1
|
Brown RM, Le HH, Babcock IW, Harris TH, Gaultier A. Functional analysis of antigen presentation by enteric glial cells during intestinal inflammation. Glia 2025; 73:291-308. [PMID: 39495092 DOI: 10.1002/glia.24632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
The Enteric Nervous System is composed of a vastly interconnected network of neurons and glial cells that coordinate to regulate homeostatic gut function including intestinal motility, nutrient sensing, and mucosal barrier immunity. Enteric Glial Cells (EGCs) are a heterogeneous cell population located throughout the gastrointestinal tract and have well described roles in regulating intestinal immune responses. Enteric Glial Cells have been suggested to act as nonconventional antigen presenting cells via the Major Histocompatibility Complex II (MHC II), though this has not been confirmed functionally. Here, we investigate the capability of EGCs to present antigen on MHC I and MHC II using in vitro antigen presentation assays performed with primary murine EGC cultures. We found that EGCs are capable of functional antigen presentation on MHC I, including antigen cross-presentation, but are not capable of functional antigen presentation on MHC II. We also determined EGC cell surface MHC I and MHC II expression levels by flow cytometry during intestinal inflammation during Dextran Sodium Sulfate-induced colitis or acute Toxoplasma gondii infection. We found that EGCs upregulate MHC I during acute T. gondii infection and induce low-level MHC II expression. These findings suggest that EGCs may be important in the regulation of CD8+ T cell responses via MHC I mediated antigen (cross) presentation but may not be relevant for MHC II-mediated antigen presentation.
Collapse
Affiliation(s)
- Ryan M Brown
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Helen H Le
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Isaac W Babcock
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tajie H Harris
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Gimenes GM, Pereira JNB, Borges da Silva E, dos Santos AAC, Rodrigues TM, Santana GDO, Scervino MVM, Pithon-Curi TC, Hirabara SM, Gorjão R, Curi R. Intestinal Motility Dysfunction in Goto-Kakizaki Rats: Role of the Myenteric Plexus. Cells 2024; 13:1626. [PMID: 39404390 PMCID: PMC11475219 DOI: 10.3390/cells13191626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus is associated with changes in intestinal morphology and the enteric nervous system. We previously reported constipation in Goto-Kakizaki (GK) rats, a non-obese model for type 2 diabetes mellitus. AIM The morpho-quantitative analysis of myenteric plexus neurons in the small and large intestines of 120-day-old male GK rats was investigated. METHODS The diabetes was confirmed by high fasting blood glucose levels. The myenteric plexus was evaluated through wholemount immunofluorescence. The morpho-quantitative analyses included evaluating neuronal density (neurons per ganglion) of the total neuronal population, the cholinergic and nitrergic subpopulations, and enteric glial cells per ganglion. The cell body area of 100 neurons per segment per animal was measured. RESULTS The total neurons and nitrergic subpopulation were unaltered in the GK rats' small and large intestines. The cholinergic subpopulation exhibited decreased density in the three segments of the small intestine and an increased number in the proximal colon of the GK rats. The number of enteric glial cells increased in the ileum of the GK rats, which could indicate enteric gliosis caused by the intestinal inflammatory state. The area of the cell body was increased in the total neuronal population of the jejunum and ileum of the GK rats. Frequency histograms of the cell body area distribution revealed the contribution of cholinergic neurons to larger areas in the jejunum and nitrergic neurons in the ileum. CONCLUSION The constipation previously reported in GK rats might be explained by the decrease in the density of cholinergic neurons in the small intestine of this animal model.
