1
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Testi S, Kuhn ML, Allasia V, Auroy P, Kong F, Peltier G, Pagnotta S, Cazareth J, Keller H, Panabières F. The Phytophthora parasitica effector AVH195 interacts with ATG8, attenuates host autophagy, and promotes biotrophic infection. BMC Biol 2024; 22:100. [PMID: 38679707 PMCID: PMC11057187 DOI: 10.1186/s12915-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Plant pathogens secrete effector proteins into host cells to suppress immune responses and manipulate fundamental cellular processes. One of these processes is autophagy, an essential recycling mechanism in eukaryotic cells that coordinates the turnover of cellular components and contributes to the decision on cell death or survival. RESULTS We report the characterization of AVH195, an effector from the broad-spectrum oomycete plant pathogen, Phytophthora parasitica. We show that P. parasitica expresses AVH195 during the biotrophic phase of plant infection, i.e., the initial phase in which host cells are maintained alive. In tobacco, the effector prevents the initiation of cell death, which is caused by two pathogen-derived effectors and the proapoptotic BAX protein. AVH195 associates with the plant vacuolar membrane system and interacts with Autophagy-related protein 8 (ATG8) isoforms/paralogs. When expressed in cells from the green alga, Chlamydomonas reinhardtii, the effector delays vacuolar fusion and cargo turnover upon stimulation of autophagy, but does not affect algal viability. In Arabidopsis thaliana, AVH195 delays the turnover of ATG8 from endomembranes and promotes plant susceptibility to P. parasitica and the obligate biotrophic oomycete pathogen Hyaloperonospora arabidopsidis. CONCLUSIONS Taken together, our observations suggest that AVH195 targets ATG8 to attenuate autophagy and prevent associated host cell death, thereby favoring biotrophy during the early stages of the infection process.
Collapse
Affiliation(s)
- Serena Testi
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- Present Address: Station Biologique de Roscoff, UMR8227 LBI2M, CNRS-Sorbonne Unversité, 29680, Roscoff, France
| | - Marie-Line Kuhn
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Valérie Allasia
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Pascaline Auroy
- Aix Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Fantao Kong
- Aix Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
- Present address: School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Gilles Peltier
- Aix Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Sophie Pagnotta
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, 06108, Nice, France
| | - Julie Cazareth
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06903, Sophia Antipolis, France
| | - Harald Keller
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.
| | - Franck Panabières
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| |
Collapse
|
3
|
Hu F, Fang D, Zhang W, Dong K, Ye Z, Cao J. Lateral root primordium: Formation, influencing factors and regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108429. [PMID: 38359556 DOI: 10.1016/j.plaphy.2024.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Roots are the primary determinants of water and nutrient uptake by plants. The structure of roots is largely determined by the repeated formation of new lateral roots (LR). A new lateral root primordium (LRP) is formed between the beginning and appearance of LR, which defines the organization and function of LR. Therefore, proper LRP morphogenesis is a crucial process for lateral root formation. The development of LRP is regulated by multiple factors, including hormone and environmental signals. Roots integrate signals and regulate growth and development. At the molecular level, many genes regulate the growth and development of root organs to ensure stable development plans, while also being influenced by various environmental factors. To gain a better understanding of the LRP formation and its influencing factors, this study summarizes previous research. The cell cycle involved in LRP formation, as well as the roles of ROS, auxin, other auxin-related plant hormones, and genetic regulation, are discussed in detail. Additionally, the effects of gravity, mechanical stress, and cell death on LRP formation are explored. Throughout the text unanswered or poorly understood questions are identified to guide future research in this area.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
4
|
Shinde R, Ayyanath MM, Shukla M, El Kayal W, Saxena P, Subramanian J. Hormonal Interplay Leading to Black Knot Disease Establishment and Progression in Plums. PLANTS (BASEL, SWITZERLAND) 2023; 12:3638. [PMID: 37896101 PMCID: PMC10609688 DOI: 10.3390/plants12203638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Black Knot (BK) is a deadly disease of European (Prunus domestics) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. After infection, the appearance of warty black knots indicates a phytohormonal imbalance in infected tissues. Based on this hypothesis, we quantified phytohormones such as indole-3-acetic acid, tryptophan, indoleamines (N-acetylserotonin, serotonin, and melatonin), and cytokinins (zeatin, 6-benzyladenine, and 2-isopentenyladenine) in temporally collected tissues of susceptible and resistant genotypes belonging to European and Japanese plums during of BK progression. The results suggested auxin-cytokinins interplay driven by A. morbosa appears to be vital in disease progression by hampering the plant defense system. Taken together, our results indicate the possibility of using the phytohormone profile as a biomarker for BK resistance in plums.
Collapse
Affiliation(s)
- Ranjeet Shinde
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada (M.-M.A.); (M.S.); (P.S.)
| | - Murali-Mohan Ayyanath
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada (M.-M.A.); (M.S.); (P.S.)
| | - Mukund Shukla
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada (M.-M.A.); (M.S.); (P.S.)
| | - Walid El Kayal
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON L0R 2E0, Canada;
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Praveen Saxena
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada (M.-M.A.); (M.S.); (P.S.)
| | - Jayasankar Subramanian
- Department of Plant Agriculture, University of Guelph, Vineland Station, ON L0R 2E0, Canada;
| |
Collapse
|
5
|
Vañó MS, Nourimand M, MacLean A, Pérez-López E. Getting to the root of a club - Understanding developmental manipulation by the clubroot pathogen. Semin Cell Dev Biol 2023; 148-149:22-32. [PMID: 36792438 DOI: 10.1016/j.semcdb.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.
Collapse
Affiliation(s)
- Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Maryam Nourimand
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Edel Pérez-López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
6
|
Interplay between phytohormone signalling pathways in plant defence - other than salicylic acid and jasmonic acid. Essays Biochem 2022; 66:657-671. [PMID: 35848080 PMCID: PMC9528083 DOI: 10.1042/ebc20210089] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Phytohormones are essential for all aspects of plant growth, development, and immunity; however, it is the interplay between phytohormones, as they dynamically change during these processes, that is key to this regulation. Hormones have traditionally been split into two groups: growth-promoting and stress-related. Here, we will discuss and show that all hormones play a role in plant defence, regardless of current designation. We highlight recent advances in our understanding of the complex phytohormone networks with less focus on archetypal immunity-related pathways and discuss protein and transcription factor signalling hubs that mediate hormone interplay.
Collapse
|
7
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
8
|
Navarrete F, Gallei M, Kornienko AE, Saado I, Khan M, Chia KS, Darino MA, Bindics J, Djamei A. TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. PLANT COMMUNICATIONS 2022; 3:100269. [PMID: 35529945 PMCID: PMC9073326 DOI: 10.1016/j.xplc.2021.100269] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/21/2021] [Accepted: 11/21/2021] [Indexed: 05/05/2023]
Abstract
In plants, the antagonism between growth and defense is hardwired by hormonal signaling. The perception of pathogen-associated molecular patterns (PAMPs) from invading microorganisms inhibits auxin signaling and plant growth. Conversely, pathogens manipulate auxin signaling to promote disease, but how this hormone inhibits immunity is not fully understood. Ustilago maydis is a maize pathogen that induces auxin signaling in its host. We characterized a U. maydis effector protein, Naked1 (Nkd1), that is translocated into the host nucleus. Through its native ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, Nkd1 binds to the transcriptional co-repressors TOPLESS/TOPLESS-related (TPL/TPRs) and prevents the recruitment of a transcriptional repressor involved in hormonal signaling, leading to the de-repression of auxin and jasmonate signaling and thereby promoting susceptibility to (hemi)biotrophic pathogens. A moderate upregulation of auxin signaling inhibits the PAMP-triggered reactive oxygen species (ROS) burst, an early defense response. Thus, our findings establish a clear mechanism for auxin-induced pathogen susceptibility. Engineered Nkd1 variants with increased expression or increased EAR-mediated TPL/TPR binding trigger typical salicylic-acid-mediated defense reactions, leading to pathogen resistance. This implies that moderate binding of Nkd1 to TPL is a result of a balancing evolutionary selection process to enable TPL manipulation while avoiding host recognition.
