1
|
Karaivazoglou K, Aggeletopoulou I, Triantos C. Interoceptive Processing in Functional Gastrointestinal Disorders. Int J Mol Sci 2024; 25:7633. [PMID: 39062876 PMCID: PMC11277500 DOI: 10.3390/ijms25147633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by chronic gastrointestinal symptoms in the absence of overt pathology and affect a significant percentage of the worldwide population. They are commonly accompanied by co-morbid psychiatric symptomatology and are associated with significant suffering and great healthcare services utilization. There is growing evidence that dysregulation of the gut-brain axis and disturbances in the processing of afferent interoceptive signals lie at the heart of these disorders. In this context, the aim of the current review was to detect and critically review original articles focusing on the role of interoception in the pathophysiology of FGIDs. Our search yielded 38 relevant studies. FGID patients displayed increased visceral sensitivity, enhanced attention to gastrointestinal interoceptive cues, and greater emotional arousal when coping with gut-derived sensations. Neuroimaging studies have shown significant structural and functional changes in regions of the interoceptive network, while molecular and genetic studies have revealed significant associations between interoceptive signaling and deficits in excitatory neurotransmission, altered endocrine and immune physiological pathways, and aberrant expression of transient receptor potential channel genes. Finally, there were emerging data suggesting that interoception-based interventions may reduce physical symptoms and improve quality of life and should be integrated into FGID clinical management practices.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
2
|
Nojkov B, Burnett C, Watts L, Yin J, Ali K, Zhao T, Gong S, Miller C, Habrowski M, Chey WD, Chen JDZ. The impact of transcutaneous electrical acustimulation (TEA) on rectal distension-induced pain in patients with irritable bowel syndrome (IBS)-A study to determine the optimal TEA delivery modalities and effects on rectal sensation and autonomic function. Neurogastroenterol Motil 2024; 36:e14799. [PMID: 38671591 DOI: 10.1111/nmo.14799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Treatment options for abdominal pain in IBS are inadequate. TEA was reported effective treatment of disorders of gut-brain interaction but its mechanism of action and optimal delivery method for treating pain in IBS are unknown. This study aims to determine the most effective TEA parameter and location to treat abdominal pain in patients with IBS-Constipation and delineate the effect of TEA on rectal sensation and autonomic function. METHODS Nineteen IBS-C patients underwent TEA at acupoints ST36 (leg), PC6 (wrist), or sham-acupoint. Each patient was studied in five randomized sessions on separate days: (1) TEA/ST36-100 Hz; (2) TEA/ST36-25 Hz; (3) TEA/PC6-100 Hz; (4) TEA/PC6-25 Hz; (5) TEA/Sham-25 Hz. In each session, barostat-guided rectal distention (RD) was performed before and after TEA. Patients graded the RD-induced pain and recorded three rectal sensation thresholds. A heart rate variability (HRV) signal was derived from the electrocardiogram for autonomic function assessment. KEY RESULTS Studied patients were predominantly female, young, and Caucasian. Compared with baseline, patients treated with TEA/ST36-100 Hz had significantly decreased pain scores at RD pressure-points 20-50 mmHg (p < 0.04). The average pain reduction was 40%. Post-treatment scores did not change significantly with other TEA modalities except with sham-TEA (lesser degree compared to ST36-100 Hz, p = 0.04). TEA/ST36-100, but not other modalities, increased the rectal sensation threshold (first sensation: p = 0.007; urge to defecate: p < 0.026). TEA/ST36-100 Hz was the only treatment that significantly decreased sympathetic activity and increased parasympathetic activity with and without RD (p < 0.04). CONCLUSIONS & INFERENCES TEA at ST36-100 Hz is superior stimulation point/parameter, compared to TEA at PC-6/sham-TEA, to reduce rectal distension-induced pain in IBS-C patients. This therapeutic effect appears to be mediated through rectal hypersensitivity reduction and autonomic function modulation.
Collapse
Affiliation(s)
- Borko Nojkov
- University of Michigan, Ann Arbor, Michigan, USA
| | | | - Lydia Watts
- University of Michigan, Ann Arbor, Michigan, USA
| | - Jieyun Yin
- Transtimulation Research Inc., Oklahoma City, Oklahoma, USA
| | - Khawar Ali
- University of Michigan, Ann Arbor, Michigan, USA
| | | | - Shiyuan Gong
- University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
3
|
Bárdos G. Irritable bowel syndrome (IBS): could we decide what is behind? Biol Futur 2024; 75:61-71. [PMID: 38386191 DOI: 10.1007/s42977-024-00205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Functional visceral problems are frequently present nowadays in the medical practice probably due to the significant mental and emotional load on people. Although physicians and psychophysiologists are active on the field, still we are far from a complete knowledge, despite the fact that scientists like the Hungarian Professor György Ádám already had initiated a new approach called visceral psychophysiology already a long time ago. In this article, we commemorate Professor Ádám by analyzing one of the most frequent functional disorders, irritable bowel syndrome (IBS), calling psychophysiology for help. First, we try to give a definition, then show the general descriptions and characteristics of IBS. Factors like stress, gender, and gastrointestinal pain are followed by the potential role of the immune system and the neuronal factors as well as the supposed brain mechanisms. We hope that this overview of the IBS-history would show how significant scientists can be decisive in certain fields of the science and practice.
Collapse
Affiliation(s)
- György Bárdos
- Institute of Health Promotion and Sport Sciences, Faculty of Education and Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
4
|
He H, Zhou J, Xu X, Zhou P, Zhong H, Liu M. Piezo channels in the intestinal tract. Front Physiol 2024; 15:1356317. [PMID: 38379701 PMCID: PMC10877011 DOI: 10.3389/fphys.2024.1356317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The intestine is the largest mechanosensitive organ in the human body whose epithelial cells, smooth muscle cells, neurons and enteroendocrine cells must sense and respond to various mechanical stimuli such as motility, distension, stretch and shear to regulate physiological processes including digestion, absorption, secretion, motility and immunity. Piezo channels are a newly discovered class of mechanosensitive ion channels consisting of two subtypes, Piezo1 and Piezo2. Piezo channels are widely expressed in the intestine and are involved in physiological and pathological processes. The present review summarizes the current research progress on the expression, function and regulation of Piezo channels in the intestine, with the aim of providing a reference for the future development of therapeutic strategies targeting Piezo channels.
