1
|
Mormile BW, Yan Y, Bauer T, Wang L, Rivero RC, Carpenter SCD, Danmaigona Clement C, Cox KL, Zhang L, Ma X, Wheeler TA, Dever JK, He P, Bogdanove AJ, Shan L. Activation of three targets by a TAL effector confers susceptibility to bacterial blight of cotton. Nat Commun 2025; 16:644. [PMID: 39809734 PMCID: PMC11733179 DOI: 10.1038/s41467-025-55926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025] Open
Abstract
Bacterial transcription activator-like effectors (TALEs) promote pathogenicity by activating host susceptibility (S) genes. To understand the pathogenicity and host adaptation of Xanthomonas citri pv. malvacearum (Xcm), we assemble the genome and the TALE repertoire of three recent Xcm Texas isolates. A newly evolved TALE, Tal7b, activates GhSWEET14a and GhSWEET14b, different from GhSWEET10 targeted by a TALE in an early Xcm isolate. Activation of GhSWEET14a and GhSWEET14b results in water-soaked lesions. Transcriptome profiling coupled with TALE-binding element prediction identify a pectin lyase gene as an additional Tal7b target, quantitatively contributing to Xcm virulence alongside GhSWEET14a/b. CRISPR-Cas9 gene editing supports the function of GhSWEETs in cotton bacterial blight and the promise of disrupting the TALE-binding site in S genes for disease management. Collectively, our findings elucidate the rapid evolution of TALEs in Xanthomonas field isolates and highlight the virulence mechanism wherein TALEs induce multiple S genes to promote pathogenicity.
Collapse
Affiliation(s)
- Brendan W Mormile
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Yan Yan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Taran Bauer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Li Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Rachel C Rivero
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sara C D Carpenter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Catherine Danmaigona Clement
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
- Bayer Research and Development Services LLC, 800 N. Lindbergh Blvd., St. Louis, MO, 63167, USA
| | - Kevin L Cox
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Lin Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Xiyu Ma
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Jane K Dever
- Texas A&M AgriLife Research, Lubbock, TX, 79403, USA
- Pee Dee Research and Education Center, 2200 Pocket Road, Florence, SC, 29506, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Gaudin C, Preveaux A, Aubineau N, Le Goff D, Jacques MA, Chen NWG. A dTALE approach demonstrates that induction of common bean OVATE Family Protein 7 promotes resistance to common bacterial blight. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:607-620. [PMID: 39437252 DOI: 10.1093/jxb/erae433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Common bacterial blight (CBB) is a devastating seed-transmitted disease of common bean (Phaseolus vulgaris L.), caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans. The genes responsible for CBB resistance are largely unknown. Moreover, the lack of a reproducible and universal transformation protocol limits the study of genetic traits in common bean. We produced X. phaseoli pv. phaseoli strains expressing artificially designed transcription-activator like effectors (dTALEs) to target 14 candidate genes for resistance to CBB based on previous transcriptomic data. In planta assays in a susceptible common bean genotype showed that induction of PvOFP7, PvAP2-ERF71, or PvExpansinA17 expression by dTALEs resulted in CBB symptom reduction. After PvOFP7 induction, in planta bacterial growth was reduced at early colonization stages, and RNA-seq analysis revealed up-regulation of cell wall formation and primary metabolism, together with major down-regulation of heat shock proteins. Our results demonstrated that PvOFP7 contributes to CBB resistance, and underlined the usefulness of dTALEs for functional validation of genes whose induction impacts Xanthomonas-plant interactions.
Collapse
Affiliation(s)
- Charlotte Gaudin
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Anne Preveaux
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Nathan Aubineau
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Damien Le Goff
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Marie-Agnès Jacques
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Nicolas W G Chen
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
3
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
4
|
Shah SMA, Haq F, Huang K, Wang Q, Liu L, Li Y, Wang Y, Khan A, Yang R, Khojasteh M, Xu X, Xu Z, Chen G. Two TAL Effectors of Xanthomonas citri pv. malvacearum Induce Water Soaking by Activating GhSWEET14 Genes in Cotton. MOLECULAR PLANT PATHOLOGY 2025; 26:e70053. [PMID: 39825471 PMCID: PMC11756550 DOI: 10.1111/mpp.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility. In this study, we sequenced the whole genome of Xcm Xss-V2-18 and identified eight tal genes: seven on the plasmids and one on the chromosome. Deletion and complementation experiments of Xss-V2-18 tal genes demonstrated that Tal1b is required for full virulence on cotton. Transcriptome profiling coupled with TALE-binding element prediction revealed that Tal1b targets GhSWEET14A04/D04 and GhSWEET14D02 simultaneously. Expression analysis confirmed the independent inducibility of GhSWEET14A04/D04 and GhSWEET14D02 by Tal1b, whereas GhSWEET14A04/D04 is additionally targeted by Tal1. Moreover, β-glucuronidase and Xa10-mediated hypersensitive response assays indicated that the effector-binding element (EBEs) are required for the direct and specific activation of the candidate targets by Tal1 and Ta1b. These insights enhance our understanding of the underlying mechanisms of bacterial blight in cotton and might lead to improved resistance through EBEs disruption or a TALE-trap strategy.
Collapse
Affiliation(s)
- Syed Mashab Ali Shah
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Fazal Haq
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversity Paris‐SaclayGif‐sur‐YvetteFrance
| | - Kunxuan Huang
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qi Wang
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Linlin Liu
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yong Wang
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Asaf Khan
- Center for Viticulture and Enology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ruihuan Yang
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Moein Khojasteh
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiameng Xu
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri‐Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
5
|
Zhao X, Wei M, Tang Q, Tang L, Fu J, Wang K, Zhou Y, Yang Y. Receptor-like Kinase GOM1 Regulates Glume-Opening in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 14:5. [PMID: 39795264 PMCID: PMC11722787 DOI: 10.3390/plants14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
Glume-opening of thermosensitive genic male sterile (TGMS) rice (Oryza sativa L.) lines after anthesis is a serious problem that significantly reduces the yield and quality of hybrid seeds. However, the molecular mechanisms regulating the opening and closing of rice glumes remain largely unclear. In this study, we report the isolation and functional characterization of a glum-opening mutant after anthesis, named gom1. gom1 exhibits dysfunctional lodicules that lead to open glumes following anthesis. Map-based cloning and subsequent complementation tests confirmed that GOM1 encodes a receptor-like kinase (RLK). GOM1 was expressed in nearly all floral tissues, with the highest expression in the lodicule. Loss-of-function of GOM1 resulted in a decrease in the expression of genes related to JA biosynthesis, JA signaling, and sugar transport. Compared with LK638S, the JA content in the gom1 mutant was significantly reduced, while the soluble sugar, sucrose, glucose, and fructose contents were significantly increased in lodicules after anthesis. Together, we speculated that GOM1 regulates carbohydrate transport in lodicules during anthesis through JA and JA signaling, maintaining a higher osmolality in lodicules after anthesis, which leads to glum-opening.
Collapse
Affiliation(s)
- Xinhui Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
| | - Mengyi Wei
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qianying Tang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Tang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jun Fu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
| | - Yanbiao Zhou
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yuanzhu Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha 410001, China
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Kong L, Sun J, Zhang W, Zhan Z, Piao Z. Functional analysis of the key BrSWEET genes for sugar transport involved in the Brassica rapa-Plasmodiophora brassicae interaction. Gene 2024; 927:148708. [PMID: 38885818 DOI: 10.1016/j.gene.2024.148708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Plasmodiophora brassicae, the causative agent of clubroot disease, establishes a long-lasting parasitic relationship with its host by inducing the expression of sugar transporters. Previous studies have indicated that most BrSWEET genes in Chinese cabbage are up-regulated upon infection with P. brassicae. However, the key BrSWEET genes responsive to P. brassicae have not been definitively identified. In this study, we selected five BrSWEET genes and conducted a functional analysis of them. These five BrSWEET genes showed a notable up-regulation in roots after P. brassicae inoculation. Furthermore, these BrSWEET proteins were localized to the plasma membrane. Yeast functional complementation assays confirmed transport activity for glucose, fructose, or sucrose in four BrSWEETs, with the exception of BrSWEET2a. Mutants and silenced plants of BrSWEET1a, -11a, and -12a showed lower clubroot disease severity compared to wild-type plants, while gain-of-function Arabidopsis thaliana plants overexpressing these three BrSWEET genes exhibited significantly higher disease incidence and severity. Our findings suggested that BrSWEET1a, BrSWEET11a, and BrSWEET12a play pivotal roles in P. brassicae-induced gall formation, shedding light on the role of sugar transporters in host-pathogen interactions.