Collapse
Affiliation(s)
- Fernando Navarrete
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Michelle Gallei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Aleksandra E Kornienko
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Indira Saado
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Mamoona Khan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Khong-Sam Chia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Martin A Darino
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| |
Collapse
|
9
|
Gilbert S, Poulev A, Chrisler W, Acosta K, Orr G, Lebeis S, Lam E. Auxin-Producing Bacteria from Duckweeds Have Different Colonization Patterns and Effects on Plant Morphology. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060721. [PMID: 35336603 PMCID: PMC8950272 DOI: 10.3390/plants11060721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/30/2022] [Accepted: 02/20/2022] [Indexed: 05/30/2023]
Abstract
The role of auxin in plant-microbe interaction has primarily been studied using indole-3-acetic acid (IAA)-producing pathogenic or plant-growth-promoting bacteria. However, the IAA biosynthesis pathway in bacteria involves indole-related compounds (IRCs) and intermediates with less known functions. Here, we seek to understand changes in plant response to multiple plant-associated bacteria taxa and strains that differ in their ability to produce IRCs. We had previously studied 47 bacterial strains isolated from several duckweed species and determined that 79% of these strains produced IRCs in culture, such as IAA, indole lactic acid (ILA), and indole. Using Arabidopsis thaliana as our model plant with excellent genetic tools, we performed binary association assays on a subset of these strains to evaluate morphological responses in the plant host and the mode of bacterial colonization. Of the 21 tested strains, only four high-quantity IAA-producing Microbacterium strains caused an auxin root phenotype. Compared to the commonly used colorimetric Salkowski assay, auxin concentration determined by LC-MS was a superior indicator of a bacteria's ability to cause an auxin root phenotype. Studies with the auxin response mutant axr1-3 provided further genetic support for the role of auxin signaling in mediating the root morphology response to IAA-producing bacteria strains. Interestingly, our microscopy results also revealed new evidence for the role of the conserved AXR1 gene in endophytic colonization of IAA-producing Azospirillum baldaniorum Sp245 via the guard cells.
Collapse
Affiliation(s)
- Sarah Gilbert
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - William Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; (W.C.); (G.O.)
| | - Sarah Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Eric Lam
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (S.G.); (A.P.); (K.A.)
| |
Collapse
|
10
|
Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int J Biol Macromol 2022; 206:188-202. [PMID: 35227707 DOI: 10.1016/j.ijbiomac.2022.02.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Plant pathogenic fungi encode and secrete effector proteins to promote pathogenesis. In recent years, the important role of effector proteins in fungi and plant host interactions has become increasingly prominent. In this review, the functional characterization and molecular mechanisms by which fungal effector proteins modulate biological processes and suppress the defense of plant hosts are discussed, with an emphasis on cell localization during fungal infection. This paper also provides a comprehensive review of bioinformatic and experimental methods that are currently available for the identification of fungal effector proteins. We additionally summarize the secretion pathways and the methods for verifying the presence effector proteins in plant host cells. For future research, comparative genomic studies of different pathogens with varying life cycles will allow comprehensive and systematic identification of effector proteins. Additionally, functional analysis of effector protein interactions with a wider range of hosts (especially non-model crops) will provide more detailed repertoires of fungal effectors. Identifying effector proteins and verifying their functions will improve our understanding of their role in causing disease and in turn guide future strategies for combatting fungal infections.
Collapse
|
11
|
Jin J, Shew HD. Impacts of Continued Exposure to a Susceptible Host Genotype on Aggressiveness of Phytophthora nicotianae Isolates Adapted to Multiple Sources of Partial Resistance. PLANT DISEASE 2022; 106:373-381. [PMID: 34282925 DOI: 10.1094/pdis-09-20-1972-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pathogen adaptation can threaten the durability of partial resistance. Mixed plantings of susceptible and partially resistant varieties may prolong the effectiveness of partial resistance, but little is known about how continued exposure to a susceptible genotype can change the aggressiveness of pathogen isolates adapted to a source of partial resistance. The objective of this study was to examine the effects of continued exposure to a highly susceptible tobacco genotype on isolates of Phytophthora nicotianae that had been adapted to partial resistance. Isolates of P. nicotianae previously adapted to two sources of partial resistance were continually exposed to either the original host of adaptation or a susceptible host. After six generations of host exposure, isolates obtained from the partially resistant and the susceptible hosts were compared for their aggressiveness on the resistant host and for differences in expression of genes associated with pathogenicity and aggressiveness. Results suggested that exposure to the susceptible tobacco genotype reduced aggressiveness of isolates adapted to partial resistance in K 326 Wz/- but not of isolates adapted to partial resistance in Fla 301. Quantification of pathogenicity-associated gene expression using qRT-PCR suggested the rapid change in aggressiveness of isolates adapted to Wz-sourced partial resistance may have resulted from modification in gene expression in multiple genes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - H David Shew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
12
|
Kunkel BN, Johnson JMB. Auxin Plays Multiple Roles during Plant-Pathogen Interactions. Cold Spring Harb Perspect Biol 2021; 13:a040022. [PMID: 33782029 PMCID: PMC8411954 DOI: 10.1101/cshperspect.a040022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant hormone auxin governs many aspects of normal plant growth and development. Auxin also plays an important role in plant-microbe interactions, including interactions between plant hosts and pathogenic microorganisms that cause disease. It is now well established that indole-3-acetic acid (IAA), the most well-studied form of auxin, promotes disease in many plant-pathogen interactions. Recent studies have shown that IAA can act both as a plant hormone that modulates host signaling and physiology to increase host susceptibility and as a microbial signal that directly impacts the pathogen to promote virulence, but large gaps in our understanding remain. In this article, we review recent studies on the roles that auxin plays during plant-pathogen interactions and discuss the virulence mechanisms that many plant pathogens have evolved to manipulate host auxin signaling and promote pathogenesis.
Collapse
Affiliation(s)
- Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Joshua M B Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
13
|
Yuan XL, Zhang CS, Kong FY, Zhang ZF, Wang FL. Genome Analysis of Phytophthora nicotianae JM01 Provides Insights into Its Pathogenicity Mechanisms. PLANTS 2021; 10:plants10081620. [PMID: 34451665 PMCID: PMC8400872 DOI: 10.3390/plants10081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Phytophthora nicotianae is a widely distributed plant pathogen that can cause serious disease and cause significant economic losses to various crops, including tomatoes, tobacco, onions, and strawberries. To understand its pathogenic mechanisms and explore strategies for controlling diseases caused by this pathogen, we sequenced and analyzed the whole genome of Ph. nicotianae JM01. The Ph. nicotianae JM01 genome was assembled using a combination of approaches including shotgun sequencing, single-molecule sequencing, and the Hi-C technique. The assembled Ph. nicotianae JM01 genome is about 95.32 Mb, with contig and scaffold N50 54.23 kb and 113.15 kb, respectively. The average GC content of the whole-genome is about 49.02%, encoding 23,275 genes. In addition, we identified 19.15% of interspersed elements and 0.95% of tandem elements in the whole genome. A genome-wide phylogenetic tree indicated that Phytophthora diverged from Pythium approximately 156.32 Ma. Meanwhile, we found that 252 and 285 gene families showed expansion and contraction in Phytophthora when compared to gene families in Pythium. To determine the pathogenic mechanisms Ph. nicotianae JM01, we analyzed a suite of proteins involved in plant-pathogen interactions. The results revealed that gene duplication contributed to the expansion of Cell Wall Degrading Enzymes (CWDEs) such as glycoside hydrolases, and effectors such as Arg-Xaa-Leu-Arg (RXLR) effectors. In addition, transient expression was performed on Nicotiana benthamiana by infiltrating with Agrobacterium tumefaciens cells containing a cysteine-rich (SCR) protein. The results indicated that SCR can cause symptoms of hypersensitive response. Moreover, we also conducted comparative genome analysis among four Ph. nicotianae genomes. The completion of the Ph. nicotianae JM01 genome can not only help us understand its genomic characteristics, but also help us discover genes involved in infection and then help us understand its pathogenic mechanisms.