Collapse
Affiliation(s)
- Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan Xu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pinxi Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huan Zhong
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
5
|
Sarnoff RP, Bhatt RR, Osadchiy V, Dong T, Labus JS, Kilpatrick LA, Chen Z, Subramanyam V, Zhang Y, Ellingson BM, Naliboff B, Chang L, Mayer EA, Gupta A. A multi-omic brain gut microbiome signature differs between IBS subjects with different bowel habits. Neuropharmacology 2023; 225:109381. [PMID: 36539012 DOI: 10.1016/j.neuropharm.2022.109381] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Alterations of the brain-gut-microbiome system (BGM) have been implicated in the pathophysiology of irritable bowel syndrome (IBS), yet bowel habit-specific alterations have not been elucidated. In this cross-sectional study, we apply a systems biology approach to characterize BGM patterns related to predominant bowel habit. Fecal samples and resting state fMRI were obtained from 102 premenopausal women (36 constipation-predominant IBS (IBS-C), 27 diarrhea-predominant IBS (IBS-D), 39 healthy controls (HCs)). Data integration analysis using latent components (DIABLO) was used to integrate data from the phenome, microbiome, metabolome, and resting-state connectome to predict HCs vs IBS-C vs IBS-D. Bloating and visceral sensitivity, distinguishing IBS from HC, were negatively associated with beneficial microbes and connectivity involving the orbitofrontal cortex. This suggests that gut interactions may generate aberrant central autonomic and descending pain pathways in IBS. The connection between IBS symptom duration, key microbes, and caudate connectivity may provide mechanistic insight to the chronicity of pain in IBS. Compared to IBS-C and HCs, IBS-D had higher levels of many key metabolites including tryptophan and phenylalanine, and increased connectivity between the sensorimotor and default mode networks; thus, suggestingan influence on diarrhea, self-related thoughts, and pain perception in IBS-D ('bottom-up' mechanism). IBS-C's microbiome and metabolome resembled HCs, but IBS-C had increased connectivity in the default mode and salience networks compared to IBS-D, which may indicate importance of visceral signals, suggesting a more 'top-down' BGM pathophysiology. These BGM characteristics highlight possible mechanistic differences for variations in the IBS bowel habit phenome. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Collapse
Affiliation(s)
- Rachel P Sarnoff
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Ravi R Bhatt
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, USA
| | - Vadim Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Tien Dong
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA; UCLA Microbiome Center, USA; Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jennifer S Labus
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA
| | - Lisa A Kilpatrick
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA
| | - Zixi Chen
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA
| | | | - Yurui Zhang
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA
| | - Benjamin M Ellingson
- Departments of Radiological Sciences, Psychiatry, and Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Bruce Naliboff
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA
| | - Lin Chang
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA; UCLA Microbiome Center, USA.
| | - Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, USA; David Geffen School of Medicine, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, USA; UCLA Microbiome Center, USA.
| |
Collapse
|
6
|
Laukens D, Truyens M. Reply. Gastroenterology 2023; 164:1028-1029. [PMID: 36738976 DOI: 10.1053/j.gastro.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/06/2023]
Affiliation(s)
- Debby Laukens
- Department of Internal Medicine and Pediatrics, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Marie Truyens
- Department of Internal Medicine and Pediatrics, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Truyens M, Lobatón T, Ferrante M, Bossuyt P, Vermeire S, Pouillon L, Dewint P, Cremer A, Peeters H, Lambrecht G, Louis E, Rahier JF, Dewit O, Muls V, Holvoet T, Vandermeulen L, Peeters A, Gonzales GB, Bos S, Laukens D, De Vos M. Effect of 5-Hydroxytryptophan on Fatigue in Quiescent Inflammatory Bowel Disease: A Randomized Controlled Trial. Gastroenterology 2022; 163:1294-1305.e3. [PMID: 35940251 DOI: 10.1053/j.gastro.2022.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/22/2022] [Accepted: 07/17/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Fatigue is highly prevalent among patients with inflammatory bowel disease (IBD), and only limited treatment options are available. Based on the hypothetical link between low serum tryptophan concentrations and fatigue, we determined the effect of 5-hydroxytryptophan supplementation on fatigue in patients with inactive IBD. METHODS A multicenter randomized controlled trial was performed at 13 Belgian hospitals, including 166 patients with IBD in remission but experiencing fatigue, defined by a fatigue visual analog scale (fVAS) score of ≥5. Patients were treated in a crossover manner with 100 mg oral 5-hydroxytryptophan or placebo twice daily for 2 consecutive periods of 8 weeks. The primary end point was the proportion of patients reaching a ≥20% reduction in fVAS after 8 weeks of intervention. Secondary outcomes included changes in serum tryptophan metabolites, Functional Assessment of Chronic Illness Therapy Fatigue scale, and scores for depression, anxiety, and stress. The effect of the intervention on the outcomes was evaluated by linear mixed modeling. RESULTS During 5-hydroxytryptophan treatment, a significant increase in serum 5-hydroxytryptophan (estimated mean difference, 52.66 ng/mL; 95% confidence interval [CI], 39.34-65.98 ng/mL; P < .001) and serotonin (3.0 ng/mL; 95 CI, 1.97-4.03 ng/mL; P < .001) levels was observed compared with placebo. The proportion of patients reaching ≥20% reduction in fVAS was similar in placebo- (37.6%) and 5-hydroxytryptophan (35.6%)-treated patients (P = .830). The fVAS reduction (-0.18; 95% CI, -0.81 to 0.46; P = .581) and Functional Assessment of Chronic Illness Therapy Fatigue scale increase (0.68; 95% CI, -2.37 to 3.73; P = .660) were both comparable between 5-hydroxytryptophan and placebo treatment as well as changes in depression, anxiety, and stress scores. CONCLUSIONS Despite a significant increase in serum 5-hydroxytryptophan and serotonin levels, oral 5-hydroxytryptophan did not modulate IBD-related fatigue better than placebo. (Trial Registration: Belgian Federal Agency for Medication and Health Products, EudraCT number: 2017-005059-10 and ClinicalTrials.gov: NCT03574948, https://clinicaltrials.gov/ct2/show/NCT03574948.).