Collapse
Affiliation(s)
- Liyan Kong
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jiadi Sun
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wenjun Zhang
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, Department of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
7
|
Chen P, Zhang X, Li X, Sun B, Yu H, Liu Q, Jiang L, Mao X, Zhang J, Lv S, Fan Z, Liu W, Chen W, Li C. Transcriptome Analysis of Rice Near-Isogenic Lines Inoculated with Two Strains of Xanthomonas oryzae pv. oryzae, AH28 and PXO99 A. PLANTS (BASEL, SWITZERLAND) 2024; 13:3129. [PMID: 39599338 PMCID: PMC11597379 DOI: 10.3390/plants13223129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a major threat to rice production and food security. Exploring new resistance genes and developing varieties with broad-spectrum and high resistance has been a key focus in rice disease resistance research. In a preliminary study, rice cultivar Fan3, exhibiting high resistance to PXO99A and susceptibility to AH28, was developed by enhancing the resistance of Yuehesimiao (YHSM) to BB. This study performed a transcriptome analysis on the leaves of Fan3 and YHSM following inoculation with Xoo strains AH28 and PXO99A. The analysis revealed significant differential expression of 14,084 genes. Among the transcription factor (TF) families identified, bHLH, WRKY, and ERF were prominent, with notable differences in the expression of OsWRKY62, OsWRKY76, and OsbHLH6 across samples. Over 100 genes were directly linked to disease resistance, including nearly 30 NBS-LRR family genes. Additionally, 11 SWEET family protein genes, over 750 protein kinase genes, 63 peroxidase genes, and eight phenylalanine aminolysase genes were detected. Gene ontology (GO) analysis showed significant enrichment in pathways related to defense response to bacteria and oxidative stress response. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis and diterpenoid biosynthesis pathways. Gene expression results from qRT-PCR were consistent with those from RNA-Seq, underscoring the reliability of the findings. Candidate genes identified in this study that may be resistant to BB, such as NBS-LRR family genes LOC_Os11g11960 and LOC_Os11g12350, SWEET family genes LOC_Os01g50460 and LOC_Os01g12130, and protein kinase-expressing genes LOC_Os01g66860 and LOC_Os02g57700, will provide a theoretical basis for further experiments. These results suggest that the immune response of rice to the two strains may be more concentrated in the early stage, and there are more up-regulated genes in the immune response of the high-resistant to PXO99A and medium-resistant to AH28, respectively, compared with the highly susceptible rice. This study offers a foundation for further research on resistance genes and the molecular mechanisms in Fan3 and YHSM.
Collapse
Affiliation(s)
- Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xing Zhang
- Hanzhong Agricultural Technology Promotion and Training Center, Hanzhong 723000, China
| | - Xiaogang Li
- Hanzhong Agricultural Technology Promotion and Training Center, Hanzhong 723000, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shuwei Lv
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Wei Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
8
|
Liu Y, Zhang H, Zhao K, Wei X, Li L, Tang Y, Xiong Y, Xu J. Expression Profiling Analysis of the SWEET Gene Family in In Vitro Pitaya Under Low-Temperature Stress and Study of Its Cold Resistance Mechanism. PLANTS (BASEL, SWITZERLAND) 2024; 13:3092. [PMID: 39520008 PMCID: PMC11548471 DOI: 10.3390/plants13213092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Pitaya (Hylocereus undatus) fruit is an attractive, nutrient-rich tropical fruit with commercial value. However, low-temperature stress severely affects the yield and quality of pitaya. The relevant mechanisms involved in the response of pitaya to low-temperature stress remain unclear. To study whether the SWEET gene family mediates the response of H. undatus to low-temperature stress and the related mechanisms, we performed genome-wide identification of the SWEET gene family in pitaya, and we used 'Baiyulong' tissue-cultured plantlets as material in the present study. We identified 28 members of the SWEET gene family from the H. undatus genome and divided these family members into four groups. Members of this gene family presented some differences in the sequences of introns and exons, but the gene structure, especially the motifs, presented relatively conserved characteristics. The promoter regions of most HuSWEETs have multiple stress- or hormone-related cis-elements. Three duplicated gene pairs were identified, including one tandem duplication gene and two fragment duplication gene pairs. The results revealed that the SWEET genes may regulate the transport and distribution of soluble sugars in plants; indirectly regulate the enzyme activities of CAT, POD, and T-SOD through its expression products; and are involved in the response of pitaya to low-temperature stress and play vital roles in this process. After ABA and MeJA treatment, the expression of HuSWEETs changed significantly, and the cold stress was also alleviated. This study elucidated the molecular mechanism and physiological changes in the SWEET gene in sugar metabolism and distribution of pitaya when it experiences low-temperature stress and provided a theoretical basis for cold-resistant pitaya variety breeding.
Collapse
Affiliation(s)
- Youjie Liu
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (H.Z.); (K.Z.)
| | - Ke Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (H.Z.); (K.Z.)
| | - Xiuqing Wei
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Liang Li
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Yajun Tang
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Yueming Xiong
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Jiahui Xu
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| |
Collapse
|
9
|
Chen Y, Miller AJ, Qiu B, Huang Y, Zhang K, Fan G, Liu X. The role of sugar transporters in the battle for carbon between plants and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2844-2858. [PMID: 38879813 PMCID: PMC11536462 DOI: 10.1111/pbi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 11/05/2024]
Abstract
In photosynthetic cells, plants convert carbon dioxide to sugars that can be moved between cellular compartments by transporters before being subsequently metabolized to support plant growth and development. Most pathogens cannot synthesize sugars directly but have evolved mechanisms to obtain plant-derived sugars as C resource for successful infection and colonization. The availability of sugars to pathogens can determine resistance or susceptibility. Here, we summarize current progress on the roles of sugar transporters in plant-pathogen interactions. We highlight how transporters are manipulated antagonistically by both host and pathogens in competing for sugars. We examine the potential application of this target in resistance breeding and discuss opportunities and challenges for the future.
Collapse
Affiliation(s)
- Yi Chen
- Biochemistry & Metabolism DepartmentJohn Innes CentreNorwichUK
| | | | - Bowen Qiu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| | - Yao Huang
- School of Life ScienceNanChang UniversityNanchangJiangxiChina
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
| | - Gaili Fan
- Xiamen Greening Administration CentreXiamenChina
| | - Xiaokun Liu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| |
Collapse
|
10
|
Shafique MS, Yapei L, Man L, Hongjie W, Ruyi S, Chunlian W, Zhiyuan J. Coevolution unveiled: Sulfate transporters mediate rice resistance and susceptibility to Xanthomonas oryzae pv. oryzicola. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2632-2634. [PMID: 38829876 PMCID: PMC11331776 DOI: 10.1111/pbi.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Affiliation(s)
- Muhammad Sohaib Shafique
- State Key Laboratory of Crop Gene Resources and Breeding/ National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Liu Yapei
- State Key Laboratory of Crop Gene Resources and Breeding/ National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Li Man
- State Key Laboratory of Crop Gene Resources and Breeding/ National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wang Hongjie
- State Key Laboratory of Crop Gene Resources and Breeding/ National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Su Ruyi
- State Key Laboratory of Crop Gene Resources and Breeding/ National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wang Chunlian
- State Key Laboratory of Crop Gene Resources and Breeding/ National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ji Zhiyuan
- State Key Laboratory of Crop Gene Resources and Breeding/ National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
11
|
Wang J, Liao Z, Jin X, Liao L, Zhang Y, Zhang R, Zhao X, Qin H, Chen J, He Y, Zhuang C, Tang J, Huang S. Xanthomonas oryzae pv. oryzicola effector Tal10a directly activates rice OsHXK5 expression to facilitate pathogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2423-2436. [PMID: 38995679 DOI: 10.1111/tpj.16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is a major bacterial disease in rice. Transcription activator-like effectors (TALEs) from Xanthomonas can induce host susceptibility (S) genes and facilitate infection. However, knowledge of the function of Xoc TALEs in promoting bacterial virulence is limited. In this study, we demonstrated the importance of Tal10a for the full virulence of Xoc. Through computational prediction and gene expression analysis, we identified the hexokinase gene OsHXK5 as a host target of Tal10a. Tal10a directly binds to the gene promoter region and activates the expression of OsHXK5. CRISPR/Cas9-mediated gene editing in the effector binding element (EBE) of OsHXK5 significantly increases rice resistance to Xoc, while OsHXK5 overexpression enhances the susceptibility of rice plants and impairs rice defense responses. Moreover, simultaneous editing of the promoters of OsSULTR3;6 and OsHXK5 confers robust resistance to Xoc in rice. Taken together, our findings highlight the role of Tal10a in targeting OsHXK5 to promote infection and suggest that OsHXK5 represents a potential target for engineering rice resistance to Xoc.