Collapse
Affiliation(s)
- Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (C.-S.Z.); (F.-L.W.); Tel.: +86-532-88701035 (C.-S.Z. & F.-L.W.)
| | - Fan-Yu Kong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Feng-Long Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (C.-S.Z.); (F.-L.W.); Tel.: +86-532-88701035 (C.-S.Z. & F.-L.W.)
| |
Collapse
|
14
|
Schurack S, Depotter JRL, Gupta D, Thines M, Doehlemann G. Comparative transcriptome profiling identifies maize line specificity of fungal effectors in the maize-Ustilago maydis interaction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:733-752. [PMID: 33570802 DOI: 10.1111/tpj.15195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 05/20/2023]
Abstract
The biotrophic pathogen Ustilago maydis causes smut disease on maize (Zea mays) and induces the formation of tumours on all aerial parts of the plant. Unlike in other biotrophic interactions, no gene-for-gene interactions have been identified in the maize-U. maydis pathosystem. Thus, maize resistance to U. maydis is considered a polygenic, quantitative trait. Here, we study the molecular mechanisms of quantitative disease resistance (QDR) in maize, and how U. maydis interferes with its components. Based on quantitative scoring of disease symptoms in 26 maize lines, we performed an RNA sequencing (RNA-Seq) analysis of six U. maydis-infected maize lines of highly distinct resistance levels. The different maize lines showed specific responses of diverse cellular processes to U. maydis infection. For U. maydis, our analysis identified 406 genes being differentially expressed between maize lines, of which 102 encode predicted effector proteins. Based on this analysis, we generated U. maydis CRISPR/Cas9 knock-out mutants for selected candidate effector sets. After infections of different maize lines with the fungal mutants, RNA-Seq analysis identified effectors with quantitative, maize line-specific virulence functions, and revealed auxin-related processes as a possible target for one of them. Thus, we show that both transcriptional activity and virulence function of fungal effector genes are modified according to the infected maize line, providing insights into the molecular mechanisms underlying QDR in the maize-U. maydis interaction.
Collapse
Affiliation(s)
- Selma Schurack
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
- IMPRS, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jasper R L Depotter
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Deepak Gupta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Frankfurt a. M, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Frankfurt a. M, Germany
| | - Gunther Doehlemann
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Stasko AK, Batnini A, Bolanos-Carriel C, Lin JE, Lin Y, Blakeslee JJ, Dorrance AE. Auxin Profiling and GmPIN Expression in Phytophthora sojae-Soybean Root Interactions. PHYTOPATHOLOGY 2020; 110:1988-2002. [PMID: 32602813 DOI: 10.1094/phyto-02-20-0046-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Auxin (indole-3-acetic acid, IAA) has been implicated as a susceptibility factor in both beneficial and pathogenic molecular plant-microbe interactions. Previous studies have identified a large number of auxin-related genes underlying quantitative disease resistance loci (QDRLs) for Phytophthora sojae. Thus, we hypothesized that auxin may be involved the P. sojae-soybean interaction. The levels of IAA and related metabolites were measured in mycelia and media supernatant as well as in mock and inoculated soybean roots in a time course assay. The expression of 11 soybean Pin-formed (GmPIN) auxin efflux transporter genes was also examined. Tryptophan, an auxin precursor, was detected in the P. sojae mycelia and media supernatant. During colonization of roots, levels of IAA and related metabolites were significantly higher in both moderately resistant Conrad and moderately susceptible Sloan inoculated roots compared with mock controls at 48 h postinoculation (hpi) in one experiment and at 72 hpi in a second, with Sloan accumulating higher levels of the auxin catabolite IAA-Ala than Conrad. Additionally, one GmPIN at 24 hpi, one at 48 hpi, and three at 72 hpi had higher expression in inoculated compared with the mock control roots in Conrad. The ability of resistant cultivars to cope with auxin accumulation may play an important role in quantitative disease resistance. Levels of jasmonic acid (JA), another plant hormone associated with defense responses, were also higher in inoculated roots at these same time points, suggesting that JA also plays a role during the later stages of infection.
Collapse
Affiliation(s)
- Anna K Stasko
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Amine Batnini
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Carlos Bolanos-Carriel
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
| | - Jinshan Ella Lin
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
| | - Yun Lin
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science and OARDC Metabolite Analysis Cluster, The Ohio State University, Wooster, OH 44691
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
- Center for Soybean Research, The Ohio State University, Wooster, OH 44691
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
16
|
Perrine-Walker F. Phytophthora palmivora-Cocoa Interaction. J Fungi (Basel) 2020; 6:jof6030167. [PMID: 32916858 PMCID: PMC7558484 DOI: 10.3390/jof6030167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Phytophthora palmivora (Butler) is an hemibiotrophic oomycete capable of infecting over 200 plant species including one of the most economically important crops, Theobroma cacao L. commonly known as cocoa. It infects many parts of the cocoa plant including the pods, causing black pod rot disease. This review will focus on P. palmivora’s ability to infect a plant host to cause disease. We highlight some current findings in other Phytophthora sp. plant model systems demonstrating how the germ tube, the appressorium and the haustorium enable the plant pathogen to penetrate a plant cell and how they contribute to the disease development in planta. This review explores the molecular exchange between the oomycete and the plant host, and the role of plant immunity during the development of such structures, to understand the infection of cocoa pods by P. palmivora isolates from Papua New Guinea.
Collapse
Affiliation(s)
- Francine Perrine-Walker
- School of Life and Environmental Sciences, The University of Sydney, LEES Building (F22), Camperdown, NSW 2006, Australia;
- The University of Sydney Institute of Agriculture, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW 2015, Australia
| |
Collapse
|
17
|
Atypical Membrane-Anchored Cytokine MIF in a Marine Dinoflagellate. Microorganisms 2020; 8:microorganisms8091263. [PMID: 32825358 PMCID: PMC7565538 DOI: 10.3390/microorganisms8091263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Macrophage Migration Inhibitory Factors (MIF) are pivotal cytokines/chemokines for vertebrate immune systems. MIFs are typically soluble single-domain proteins that are conserved across plant, fungal, protist, and metazoan kingdoms, but their functions have not been determined in most phylogenetic groups. Here, we describe an atypical multidomain MIF protein. The marine dinoflagellate Lingulodinium polyedra produces a transmembrane protein with an extra-cytoplasmic MIF domain, which localizes to cell-wall-associated membranes and vesicular bodies. This protein is also present in the membranes of extracellular vesicles accumulating at the secretory pores of the cells. Upon exposure to biotic stress, L. polyedra exhibits reduced expression of the MIF gene and reduced abundance of the surface-associated protein. The presence of LpMIF in the membranes of secreted extracellular vesicles evokes the fascinating possibility that LpMIF may participate in intercellular communication and/or interactions between free-living organisms in multispecies planktonic communities.
Collapse
|
18
|
Transcriptomic and Ultrastructural Signatures of K +-Induced Aggregation in Phytophthora parasitica Zoospores. Microorganisms 2020; 8:microorganisms8071012. [PMID: 32645882 PMCID: PMC7409359 DOI: 10.3390/microorganisms8071012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022] Open
Abstract
Most pathogenic oomycetes of the genus Phytophthora spread in water films as flagellated zoospores. Zoospores perceive and produce signals attracting other zoospores, resulting in autoaggregation in vitro or biofilm formation on plant surface. The mechanisms underlying intercellular communication and consequent attraction, adhesion and aggregation are largely unknown. In Phytophthora parasitica, the perception of a K+ gradient induces coordinated motion and aggregation. To define cellular and molecular events associated with oomycete aggregation, we combined transcriptomic and ultrastructural analyses. Results indicate involvement of electroception in K+ sensing. They establish that the transcriptome repertoire required for swimming and aggregation is already fully functional at zoospore release. At the time points analyzed, aggregates are mainly constituted of zoospores. They produce vesicular and fibrillary material discharged at cell-to-cell contacts. Consistently, the signature of transcriptome dynamics during transition to aggregates is an upregulation of genes potentially related to vesicular trafficking. Moreover, transcriptomic and functional analyses show a strong enhancement of carbonic anhydrase activity, indicating that pH homeostasis may contribute to aggregation by acting on both zoospore movement and adhesion. This study poses the molecular and cellular bases of aggregative behavior within oomycetes and expands the current knowledge of ion perception-mediated dissemination of propagules in the rhizosphere.