Collapse
Affiliation(s)
- Marie Truyens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Ghent University, Ghent, Belgium
| | - Triana Lobatón
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - Marc Ferrante
- Department of Chronic Diseases & Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Bossuyt
- Imelda Gastrointestinal (GI) Clinical Research Center, Imelda General Hospital, Bonheiden, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases & Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Lieven Pouillon
- Imelda Gastrointestinal (GI) Clinical Research Center, Imelda General Hospital, Bonheiden, Belgium
| | - Pieter Dewint
- Department of Gastroenterology, Algemeen Ziekenhuis (AZ) Maria Middelares, Ghent, Belgium; Department of Gastroenterology, University Hospital Antwerp, Antwerp, Belgium
| | - Anneline Cremer
- Department of Gastroenterology, Erasme University Hospital, Brussels, Belgium
| | - Harald Peeters
- Department of Gastroenterology, Algemeen Ziekenhuis (AZ) St-Lucas, Ghent, Belgium
| | - Guy Lambrecht
- Department of Gastroenterology, Algemeen Ziekenhuis (AZ) Damiaan, Ostend, Belgium
| | - Edouard Louis
- Department of Gastroenterology, Centre Hospitalier Universitaire Liège (CHU) University Hospital, Liège, Belgium
| | - Jean-François Rahier
- Department of Gastroenterology, Centre Hospitalier Universitaire (CHU) Université catholique de Louvain (UCL) Namur, Yvoir, Belgium
| | - Olivier Dewit
- Université catholique (UC) Louvain, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Vinciane Muls
- Department of Gastroenterology and Endoscopy, Saint-Pierre University Hospital Center, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tom Holvoet
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium; Department of Gastroenterology, Algemeen Ziekenhuis (AZ) Nikolaas General Hospital, Sint-Niklaas, Belgium
| | - Liv Vandermeulen
- Department of Gastroenterology-Hepatology, University Hospital Brussels/Free University of Brussels (VUB), Brussels, Belgium
| | - Anneleen Peeters
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - Gerard Bryan Gonzales
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Simon Bos
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Ghent University, Ghent, Belgium
| | - Debby Laukens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Ghent University, Ghent, Belgium.
| | - Martine De Vos
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Keszthelyi D. Serotonin in Gastrointestinal Disorders: Delineating Peripheral vs Central Effects. Gastroenterology 2022; 164:1027-1028. [PMID: 36323369 DOI: 10.1053/j.gastro.2022.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Daniel Keszthelyi
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
9
|
Hu L, Li G, Shu Y, Hou X, Yang L, Jin Y. Circadian dysregulation induces alterations of visceral sensitivity and the gut microbiota in Light/Dark phase shift mice. Front Microbiol 2022; 13:935919. [PMID: 36177467 PMCID: PMC9512646 DOI: 10.3389/fmicb.2022.935919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background It is well-established that several features of modern lifestyles, such as shift work, jet lag, and using electronics at night, disturb normal circadian rhythm and increase the risk of suffering from functional gastrointestinal disease. Although substantial evidence demonstrates that shift work is closely correlated with the symptoms of visceral hypersensitivity, few basic studies have revealed the mechanism of visceral hypersensitivity induced by circadian rhythm disturbance, especially light/dark phase shifts. Our study explored the mechanism underlying visceral hypersensitivity caused by light/dark phase shift in mice. Methods A 6-h delay light/dark phase shift mice model was constructed. Visceral hypersensitivity was assessed by abdominal withdrawal reflex (AWR) score induced by colorectal distention (CRD) in vivo and contraction of colonic muscle strips induced by acetylcholine ex vivo. Intestinal permeability was evaluated by transepithelial resistance (TEER) and FD4 permeability. The expression of tight junction proteins was detected by western blotting and immunofluorescence staining. The gut microbiota was examined by 16S rDNA sequencing. Fecal microbiota transplantation (FMT) was performed to confirm the relationship between the light/dark phase shift, gut microbiota, and visceral hypersensitivity. Results We found that light/dark phase shift increased visceral sensitivity and disrupted intestinal barrier function, caused low-grade intestinal inflammation. Moreover, we found decreased microbial species richness and diversity and a shift in microbial community with a decreased proportion of Firmicutes and an elevated abundance of Proteobacteria at the phylum level. Besides, after the light/dark phase shift, the microflora was significantly enriched in biosynthesizing tryptophan, steroid hormone, secondary metabolites, lipids, and lipopolysaccharides. Mice that underwent FMT from the light/dark phase shift mice model exhibited higher visceral hypersensitivity and worse barrier function. Dysbiosis induced by light/dark phase shift can be transmitted to the mice pretreated with antibiotics by FMT not only at the aspect of microbiota composition but also at the level of bacterial function. Conclusion Circadian rhythm disturbance induced by the light/dark phase shift produces visceral hypersensitivity similar to the pathophysiology of IBS through modulating the gut microbiota, which may disrupt intestinal barrier function or induce a low-degree gut inflammation.
Collapse
|
10
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
11
|
Wei L, Singh R, Ghoshal UC. Enterochromaffin Cells-Gut Microbiota Crosstalk: Underpinning the Symptoms, Pathogenesis, and Pharmacotherapy in Disorders of Gut-Brain Interaction. J Neurogastroenterol Motil 2022; 28:357-375. [PMID: 35719046 PMCID: PMC9274469 DOI: 10.5056/jnm22008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Disorders of gut-brain interaction (DGBIs) are common conditions in community and clinical practice. As specialized enteroendocrine cells, enterochromaffin (EC) cells produce up to 95% of total body serotonin and coordinate luminal and basolateral communication in the gastrointestinal (GI) tract. EC cells affect a broad range of gut physiological processes, such as motility, absorption, secretion, chemo/mechanosensation, and pathologies, including visceral hypersensitivity, immune dysfunction, and impaired gastrointestinal barrier function. We aim to review EC cell and serotonin-mediated physiology and pathophysiology with particular emphasis on DGBIs. We explored the knowledge gap and attempted to suggest new perspectives of physiological and pathophysiological insights of DGBIs, such as (1) functional heterogeneity of regionally distributed EC cells throughout the entire GI tract; (2) potential pathophysiological mechanisms mediated by EC cell defect in DGBIs; (3) cellular and molecular mechanisms characterizing EC cells and gut microbiota bidirectional communication; (4) differential modulation of EC cells through GI segment-specific gut microbiota; (5) uncover whether crosstalk between EC cells and (i) luminal contents; (ii) enteric nervous system; and (iii) central nervous system are core mechanisms modulating gut-brain homeostasis; and (6) explore the therapeutic modalities for physiological and pathophysiological mechanisms mediated through EC cells. Insights discussed in this review will fuel the conception and realization of pathophysiological mechanisms and therapeutic clues to improve the management and clinical care of DGBIs.