Collapse
Affiliation(s)
- Gabriela Mandú Gimenes
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | | | - Eliane Borges da Silva
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Alef Aragão Carneiro dos Santos
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Thais Martins Rodrigues
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Giovanna de Oliveira Santana
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Maria Vitoria Martins Scervino
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
- Butantan Institute, São Paulo 05585-000, Brazil
| |
Collapse
|
3
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
de Jesus LB, Frota AF, de Araújo FM, de Jesus RLC, Costa MDFD, de Vasconcelos DFSA, Gois MB, Baccan GC, da Silva VDA, Costa SL. Effect of the Flavonoid Rutin on the Modulation of the Myenteric Plexuses in an Experimental Model of Parkinson's Disease. Int J Mol Sci 2024; 25:1037. [PMID: 38256111 PMCID: PMC10815896 DOI: 10.3390/ijms25021037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Recent discoveries have shown that enteric glial cells play an important role in different neurodegenerative disorders, such as Parkinson's disease (PD), which is characterized by motor dysfunctions caused by the progressive loss of dopaminergic neurons in the substance nigra pars compacta and non-motor symptoms including gastrointestinal dysfunction. In this study, we investigated the modulatory effects of the flavonoid rutin on the behavior and myenteric plexuses in a PD animal model and the response of enteric glia. Adult male Wistar rats were submitted to stereotaxic injection with 6-hydroxydopamine or saline, and they were untreated or treated with rutin (10 mg/kg) for 14 days. The ileum was collected to analyze tissue reactivity and immunohistochemistry for neurons (HuC/HuD) and enteric glial cells (S100β) in the myenteric plexuses. Behavioral tests demonstrated that treatment with rutin improved the motor capacity of parkinsonian animals and improved intestinal transit without interfering with the cell population; rutin treatment modulated the reactivity of the ileal musculature through muscarinic activation, reducing relaxation through the signaling pathway of nitric oxide donors, and increased the longitudinal contractility of the colon musculature in parkinsonian animals. Rutin revealed modulatory activities on the myenteric plexus, bringing relevant answers regarding the effect of the flavonoid in this system and the potential application of PD adjuvant treatment.
Collapse
Affiliation(s)
- Livia Bacelar de Jesus
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
| | - Annyta Fernandes Frota
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
| | - Fillipe Mendes de Araújo
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
| | - Rafael Leonne Cruz de Jesus
- Cardiovascular Physiology and Pharmacology Laboratory, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (R.L.C.d.J.); (D.F.S.A.d.V.)
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Marcelo Biondaro Gois
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis 78736-900, MT, Brazil;
| | - Gyselle Chrystina Baccan
- Laboratory of Neuroendocrine-Immunology, Federal University of Bahia, Salvador 40170-110, BA, Brazil;
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
5
|
Lianguzova A, Arbuzova N, Laskova E, Gafarova E, Repkin E, Matach D, Enshina I, Miroliubov A. Tricks of the puppet masters: morphological adaptations to the interaction with nervous system underlying host manipulation by rhizocephalan barnacle Polyascus polygeneus. PeerJ 2023; 11:e16348. [PMID: 38025701 PMCID: PMC10655712 DOI: 10.7717/peerj.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background Rhizocephalan interaction with their decapod hosts is a superb example of host manipulation. These parasites are able to alter the host's physiology and behavior. Host-parasite interaction is performed, presumably, via special modified rootlets invading the ventral ganglions. Methods In this study, we focus on the morphology and ultrastructure of these special rootlets in Polyascus polygeneus (Lützen & Takahashi, 1997), family Polyascidae, invading the neuropil of the host's nervous tissue. The ventral ganglionic mass of the infected crabs were fixed, and the observed sites of the host-parasite interplay were studied using transmission electron microscopy, immunolabeling and confocal microscopy. Results The goblet-shaped organs present in the basal families of parasitic barnacles were presumably lost in a common ancestor of Polyascidae and crown "Akentrogonida", but the observed invasive rootlets appear to perform similar functions, including the synthesis of various substances which are transferred to the host's nervous tissue. Invasive rootlets significantly differ from trophic ones in cell layer composition and cuticle thickness. Numerous multilamellar bodies are present in the rootlets indicating the intrinsic cell rearrangement. The invasive rootlets of P. polygeneus are enlaced by the thin projections of glial cells. Thus, glial cells can be both the first hosts' respondents to the nervous tissue damage and the mediator of the rhizocephalan interaction with the nervous cells. One of the potential molecules engaged in the relationships of P. polygeneus and its host is serotonin, a neurotransmitter which is found exclusively in the invasive rootlets but not in trophic ones. Serotonin participates in different biological pathways in metazoans including the regulation of aggression in crustaceans, which is reduced in infected crabs. We conclude that rootlets associated with the host's nervous tissue are crucial for the regulation of host-parasite interplay and for evolution of the Rhizocephala.