Collapse
|
19
|
Zhang Q, Li W, Yang J, Xu J, Meng Y, Shan W. Two Phytophthora parasitica cysteine protease genes, PpCys44 and PpCys45, trigger cell death in various Nicotiana spp. and act as virulence factors. MOLECULAR PLANT PATHOLOGY 2020; 21:541-554. [PMID: 32077241 PMCID: PMC7060141 DOI: 10.1111/mpp.12915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiapeng Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
20
|
Escamez S, André D, Sztojka B, Bollhöner B, Hall H, Berthet B, Voß U, Lers A, Maizel A, Andersson M, Bennett M, Tuominen H. Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Curr Biol 2020; 30:455-464.e7. [PMID: 31956028 DOI: 10.1016/j.cub.2019.11.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Plant organ growth is widely accepted to be determined by cell division and cell expansion, but, unlike that in animals, the contribution of cell elimination has rarely been recognized. We investigated this paradigm during Arabidopsis lateral root formation, when the lateral root primordia (LRP) must traverse three overlying cell layers within the parent root. A subset of LRP-overlying cells displayed the induction of marker genes for cell types undergoing developmental cell death, and their cell death was detected by electron, confocal, and light sheet microscopy techniques. LRP growth was delayed in cell-death-deficient mutants lacking the positive cell death regulator ORESARA1/ANAC092 (ORE1). LRP growth was restored in ore1-2 knockout plants by genetically inducing cell elimination in cells overlying the LRP or by physically killing LRP-overlying cells by ablation with optical tweezers. Our results support that, in addition to previously discovered mechanisms, cell elimination contributes to regulating lateral root emergence.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Domenique André
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Bernadette Sztojka
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Benjamin Bollhöner
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Hardy Hall
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Béatrice Berthet
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ute Voß
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 SRD, UK
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | - Malcolm Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 SRD, UK
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
21
|
Abstract
Plants are under relentless challenge by pathogenic bacteria, fungi, and oomycetes, for whom they provide a resource of living space and nutrients. Upon detection of pathogens, plants carry out multiple layers of defense response, orchestrated by a tightly organized network of hormones. In this review, we provide an overview of the phytohormones involved in immunity and the ways pathogens manipulate their biosynthesis and signaling pathways. We highlight recent developments, including the discovery of a defense signaling molecule, new insights into hormone biosynthesis, and the increasing importance of signaling hubs at which hormone pathways intersect.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Maximo HJ, Dalio RJD, Dias RO, Litholdo CG, Felizatti HL, Machado MA. PpCRN7 and PpCRN20 of Phythophthora parasitica regulate plant cell death leading to enhancement of host susceptibility. BMC PLANT BIOLOGY 2019; 19:544. [PMID: 31810451 PMCID: PMC6896422 DOI: 10.1186/s12870-019-2129-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Phytophthora species secrete cytoplasmic effectors from a family named Crinkler (CRN), which are characterised by the presence of conserved specific domains in the N- and C-terminal regions. P. parasitica causes disease in a wide range of host plants, however the role of CRN effectors in these interactions remains unclear. Here, we aimed to: (i) identify candidate CRN encoding genes in P. parasitica genomes; (ii) evaluate the transcriptional expression of PpCRN (Phytophthora parasitica Crinkler candidate) during the P. parasitica interaction with Citrus sunki (high susceptible) and Poncirus trifoliata (resistant); and (iii) functionally characterize two PpCRNs in the model plant Nicotiana benthamiana. RESULTS Our in silico analyses identified 80 putative PpCRN effectors in the genome of P. parasitica isolate 'IAC 01/95.1'. Transcriptional analysis revealed differential gene expression of 20 PpCRN candidates during the interaction with the susceptible Citrus sunki and the resistant Poncirus trifoliata. We have also found that P. parasitica is able to recognize different citrus hosts and accordingly modulates PpCRNs expression. Additionally, two PpCRN effectors, namely PpCRN7 and PpCRN20, were further characterized via transient gene expression in N. benthamiana leaves. The elicitin INF-1-induced Hypersensitivity Response (HR) was increased by an additive effect driven by PpCRN7 expression, whereas PpCRN20 expression suppressed HR response in N. benthamiana leaves. Despite contrasting functions related to HR, both effectors increased the susceptibility of plants to P. parasitica. CONCLUSIONS PpCRN7 and PpCRN20 have the ability to increase P. parasitica pathogenicity and may play important roles at different stages of infection. These PpCRN-associated mechanisms are now targets of biotechnological studies aiming to break pathogen's virulence and to promote plant resistance.
Collapse
Affiliation(s)
- Heros J. Maximo
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| | - Ronaldo J. D. Dalio
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| | - Renata O. Dias
- Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP Brazil
| | - Celso G. Litholdo
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| | - Henrique L. Felizatti
- Instituto de Matemática, Física e Computação Científica, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Marcos A. Machado
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico (IAC), Cordeirópolis, SP Brazil
| |
Collapse
|
23
|
Wang W, Jiao F. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. PLANTA 2019; 250:413-425. [PMID: 31243548 DOI: 10.1007/s00425-019-03219-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 05/11/2023]
Abstract
This article provides an overview of the interactions between Phytophthora effectors and plant immune system components, which form a cross-linked complex network that regulates plant pathogen resistance. Pathogens secrete numerous effector proteins into plants to promote infections. Several Phytophthora species (e.g., P. infestans, P. ramorum, P. sojae, P. capsici, P. cinnamomi, and P. parasitica) are notorious pathogens that are extremely damaging to susceptible plants. Analyses of genomic data revealed that Phytophthora species produce a large group of effector proteins, which are critical for pathogenesis. And, the targets and functions of many identified Phytophthora effectors have been investigated. Phytophthora effectors can affect various aspects of plant immune systems, including plant cell proteases, phytohormones, RNAs, the MAPK pathway, catalase, the ubiquitin proteasome pathway, the endoplasmic reticulum, NB-LRR proteins, and the cell membrane. Clarifying the effector-plant interactions is important for unravelling the functions of Phytophthora effectors during pathogenesis. In this article, we review the effectors identified in recent decades and provide an overview of the effector-directed regulatory network in plants following infections by Phytophthora species.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao, 266101, People's Republic of China.
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| |
Collapse
|
24
|
Zhao C, Wang H, Lu Y, Hu J, Qu L, Li Z, Wang D, He Y, Valls M, Coll NS, Chen Q, Lu H. Deep Sequencing Reveals Early Reprogramming of Arabidopsis Root Transcriptomes Upon Ralstonia solanacearum Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:813-827. [PMID: 31140930 DOI: 10.1094/mpmi-10-18-0268-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bacterial wilt caused by the bacterial pathogen Ralstonia solanacearum is one of the most devastating crop diseases worldwide. The molecular mechanisms controlling the early stage of R. solanacearum colonization in the root remain unknown. Aiming to better understand the mechanism of the establishment of R. solanacearum infection in root, we established four stages in the early interaction of the pathogen with Arabidopsis roots and determined the transcriptional profiles of these stages of infection. A total 2,698 genes were identified as differentially expressed genes during the initial 96 h after infection, with the majority of changes in gene expression occurring after pathogen-triggered root-hair development observed. Further analysis of differentially expressed genes indicated sequential activation of multiple hormone signaling cascades, including abscisic acid (ABA), auxin, jasmonic acid, and ethylene. Simultaneous impairment of ABA receptor genes promoted plant wilting symptoms after R. solanacearum infection but did not affect primary root growth inhibition or root-hair and lateral root formation caused by R. solanacearum. This indicated that ABA signaling positively regulates root defense to R. solanacearum. Moreover, transcriptional changes of genes involved in primary root, lateral root, and root-hair formation exhibited high temporal dynamics upon infection. Taken together, our results suggest that successful infection of R. solanacearum on roots is a highly programmed process involving in hormone crosstalk.