Collapse
Affiliation(s)
- Lai Wei
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, NV, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
12
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Taverniti V, Cesari V, Gargari G, Rossi U, Biddau C, Lecchi C, Fiore W, Arioli S, Toschi I, Guglielmetti S. Probiotics Modulate Mouse Gut Microbiota and Influence Intestinal Immune and Serotonergic Gene Expression in a Site-Specific Fashion. Front Microbiol 2021; 12:706135. [PMID: 34539604 PMCID: PMC8441017 DOI: 10.3389/fmicb.2021.706135] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotic microorganisms may benefit the host by influencing diverse physiological processes, whose nature and underlying mechanisms are still largely unexplored. Animal models are a unique tool to understand the complexity of the interactions between probiotic microorganisms, the intestinal microbiota, and the host. In this regard, in this pilot study, we compared the effects of 5-day administration of three different probiotic bacterial strains (Bifidobacterium bifidum MIMBb23sg, Lactobacillus helveticus MIMLh5, and Lacticaseibacillus paracasei DG) on three distinct murine intestinal sites (ileum, cecum, and colon). All probiotics preferentially colonized the cecum and colon. In addition, probiotics reduced in the ileum and increased in the cecum and colon the relative abundance of numerous bacterial taxonomic units. MIMBb23sg and DG increased the inducible nitric oxide synthase (iNOS) in the ileum, which is involved in epithelial homeostasis. In addition, MIMBb23sg upregulated cytokine IL-10 in the ileum and downregulated the cyclooxygenase COX-2 in the colon, suggesting an anti-inflammatory/regulatory activity. MIMBb23sg significantly affected the expression of the main gene involved in serotonin synthesis (TPH1) and the gene coding for the serotonin reuptake protein (SERT) in the ileum and colon, suggesting a potential propulsive effect toward the distal part of the gut, whereas the impact of MIMLh5 and DG on serotonergic genes suggested an effect toward motility control. The three probiotics decreased the expression of the permeability marker zonulin in gut distal sites. This preliminary in vivo study demonstrated the safety of the tested probiotic strains and their common ability to modulate the intestinal microbiota. The probiotics affected host gene expression in a strain-specific manner. Notably, the observed effects in the gut were site dependent. This study provides a rationale for investigating the effects of probiotics on the serotonergic system, which is a topic still widely unexplored.
Collapse
Affiliation(s)
- Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Cesari
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Umberto Rossi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Biddau
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Gros M, Gros B, Mesonero JE, Latorre E. Neurotransmitter Dysfunction in Irritable Bowel Syndrome: Emerging Approaches for Management. J Clin Med 2021; 10:jcm10153429. [PMID: 34362210 PMCID: PMC8347293 DOI: 10.3390/jcm10153429] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder whose aetiology is still unknown. Most hypotheses point out the gut-brain axis as a key factor for IBS. The axis is composed of different anatomic and functional structures intercommunicated through neurotransmitters. However, the implications of key neurotransmitters such as norepinephrine, serotonin, glutamate, GABA or acetylcholine in IBS are poorly studied. The aim of this review is to evaluate the current evidence about neurotransmitter dysfunction in IBS and explore the potential therapeutic approaches. IBS patients with altered colorectal motility show augmented norepinephrine and acetylcholine levels in plasma and an increased sensitivity of central serotonin receptors. A decrease of colonic mucosal serotonin transporter and a downregulation of α2 adrenoceptors are also correlated with visceral hypersensitivity and an increase of 5-hydroxyindole acetic acid levels, enhanced expression of high affinity choline transporter and lower levels of GABA. Given these neurotransmitter dysfunctions, novel pharmacological approaches such as 5-HT3 receptor antagonists and 5-HT4 receptor agonists are being explored for IBS management, for their antiemetic and prokinetic effects. GABA-analogous medications are being considered to reduce visceral pain. Moreover, agonists and antagonists of muscarinic receptors are under clinical trials. Targeting neurotransmitter dysfunction could provide promising new approaches for IBS management.
Collapse
Affiliation(s)
- Mónica Gros
- Centro de Salud Univérsitas, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain; (B.G.); (J.E.M.)
| | - Belén Gros
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain; (B.G.); (J.E.M.)
- Servicio de Urgencias, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | - José Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain; (B.G.); (J.E.M.)
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2—(Universidad de Zaragoza—CITA), 50013 Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain; (B.G.); (J.E.M.)