Collapse
Affiliation(s)
- Anastasia Lianguzova
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Science, St Petersburg, Russian Federation
| | - Natalia Arbuzova
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Science, St Petersburg, Russian Federation
| | - Ekaterina Laskova
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
| | - Elizaveta Gafarova
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
| | - Egor Repkin
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
- Research Park, Center for Molecular and Cell Technologies, St. Petersburg State University, St Petersburg, Russian Federation
| | - Dzmitry Matach
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
| | - Irina Enshina
- Department of Invertebrate Zoology, St. Petersburg State University, St Petersburg, Russian Federation
| | - Aleksei Miroliubov
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Science, St Petersburg, Russian Federation
| |
Collapse
|
6
|
van Baarle L, Stakenborg M, Matteoli G. Enteric neuro-immune interactions in intestinal health and disease. Semin Immunol 2023; 70:101819. [PMID: 37632991 DOI: 10.1016/j.smim.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
The enteric nervous system is an autonomous neuronal circuit that regulates many processes far beyond the peristalsis in the gastro-intestinal tract. This circuit, consisting of enteric neurons and enteric glial cells, can engage in many intercellular interactions shaping the homeostatic microenvironment in the gut. Perhaps the most well documented interactions taking place, are the intestinal neuro-immune interactions which are essential for the fine-tuning of oral tolerance. In the context of intestinal disease, compelling evidence demonstrates both protective and detrimental roles for this bidirectional neuro-immune signaling. This review discusses the different immune cell types that are recognized to engage in neuronal crosstalk during intestinal health and disease. Highlighting the molecular pathways involved in the neuro-immune interactions might inspire novel strategies to target intestinal disease.
Collapse
Affiliation(s)
- Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Michelle Stakenborg
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Miranda Júnior NRD, Santos AGAD, Pereira AV, Mariano IA, Guilherme ALF, Santana PDL, Beletini LDF, Evangelista FF, Nogueira-Melo GDA, Sant'Ana DDMG. Rosuvastatin enhances alterations caused by Toxoplasma gondii in the duodenum of mice. Tissue Cell 2023; 84:102194. [PMID: 37597359 DOI: 10.1016/j.tice.2023.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Infection by Toxoplasma gondii may compromise the intestinal histoarchitecture through the tissue reaction triggered by the parasite. Thus, this study evaluated whether treatment with rosuvastatin modifies duodenal changes caused by the chronic infection induced by cysts of T. gondii. For this, female Swiss mice were distributed into infected and treated group (ITG), infected group (IG), group treated with 40 mg/kg rosuvastatin (TG) and control group (CG). After 72 days of infection, the animals were euthanized, the duodenum was collected and processed for histopathological analysis. We observed an increase in immune cell infiltration in the IG, TG and ITG groups, with injury to the Brunner glands. The infection led to a reduction in collagen fibers and mast cells. Infected and treated animals showed an increase in collagen fibers, acidic mucin-producing goblet cells, intraepithelial lymphocytes and mast cells, in addition to the reduction of muscle, neutral mucin-producing and Paneth cells. While treatment with rosuvastatin alone led to increased muscle layer, proportion of neutral mucin-producing goblet cells, Paneth cells, and reduction of collagen fibers. These findings indicate that the infection and treatment caused changes in the homeostasis of the intestinal wall and treatment with rosuvastatin potentiated most parameters indicative of inflammation.
Collapse
Affiliation(s)
- Nelson Raimundo de Miranda Júnior
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Amanda Gubert Alves Dos Santos
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Andréia Vieira Pereira
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Isabela Alessandra Mariano
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Ana Lucia Falavigna Guilherme
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Priscilla de Laet Santana
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Lucimara de Fátima Beletini
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Fernanda Ferreira Evangelista
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil.