Collapse
Affiliation(s)
- Cuizhu Zhao
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijuan Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Lu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinxue Hu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Qu
- 2 National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Zheqing Li
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongdong Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhe He
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Marc Valls
- 3 Genetics section, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- 4 Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Catalonia, Spain
| | - Núria S Coll
- 4 Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Catalonia, Spain
| | - Qin Chen
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibin Lu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
25
|
Wang J, Gao C, Li L, Cao W, Dong R, Ding X, Zhu C, Chu Z. Transgenic RXLR Effector PITG_15718.2 Suppresses Immunity and Reduces Vegetative Growth in Potato. Int J Mol Sci 2019; 20:ijms20123031. [PMID: 31234322 PMCID: PMC6627464 DOI: 10.3390/ijms20123031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
Phytophthora infestans causes the severe late blight disease of potato. During its infection process, P. infestans delivers hundreds of RXLR (Arg-x-Leu-Arg, x behalf of any one amino acid) effectors to manipulate processes in its hosts, creating a suitable environment for invasion and proliferation. Several effectors interact with host proteins to suppress host immunity and inhibit plant growth. However, little is known about how P. infestans regulates the host transcriptome. Here, we identified an RXLR effector, PITG_15718.2, which is upregulated and maintains a high expression level throughout the infection. Stable transgenic potato (Solanum tuberosum) lines expressing PITG_15718.2 show enhanced leaf colonization by P. infestans and reduced vegetative growth. We further investigated the transcriptional changes between three PITG_15718.2 transgenic lines and the wild type Désirée by using RNA sequencing (RNA-Seq). Compared with Désirée, 190 differentially expressed genes (DEGs) were identified, including 158 upregulated genes and 32 downregulated genes in PITG_15718.2 transgenic lines. Eight upregulated and nine downregulated DEGs were validated by real-time RT-PCR, which showed a high correlation with the expression level identified by RNA-Seq. These DEGs will help to explore the mechanism of PITG_15718.2-mediated immunity and growth inhibition in the future.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Cungang Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Long Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Weilin Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Ran Dong
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
26
|
Lan X, Liu Y, Song S, Yin L, Xiang J, Qu J, Lu J. Plasmopara viticola effector PvRXLR131 suppresses plant immunity by targeting plant receptor-like kinase inhibitor BKI1. MOLECULAR PLANT PATHOLOGY 2019; 20:765-783. [PMID: 30945786 PMCID: PMC6637860 DOI: 10.1111/mpp.12790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The grapevine downy mildew pathogen Plasmopara viticola secretes a set of RXLR effectors (PvRXLRs) to overcome host immunity and facilitate infection, but how these effectors function is unclear. Here, the biological function of PvRXLR131 was investigated via heterologous expression. Constitutive expression of PvRXLR131 in Colletotrichum gloeosporioides significantly enhanced its pathogenicity on grapevine leaves. Constitutive expression of PvRXLR131 in Arabidopsis promoted Pseudomonas syringae DC3000 and P. syringae DC3000 (hrcC- ) growth as well as suppressed defence-related callose deposition. Transient expression of PvRXLR131 in Nicotiana benthamiana leaves could also suppress different elicitor-triggered cell death and inhibit plant resistance to Phytophthora capsici. Further analysis revealed that PvRXLR131 interacted with host Vitis vinifera BRI1 kinase inhibitor 1 (VvBKI1), and its homologues in N. benthamiana (NbBKI1) and Arabidopsis (AtBKI1). Moreover, bimolecular fluorescence complementation analysis revealed that PvRXLR131 interacted with VvBKI1 in the plasma membrane. Deletion assays showed that the C-terminus of PvRXLR131 was responsible for the interaction and mutation assays showed that phosphorylation of a conserved tyrosine residue in BKI1s disrupted the interaction. BKI1 was a receptor inhibitor of growth- and defence-related brassinosteroid (BR) and ERECTA (ER) signalling. When silencing of NbBKI1 in N. benthamiana, the virulence function of PvRXLR131 was eliminated, demonstrating that the effector activity is mediated by BKI1. Moreover, PvRXLR131-transgenic plants displayed BKI1-overexpression dwarf phenotypes and suppressed BR and ER signalling. These physiological and genetic data clearly demonstrate that BKI1 is a virulence target of PvRXLR131. We propose that P. viticola secretes PvRXLR131 to target BKI1 as a strategy for promoting infection.
Collapse
Affiliation(s)
- Xia Lan
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yunxiao Liu
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiang Xiang
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
27
|
Huang G, Liu Z, Gu B, Zhao H, Jia J, Fan G, Meng Y, Du Y, Shan W. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. MOLECULAR PLANT PATHOLOGY 2019; 20:356-371. [PMID: 30320960 PMCID: PMC6637884 DOI: 10.1111/mpp.12760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RXLR effectors encoded by Phytophthora species play a central role in pathogen-plant interactions. An understanding of the biological functions of RXLR effectors is conducive to the illumination of the pathogenic mechanisms and the development of disease control strategies. However, the virulence function of Phytophthora parasitica RXLR effectors is poorly understood. Here, we describe the identification of a P. parasitica RXLR effector gene, PPTG00121 (PpE4), which is highly transcribed during the early stages of infection. Live cell imaging of P. parasitica transformants expressing a full-length PpE4 (E4FL)-mCherry protein indicated that PpE4 is secreted and accumulates around haustoria during plant infection. Silencing of PpE4 in P. parasitica resulted in significantly reduced virulence on Nicotiana benthamiana. Transient expression of PpE4 in N. benthamiana in turn restored the pathogenicity of the PpE4-silenced lines. Furthermore, the expression of PpE4 in both N. benthamiana and Arabidopsis thaliana consistently enhanced plant susceptibility to P. parasitica. These results indicate that PpE4 contributes to pathogen infection. Finally, heterologous expression experiments showed that PpE4 triggers non-specific cell death in a variety of plants, including tobacco, tomato, potato and A. thaliana. Virus-induced gene silencing assays revealed that PpE4-induced cell death is dependent on HSP90, NPK and SGT1, suggesting that PpE4 is recognized by the plant immune system. In conclusion, PpE4 is an important virulence RXLR effector of P. parasitica and recognized by a wide range of host plants.
Collapse
Affiliation(s)
- Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Zhirou Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Hong Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
- Institute of Plant and Food Science, Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
28
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|
29
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
30
|
Dalio RJD, Maximo HJ, Oliveira TS, Dias RO, Breton MC, Felizatti H, Machado M. Phytophthora parasitica Effector PpRxLR2 Suppresses Nicotiana benthamiana Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:481-493. [PMID: 29165046 DOI: 10.1094/mpmi-07-17-0158-fi] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytophthora species secrete several classes of effector proteins during interaction with their hosts. These proteins can have multiple functions including modulation of host physiology and immunity. The RxLR effectors have the ability to enter plant cells using the plant machinery. Some of these effectors have been characterized as immunity suppressors; however, very little is known about their functions in the interaction between Phytophthora parasitica and its hosts. Using a bioinformatics pipeline, we have identified 172 candidate RxLR effectors (CREs) in the isolate IAC 01_95 of P. parasitica. Of these 172 CREs, 93 were found to be also present in eight other genomes of P. parasitica, isolated from different hosts and continents. After transcriptomics and gene expression analysis, we have found five CREs to be up-regulated in in-vitro and in-planta samples. Subsequently, we selected three CREs for functional characterization in the model plant Nicotiana benthamiana. We show that PpRxLR2 is able to completely suppress INF-1-induced cell death, whereas PpRxLR3 and PpRxLR5 moderately suppressed N. benthamiana immunity in a less-extensive manner. Moreover, we confirmed the effector-triggered susceptibility activity of these proteins after transient transformation and infection of N. benthamiana plants. All three CREs enhanced virulence of P. parasitica during the interaction with N. benthamiana. These effectors, in particular PpRxLR2, can be targeted for the development of biotechnology-based control strategies of P. parasitica diseases.
Collapse
Affiliation(s)
- R J D Dalio
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - H J Maximo
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - T S Oliveira
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - R O Dias
- 2 Instituto de Química, Universidade de São Paulo USP, São Paulo, SP, Brazil; and
| | - M C Breton
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| | - H Felizatti
- 3 Instituto de Matemática, Física e Computação Científica, Universidade Estadual de Campinas Unicamp, Campinas, SP, Brazil
| | - M Machado
- 1 Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira/Instituto Agronômico, Cordeirópolis, SP, Brazil
| |
Collapse
|
31
|
Dalio RJD, Máximo HJ, Oliveira TS, Azevedo TDM, Felizatti HL, Campos MDA, Machado MA. Molecular Basis of Citrus sunki Susceptibility and Poncirus trifoliata Resistance Upon Phytophthora parasitica Attack. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:386-398. [PMID: 29125028 DOI: 10.1094/mpmi-05-17-0112-fi] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coevolution has shaped the molecular basis of an extensive number of defense mechanisms in plant-pathogen interactions. Phytophthora parasitica, a hemibiothrophic oomycete pathogen and the causal agent of citrus root rot and gummosis, interacts differently with Citrus sunki and Poncirus trifoliata, two commonly favored citrus rootstocks that are recognized as susceptible and resistant, respectively, to P. parasitica. The molecular core of these interactions remains elusive. Here, we provide evidence on the defense strategies employed by both susceptible and resistant citrus rootstocks, in parallel with P. parasitica deployment of effectors. Time course expression analysis (quantitative real-time polymerase chain reaction) of several defense-related genes were evaluated during i) plant disease development, ii) necrosis, and iii) pathogen effector gene expression. In C. sunki, P. parasitica deploys effectors, including elicitins, NPP1 (necrosis-inducing Phytophthora protein 1), CBEL (cellulose-binding elicitor and lectin activity), RxLR, and CRN (crinkler), and, consequently, this susceptible plant activates its main defense signaling pathways that result in the hypersensitive response and necrosis. Despite the strong plant-defense response, it fails to withstand P. parasitica invasion, confirming its hemibiothrophic lifestyle. In Poncirus trifoliata, the effectors were strongly expressed, nevertheless failing to induce any immunity manipulation and disease development, suggesting a nonhost resistance type, in which the plant relies on preformed biochemical and anatomical barriers.