Collapse
Affiliation(s)
- Jiuxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhouxiang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xia Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Lindong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yaqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Rongbo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xiyao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Huajun Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Jianghong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiliang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| |
Collapse
|
12
|
Wang X, Ju Y, Wu T, Kong L, Yuan M, Liu H, Chen X, Chu Z. The clade III subfamily of OsSWEETs directly suppresses rice immunity by interacting with OsHMGB1 and OsHsp20L. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2186-2200. [PMID: 38587024 PMCID: PMC11258985 DOI: 10.1111/pbi.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
The clade III subfamily of OsSWEETs includes transmembrane proteins necessary for susceptibility to bacterial blight (BB). These genes are targeted by the specific transcription activator-like effector (TALE) of Xanthomonas oryzae pv. oryzae and mediate sucrose efflux for bacterial proliferation. However, the mechanism through which OsSWEETs regulate rice immunity has not been fully elucidated. Here, we demonstrated that the cytosolic carboxyl terminus of OsSWEET11a/Xa13 is required for complementing susceptibility to PXO99 in IRBB13 (xa13/xa13). Interestingly, the C-terminus of ZmXa13, the maize homologue of OsSWEET11a/Xa13, could perfectly substitute for the C-terminus of OsSWEET11a/Xa13. Furthermore, OsSWEET11a/Xa13 interacted with the high-mobility group B1 (OsHMGB1) protein and the small heat shock-like protein OsHsp20L through the same regions in the C-terminus. Consistent with the physical interactions, knockdown or knockout of either OsHMGB1 or OsHsp20L caused an enhanced PXO99-resistant phenotype similar to that of OsSWEET11a/OsXa13. Surprisingly, the plants in which OsHMGB1 or OsHsp20L was repressed developed increased resistance to PXO86, PXO61 and YN24, which carry TALEs targeting OsSWEET14/Xa41 or OsSWEET11a/Xa13. Additionally, OsHsp20L can interact with all six members of clade III OsSWEETs, whereas OsHMGB1 can interact with five other members in addition to OsSWEET12. Overall, we revealed that OsHMGB1 and OsHsp20L mediate conserved BB susceptibility by interacting with clade III OsSWEETs, which are candidates for breeding broad-spectrum disease-resistant rice.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life SciencesWuhan UniversityWuhanChina
| | - Yanhu Ju
- State Key Laboratory of Wheat Breeding, College of AgronomyShandong Agricultural UniversityTai'anChina
- Present address:
College of Life SciencesLiaocheng UniversityLiaochengChina
| | - Tao Wu
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Lingguang Kong
- State Key Laboratory of Wheat Breeding, College of AgronomyShandong Agricultural UniversityTai'anChina
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Haifeng Liu
- State Key Laboratory of Wheat Breeding, College of AgronomyShandong Agricultural UniversityTai'anChina
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life SciencesWuhan UniversityWuhanChina
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
13
|
Dey R, Raghuwanshi R. An insight into pathogenicity and virulence gene content of Xanthomonas spp. and its biocontrol strategies. Heliyon 2024; 10:e34275. [PMID: 39092245 PMCID: PMC11292268 DOI: 10.1016/j.heliyon.2024.e34275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
The genus Xanthomonas primarily serves as a plant pathogen, targeting a diverse range of economically significant crops on a global scale. Xanthomonas spp. utilizes a collection of toxins, adhesins, and protein effectors as part of their toolkit to thrive in their surroundings, and establish themselves within plant hosts. The bacterial secretion systems (Type 1 to Type 6) assist in delivering the effector proteins to their intended destinations. These secretion systems are specialized multi-protein complexes responsible for transporting proteins into the extracellular milieu or directly into host cells. The potent virulence and systematic infection system result in rapid dissemination of the bacteria, posing significant challenges in management due to complexities and substantial loss incurred. Consequently, there has been a notable increase in the utilization of chemical pesticides, leading to bioaccumulation and raising concerns about adverse health effects. Biological control mechanisms through beneficial microorganism (Bacillus, Pseudomonas, Trichoderma, Burkholderia, AMF, etc.) have proven to be an appropriate alternative in integrative pest management system. This review details the pathogenicity and virulence factors of Xanthomonas, as well as its control strategies. It also encourages the use of biological control agents, which promotes sustainable and environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Riddha Dey
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Richa Raghuwanshi
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
14
|
Wu X, Lin T, Zhou X, Zhang W, Liu S, Qiu H, Birch PRJ, Tian Z. Potato E3 ubiquitin ligase StRFP1 positively regulates late blight resistance by degrading sugar transporters StSWEET10c and StSWEET11. THE NEW PHYTOLOGIST 2024; 243:688-704. [PMID: 38769723 DOI: 10.1111/nph.19848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.
Collapse
Affiliation(s)
- Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Tianyu Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Xiaoshuang Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Wenjun Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Paul R J Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| |
Collapse
|
15
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
16
|
Singh PK, Devanna BN, Dubey H, Singh P, Joshi G, Kumar R. The potential of genome editing to create novel alleles of resistance genes in rice. Front Genome Ed 2024; 6:1415244. [PMID: 38933684 PMCID: PMC11201548 DOI: 10.3389/fgeed.2024.1415244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rice, a staple food for a significant portion of the global population, faces persistent threats from various pathogens and pests, necessitating the development of resilient crop varieties. Deployment of resistance genes in rice is the best practice to manage diseases and reduce environmental damage by reducing the application of agro-chemicals. Genome editing technologies, such as CRISPR-Cas, have revolutionized the field of molecular biology, offering precise and efficient tools for targeted modifications within the rice genome. This study delves into the application of these tools to engineer novel alleles of resistance genes in rice, aiming to enhance the plant's innate ability to combat evolving threats. By harnessing the power of genome editing, researchers can introduce tailored genetic modifications that bolster the plant's defense mechanisms without compromising its essential characteristics. In this study, we synthesize recent advancements in genome editing methodologies applicable to rice and discuss the ethical considerations and regulatory frameworks surrounding the creation of genetically modified crops. Additionally, it explores potential challenges and future prospects for deploying edited rice varieties in agricultural landscapes. In summary, this study highlights the promise of genome editing in reshaping the genetic landscape of rice to confront emerging challenges, contributing to global food security and sustainable agriculture practices.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
| | | | - Himanshu Dubey
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - Prabhakar Singh
- Botany Department, Banaras Hindu University, Varanasi, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal (A Central University), Tehri Garhwal, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
17
|
Chen P, Wang J, Liu Q, Liu J, Mo Q, Sun B, Mao X, Jiang L, Zhang J, Lv S, Yu H, Chen W, Liu W, Li C. Transcriptome and Metabolome Analysis of Rice Cultivar CBB23 after Inoculation by Xanthomonas oryzae pv. oryzae Strains AH28 and PXO99 A. PLANTS (BASEL, SWITZERLAND) 2024; 13:1411. [PMID: 38794481 PMCID: PMC11124827 DOI: 10.3390/plants13101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Bacterial leaf blight (BLB), among the most serious diseases in rice production, is caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23, the broadest resistance gene against BLB in rice, is widely used in rice breeding. In this study, the rice variety CBB23 carrying the Xa23 resistance gene was inoculated with AH28 and PXO99A to identify differentially expressed genes (DEGs) associated with the resistance. Transcriptome sequencing of the infected leaves showed 7997 DEGs between the two strains at different time points, most of which were up-regulated, including cloned rice anti-blight, peroxidase, pathology-related, protein kinase, glucosidase, and other coding genes, as well as genes related to lignin synthesis, salicylic acid, jasmonic acid, and secondary metabolites. Additionally, the DEGs included 40 cloned, five NBS-LRR, nine SWEET family, and seven phenylalanine aminolyase genes, and 431 transcription factors were differentially expressed, the majority of which belonged to the WRKY, NAC, AP2/ERF, bHLH, and MYB families. Metabolomics analysis showed that a large amount of alkaloid and terpenoid metabolite content decreased significantly after inoculation with AH28 compared with inoculation with PXO99A, while the content of amino acids and their derivatives significantly increased. This study is helpful in further discovering the pathogenic mechanism of AH28 and PXO99A in CBB23 rice and provides a theoretical basis for cloning and molecular mechanism research related to BLB resistance in rice.