- Instituto Agroalimentario de Aragón—IA2—(Universidad de Zaragoza—CITA), 50013 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
15
|
Liu YW, Wang YP, Yen HF, Liu PY, Tzeng WJ, Tsai CF, Lin HC, Lee FY, Jeng OJ, Lu CL, Tsai YC. Lactobacillus plantarum PS128 Ameliorated Visceral Hypersensitivity in Rats Through the Gut-Brain Axis. Probiotics Antimicrob Proteins 2021; 12:980-993. [PMID: 31691208 DOI: 10.1007/s12602-019-09595-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by abdominal pain and alterations in bowel habits. Current treatments for IBS are unsatisfactory due to its multifactorial pathogenesis involving the microbiota-gut-brain axis. Lactobacillus plantarum PS128 (PS128) was reported to exhibit neuromodulatory activity which may be beneficial for improving IBS. This study aimed to investigate the effect of PS128 on visceral hypersensitivity (VH) and the gut-brain axis using a 5-hydroxytryptophan (5-HTP)-induced VH rat model without colonic inflammation induction, mimicking the characteristics of IBS. Male Sprague-Dawley rats were administered with PS128 (109 CFU in 0.2 mL saline/rat/day) or saline (0.2 mL saline/rat/day) for 14 days. Colorectal distension (CRD) with simultaneous electromyography recording was performed 30 min before and 30 min after the 5-HTP injection. Levels of neuropeptides and neurotrophins were analyzed. PS128 significantly reduced VH induced by the 5-HTP injection and CRD. Neurotransmitter protein levels, substance P, CGRP, BDNF, and NGF, were decreased in the dorsal root ganglion but increased in the spinal cord in response to the 5-HTP injection; PS128 reversed these changes. The hypothalamic-pituitary-adrenal axis was modulated by PS128 with decreased corticosterone concentration in serum and the expression of mineralocorticoid receptors in the amygdala. Oral administration of PS128 inhibited 5-HTP-induced VH during CRD. The ameliorative effect on VH suggests the potential application of PS128 for IBS.
Collapse
Affiliation(s)
- Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan.,Microbiome Research Center, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan
| | - Yen-Po Wang
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 11217, Taiwan.,Institute of Brain Science, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan.,School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan
| | - Hsu-Fang Yen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan
| | - Pei-Yi Liu
- Institute of Brain Science, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan
| | - Wen-Jian Tzeng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan
| | - Chia-Fen Tsai
- School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 11217, Taiwan
| | - Han-Chieh Lin
- School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan.,Division of Gastroenterology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 11217, Taiwan
| | - Fa-Yauh Lee
- School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan.,Division of Gastroenterology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 11217, Taiwan
| | | | - Ching-Liang Lu
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 11217, Taiwan. .,Institute of Brain Science, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan. .,School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan. .,Division of Gastroenterology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 11217, Taiwan.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan. .,Microbiome Research Center, National Yang-Ming University, No. 155, Sec. 2, Linong St., Beitou Dist., Taipei, 11221, Taiwan.
| |
Collapse
|
16
|
Zhao F, Ma C, Zhao G, Wang G, Li X, Yang K. Rumen-Protected 5-Hydroxytryptophan Improves Sheep Melatonin Synthesis in the Pineal Gland and Intestinal Tract. Med Sci Monit 2019; 25:3605-3616. [PMID: 31091223 PMCID: PMC6534969 DOI: 10.12659/msm.915909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Based on the extensive biological effects of melatonin (MLT), it is beneficial to increase the MLT content in the bodies of animals at a specific physiological stage. This study was conducted to investigate the effect of a diet supplemented with rumen-protected (RP) 5-hydroxytryptophan (5-HTP) on the pineal gland and intestinal tract MLT synthesis of sheep. MATERIAL AND METHODS Eighteen Kazakh sheep were assigned randomly to 3 diet groups: control group (CT, corn-soybean meal basal diet), CT+111 group (111 mg/kg BW RP 5-HTP), and CT+222 group (222 mg/kg BW RP 5-HTP). The gene expressions of aromatic amino acid decarboxylase (AADC), arylalkylamine N-acetyltransferase (AA-NAT), hydroxyindole-O-methyltransferase (HIOMT), monoamine oxidase A (MAOA), and the intermediates of MLT synthesis were observed from the pineal gland and intestinal tract by the reverse transcription (RT)-PCR method. The 5-HTP, 5-HT, N-acetylserotonin (NAS), MLT, and 5-hydroxyindole acetic acid (5-HIAA) contents in the pineal gland and intestinal tract were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry. RESULTS The study showed that the pineal gland HIOMT expression (P<0.05), MLT (P<0.05) and 5-HIAA (P<0.05) levels in the 222 mg/kg group significantly increased compared to those in the CT and CT+111 mg/kg groups. In addition, the AADC (P<0.01) and AA-NAT (P<0.05) gene expression levels in the duodenum and jejunum were increased by the supplementation of RP 5-HTP. CONCLUSIONS Rumen-protected 5-hydroxytryptophan promoted melatonin synthesis in the pineal gland and intestinal tract during the natural light period.
Collapse
Affiliation(s)
- Fang Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Chen Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Guodong Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Gen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
17
|
Ma N, Ma X. Dietary Amino Acids and the Gut-Microbiome-Immune Axis: Physiological Metabolism and Therapeutic Prospects. Compr Rev Food Sci Food Saf 2018; 18:221-242. [DOI: 10.1111/1541-4337.12401] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology; China Agricultural Univ.; Beijing 100193 China
- College of Animal Science and Technology; Shihezi Univ.; Xinjiang 832003 China
- Dept. of Internal Medicine; Dept. of Biochemistry; Univ. of Texas Southwestern Medical Center; Dallas TX 75390 USA
| |
Collapse
|
18
|
Efficacy and safety of different doses of moxibustion for irritable bowel syndrome: A randomised controlled pilot trial. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Tuncalı B, Araz C, Çelebi A. Ambulatory colonoscopy under sedoanalgesia in adult patients with and without irritable bowel syndrome: A prospective, cross-sectional, and double-blind comparison. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2018; 29:335-341. [PMID: 29755018 PMCID: PMC6284661 DOI: 10.5152/tjg.2018.17590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/14/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS It is unclear whether patients with irritable bowel syndrome (IBS) require a high dose of sedatives during colonoscopy. In this study, we investigated the pre-procedural anxiety levels, sedative consumption, procedure times, complications, and patient's satisfaction between patients with IBS and controls for ambulatory colonoscopy under sedation. MATERIALS AND METHODS Rome III criteria were used in the diagnosis of IBS. Anxiety levels were measured using Spielberger's State-Trait Anxiety Inventory (STAI) and Beck Anxiety Inventory (BAI). Patients received a fixed dose of midazolam (0.02 mg/kg), fentanyl (1 μg/kg), ketamine (0.3 mg/kg), and incremental doses of propofol under sedation protocol. Demographic data, heart rate, blood pressure, and oxygen saturation were measured. Procedure times, recovery and discharge times, drug doses used, complications associated with the sedation, and patient's satisfaction scores were also recorded. RESULTS The mean Trait (p=0.015), State (p=0.029), Beck anxiety scores (p=0.018), the incidence of disruptive movements (p=0.044), and the amount of propofol (p=0. 024) used were significantly higher in patients with IBS. There was a decline in mean systolic blood pressure at the 6th minute in patients with IBS (p=0.026). No association was found between the sedative requirement and the anxiety scores. CONCLUSION Patients with IBS who underwent elective colonoscopy procedures expressed higher pre-procedural anxiety scores, required more propofol consumption, and experienced more disruptive movements compared with controls. On the contrary, the increased propofol consumption was not associated with the increased pre-procedural anxiety scores.