| |
Collapse
|
8
|
Gimenes GM, Santana GO, Scervino MVM, Curi R, Pereira JNB. A short review on the features of the non-obese diabetic Goto-Kakizaki rat intestine. Braz J Med Biol Res 2022; 55:e11910. [PMID: 36000611 PMCID: PMC9394691 DOI: 10.1590/1414-431x2022e11910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
The Goto-Kakizaki (GK) rat is a non-obese experimental model of type 2 diabetes
mellitus (T2DM) that allows researchers to monitor diabetes-induced changes
without jeopardizing the effects of obesity. This rat strain exhibits notable
gastrointestinal features associated with T2DM, such as marked alterations in
intestinal morphology, reduced intestinal motility, slow transit, and modified
microbiota compared to Wistar rats. The primary treatments for diabetic patients
include administration of hypoglycemic agents and insulin, and lifestyle
changes. Emerging procedures, including alternative therapies, metabolic
surgeries, and modulation of the intestinal microbiota composition, have been
shown to improve the diabetic state of GK rats. This review describes the
morpho-physiological diabetic-associated features of the gastrointestinal tract
(GIT) of GK rats. We also describe promising strategies, e.g., metabolic surgery
and modulation of gut microbiota composition, used to target the GIT of this
animal model to improve the diabetic state.
Collapse
Affiliation(s)
- G M Gimenes
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - G O Santana
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - M V M Scervino
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil.,Centro Bioindustrial, Instituto Butantan, São Paulo, SP, Brasil
| | - J N B Pereira
- Laboratório Estratégico de Diagnóstico Molecular, Instituto Butantan, São Paulo, SP, Brasil
| |
Collapse
|
9
|
Almeida PPD, Thomasi BBDM, Costa NDS, Valdetaro L, Pereira AD, Gomes ALT, Stockler-Pinto MB. Brazil Nut ( Bertholletia excelsa H.B.K) Retards Gastric Emptying and Modulates Enteric Glial Cells in a Dose-Dependent Manner. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 41:157-165. [PMID: 33301378 DOI: 10.1080/07315724.2020.1852981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The role of food and nutrients in the regulation of enteric glial cell functions is unclear. Some foods influence enteric neurophysiology and can affect glial cell functions that include regulation of the intestinal barrier, gastric emptying, and colonic transit. Brazil nuts are the most abundant natural source of selenium, unsaturated fatty acids, fibers, and polyphenols. OBJECTIVE The study investigated the effects of a Brazil nut-enriched diet on enteric glial cells and gastrointestinal transit. METHODS Two-month-old male Wistar rats were randomized to a standard diet (control group, CG), standard diet containing 5% (wt/wt) Brazil nut (BN5), and standard diet containing 10% (wt/wt) Brazil nut (BN10) (n = 9 per group). After eight weeks, the animals underwent constipation and gastric emptying tests to assess motility. Evaluations of colonic immunofluorescence staining for glial fibrillary acidic protein (GFAP) and myenteric ganglia area were performed. RESULTS The BN5 group showed increased weight gain while the BN10 group did not (p < 0.0001). The BN10 group showed higher gastric residue amounts compared to the other groups (p = 0.0008). The colon exhibited an increase in GFAP immunoreactivity in the BN5 group compared to that in the other groups (p = 0.0016), and the BN10 group presented minor immunoreactivity compared to the CG (p = 0.04). The BN10 group presented a minor ganglia area compared to the CG (p = 0.0155). CONCLUSION The Brazil nut-enriched diet modified the gastric residual, colonic GFAP immunoreactivity, and myenteric ganglia area after eight weeks in healthy male Wistar rats.