Collapse
Affiliation(s)
- Pingli Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjie Wang
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510335, China
| | - Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjie Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiaoping Mo
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510335, China
| | - Bingrui Sun
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Liqun Jiang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shuwei Lv
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hang Yu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weixiong Chen
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510335, China
| | - Wei Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chen Li
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
18
|
Liu L, Li Y, Wang Q, Xu X, Yan J, Wang Y, Wang Y, Shah SMA, Peng Y, Zhu Z, Xu Z, Chen G. Constructed Rice Tracers Identify the Major Virulent Transcription Activator-Like Effectors of the Bacterial Leaf Blight Pathogen. RICE (NEW YORK, N.Y.) 2024; 17:30. [PMID: 38656724 PMCID: PMC11043257 DOI: 10.1186/s12284-024-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) injects major transcription activator-like effectors (TALEs) into plant cells to activate susceptibility (S) genes for promoting bacterial leaf blight in rice. Numerous resistance (R) genes have been used to construct differential cultivars of rice to identify races of Xoo, but the S genes were rarely considered. Different edited lines of rice cv. Kitaake were constructed using CRISPR/Cas9 gene-editing, including single, double and triple edits in the effector-binding elements (EBEs) located in the promoters of rice S genes OsSWEET11a, OsSWEET13 and OsSWEET14. The near-isogenic lines (NILs) were used as tracers to detect major TALEs (PthXo1, PthXo2, PthXo3 and their variants) in 50 Xoo strains. The pathotypes produced on the tracers determined six major TALE types in the 50 Xoo strains. The presence of the major TALEs in Xoo strains was consistent with the expression of S genes in the tracers, and it was also by known genome sequences. The EBE editing had little effect on agronomic traits, which was conducive to balancing yield and resistance. The rice-tracers generated here provide a valuable tool to track major TALEs of Xoo in Asia which then shows what rice cultivars are needed to combat Xoo in the field.
Collapse
Affiliation(s)
- Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiameng Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiali Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yijie Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Syed Mashab Ali Shah
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongzheng Peng
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangfei Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Xu Z, Xu X, Li Y, Liu L, Wang Q, Wang Y, Wang Y, Yan J, Cheng G, Zou L, Zhu B, Chen G. Tal6b/AvrXa27A, a hidden TALE targeting the susceptibility gene OsSWEET11a and the resistance gene Xa27 in rice. PLANT COMMUNICATIONS 2024; 5:100721. [PMID: 37735868 PMCID: PMC10873877 DOI: 10.1016/j.xplc.2023.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) secretes transcription activator-like effectors (TALEs) to activate rice susceptibility (S) genes, causing bacterial blight (BB), as well as resistance (R) genes, leading to defense against BB. This activation follows a gene-for-gene paradigm that results in an arms race between the TALE of the pathogen and effector-binding elements (EBEs) in the promoters of host genes. In this study, we characterized a novel TALE, designated Tal6b/AvrXa27A, that activates the rice S gene OsSWEET11a and the rice R gene Xa27. Tal6b/AvrXa27A is a member of the AvrXa27/TalAO class and contains 16 repeat variable diresidues (RVDs); one RVD is altered and one is deleted in Tal6b/AvrXa27A compared with AvrXa27, a known avirulence (avr) effector of Xa27. Tal6b/AvrXa27A can transcriptionally activate the expression of Xa27 and OsSWEET11a via EBEs in their corresponding promoters, leading to effector-triggered immunity and susceptibility, respectively. The 16 RVDs in Tal6b/AvrXa27A have no obvious similarity to the 24 RVDs in the effector PthXo1, but EBETal6b and EBEPthXo1 are overlapped in the OsSWEET11a promoter. Tal6b/AvrXa27A is prevalent among Asian Xoo isolates, but PthXo1 has only been reported in the Philippine strain PXO99A. Genome editing of EBETal6b in the OsSWEET11a promoter further confirmed the requirement for OsSWEET11a expression in Tal6b/AvrXa27A-dependent susceptibility to Xoo. Moreover, Tal6b/AvrXa27A resulted in higher transcription of Xa27 than of OsSWEET11a, which led to a strong, rapid resistance response that blocked disease development. These findings suggest that Tal6b/AvrXa27A has a dual function: triggering resistance by activating Xa27 gene expression as an avirulence factor and inducing transcription of the S gene OsSWEET11a, resulting in virulence. Intriguingly, Tal6b/AvrXa27A, but not AvrXa27, can bind to the promoter of OsSWEET11a. The underlying recognition mechanism for this binding remains unclear but appears to deviate from the currently accepted TALE code.
Collapse
Affiliation(s)
- Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiameng Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijie Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiali Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanyun Cheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Norouzi M, Nazarain-Firouzabadi F, Ismaili A, Ahmadvand R, Poormazaheri H. CRISPR/Cas StNRL1 gene knockout increases resistance to late blight and susceptibility to early blight in potato. FRONTIERS IN PLANT SCIENCE 2024; 14:1278127. [PMID: 38304452 PMCID: PMC10830690 DOI: 10.3389/fpls.2023.1278127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024]
Abstract
With the development of genome editing technologies, editing susceptible genes is a promising method to modify plants for resistance to stress. NPH3/RPT2-LIKE1 protein (NRL1) interacts with effector Pi02860 of Phytophthora infestans and creates a protein complex, promoting the proteasome-mediated degradation of the guanine nucleotide exchange factor SWAP70. SWAP70, as a positive regulator, enhances cell death triggered by the perception of the P. infestans pathogen-associated molecular pattern (PAMP) INF1. Using a clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, a construct was made to introduce four guide RNAs into the potato cultivar Agria. A total of 60 putative transgenic lines were regenerated, in which 10 transgenic lines with deletions were selected and analyzed. A mutant line with a four-allelic knockdown of StNRL1 gene was obtained, showing an ~90% reduction in StNRL1 expression level, resulting in enhanced resistance to P. infestans. Surprisingly, mutant lines were susceptible to Alternaria alternata, suggesting that StNRL1 may play a role as a resistance gene; hence, silencing StNRL1 enhances resistance to P. infestans.