Collapse
Affiliation(s)
| | - Heros José Máximo
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | - Tiago Silva Oliveira
- 1 Biotechnology Lab, Centro de Citricultura Sylvio Moreira. Cordeirópolis-SP, Brazil
| | | | - Henrique Leme Felizatti
- 2 Instituto de Matemática, Estatística e Computação Científica, Universidade de Campinas, Campinas-SP, Brazil; and
| | | | | |
Collapse
|
32
|
Nguyen CN, Perfus-Barbeoch L, Quentin M, Zhao J, Magliano M, Marteu N, Da Rocha M, Nottet N, Abad P, Favery B. A root-knot nematode small glycine and cysteine-rich secreted effector, MiSGCR1, is involved in plant parasitism. THE NEW PHYTOLOGIST 2018; 217:687-699. [PMID: 29034957 DOI: 10.1111/nph.14837] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/01/2017] [Indexed: 05/08/2023]
Abstract
Root-knot nematodes, Meloidogyne spp., are obligate endoparasites that maintain a biotrophic relationship with their hosts. They infect roots as microscopic vermiform second-stage juveniles, and establish specialized feeding structures called 'giant-cells', from which they withdraw water and nutrients. The nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we compared Illumina RNA-seq transcriptomes for M. incognita obtained at various points in the lifecycle, and identified 31 genes more strongly expressed in parasitic stages than in preparasitic juveniles. We then selected candidate effectors for functional characterization. Quantitative real-time PCR and in situ hybridizations showed that the validated differentially expressed genes are predominantly specifically expressed in oesophageal glands of the nematode. We also soaked the nematodes in siRNA to silence these genes and to determine their role in pathogenicity. The silencing of the dorsal gland specific-Minc18876 and its paralogues resulted in a significant, reproducible decrease in the number of mature females with egg masses, demonstrating a potentially important role for the small glycine- and cysteine-rich effector MiSGCR1 in early stages of plant-nematode interaction. Finally, we report that MiSGCR1 suppresses plant cell death induced by bacterial or oomycete triggers of plant defense.
Collapse
Affiliation(s)
- Chinh-Nghia Nguyen
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, 06903, Cedex Sophia-Antipolis, France
| | - Laetitia Perfus-Barbeoch
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, 06903, Cedex Sophia-Antipolis, France
| | - Michaël Quentin
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, 06903, Cedex Sophia-Antipolis, France
| | - Jianlong Zhao
- Department of Plant Pathology and Key Laboratory of Plant Pathology of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Marc Magliano
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, 06903, Cedex Sophia-Antipolis, France
| | - Nathalie Marteu
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, 06903, Cedex Sophia-Antipolis, France
| | - Martine Da Rocha
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, 06903, Cedex Sophia-Antipolis, France
| | - Nicolas Nottet
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, 06903, Cedex Sophia-Antipolis, France
| | - Pierre Abad
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, 06903, Cedex Sophia-Antipolis, France
| | - Bruno Favery
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, 06903, Cedex Sophia-Antipolis, France
| |
Collapse
|
33
|
Larousse M, Rancurel C, Syska C, Palero F, Etienne C, Industri B, Nesme X, Bardin M, Galiana E. Tomato root microbiota and Phytophthora parasitica-associated disease. MICROBIOME 2017; 5:56. [PMID: 28511691 PMCID: PMC5434524 DOI: 10.1186/s40168-017-0273-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Interactions between pathogenic oomycetes and microbiota residing on the surface of the host plant root are unknown, despite being critical to inoculum constitution. The nature of these interactions was explored for the polyphagous and telluric species Phytophthora parasitica. RESULTS Composition of the rhizospheric microbiota of Solanum lycopersicum was characterized using deep re-sequencing of 16S rRNA gene to analyze tomato roots either free of or partly covered with P. parasitica biofilm. Colonization of the host root surface by the oomycete was associated with a shift in microbial community involving a Bacteroidetes/Proteobacteria transition and Flavobacteriaceae as the most abundant family. Identification of members of the P. parasitica-associated microbiota interfering with biology and oomycete infection was carried out by screening for bacteria able to (i) grow on a P. parasitica extract-based medium (ii), exhibit in vitro probiotic or antibiotic activity towards the oomycete (iii), have an impact on the oomycete infection cycle in a tripartite interaction S. lycopersicum-P. parasitica-bacteria. One Pseudomonas phylotype was found to exacerbate disease symptoms in tomato plants. The lack of significant gene expression response of P. parasitica effectors to Pseudomonas suggested that the increase in plant susceptibility was not associated with an increase in virulence. Our results reveal that Pseudomonas spp. establishes commensal interactions with the oomycete. Bacteria preferentially colonize the surface of the biofilm rather than the roots, so that they can infect plant cells without any apparent infection of P. parasitica. CONCLUSIONS The presence of the pathogenic oomycete P. parasitica in the tomato rhizosphere leads to a shift in the rhizospheric microbiota composition. It contributes to the habitat extension of Pseudomonas species mediated through a physical association between the oomycete and the bacteria.
Collapse
Affiliation(s)
- Marie Larousse
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Corinne Rancurel
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Camille Syska
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Ferran Palero
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Carrer d’Accés a la Cala Sant Francesc 14, 17300 Blanes, Spain
| | | | - Benoît Industri
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | - Xavier Nesme
- Université de Lyon, UCBL, CNRS, INRA, Ecologie Microbienne (LEM), 69622 Villeurbanne, France
| | - Marc Bardin
- Plant Pathology, INRA, 84140 Montfavet, France
| | - Eric Galiana
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| |
Collapse
|
34
|
Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. ANNALS OF BOTANY 2017; 119:749-774. [PMID: 28065920 PMCID: PMC5571375 DOI: 10.1093/aob/mcw238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/08/2016] [Accepted: 10/22/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant-pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. SCOPE This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot.
Collapse
Affiliation(s)
- Ronaldo J. D. Dalio
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Diogo M. Magalhães
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Carolina M. Rodrigues
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Gabriella D. Arena
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Tiago S. Oliveira
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Reinaldo R. Souza-Neto
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Simone C. Picchi
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paula M. M. Martins
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paulo J. C. Santos
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Heros J. Maximo
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Inaiara S. Pacheco
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Alessandra A. De Souza
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Marcos A. Machado
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| |
Collapse
|
35
|
Ma KW, Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. PLANT MOLECULAR BIOLOGY 2016; 91:713-25. [PMID: 26879412 PMCID: PMC4932134 DOI: 10.1007/s11103-016-0452-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/07/2016] [Indexed: 05/18/2023]
Abstract
Plants are constantly threatened by potential pathogens. In order to optimize the output of defense against pathogens with distinct lifestyles, plants depend on hormonal networks to fine-tune specific responses and regulate growth-defense tradeoffs. To counteract, pathogens have evolved various strategies to disturb hormonal homeostasis and facilitate infection. Many pathogens synthesize plant hormones; more importantly, toxins and effectors are produced to manipulate hormonal crosstalk. Accumulating evidence has shown that pathogens exert extensive effects on plant hormone pathways not only to defeat immunity, but also modify habitat structure, optimize nutrient acquisition, and facilitate pathogen dissemination. In this review, we summarize mechanisms by which a wide array of pathogens gain benefits from manipulating plant hormone pathways.
Collapse
Affiliation(s)
- Ka-Wai Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
36
|
Shigenaga AM, Argueso CT. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 2016; 56:174-189. [PMID: 27312082 DOI: 10.1016/j.semcdb.2016.06.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence.