Collapse
Affiliation(s)
| | | | - Nathalia da Silva Costa
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Luisa Valdetaro
- Postgraduate Program in Neurosciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Aline D'Avila Pereira
- Postgraduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ana Lúcia Tavares Gomes
- Postgraduate Program in Neurosciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
10
|
Correa Leite PE, de Araujo Portes J, Pereira MR, Russo FB, Martins-Duarte ES, Almeida Dos Santos N, Attias M, Barrantes FJ, Baleeiro Beltrão-Braga PC, de Souza W. Morphological and biochemical repercussions of Toxoplasma gondii infection in a 3D human brain neurospheres model. Brain Behav Immun Health 2021; 11:100190. [PMID: 34589727 PMCID: PMC8474451 DOI: 10.1016/j.bbih.2020.100190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background Toxoplasmosis is caused by the parasite Toxoplasma gondii that can infect the central nervous system (CNS), promoting neuroinflammation, neuronal loss, neurotransmitter imbalance and behavioral alterations. T. gondii infection is also related to neuropsychiatric disorders such as schizophrenia. The pathogenicity and inflammatory response in rodents are different to the case of humans, compromising the correlation between the behavioral alterations and physiological modifications observed in the disease. In the present work we used BrainSpheres, a 3D CNS model derived from human pluripotent stem cells (iPSC), to investigate the morphological and biochemical repercussions of T. gondii infection in human neural cells. Methods We evaluated T. gondii ME49 strain proliferation and cyst formation in both 2D cultured human neural cells and BrainSpheres. Aspects of cell morphology, ultrastructure, viability, gene expression of neural phenotype markers, as well as secretion of inflammatory mediators were evaluated for 2 and 4 weeks post infection in BrainSpheres. Results T. gondii can infect BrainSpheres, proliferating and inducing cysts formation, neural cell death, alteration in neural gene expression and triggering the release of several inflammatory mediators. Conclusions BrainSpheres reproduce many aspects of T. gondii infection in human CNS, constituting a useful model to study the neurotoxicity and neuroinflammation mediated by the parasite. In addition, these data could be important for future studies aiming at better understanding possible correlations between psychiatric disorders and human CNS infection with T. gondii. T. gondii infects, proliferates and induce cysts formation in neurospheres. T. gondii infection induces neural cell death in neurospheres. T. gondii infection promotes alteration in neural gene expression in neurospheres. T. gondii infection promotes release of inflammatory mediators in neurospheres.
Collapse
Affiliation(s)
- Paulo Emilio Correa Leite
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque de Caxias, RJ, Brazil
| | - Juliana de Araujo Portes
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Fabiele Baldino Russo
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Erica S Martins-Duarte
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathalia Almeida Dos Santos
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Marcia Attias
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Scientific Platform Pasteur-USP, São Paulo, SP, Brazil
| | - Wanderley de Souza
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Dos Santos AGA, da Silva MGL, Carneiro EL, de Lima LL, Fernandes ACBS, Silveira TGV, Sant'Ana DDMG, Nogueira-Melo GDA. A New Target Organ of Leishmania (Viannia) braziliensis Chronic Infection: The Intestine. Front Cell Infect Microbiol 2021; 11:687499. [PMID: 34336715 PMCID: PMC8317265 DOI: 10.3389/fcimb.2021.687499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023] Open
Abstract
Leishmania (Viannia) braziliensis is one of the main causes of cutaneous leishmaniasis in the Americas. This species presents genetic polymorphism that can cause destructive lesions in oral, nasal, and oropharyngeal tracts. In a previous study, the parasite caused several histopathological changes to hamster ileums. Our study evaluates immune response components, morphological changes, and effects on neurons in the ileums of hamsters infected by three different strains of L. (V.) braziliensis in two infection periods. For the experiment, we separated hamsters into four groups: a control group and three infected groups. Infected hamsters were euthanized 90- or 120-days post infection. We used three strains of L. (V.) braziliensis: the reference MHOM/BR/1975/M2903 and two strains isolated from patients who had different responses to Glucantime® treatment (MHOM/BR/2003/2314 and MHOM/BR/2000/1655). After laparotomy, ileums were collected for histological processing, biochemical analysis, and evaluation of neurons in the myenteric and submucosal plexuses of the enteric nervous system (ENS). The results demonstrated the increase of blood leukocytes after the infection. Optical microscopy analysis showed histopathological changes with inflammatory infiltrates, edemas, ganglionitis, and Leishmania amastigotes in the ileums of infected hamsters. We observed changes in the organ histoarchitecture of infected hamsters when compared to control groups, such as thicker muscular and submucosa layers, deeper and wider crypts, and taller and broader villi. The number of intraepithelial lymphocytes and TGF-β-immunoreactive cells increased in all infected groups when compared to the control groups. Mast cells increased with longer infection periods. The infection also caused remodeling of intestinal collagen and morphometry of myenteric and submucosal plexus neurons; but this effect was dependent on infection duration. Our results show that L. (V.) braziliensis infection caused time-dependent alterations in hamster ileums. This was demonstrated by the reduction of inflammatory cells and the increase of tissue regeneration factors at 120 days of infection. The infected groups demonstrated different profiles in organ histoarchitecture, migration of immune cells, and morphometry of ENS neurons. These findings suggest that the small intestine (or at least the ileum) is a target organ for L. (V.) braziliensis infection, as the infection caused changes that were dependent on duration and strain.