Collapse
Affiliation(s)
- Bahattin Tuncalı
- Department of Anesthesiology, Başkent University Zübeyde Hanım Practice and Research Center, İzmir, Turkey
| | - Coşkun Araz
- Department of Anesthesiology, Başkent University School of Medicine, Ankara, Turkey
| | - Arzu Çelebi
- Department of Gastroenterology, Başkent University Zübeyde Hanım Practice and Research Center, İzmir, Turkey
| |
Collapse
|
20
|
Cao YN, Feng LJ, Liu YY, Jiang K, Zhang MJ, Gu YX, Wang BM, Gao J, Wang ZL, Wang YM. Effect of Lactobacillus rhamnosus GG supernatant on serotonin transporter expression in rats with post-infectious irritable bowel syndrome. World J Gastroenterol 2018; 24:338-350. [PMID: 29391756 PMCID: PMC5776395 DOI: 10.3748/wjg.v24.i3.338] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effect of Lactobacillus rhamnosus GG supernatant (LGG-s) on the expression of serotonin transporter (SERT) in rats with post-infectious irritable bowel syndrome (PI-IBS).
METHODS Campylobacter jejuni 81-176 (1010 CFU/mL) was used to induce intestinal infection to develop a PI-IBS model. After evaluation of the post-infectious phase by biochemical tests, DNA agarose gel electrophoresis, abdominal withdrawal reflex (AWR) test, and the intestinal motility test, four PI-IBS groups received different concentrations of LGG-s for 4 wk. The treatments were maintained for 1.0, 2.0, 3.0 or 4.0 wk during the experiment, and the colons and brains were removed for later use each week. SERT mRNA and protein levels were detected by real-time PCR and Western blot, respectively.
RESULTS The levels of SERT mRNA and protein in intestinal tissue were higher in rats treated with LGG-s than in control rats and PI-IBS rats gavaged with PBS during the whole study. Undiluted LGG-s up-regulated SERT mRNA level by 2.67 times compared with the control group by week 2, and SERT mRNA expression kept increasing later. Double-diluted LGG-s was similar to undiluted-LGG-s, resulting in high levels of SERT mRNA. Triple-diluted LGG-s up-regulated SERT mRNA expression level by 6.9-times compared with the control group, but SERT mRNA expression decreased rapidly at the end of the second week. At the first week, SERT protein levels were basically comparable in rats treated with undiluted LGG-s, double-diluted LGG-s, and triple-diluted LGG-s, which were higher than those in the control group and PBS-treated PI-IBS group. SERT protein levels in the intestine were also comparable in rats treated with undiluted LGG-s, double-diluted LGG-s, and triple-diluted LGG-s by the second and third weeks. SERT mRNA and protein levels in the brain had no statistical difference in the groups during the experiment.
CONCLUSION LGG-s can up-regulate SERT mRNA and protein levels in intestinal tissue but has no influence in brain tissue in rats with PI-IBS.
Collapse
Affiliation(s)
- Ya-Nan Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li-Juan Feng
- Department of Functional Division, Xingtai People’s Hospital, Xingtai 054031, Hebei Province, China
| | - Yuan-Yuan Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mao-Jun Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi-Xin Gu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jia Gao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ze-Lan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
21
|
Mujagic Z, Jonkers DMAE, Ludidi S, Keszthelyi D, Hesselink MA, Weerts ZZRM, Kievit RN, Althof JF, Leue C, Kruimel JW, van Schooten FJ, Masclee AAM. Biomarkers for visceral hypersensitivity in patients with irritable bowel syndrome. Neurogastroenterol Motil 2017; 29. [PMID: 28675524 DOI: 10.1111/nmo.13137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Increased visceral sensitivity is observed in up to 60% of patients with Irritable Bowel Syndrome (IBS). Mucosal inflammation, altered neuroendocrine activity and intraluminal metabolic processes may contribute to the development of visceral hypersensitivity. Previously, we demonstrated that biomarkers, indicative for these biological processes, were altered in IBS patients compared to healthy controls. However, how these processes relate to visceral hypersensitivity is unknown. AIM The aim of this study was to provide insight in biological processes associated with visceral hypersensitivity. Fecal and plasma biomarkers were measured in normosensitive and hypersensitive IBS patients. METHODS A total of 167 IBS patients underwent a rectal barostat procedure to assess visceral sensitivity to pain. Based on the outcome, patients were classified into a normosensitive or hypersensitive group. Calprotectin, human β-defensin 2 (HBD2), chromogranin A (CgA), and short chain fatty acids (SCFAs) were measured in feces, citrulline in plasma, and serotonin and its main metabolite 5-hydroxyindoleacetic acid (5-HIAA) in platelet-poor plasma. KEY RESULTS Fecal markers and plasma citrulline were measured in 83 hypersensitive and 84 normosensitive patients, while platelet-poor plasma for the assessment of serotonin and 5-HIAA was available for a subgroup, i.e. 53 hypersensitive and 42 normosensitive patients. No statistically significant differences were found in concentrations of biomarkers between groups. Adjustment of the analyses for potential confounders, such as medication use, did not alter this conclusion. CONCLUSIONS & INFERENCES Our findings do not support a role for the biological processes as ascertained by biomarkers in visceral hypersensitivity in IBS patients. This study is registered in the US National Library of Medicine (clinicaltrials.gov, NCT00775060).