Collapse
Affiliation(s)
- Alexandra M Shigenaga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
37
|
|
38
|
Pan Q, Cui B, Deng F, Quan J, Loake GJ, Shan W. RTP1 encodes a novel endoplasmic reticulum (ER)-localized protein in Arabidopsis and negatively regulates resistance against biotrophic pathogens. THE NEW PHYTOLOGIST 2016; 209:1641-54. [PMID: 26484750 DOI: 10.1111/nph.13707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/14/2015] [Indexed: 05/06/2023]
Abstract
Oomycete pathogens cause serious damage to a wide spectrum of plants. Although host pathogen recognition via pathogen effectors and cognate plant resistance proteins is well established, the genetic basis of host factors that mediate plant susceptibility to oomycete pathogens is relatively unexplored. Here, we report on RTP1, a nodulin-related MtN21 family gene in Arabidopsis that mediates susceptibility to Phytophthora parasitica. RTP1 was identified by screening a T-DNA insertion mutant population and encoded an endoplasmic reticulum (ER)-localized protein. Overexpression of RTP1 rendered Arabidopsis more susceptible, whereas RNA silencing of RTP1 led to enhanced resistance to P. parasitica. Moreover, an RTP1 mutant, rtp1-1, displayed localized cell death, increased reactive oxygen species (ROS) production and accelerated PR1 expression, compared to the wild-type Col-0, in response to P. parasitica infection. rtp1-1 showed a similar disease response to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000, including increased disease resistance, cell death and ROS production. Furthermore, rpt1-1 exhibited resistance to the fungal pathogen Golovinomyces cichoracearum, but not to the necrotrophic pathogen Botrytis cinerea. Taken together, these results suggest that RTP1 negatively regulates plant resistance to biotrophic pathogens, possibly by regulating ROS production, cell death progression and PR1 expression.
Collapse
Affiliation(s)
- Qiaona Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Fengyan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junli Quan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
39
|
Anderson RG, Deb D, Fedkenheuer K, McDowell JM. Recent Progress in RXLR Effector Research. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1063-72. [PMID: 26125490 DOI: 10.1094/mpmi-01-15-0022-cr] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Some of the most devastating oomycete pathogens deploy effector proteins, with the signature amino acid motif RXLR, that enter plant cells to promote virulence. Research on the function and evolution of RXLR effectors has been very active over the decade that has transpired since their discovery. Comparative genomics indicate that RXLR genes play a major role in virulence for Phytophthora and downy mildew species. Importantly, gene-for-gene resistance against these oomycete lineages is based on recognition of RXLR proteins. Comparative genomics have revealed several mechanisms through which this resistance can be broken, most notably involving epigenetic control of RXLR gene expression. Structural studies have revealed a core fold that is present in the majority of RXLR proteins, providing a foundation for detailed mechanistic understanding of virulence and avirulence functions. Finally, functional studies have demonstrated that suppression of host immunity is a major function for RXLR proteins. Host protein targets are being identified in a variety of plant cell compartments. Some targets comprise hubs that are also manipulated by bacteria and fungi, thereby revealing key points of vulnerability in the plant immune network.
Collapse
Affiliation(s)
- Ryan G Anderson
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Devdutta Deb
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Kevin Fedkenheuer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| |
Collapse
|
40
|
Le Fevre R, Evangelisti E, Rey T, Schornack S. Modulation of host cell biology by plant pathogenic microbes. Annu Rev Cell Dev Biol 2015; 31:201-29. [PMID: 26436707 DOI: 10.1146/annurev-cellbio-102314-112502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.
Collapse
Affiliation(s)
- Ruth Le Fevre
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| |
Collapse
|
41
|
Hosseini S, Elfstrand M, Heyman F, Funck Jensen D, Karlsson M. Deciphering common and specific transcriptional immune responses in pea towards the oomycete pathogens Aphanomyces euteiches and Phytophthora pisi. BMC Genomics 2015; 16:627. [PMID: 26293353 PMCID: PMC4546216 DOI: 10.1186/s12864-015-1829-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/07/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Root rot caused by Aphanomyces euteiches is one of the most destructive pea diseases while a distantly related species P. pisi has been recently described as the agent of pea and faba bean root rot. These two oomycete pathogens with different pathogenicity factor repertories have both evolved specific mechanisms to infect pea. However, little is known about the genes and mechanisms of defence against these pathogens in pea. In the present study, the transcriptomic response of pea to these two pathogens was investigated at two time points during early phase of infection using a Medicago truncatula microarray. RESULTS Of the 37,976 genes analysed, 574 and 817 were differentially expressed in response to A. euteiches at 6 hpi and 20 hpi, respectively, while 544 and 611 genes were differentially regulated against P. pisi at 6 hpi and 20 hpi, respectively. Differentially expressed genes associated with plant immunity responses were involved in cell wall reinforcement, hormonal signalling and phenylpropanoid metabolism. Activation of cell wall modification, regulation of jasmonic acid biosynthesis and induction of ethylene signalling pathway were among the common transcriptional responses to both of these oomycetes. However, induction of chalcone synthesis and the auxin pathway were specific transcriptional changes against A. euteiches. CONCLUSIONS Our results demonstrate a global view of differentially expressed pea genes during compatible interactions with P. pisi and A. euteiches at an early phase of infection. The results suggest that distinct signalling pathways are triggered in pea by these two pathogens that lead to common and specific immune mechanisms in response to these two oomycetes. The generated knowledge may eventually be used in breeding pea varieties with resistance against root rot disease.
Collapse
Affiliation(s)
- Sara Hosseini
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Fredrik Heyman
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| |
Collapse
|
42
|
Sharma M, Ghosh R, Tarafdar A, Telangre R. An efficient method for zoospore production, infection and real-time quantification of Phytophthora cajani causing Phytophthora blight disease in pigeonpea under elevated atmospheric CO₂. BMC PLANT BIOLOGY 2015; 15:90. [PMID: 25888001 PMCID: PMC4377013 DOI: 10.1186/s12870-015-0470-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/06/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Phytophthora blight caused by Phytophthora cajani is an emerging disease of pigeonpea (Cajanus cajan L.) affecting the crop irrespective of cropping system, cultivar grown and soil types. Current detection and identification methods for Phytophthora species rely primarily on cultural and morphological characteristics, the assessment of which is time-consuming and not always suitable. Sensitive and reliable methods for isolation, identification, zoospore production and estimating infection severity are therefore desirable in case of Phytophthora blight of pigeonpea. RESULTS In this study, protocols for isolation and identification of Phytophthora blight of pigeonpea were standardized. Also the method for zoospore production and in planta infection of P. cajani was developed. Quantification of fungal colonization by P. cajani using real-time PCR was further standardized. Phytophthora species infecting pigeonpea was identified based on mycological characters such as growth pattern, mycelium structure and sporangial morphology of the isolates and confirmed through molecular characterization (sequence deposited in GenBank). For Phytophthora disease development, zoospore suspension of 1 × 10(5) zoospores per ml was found optimum. Phytophthora specific real-time PCR assay was developed using specific primers based on internal transcribed spacer (ITS) 1 and 2. Use of real-time PCR allowed the quantitative estimation of fungal biomass in plant tissues. Detection sensitivities were within the range of 0.001 pg fungal DNA. A study to see the effect of elevated CO₂ on Phytophthora blight incidence was also conducted which indicated no significant difference in disease incidence, but incubation period delayed under elevated CO₂ as compared to ambient level. CONCLUSION The zoospore infection method for Phytophthora blight of pigeonpea will facilitate the small and large scale inoculation experiments and thus devise a platform for rapid and reliable screening against Phytophthora blight disease of pigeonpea. qPCR allowed a reliable detection and quantification of P. cajani in samples with low pathogen densities. This can be useful in early warning systems prior to potential devastating outbreak of the disease.
Collapse
Affiliation(s)
- Mamta Sharma
- Legumes Pathology, International Crop Research Institute for the Semi-Arid Tropics, Patancheru, 502324, Telangana, India.
| | - Raju Ghosh
- Legumes Pathology, International Crop Research Institute for the Semi-Arid Tropics, Patancheru, 502324, Telangana, India.
| | - Avijit Tarafdar
- Legumes Pathology, International Crop Research Institute for the Semi-Arid Tropics, Patancheru, 502324, Telangana, India.
| | - Rameshwar Telangre
- Legumes Pathology, International Crop Research Institute for the Semi-Arid Tropics, Patancheru, 502324, Telangana, India.
| |
Collapse
|
43
|
Xiong Q, Ye W, Choi D, Wong J, Qiao Y, Tao K, Wang Y, Ma W. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1379-89. [PMID: 25387135 DOI: 10.1094/mpmi-06-14-0190-r] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The genus Phytophthora consists of notorious and emerging pathogens of economically important crops. Each Phytophthora genome encodes several hundreds of cytoplasmic effectors, which are believed to manipulate plant immune response inside the host cells. However, the majority of Phytophthora effectors remain functionally uncharacterized. We recently discovered two effectors from the soybean stem and root rot pathogen Phytophthora sojae with the activity to suppress RNA silencing in plants. These effectors are designated Phytophthora suppressor of RNA silencing (PSRs). Here, we report that the P. sojae PSR2 (PsPSR2) belongs to a conserved and widespread effector family in Phytophthora. A PsPSR2-like effector produced by P. infestans (PiPSR2) can also suppress RNA silencing in plants and promote Phytophthora infection, suggesting that the PSR2 family effectors have conserved functions in plant hosts. Using Agrobacterium rhizogenes-mediated hairy roots induction, we demonstrated that the expression of PsPSR2 rendered hypersusceptibility of soybean to P. sojae. Enhanced susceptibility was also observed in PsPSR2-expressing Arabidopsis thaliana plants during Phytophthora but not bacterial infection. These experiments provide strong evidence that PSR2 is a conserved Phytophthora effector family that performs important virulence functions specifically during Phytophthora infection of various plant hosts.