Collapse
Affiliation(s)
| | | | - Erick Lincoln Carneiro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Brazil
| | - Lainy Leiny de Lima
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Brazil.,Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Brazil.,Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
12
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
13
|
do Carmo Neto JR, Braga YLL, da Costa AWF, Lucio FH, do Nascimento TC, dos Reis MA, Celes MRN, de Oliveira FA, Machado JR, da Silva MV. Biomarkers and Their Possible Functions in the Intestinal Microenvironment of Chagasic Megacolon: An Overview of the (Neuro)inflammatory Process. J Immunol Res 2021; 2021:6668739. [PMID: 33928170 PMCID: PMC8049798 DOI: 10.1155/2021/6668739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The association between inflammatory processes and intestinal neuronal destruction during the progression of Chagasic megacolon is well established. However, many other components play essential roles, both in the long-term progression and control of the clinical status of patients infected with Trypanosoma cruzi. Components such as neuronal subpopulations, enteric glial cells, mast cells and their proteases, and homeostasis-related proteins from several organic systems (serotonin and galectins) are differentially involved in the progression of Chagasic megacolon. This review is aimed at revealing the characteristics of the intestinal microenvironment found in Chagasic megacolon by using different types of already used biomarkers. Information regarding these components may provide new therapeutic alternatives and improve the understanding of the association between T. cruzi infection and immune, endocrine, and neurological system changes.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arthur Wilson Florêncio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Hélia Lucio
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thais Cardoso do Nascimento
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marlene Antônia dos Reis
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mara Rubia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávia Aparecida de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
14
|
Pereira JNB, Murata GM, Sato FT, Marosti AR, Carvalho CRDO, Curi R. Small intestine remodeling in male Goto-Kakizaki rats. Physiol Rep 2021; 9:e14755. [PMID: 33580916 PMCID: PMC7881800 DOI: 10.14814/phy2.14755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Obesity is associated with the development of insulin resistance (IR) and type-2 diabetes mellitus (T2DM); however, not all patients with T2DM are obese. The Goto-Kakizaki (GK) rat is an experimental model of spontaneous and non-obese T2DM. There is evidence that the intestine contributes to IR development in GK animals. This information prompted us to investigate small intestine remodeling in this animal model. METHODS Four-month-old male Wistar (control) and GK rats were utilized for the present study. After removing the small intestine, the duodenum, proximal jejunum, and distal ileum were separated. We then measured villi and muscular and mucosa layer histomorphometry, goblet cells abundance, total myenteric and submucosal neuron populations, and inflammatory marker expression in the small intestinal segments and intestinal transit of both groups of animals. KEY RESULTS We found that the GK rats exhibited decreased intestinal area (p < 0.0001), decreased crypt depth in the duodenum (p = 0.01) and ileum (p < 0.0001), increased crypt depth in the jejunum (p < 0.0001), longer villi in the jejunum and ileum (p < 0.0001), thicker villi in the duodenum (p < 0.01) and ileum (p < 0.0001), thicker muscular layers in the duodenum, jejunum, and ileum (p < 0.0001), increased IL-1β concentrations in the duodenum and jejunum (p < 0.05), and increased concentrations of NF-κB p65 in the duodenum (p < 0.01), jejunum and ileum (p < 0.05). We observed high IL-1β reactivity in the muscle layer, myenteric neurons, and glial cells of the experimental group. GK rats also exhibited a significant reduction in submucosal neuron density in the jejunum and ileum, ganglionic hypertrophy in all intestinal segments studied (p < 0.0001), and a slower intestinal transit (about 25%) compared to controls. CONCLUSIONS The development of IR and T2DM in GK rats is associated with small intestine remodeling that includes marked alterations in small intestine morphology, local inflammation, and reduced intestinal transit.
Collapse
Affiliation(s)
| | | | - Fabio Takeo Sato
- Department of GeneticsEvolution, Microbiology and ImmunologyInstitute of BiologyState University of CampinasCampinasBrazil
| | | | | | - Rui Curi
- Interdisciplinary Post‐Graduate Program in Health SciencesCruzeiro do Sul UniversitySão PauloBrazil
- Department of Physiology and BiophysicsInstitute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Butantan InstituteSão PauloBrazil
| |
Collapse
|