Collapse
Affiliation(s)
- Z Mujagic
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
- Top Institute Food & Nutrition (TiFN), Wageningen, The Netherlands
| | - D M A E Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
- Top Institute Food & Nutrition (TiFN), Wageningen, The Netherlands
| | - S Ludidi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - D Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M A Hesselink
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Z Z R M Weerts
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - R N Kievit
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J F Althof
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - C Leue
- Department of Psychiatry and Psychology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W Kruimel
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F J van Schooten
- Top Institute Food & Nutrition (TiFN), Wageningen, The Netherlands
- Department of Pharmacology and Toxicology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
22
|
Abstract
OBJECTIVE During the last decade, experimental and observational studies have shown that patients with inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) may have an altered intestinal microbial composition compared with healthy individuals. However, no uniform microbial signature has as yet been detected for either IBD or IBS. This review summarizes the current knowledge of microbial dysbiosis and its potential relationship to the pathophysiology in IBD and IBS. METHODS A selective review was conducted to summarize the current knowledge of gut microbiota in the pathophysiology of IBD and IBS. RESULTS Experimental and observational studies provide good evidence for intestinal microbial dysbiosis in subgroups of IBD and IBS. Still, no uniform disease pattern has been detected. This is most likely due to the heterogeneous nature of IBD and IBS, in combination with the effects of intrinsic and extrinsic factors. Such intrinsic factors include genetics, the gastrointestinal environment, and the host immune system, whereas extrinsic factors include early life diet, breastfeeding, and method of infant delivery. CONCLUSIONS Recent and ongoing work to define microbial dysbiosis in IBD and IBS shows promise, but future well-designed studies with well-characterized study individuals are needed. It is likely that the microbial dysbiosis in IBD and IBS is dependent on the natural disease course of IBD and symptom pattern in IBS. Therefore, assessment of the entire microbiota along the gastrointestinal tract, in relationship to confounding factors, symptom fluctuations, and other pathophysiological factors, is needed for further understanding of the etiology of these common diseases.
Collapse
|
23
|
Fabisiak A, Włodarczyk J, Fabisiak N, Storr M, Fichna J. Targeting Histamine Receptors in Irritable Bowel Syndrome: A Critical Appraisal. J Neurogastroenterol Motil 2017; 23:341-348. [PMID: 28551943 PMCID: PMC5503283 DOI: 10.5056/jnm16203] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/10/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022] Open
Abstract
Irritable bowel syndrome is a group of functional gastrointestinal disorders with not yet fully clarified etiology. Recent evidence suggesting that mast cells may play a central role in the pathogenesis of irritable bowel syndrome paves the way for agents targeting histamine receptors as a potential therapeutic option in clinical treatment. In this review, the role of histamine and histamine receptors is debated. Moreover, the clinical evidence of anti-histamine therapeutics in irritable bowel syndrome is discussed.
Collapse
Affiliation(s)
- Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
| | - Natalia Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
| | - Martin Storr
- Center of Endoscopy, Starnberg,
Germany
- Walter Brendel Center of Experimental Medicine, Ludwig Maximilians University of Munich, Munich,
Germany
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
- Correspondence: Jakub Fichna, PhD, DSc, Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland, Tel: +48-42-272-5707, Fax: +48-42-272-5694, E-mail:
| |
Collapse
|
24
|
Bai T, Li Y, Xia J, Jiang Y, Zhang L, Wang H, Qian W, Song J, Hou X. Piezo2: A Candidate Biomarker for Visceral Hypersensitivity in Irritable Bowel Syndrome? J Neurogastroenterol Motil 2017; 23:453-463. [PMID: 28044050 PMCID: PMC5503296 DOI: 10.5056/jnm16114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Currently, there exists no biomarker for visceral hypersensitivity in irritable bowel syndrome (IBS). Piezo proteins have been proven to play an important role in the mechanical stimulation to induce visceral pain in other tissues and may also be a biomarker candidate. The aim of this study was to test the expressions of Piezo1 and Piezo2 proteins in the intestinal epithelial cells from different intestinal segments and to explore the correlation between Piezo proteins expression and visceral pain threshold. Methods Post-infectious IBS was induced in mice via a Trichinella spiralis infection. Visceral sensitivity was measured with abdominal withdrawal reflex to colorectal distention. Inflammation in the small intestine and colon was scored with H&E staining. Expression location of Piezo proteins was confirmed by immunohistochemistry. Abundance of Piezo proteins were measured with real-time reverse transcriptase polymerase chain reaction. Results Piezo1 and Piezo2 proteins were expressed in the intestinal epithelial cells. The expression levels of Piezo1 and Piezo2 were abundant in the colon than the small intestine (P < 0.001 for Piezo1, P = 0.003 for Piezo2). Expression of Piezo2 in the colon significantly correlated to the visceral sensitivity (r = −0.718, P = 0.001) rather than the mucosal inflammation. Conclusion Piezo2 is a candidate biomarker for visceral hypersensitivity in IBS.
Collapse
Affiliation(s)
- Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xia
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yudong Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Bhattarai Y, Schmidt BA, Linden DR, Larson ED, Grover M, Beyder A, Farrugia G, Kashyap PC. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT 3 receptor expression via acetate production. Am J Physiol Gastrointest Liver Physiol 2017; 313:G80-G87. [PMID: 28408644 PMCID: PMC5538830 DOI: 10.1152/ajpgi.00448.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 01/31/2023]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT3 and 5-HT4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (ΔIsc) in GF compared with HM mice. Additionally, 5-HT3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT3 receptor antagonist, inhibited 5-HT-evoked ΔIsc in GF mice but not in HM mice. Furthermore, a 5-HT3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher ΔIsc in GF compared with HM mice. Immunohistochemistry in 5-HT3A-green fluorescent protein mice localized 5-HT3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked ΔIsc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT3 receptor expression via acetate production. Epithelial 5-HT3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion.NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT3 receptor expression in colonoids.View this article's corresponding video summary at https://www.youtube.com/watch?v=aOMYJMuLTcw&feature=youtu.be.