Collapse
|
44
|
Doehlemann G, Requena N, Schaefer P, Brunner F, O'Connell R, Parker JE. Reprogramming of plant cells by filamentous plant-colonizing microbes. THE NEW PHYTOLOGIST 2014; 204:803-14. [PMID: 25539003 DOI: 10.1111/nph.12938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although phylogenetically unrelated, filamentous oomycetes and fungi establish similar structures to colonize plants and they represent economically the most important microbial threat to crop production. In mutualistic interactions established by root-colonizing fungi, clear differences to pathogens can be seen, but there is mounting evidence that their infection strategies and molecular interactions have certain common features. To infect the host, fungi and oomycetes employ similar strategies to circumvent plant innate immunity. This process involves the suppression of basal defence responses which are triggered by the perception of conserved molecular patterns. To establish biotrophy, effector proteins are secreted from mutualistic and pathogenic microbes to the host tissue, where they play central roles in the modulation of host immunity and metabolic reprogramming of colonized host tissues. This review article discusses key effector mechanisms of filamentous pathogens and mutualists, how they modulate their host targets and the fundamental differences or parallels between these different interactions. The orchestration of effector actions during plant infection and the importance of their localization within host tissues are also discussed.
Collapse
|
45
|
Evangelisti E, Rey T, Schornack S. Cross-interference of plant development and plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:118-26. [PMID: 24922556 DOI: 10.1016/j.pbi.2014.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 05/03/2023]
Abstract
Plant roots are host to a multitude of filamentous microorganisms. Among these, arbuscular mycorrhizal fungi provide benefits to plants, while pathogens trigger diseases resulting in significant crop yield losses. It is therefore imperative to study processes which allow plants to discriminate detrimental and beneficial interactions in order to protect crops from diseases while retaining the ability for sustainable bio-fertilisation strategies. Accumulating evidence suggests that some symbiosis processes also affect plant-pathogen interactions. A large part of this overlap likely constitutes plant developmental processes. Moreover, microbes utilise effector proteins to interfere with plant development. Here we list relevant recent findings on how plant-microbe interactions intersect with plant development and highlight future research leads.
Collapse
Affiliation(s)
| | - Thomas Rey
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | |
Collapse
|
46
|
Transcriptome dynamics of Arabidopsis thaliana root penetration by the oomycete pathogen Phytophthora parasitica. BMC Genomics 2014; 15:538. [PMID: 24974100 PMCID: PMC4111850 DOI: 10.1186/1471-2164-15-538] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Oomycetes are a group of filamentous microorganisms that includes both animal and plant pathogens and causes major agricultural losses. Phytophthora species can infect most crops and plants from natural ecosystems. Despite their tremendous economic and ecologic importance, few effective methods exist for limiting the damage caused by these species. New solutions are required, and their development will require improvements in our understanding of the molecular events governing infection by these pathogens. In this study, we characterized the genetic program activated during penetration of the plant by the soil-borne pathogen Phytophthora parasitica. Results Using all the P. parasitica sequences available in public databases, we generated a custom oligo-array and performed a transcriptomic analysis of the early events of Arabidopsis thaliana infection. We characterized biological stages, ranging from the appressorium-mediated penetration of the pathogen into the roots to the occurrence of first dead cells in the plant. We identified a series of sequences that were transiently modulated during host penetration. Surprisingly, we observed an overall down regulation of genes encoding proteins involved in lipid and sugar metabolism, and an upregulation of functions controlling the transport of amino acids. We also showed that different groups of genes were expressed by P. parasitica during host penetration and the subsequent necrotrophic phase. Differential expression patterns were particularly marked for cell wall-degrading enzymes and other proteins involved in pathogenicity, including RXLR effectors. By transforming P. parasitica with a transcriptional fusion with GFP, we showed that an RXLR-ecoding gene was expressed in the appressorium and infectious hyphae during infection of the first plant cell. Conclusion We have characterized the genetic program activated during the initial invasion of plant cells by P. parasitica. We showed that a specific set of proteins, including effectors, was mobilized for penetration and to facilitate infection. Our detection of the expression of an RXLR encoding gene by the appressorium and infection hyphae highlights a role of this structure in the manipulation of the host cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-538) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Meng Y, Zhang Q, Ding W, Shan W. Phytophthora parasitica: a model oomycete plant pathogen. Mycology 2014; 5:43-51. [PMID: 24999436 PMCID: PMC4066925 DOI: 10.1080/21501203.2014.917734] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/12/2014] [Indexed: 11/21/2022] Open
Abstract
Oomycetes are eukaryotic microorganisms morphologically similar to but phylogenetically distant from true fungi. Most species in the genus Phytophthora of oomycetes are devastating plant pathogens, causing damages to both agricultural production and natural ecosystems. Tremendous progress has been achieved in recent years in diversity, evolution and lifestyles of oomycete plant pathogens, as well as on the understanding of genetic and molecular basis of oomycete-plant interactions. Phytophthora parasitica is a soilborne pathogen with a wide range of host plants and represents most species in the genus Phytophthora. In this review, we present some recent progress of P. parasitica research by highlighting important features that make it emerge as a model species of oomycete pathogens. The emerged model pathogen will facilitate improved understanding of oomycete biology and pathology that are crucial to the development of novel disease-control strategies and improved disease-control measures.
Collapse
Affiliation(s)
- Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
48
|
Murata H, Yamada A, Yokota S, Maruyama T, Endo N, Yamamoto K, Ohira T, Neda H. Root endophyte symbiosis in vitro between the ectomycorrhizal basidiomycete Tricholoma matsutake and the arbuscular mycorrhizal plant Prunus speciosa. MYCORRHIZA 2014; 24:315-321. [PMID: 24158697 DOI: 10.1007/s00572-013-0534-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
We previously reported that Tricholoma matsutake and Tricholoma fulvocastaneum, ectomycorrhizal basidiomycetes that associate with Pinaceae and Fagaceae, respectively, in the Northern Hemisphere, could interact in vitro as a root endophyte of somatic plants of Cedrela odorata (Meliaceae), which naturally harbors arbuscular mycorrhizal fungi in South America, to form a characteristic rhizospheric colony or "shiro". We questioned whether this phenomenon could have occurred because of plant-microbe interactions between geographically separated species that never encounter one another in nature. In the present study, we document that these fungi formed root endophyte interactions and shiro within 140 days of inoculation with somatic plants of Prunus speciosa (=Cerasus speciosa, Rosaceae), a wild cherry tree that naturally harbors arbuscular mycorrhizal fungi in Japan. Compared with C. odorata, infected P. speciosa plants had less mycelial sheath surrounding the exodermis, and the older the roots, especially main roots, the more hyphae penetrated. In addition, a large number of juvenile roots were not associated with hyphae. We concluded that such root endophyte interactions were not events isolated to the interactions between exotic plants and microbes but could occur generally in vitro. Our pure culture system with a somatic plant allowed these fungi to express symbiosis-related phenotypes that varied with the plant host; these traits are innately programmed but suppressed in nature and could be useful in genetic analyses of plant-fungal symbiosis.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Applied Microbiology and Mushroom Sciences, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, 305-8687, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kuhn H, Panstruga R. Introduction to a Virtual Special Issue on phytopathogen effector proteins. THE NEW PHYTOLOGIST 2014; 202:727-730. [PMID: 24716512 DOI: 10.1111/nph.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Hannah Kuhn
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|