Collapse
Affiliation(s)
- Moshen Norouzi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Farhad Nazarain-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Rahim Ahmadvand
- Associate Professor, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Helen Poormazaheri
- Department of Biology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Zhu Z, Xiong J, Shi H, Liu Y, Yin J, He K, Zhou T, Xu L, Zhu X, Lu X, Tang Y, Song L, Hou Q, Xiong Q, Wang L, Ye D, Qi T, Zou L, Li G, Sun C, Wu Z, Li P, Liu J, Bi Y, Yang Y, Jiang C, Fan J, Gong G, He M, Wang J, Chen X, Li W. Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis. Nat Commun 2023; 14:8399. [PMID: 38110425 PMCID: PMC10728069 DOI: 10.1038/s41467-023-44197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Fungal pathogens typically use secreted effector proteins to suppress host immune activators to facilitate invasion. However, there is rarely evidence supporting the idea that fungal secretory proteins contribute to pathogenesis by transactivating host genes that suppress defense. We previously found that pathogen Magnaporthe oryzae induces rice Bsr-d1 to facilitate infection and hypothesized that a fungal effector mediates this induction. Here, we report that MoSPAB1 secreted by M. oryzae directly binds to the Bsr-d1 promoter to induce its expression, facilitating pathogenesis. Amino acids 103-123 of MoSPAB1 are required for its binding to the Bsr-d1 promoter. Both MoSPAB1 and rice MYBS1 compete for binding to the Bsr-d1 promoter to regulate Bsr-d1 expression. Furthermore, MoSPAB1 homologues are highly conserved among fungi. In particular, Colletotrichum fructicola CfSPAB1 and Colletotrichum sublineola CsSPAB1 activate kiwifruit AcBsr-d1 and sorghum SbBsr-d1 respectively, to facilitate pathogenesis. Taken together, our findings reveal a conserved module that may be widely utilized by fungi to enhance pathogenesis.
Collapse
Affiliation(s)
- Ziwei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hao Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuchen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tianyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Guobang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhiyue Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Peili Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
22
|
Kardile HB, Karkute SG, Challam C, Sharma NK, Shelake RM, Kawar PG, Patil VU, Deshmukh R, Bhardwaj V, Chourasia KN, Valluri SD. Hemibiotrophic Phytophthora infestans Modulates the Expression of SWEET Genes in Potato ( Solanum tuberosum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3433. [PMID: 37836173 PMCID: PMC10575152 DOI: 10.3390/plants12193433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Sugar Efflux transporters (SWEET) are involved in diverse biological processes of plants. Pathogens have exploited them for nutritional gain and subsequently promote disease progression. Recent studies have implied the involvement of potato SWEET genes in the most devastating late blight disease caused by Phytophthora infestans. Here, we identified and designated 37 putative SWEET genes as StSWEET in potato. We performed detailed in silico analysis, including gene structure, conserved domains, and phylogenetic relationship. Publicly available RNA-seq data was harnessed to retrieve the expression profiles of SWEET genes. The late blight-responsive SWEET genes were identified from the RNA-seq data and then validated using quantitative real-time PCR. The SWEET gene expression was studied along with the biotrophic (SNE1) and necrotrophic (PiNPP1) marker genes of P. infestans. Furthermore, we explored the co-localization of P. infestans resistance loci and SWEET genes. The results indicated that nine transporter genes were responsive to the P. infestans in potato. Among these, six transporters, namely StSWEET10, 12, 18, 27, 29, and 31, showed increased expression after P. infestans inoculation. Interestingly, the observed expression levels aligned with the life cycle of P. infestans, wherein expression of these genes remained upregulated during the biotrophic phase and decreased later on. In contrast, StSWEET13, 14, and 32 didn't show upregulation in inoculated samples suggesting non-targeting by pathogens. This study underscores these transporters as prime P. infestans targets in potato late blight, pivotal in disease progression, and potential candidates for engineering blight-resistant potato genotypes.
Collapse
Affiliation(s)
- Hemant B. Kardile
- ICAR-Central Potato Research Institute, Shimla 171001, India; (N.K.S.); (V.U.P.); (V.B.)
- Department of Crop and Soil Science, 109 Crop Science Building, Oregon State University, Corvallis, OR 97331, USA
| | | | - Clarissa Challam
- ICAR-Central Potato Research Institute, Regional Station, Shillong 793009, India;
| | - Nirmal Kant Sharma
- ICAR-Central Potato Research Institute, Shimla 171001, India; (N.K.S.); (V.U.P.); (V.B.)
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Prashant Govindrao Kawar
- ICAR-Directorate of Floricultural Research, Zed Corner, Mundhwa Manjri Road, Mundhwa, Pune 411036, India;
| | - Virupaksh U. Patil
- ICAR-Central Potato Research Institute, Shimla 171001, India; (N.K.S.); (V.U.P.); (V.B.)
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India;
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla 171001, India; (N.K.S.); (V.U.P.); (V.B.)
| | | | - Srikar Duttasai Valluri
- Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
23
|
Zhao M, Peng Z, Qin Y, Tamang TM, Zhang L, Tian B, Chen Y, Liu Y, Zhang J, Lin G, Zheng H, He C, Lv K, Klaus A, Marcon C, Hochholdinger F, Trick HN, Liu Y, Cho MJ, Park S, Wei H, Zheng J, White FF, Liu S. Bacterium-enabled transient gene activation by artificial transcription factors for resolving gene regulation in maize. THE PLANT CELL 2023; 35:2736-2749. [PMID: 37233025 PMCID: PMC10396389 DOI: 10.1093/plcell/koad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.
Collapse
Affiliation(s)
- Mingxia Zhao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yang Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Ling Zhang
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yueying Chen
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junli Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Huakun Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang 150040, China
| | - Alina Klaus
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
24
|
Chen J, Sun M, Xiao G, Shi R, Zhao C, Zhang Q, Yang S, Xuan Y. Starving the enemy: how plant and microbe compete for sugar on the border. FRONTIERS IN PLANT SCIENCE 2023; 14:1230254. [PMID: 37600180 PMCID: PMC10433384 DOI: 10.3389/fpls.2023.1230254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
As the primary energy source for a plant host and microbe to sustain life, sugar is generally exported by Sugars Will Eventually be Exported Transporters (SWEETs) to the host extracellular spaces or the apoplast. There, the host and microbes compete for hexose, sucrose, and other important nutrients. The host and microbial monosaccharide transporters (MSTs) and sucrose transporters (SUTs) play a key role in the "evolutionary arms race". The result of this competition hinges on the proportion of sugar distribution between the host and microbes. In some plants (such as Arabidopsis, corn, and rice) and their interacting pathogens, the key transporters responsible for sugar competition have been identified. However, the regulatory mechanisms of sugar transporters, especially in the microbes require further investigation. Here, the key transporters that are responsible for the sugar competition in the host and pathogen have been identified and the regulatory mechanisms of the sugar transport have been briefly analyzed. These data are of great significance to the increase of the sugar distribution in plants for improvement in the yield.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Miao Sun
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Rujie Shi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Chanjuan Zhao
- Chongqing Three Gorges Vocational College, Wanzhou, China
| | - Qianqian Zhang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Shuo Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
25
|
Diallo A, Wonni I, Sicard A, Blondin L, Gagnevin L, Vernière C, Szurek B, Hutin M. Genetic Structure and TALome Analysis Highlight a High Level of Diversity in Burkinabe Xanthomonas Oryzae pv. oryzae Populations. RICE (NEW YORK, N.Y.) 2023; 16:33. [PMID: 37523017 PMCID: PMC10390441 DOI: 10.1186/s12284-023-00648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Bacterial Leaf Blight of rice (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major threat for food security in many rice growing countries including Burkina Faso, where the disease was first reported in the 1980's. In line with the intensification of rice cultivation in West-Africa, BLB incidence has been rising for the last 15 years. West-African strains of Xoo differ from their Asian counterparts as they (i) are genetically distant, (ii) belong to new races and, (iii) contain reduced repertoires of Transcription Activator Like (TAL) effector genes. In order to investigate the evolutionary dynamics of Xoo populations in Burkina Faso, 177 strains were collected from 2003 to 2018 in three regions where BLB is occurring. Multilocus VNTR Analysis (MLVA-14) targeting 10 polymorphic loci discriminated 24 haplotypes and showed that Xoo populations were structured according to their geographical localization and year of collection. Considering their major role in Xoo pathogenicity, we assessed the TAL effector repertoires of the 177 strains upon RFLP-based profiling. Surprisingly, an important diversity was revealed with up to eight different RFLP patterns. Finally, comparing neutral vs. tal effector gene diversity allowed to suggest scenarios underlying the evolutionary dynamics of Xoo populations in Burkina Faso, which is key to rationally guide the deployment of durably resistant rice varieties against BLB in the country.