Collapse
Affiliation(s)
- Yogesh Bhattarai
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota;
| | - Bradley A. Schmidt
- 3Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- 3Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Eric D. Larson
- 2Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Madhusudan Grover
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota;
| | - Arthur Beyder
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota;
| | - Gianrico Farrugia
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota;
| | - Purna C. Kashyap
- 1Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
26
|
Serotonin transporter gene promoter methylation status correlates with in vivo prefrontal 5-HTT availability and reward function in human obesity. Transl Psychiatry 2017; 7:e1167. [PMID: 28675387 PMCID: PMC5538116 DOI: 10.1038/tp.2017.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/08/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022] Open
Abstract
A polymorphism in the promoter region of the human serotonin transporter (5-HTT)-coding SLC6A4 gene (5-HTTLPR) has been implicated in moderating susceptibility to stress-related psychopathology and to possess regulatory functions on human in vivo 5-HTT availability. However, data on a direct relation between 5-HTTLPR and in vivo 5-HTT availability have been inconsistent. Additional factors such as epigenetic modifications of 5-HTTLPR might contribute to this association. This is of particular interest in the context of obesity, as an association with 5-HTTLPR hypermethylation has previously been reported. Here, we tested the hypothesis that methylation rates of 14 cytosine-phosphate-guanine (CpG) 5-HTTLPR loci, in vivo central 5-HTT availability as measured with [11C]DASB positron emission tomography (PET) and body mass index (BMI) are related in a group of 30 obese (age: 36±10 years, BMI>35 kg/m2) and 14 normal-weight controls (age 36±7 years, BMI<25 kg/m2). No significant association between 5-HTTLPR methylation and BMI overall was found. However, site-specific elevations in 5-HTTLPR methylation rates were significantly associated with lower 5-HTT availability in regions of the prefrontal cortex (PFC) specifically within the obese group when analyzed in isolation. This association was independent of functional 5-HTTLPR allelic variation. In addition, negative correlative data showed that CpG10-associated 5-HTT availability determines levels of reward sensitivity in obesity. Together, our findings suggest that epigenetic mechanisms rather than 5-HTTLPR alone influence in vivo 5-HTT availability, predominantly in regions having a critical role in reward processing, and this might have an impact on the progression of the obese phenotype.
Collapse
|
27
|
Chai Y, Huang Y, Tang H, Tu X, He J, Wang T, Zhang Q, Xiong F, Li D, Qiu Z. Role of stem cell growth factor/c-Kit in the pathogenesis of irritable bowel syndrome. Exp Ther Med 2017; 13:1187-1193. [PMID: 28413456 PMCID: PMC5377426 DOI: 10.3892/etm.2017.4133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disease with a complicated etiopathogenesis, often characterized by gastrointestinal motility disorder and high visceral sensitivity. IBS is a comprehensive multi-systemic disorder, with the interaction of multiple factors, such as mental stress, intestinal function and flora, heredity, resulting in the disease. The existence of a common mechanism underlying the aforementioned factors is currently unknown. The lack of therapies that comprehensively address the disease symptoms, including abdominal pain and diarrhea, is a limitation of current IBS management. The current review has explored the role of the SCF/c-Kit receptor/ligand system in IBS. The SCF/c-Kit system constitutes a classical ligand/receptor tyrosine kinase signaling system that mediates inflammation and smooth muscle contraction. Additionally, it provides trophic support to neural crest-derived cell types, including the enteric nervous system and mast cells. The regulation of SCF/c-Kit on the interstitial cells of Cajal (ICC) suggest that it may play a key role in the aberrant intestinal dynamics and high visceral sensitivity observed in IBS. The role of the SCF/c-Kit system in intestinal motility, inflammation and nerve growth has been reported. From the available biomedical evidence on the pathogenesis of IBS, it has been concluded that the SCF-c-Kit system is a potential therapeutic target for rational drug design in the treatment of IBS.
Collapse
Affiliation(s)
- Yuna Chai
- Pharmaceutical Department, First Affiliated Hospital of Zhengzhou University of Chinese Medicine, Zhengzhou, Henan 450052, P.R. China.,Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yusheng Huang
- Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Hongmei Tang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xing Tu
- Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine of Hubei University for Nationalities, Enshi, Hubei 445000, P.R. China
| | - Jianbo He
- Department of Orthopedics, The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ting Wang
- Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qingye Zhang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fen Xiong
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Detang Li
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhenwen Qiu
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
28
|
Holtmann GJ, Ford AC, Talley NJ. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol Hepatol 2016; 1:133-146. [DOI: 10.1016/s2468-1253(16)30023-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 11/25/2022]
|
29
|
Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 2016; 28:620-30. [PMID: 26691223 PMCID: PMC4842178 DOI: 10.1111/nmo.12754] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Specialized endoderm-derived epithelial cells, that is, enteroendocrine cells (EECs), are widely distributed throughout the gastrointestinal (GI) tract. Enteroendocrine cells form the largest endocrine organ in the body and play a key role in the control of GI secretion and motility, the regulation of food intake, postprandial glucose levels and metabolism. EECs sense luminal content and release signaling molecules that can enter the circulation to act as classic hormones on distant targets, act locally on neighboring cells and on distinct neuronal pathways including enteric and extrinsic neurons. Recent studies have shed light on EEC sensory transmission by showing direct connections between EECs and the nervous system via axon-like processes that form a well-defined neuroepithelial circuits through which EECs can directly communicate with the neurons innervating the GI tract to initiate appropriate functional responses. PURPOSE This review will highlight the role played by the EECs in the complex and integrated sensory information responses, and discuss the new findings regarding EECs in the brain-gut axis bidirectional communication.
Collapse
Affiliation(s)
- R Latorre
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C Sternini
- CURE Digestive Diseases Research Center, Division of Digestive Diseases and Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - R De Giorgio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
30
|
Evolution of tryptophan and its foremost metabolites’ concentrations in milk and fermented dairy products. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Mujagic Z, Keszthelyi D, Thijssen AY, Jonkers DMAE, Masclee AAM. Editorial: serotonin and irritable bowel syndrome--reconciling pharmacological effects with basic biology; authors' reply. Aliment Pharmacol Ther 2016; 43:646-7. [PMID: 26843337 DOI: 10.1111/apt.13506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Z Mujagic
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands. .,NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - D Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.,NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - A Y Thijssen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.,NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - D M A E Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.,NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.,NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|