV), this study aims to investigate the impact of Spinal Cord Stimulation (SCS) on HRV in patients with Failed Back Surgery Syndrome (FBSS). More precisely, we hypothesize that SCS influences the DNIS, with increased parasympathetic tone as a consequence, as measurable by HRV analysis. Methods Twenty-two patients diagnosed with FBSS and treated with SCS participated in this study. HRV was measured with a 2-lead ECG registration tool during on and off states of SCS. HRV analysis for time, frequency, time-frequency and nonlinear domain parameters was based on a 5-minute recording segment. Results The mean heart rate and low frequency power were significantly lower when SCS was activated. HRV, absolute and normalized high frequency power significantly increased during SCS compared to without SCS. The ratio of low frequency/high frequency ratios, as parameter for global sympathetic-parasympathetic equilibrium, significantly decreased when SCS was activated. Conclusions When SCS is switched off, patients with FBSS present relatively stronger sympathetic tone and weaker parasympathetic activity. Activation of the SCS, possibly via stimulation of the DNIS, restores this disbalance of autonomic activity.
Collapse
Affiliation(s)
- Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Brouns
- Department of Neurology, ZorgSaam Hospital, Terneuzen, Netherlands
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
26
|
Caylor J, Reddy R, Yin S, Cui C, Huang M, Huang C, Rao R, Baker DG, Simmons A, Souza D, Narouze S, Vallejo R, Lerman I. Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectron Med 2019; 5:12. [PMID: 31435499 PMCID: PMC6703564 DOI: 10.1186/s42234-019-0023-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Well-established in the field of bioelectronic medicine, Spinal Cord Stimulation (SCS) offers an implantable, non-pharmacologic treatment for patients with intractable chronic pain conditions. Chronic pain is a widely heterogenous syndrome with regard to both pathophysiology and the resultant phenotype. Despite advances in our understanding of SCS-mediated antinociception, there still exists limited evidence clarifying the pathways recruited when patterned electric pulses are applied to the epidural space. The rapid clinical implementation of novel SCS methods including burst, high frequency and dorsal root ganglion SCS has provided the clinician with multiple options to treat refractory chronic pain. While compelling evidence for safety and efficacy exists in support of these novel paradigms, our understanding of their mechanisms of action (MOA) dramatically lags behind clinical data. In this review, we reconstruct the available basic science and clinical literature that offers support for mechanisms of both paresthesia spinal cord stimulation (P-SCS) and paresthesia-free spinal cord stimulation (PF-SCS). While P-SCS has been heavily examined since its inception, PF-SCS paradigms have recently been clinically approved with the support of limited preclinical research. Thus, wide knowledge gaps exist between their clinical efficacy and MOA. To close this gap, many rich investigative avenues for both P-SCS and PF-SCS are underway, which will further open the door for paradigm optimization, adjunctive therapies and new indications for SCS. As our understanding of these mechanisms evolves, clinicians will be empowered with the possibility of improving patient care using SCS to selectively target specific pathophysiological processes in chronic pain.
Collapse
Affiliation(s)
- Jacob Caylor
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Rajiv Reddy
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Sopyda Yin
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Christina Cui
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Mingxiong Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
| | - Charles Huang
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Bioengineering, Stanford University, Palo Alto, CA USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Alan Simmons
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA USA
| | - Dmitri Souza
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital. Department of Surgery, Northeast Ohio Medical School (NEOMED), Athens, OH USA
| | - Ricardo Vallejo
- Basic Science Research, Millennium Pain Center, Bloomington, IL USA
- School of Biological Sciences, Illinois State University, Normal, IL USA
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL USA
| | - Imanuel Lerman
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA USA
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA USA
- Present Address: VA San Diego, 3350 La Jolla Village Dr, (MC116A), San Diego, CA 92161 USA
| |
Collapse
|
27
|
Abstract
Spinal cord stimulation (SCS) is a neuromodulation therapy used to treat medically refractory chronic pain. In SCS, an implanted pulse generator produces electrical signals that are conveyed through electrode arrays located in the region of the spinal cord. The goal of SCS is to modulate neural signaling through spinal and supraspinal mechanisms to reduce pain. Although available for decades, SCS still enjoys only limited clinical success, limited quality-of-life improvement, and limited long-term efficacy. To improve SCS outcomes, advances in lead design, stimulator features, and waveform paradigms have been recently introduced. While it is an exciting time for the neuromodulation field, empirical SCS advances have surpassed scientific understanding of SCS mechanisms of action. We still do not know why SCS works in some patients but not in others. We also lack information-rich biomarkers of pain and pain relief through which to optimize SCS programming. To optimize both system designs and clinical implementations of SCS, it is critical that we address these scientific and mechanistic knowledge gaps.
Collapse
Affiliation(s)
- Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Parag G. Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|