Collapse
Affiliation(s)
- A Diallo
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - I Wonni
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso.
| | - A Sicard
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - L Blondin
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - L Gagnevin
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - C Vernière
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - B Szurek
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - M Hutin
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
26
|
Lata C, Manjul AS, Prasad P, Gangwar OP, Adhikari S, Sonu, Kumar S, Bhardwaj SC, Singh G, Samota MK, Choudhary M, Bohra A, Varshney RK. Unraveling the diversity and functions of sugar transporters for sustainable management of wheat rust. Funct Integr Genomics 2023; 23:213. [PMID: 37378707 DOI: 10.1007/s10142-023-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Plant diseases threaten global food security by reducing the production and quality of produce. Identification of disease resistance sources and their utilization in crop improvement is of paramount significance. However, constant evolution and occurrence of new, more aggressive and highly virulent pathotypes disintegrates the resistance of cultivars and hence demanding the steady stream of disease resistance cultivars as the most sustainable way of disease management. In this context, molecular tools and technologies facilitate an efficient and rational engineering of crops to develop cultivars having resistance to multiple pathogens and pathotypes. Puccinia spp. is biotrophic fungi that interrupt crucial junctions for causing infection, thus risking nutrient access of wheat plants and their subsequent growth. Sugar is a major carbon source taken from host cells by pathogens. Sugar transporters (STPs) are key players during wheat-rust interactions that regulate the transport, exchange, and allocation of sugar at plant-pathogen interfaces. Intense competition for accessing sugars decides fate of incompatibility or compatibility between host and the pathogen. The mechanism of transport, allocation, and signaling of sugar molecules and role of STPs and their regulatory switches in determining resistance/susceptibility to rusts in wheat is poorly understood. This review discusses the molecular mechanisms involving STPs in distribution of sugar molecules for determination of rust resistance/susceptibility in wheat. We also present perspective on how detailed insights on the STP's role in wheat-rust interaction will be helpful in devising efficient strategies for wheat rust management.
Collapse
Affiliation(s)
- Charu Lata
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India.
| | | | - Pramod Prasad
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - O P Gangwar
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Sneha Adhikari
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Sonu
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Subodh Kumar
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - S C Bhardwaj
- ICAR-IIWBR, Regional Station, Flowerdale, Shimla, (HP), India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | | | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, 141004, India
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Abhishek Bohra
- Centre for Crop and Food Innovation, Food Futures Institute, WA State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, Food Futures Institute, WA State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|
27
|
Schepler-Luu V, Sciallano C, Stiebner M, Ji C, Boulard G, Diallo A, Auguy F, Char SN, Arra Y, Schenstnyi K, Buchholzer M, Loo EPI, Bilaro AL, Lihepanyama D, Mkuya M, Murori R, Oliva R, Cunnac S, Yang B, Szurek B, Frommer WB. Genome editing of an African elite rice variety confers resistance against endemic and emerging Xanthomonas oryzae pv. oryzae strains. eLife 2023; 12:e84864. [PMID: 37337668 PMCID: PMC10322153 DOI: 10.7554/elife.84864] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Bacterial leaf blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), threatens global food security and the livelihood of small-scale rice producers. Analyses of Xoo collections from Asia, Africa and the Americas demonstrated complete continental segregation, despite robust global rice trade. Here, we report unprecedented BB outbreaks in Tanzania. The causative strains, unlike endemic African Xoo, carry Asian-type TAL effectors targeting the sucrose transporter SWEET11a and iTALes suppressing Xa1. Phylogenomics clustered these strains with Xoo from Southern-China. African rice varieties do not carry effective resistance. To protect African rice production against this emerging threat, we developed a hybrid CRISPR-Cas9/Cpf1 system to edit all known TALe-binding elements in three SWEET promoters of the East African elite variety Komboka. The edited lines show broad-spectrum resistance against Asian and African strains of Xoo, including strains recently discovered in Tanzania. The strategy could help to protect global rice crops from BB pandemics.
Collapse
Affiliation(s)
- Van Schepler-Luu
- Institute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
- International Rice Research InstituteLos BañosPhilippines
| | - Coline Sciallano
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Melissa Stiebner
- Institute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Chonghui Ji
- Division of Plant Science and Technology, Bond Life Sciences Center, University of MissouriColumbiaUnited States
| | - Gabriel Boulard
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Amadou Diallo
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Florence Auguy
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Si Nian Char
- Division of Plant Science and Technology, Bond Life Sciences Center, University of MissouriColumbiaUnited States
| | - Yugander Arra
- Institute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Kyrylo Schenstnyi
- Institute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Marcel Buchholzer
- Institute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Eliza PI Loo
- Institute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Atugonza L Bilaro
- Tanzania Agricultural Research Institute (TARI)-Uyole CentreMbeyaUnited Republic of Tanzania
| | - David Lihepanyama
- Tanzania Agricultural Research Institute (TARI)-Uyole CentreMbeyaUnited Republic of Tanzania
| | - Mohammed Mkuya
- International Rice Research Institute, Eastern and Southern Africa RegionNairobiKenya
| | - Rosemary Murori
- International Rice Research Institute (IRRI), Africa Regional OfficeNairobiKenya
| | - Ricardo Oliva
- International Rice Research InstituteLos BañosPhilippines
| | - Sebastien Cunnac
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences Center, University of MissouriColumbiaUnited States
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | - Boris Szurek
- Plant Health Institute of Montpellier (PHIM), Université Montpellier, IRD, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
- Institute for Transformative Biomolecules, ITbM, Nagoya UniversityNagoyaJapan
| |
Collapse
|
28
|
Greenwood JR, Zhang X, Rathjen JP. Precision genome editing of crops for improved disease resistance. Curr Biol 2023; 33:R650-R657. [PMID: 37279695 DOI: 10.1016/j.cub.2023.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genome editing (GE) technologies allow rapid trait manipulation in crop plants. Disease resistance is one of the best test cases for this technology because it is usually monogenic and under constant challenge by rapidly evolving pathogens. Classical methods suffer from severe bottlenecks in discovery of new resistance (R) genes and their incorporation into elite varieties, largely because they are identified in landraces and species with limited sexual compatibility, and may last only a few years before losing effectiveness. Most plant R genes encode receptors located externally on the plasma membrane (receptor proteins and receptor kinases) or internally as NOD-like receptors (NLR). Both have well defined molecular interactions with activating pathogen ligands which are virulence proteins known as effectors. As structural data for R-effector interactions accumulate, promising strategies for rational manipulation of binding specificities are emerging. This offers the potential to change elite varieties directly rather than through 10-20 years of crossing. Successful application of GE is already evident in mutation of susceptibility (S) genes required for infection. GE is in its infancy with only four modified organisms grown currently in the US. The Anglosphere and Japan seem more open to deployment of these technologies, with the European Union, Switzerland and New Zealand being notably more conservative. Consumers are not well informed on the differences between GE and classical genetic modification (GM). The possibility that minor GE changes will not be regulated as GM offers the hope that current bottlenecks to resistance breeding can be eased.
Collapse
Affiliation(s)
- Julian R Greenwood
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - Xiaoxiao Zhang
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia
| | - John P Rathjen
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia.
| |
Collapse
|
29
|
Kaur A, Rana R, Bansal K, Patel HK, Sonti RV, Patil PB. Insights into the Diversity of Transcription Activator-Like Effectors in Indian Pathotype Strains of Xanthomonas oryzae pv. oryzae. PHYTOPATHOLOGY 2023; 113:953-959. [PMID: 36441870 DOI: 10.1094/phyto-08-22-0304-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a major rice pathogen, and its genome harbors extensive inter-strain and inter-lineage variations. The emergence of highly virulent pathotypes of Xoo that can overcome major resistance (R) genes deployed in rice breeding programs is a grave threat to rice cultivation. The present study reports on a long-read Oxford nanopore-based complete genomic investigation of Xoo isolates from 11 pathotypes that are reported based on their reaction toward 10 R genes. The investigation revealed remarkable variation in the genome structure in the strains belonging to different pathotypes. Furthermore, transcription activator-like effector (TALE) proteins secreted by the type III secretion system display marked variation in content, genomic location, classes, and DNA-binding domain. We also found the association of tal genes in the vicinity of regions with genome structural variations. Furthermore, in silico analysis of the genome-wide rice targets of TALEs allowed us to understand the emergence of pathotypes compatible with major R genes. Long-read, cost-effective sequencing technologies such as nanopore can be a game changer in the surveillance of major and emerging pathotypes. The resource and findings will be invaluable in the management of Xoo and in appropriate deployment of R genes in rice breeding programs.
Collapse
Affiliation(s)
- Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rekha Rana
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
- The Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Ramesh V Sonti
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
30
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
31
|
Zárate-Chaves CA, Audran C, Medina Culma CA, Escalon A, Javegny S, Gagnevin L, Thomas E, Pimparé LL, López CE, Jacobs JM, Noël LD, Koebnik R, Bernal AJ, Szurek B. CRISPRi in Xanthomonas demonstrates functional convergence of transcription activator-like effectors in two divergent pathogens. THE NEW PHYTOLOGIST 2023; 238:1593-1604. [PMID: 36764921 DOI: 10.1111/nph.18808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.
Collapse
Affiliation(s)
| | - Corinne Audran
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - César Augusto Medina Culma
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Aline Escalon
- CIRAD, UMR PVBMT, Saint-Pierre, 97410, La Réunion, France
| | | | - Lionel Gagnevin
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Emilie Thomas
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Léa-Lou Pimparé
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Camilo E López
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| | - Jonathan M Jacobs
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, 43210-1358, USA
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - Ralf Koebnik
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Adriana Jimena Bernal
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Boris Szurek
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| |
Collapse
|
32
|
Teper D, White FF, Wang N. The Dynamic Transcription Activator-Like Effector Family of Xanthomonas. PHYTOPATHOLOGY 2023; 113:651-666. [PMID: 36449529 DOI: 10.1094/phyto-10-22-0365-kd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription activator-like effectors (TALEs) are bacterial proteins that are injected into the eukaryotic nucleus to act as transcriptional factors and function as key virulence factors of the phytopathogen Xanthomonas. TALEs are translocated into plant host cells via the type III secretion system and induce the expression of host susceptibility (S) genes to facilitate disease. The unique modular DNA binding domains of TALEs comprise an array of nearly identical direct repeats that enable binding to DNA targets based on the recognition of a single nucleotide target per repeat. The very nature of TALE structure and function permits the proliferation of TALE genes and evolutionary adaptations in the host to counter TALE function, making the TALE-host interaction the most dynamic story in effector biology. The TALE genes appear to be a relatively young effector gene family, with a presence in all virulent members of some species and absent in others. Genome sequencing has revealed many TALE genes throughout the xanthomonads, and relatively few have been associated with a cognate S gene. Several species, including Xanthomonas oryzae pv. oryzae and X. citri pv. citri, have near absolute requirement for TALE gene function, while the genes appear to be just now entering the disease interactions with new fitness contributions to the pathogens of tomato and pepper among others. Deciphering the simple and effective DNA binding mechanism also has led to the development of DNA manipulation tools in fields of gene editing and transgenic research. In the three decades since their discovery, TALE research remains at the forefront of the study of bacterial evolution, plant-pathogen interactions, and synthetic biology. We also discuss critical questions that remain to be addressed regarding TALEs.
Collapse
Affiliation(s)
- Doron Teper
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Frank F White
- Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, U.S.A
| |
Collapse
|
33
|
Zeng D, Liu SS, Shao WB, Zhang TH, Qi PY, Liu HW, Zhou X, Liu LW, Zhang H, Yang S. New Inspiration of 1,3,4-Oxadiazole Agrochemical Candidates: Manipulation of a Type III Secretion System-Induced Bacterial Starvation Mechanism to Prevent Plant Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2804-2816. [PMID: 36744848 DOI: 10.1021/acs.jafc.2c07486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Discovering new anti-virulent agents to control plant bacterial diseases by preventing bacterial pathogenesis/pathogenicity rather than affecting bacterial growth is a sensible strategy. However, the effects of compound-manipulated bacterial virulence factors on host response are still not clear. In this work, 35 new 1,3,4-oxadiazole derivatives were synthesized and systematically evaluated for their anti-phytopathogenic activities. Bioassay results revealed that compound C7 possessed outstanding antibacterial activity in vitro (half-maximal effective concentration: 0.80 μg/mL) against Xanthomonas oryzae pv. oryzae (Xoo) and acceptable bioactivity in vivo toward rice bacterial leaf blight. Furthermore, virulence factor-related biochemical assays showed that C7 was a promising anti-virulent agent. Interestingly, C7 could indirectly reduce the inducible expression of host SWEET genes and thereby alleviate nutrient supply in the infection process of phytopathogenic bacteria. Our results highlight the potential of 1,3,4-oxadiazole-based agrochemicals for manipulating type III secretion system-induced phytopathogenic bacteria starvation mechanisms to prevent plant bacterial diseases.
Collapse
Affiliation(s)
- Dan Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shuai-Shuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pu-Ying Qi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Wu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Heng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
34
|
Vañó MS, Nourimand M, MacLean A, Pérez-López E. Getting to the root of a club - Understanding developmental manipulation by the clubroot pathogen. Semin Cell Dev Biol 2023; 148-149:22-32. [PMID: 36792438 DOI: 10.1016/j.semcdb.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.
Collapse
Affiliation(s)
- Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Maryam Nourimand
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Allyson MacLean
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Edel Pérez-López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, Quebec, Canada; Centre de recherche et d'innovation sur les végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada; Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
35
|
Zhou Y, Zhao D, Duan Y, Chen L, Fan H, Wang Y, Liu X, Chen LQ, Xuan Y, Zhu X. AtSWEET1 negatively regulates plant susceptibility to root-knot nematode disease. FRONTIERS IN PLANT SCIENCE 2023; 14:1010348. [PMID: 36824200 PMCID: PMC9941640 DOI: 10.3389/fpls.2023.1010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes severe economic loss to agricultural production by forming a parasitic relationship with its hosts. During the development of M. incognita in the host plant roots, giant cells are formed as a nutrient sink. However, the roles of sugar transporters during the giant cells gain sugar from the plant cells are needed to improve. Meanwhile, the eventual function of sugars will eventually be exported transporters (SWEETs) in nematode-plant interactions remains unclear. In this study, the expression patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M. incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing stage). We found that few AtSWEETs responded sensitively to M. incognita inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose transporter gene. Histological analyses indicated that the β-glucuronidase (GUS) and green fluorescent protein (GFP) signals were observed specifically in the galls of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that AtSWEET1 was induced specifically in the galls. Genetic studies have shown that parasitism of M. incognita was significantly affected in atsweet1 compared to wild-type and complementation plants. In addition, parasitism of M. incognita was significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression of which was induced by inoculation with M. incognita. Taken together, these data prove that SWEETs play important roles in plant and nematode interactions.
Collapse
Affiliation(s)
- Yuan Zhou
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yuxi Duan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuanyuan Wang
- College of Biological Science and Technology, Shenyang Agriculture University, Shenyang, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agriculture University, Shenyang, China
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yuanhu Xuan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| |
Collapse
|
36
|
Zou Z, Lin M, Shen P, Guan Y. Alanine-Dependent TCA Cycle Promotion Restores the Zhongshengmycin-Susceptibility in Xanthomonas oryzae. Int J Mol Sci 2023; 24:ijms24033004. [PMID: 36769324 PMCID: PMC9918224 DOI: 10.3390/ijms24033004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Xanthomonas oryzae pv. oryzicola (Xoo) is a plant pathogenic bacterium that can cause rice bacterial blight disease, which results in a severe reduction in rice production. Antimicrobial-dependent microbial controlling is a useful way to control the spread and outbreak of plant pathogenic bacteria. However, the abuse and long-term use of antimicrobials also cause microbial antimicrobial resistance. As far as known, the mechanism of antimicrobial resistance in agricultural plant pathogenic bacteria still lacks prospecting. In this study, we explore the mechanism of Zhongshengmycin (ZSM)-resistance in Xoo by GC-MS-based metabolomic analysis. The results showed that the down-regulation of the TCA cycle was characteristic of antimicrobial resistance in Xoo, which was further demonstrated by the reduction of activity and gene expression levels of key enzymes in the TCA cycle. Furthermore, alanine was proven to reverse the ZSM resistance in Xoo by accelerating the TCA cycle in vivo. Our results are essential for understanding the mechanisms of ZSM resistance in Xoo and may provide new strategies for controlling this agricultural plant pathogen at the metabolic level.
Collapse
|
37
|
Applications and Prospects of CRISPR/Cas9-Mediated Base Editing in Plant Breeding. Curr Issues Mol Biol 2023; 45:918-935. [PMID: 36826004 PMCID: PMC9955079 DOI: 10.3390/cimb45020059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 system (Cas9) has been used at length to optimize multiple aspects of germplasm resources. However, large-scale genomic research has indicated that novel variations in crop plants are attributed to single-nucleotide polymorphisms (SNPs). Therefore, substituting single bases into a plant genome may produce desirable traits. Gene editing by CRISPR/Cas9 techniques frequently results in insertions-deletions (indels). Base editing allows precise single-nucleotide changes in the genome in the absence of double-strand breaks (DSBs) and donor repair templates (DRTs). Therefore, BEs have provided a new way of thinking about genome editing, and base editing techniques are currently being utilized to edit the genomes of many different organisms. As traditional breeding techniques and modern molecular breeding technologies complement each other, various genome editing technologies have emerged. How to realize the greater potential of BE applications is the question we need to consider. Here, we explain various base editings such as CBEs, ABEs, and CGBEs. In addition, the latest applications of base editing technologies in agriculture are summarized, including crop yield, quality, disease, and herbicide resistance. Finally, the challenges and future prospects of base editing technologies are presented. The aim is to provide a comprehensive overview of the application of BE in crop breeding to further improve BE and make the most of its value.
Collapse
|
38
|
You Y, Koczyk G, Nuc M, Morbitzer R, Holmes DR, von Roepenack-Lahaye E, Hou S, Giudicatti A, Gris C, Manavella PA, Noël LD, Krajewski P, Lahaye T. The eINTACT system dissects bacterial exploitation of plant osmosignalling to enhance virulence. NATURE PLANTS 2023; 9:128-141. [PMID: 36550363 PMCID: PMC9873569 DOI: 10.1038/s41477-022-01302-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Bacteria inject effector proteins into host cells to manipulate cellular processes that promote disease. Since bacteria deliver minuscule amounts of effectors only into targeted host cells, it is technically challenging to capture effector-dependent cellular changes from bulk-infected host tissues. Here, we report a new technique called effector-inducible isolation of nuclei tagged in specific cell types (eINTACT), which facilitates affinity-based purification of nuclei from Arabidopsis plant cells that have received Xanthomonas bacterial effectors. Analysis of purified nuclei reveals that the Xanthomonas effector XopD manipulates the expression of Arabidopsis abscisic acid signalling-related genes and activates OSCA1.1, a gene encoding a calcium-permeable channel required for stomatal closure in response to osmotic stress. The loss of OSCA1.1 causes leaf wilting and reduced bacterial growth in infected leaves, suggesting that OSCA1.1 promotes host susceptibility. eINTACT allows us to uncover that XopD exploits host OSCA1.1/abscisic acid osmosignalling-mediated stomatal closure to create a humid habitat that favours bacterial growth and opens up a new avenue for accurately elucidating functions of effectors from numerous gram-negative plant bacteria in native infection contexts.
Collapse
Affiliation(s)
- Yuan You
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Grzegorz Koczyk
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Maria Nuc
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Robert Morbitzer
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Danalyn R Holmes
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
| | | | - Shiji Hou
- State Key Laboratory of Agricultural Microbiology, Hubei Key Lab of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR of China
| | - Axel Giudicatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carine Gris
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laurent D Noël
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Thomas Lahaye
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Transcriptome Analysis in Response to Infection of Xanthomonas oryzae pv. oryzicola Strains with Different Pathogenicity. Int J Mol Sci 2022; 24:ijms24010014. [PMID: 36613454 PMCID: PMC9820197 DOI: 10.3390/ijms24010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important quarantine diseases in the world. Breeding disease-resistant varieties can solve the problem of prevention and treatment of BLS from the source. The discovery of the molecular mechanism of resistance is an important driving force for breeding resistant varieties. In this study, a BLS-resistant near isogenic line NIL-bls2 was used as the material. Guangxi Xoc strain gx01 (abbreviated as WT) and its mutant strain (abbreviated as MT) with a knockout type III effectors (T3Es) gene were used to infect rice material NIL-bls2. The molecular interaction mechanism of rice resist near isogenic lines in response to infection by different pathogenic strains was analyzed by transcriptome sequencing. The results showed that there were 415, 134 and 150 differentially expressed genes (DEGs) between the WT group and the MT group at 12, 24 and 48 h of post inoculation (hpi). Through GO and KEGG enrichment analysis, it was found that, compared with non-pathogenic strains, the T3Es secreted by pathogenic strains inhibited the signal transduction pathway mediated by ethylene (ET), jasmonic acid (JA) and salicylic acid (SA), and the MAPKK (MAPK kinase) and MAPKKK (MAPK kinase kinase) in the MAPK (mitogen-activated protein kinase) cascade reaction, which prevented plants from sensing extracellular stimuli in time and starting the intracellular immune defense mechanism; and inhibited the synthesis of lignin and diterpenoid phytochemicals to prevent plants from establishing their own physical barriers to resist the invasion of pathogenic bacteria. The inhibitory effect was the strongest at 12 h, and gradually weakened at 24 h and 48 h. To cope with the invasion of pathogenic bacteria, rice NIL-bls2 material can promote wound healing by promoting the synthesis of traumatic acid at 12 h; at 24 h, hydrogen peroxide was degraded by dioxygenase, which reduced and eliminated the attack of reactive oxygen species on plant membrane lipids; and at 48 h, rice NIL-bls2 material can resist the invasion of pathogenic bacteria by promoting the synthesis of lignin, disease-resistant proteins, monoterpene antibacterial substances, indole alkaloids and other substances. Through transcriptome sequencing analysis, the molecular interaction mechanism of rice resistance near isogenic lines in response to infection by different pathogenic strains was expounded, and 5 genes, Os01g0719300, Os02g0513100, Os03g0122300, Os04g0301500, and Os10g0575100 closely related to BLS, were screened. Our work provides new data resources and a theoretical basis for exploring the infection mechanism of Xoc strain gx01 and the resistance mechanism of resistance gene bls2.
Collapse
|
40
|
Singh J, Das S, Jagadis Gupta K, Ranjan A, Foyer CH, Thakur JK. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36529911 PMCID: PMC10363763 DOI: 10.1111/pbi.13982] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
41
|
Schenstnyi K, Strauß A, Dressel A, Morbitzer R, Wunderlich M, Andrade AG, Phan TTT, Aguilera PDLA, Brancato C, Berendzen KW, Lahaye T. The tomato resistance gene Bs4 suppresses leaf watersoaking phenotypes induced by AvrHah1, a transcription activator-like effector from tomato-pathogenic xanthomonads. THE NEW PHYTOLOGIST 2022; 236:1856-1870. [PMID: 36056465 DOI: 10.1111/nph.18456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The Xanthomonas transcription activator-like effector (TALE) protein AvrBs3 transcriptionally activates the executor-type resistance (R) gene Bs3 from pepper (Capsicum annuum), thereby triggering a hypersensitive cell death reaction (HR). AvrBs3 also triggers an HR in tomato (Solanum lycopersicum) upon recognition by the nucleotide-binding leucine-rich repeat (NLR) R protein Bs4. Whether the executor-type R protein Bs3 and the NLR-type R protein Bs4 use common or distinct signalling components to trigger an HR remains unclear. CRISPR/Cas9-mutagenesis revealed, that the immune signalling node EDS1 is required for Bs4- but not for Bs3-dependent HR, suggesting that NLR- and executor-type R proteins trigger an HR via distinct signalling pathways. CRISPR/Cas9-mutagenesis also revealed that tomato Bs4 suppresses the virulence function of both TALEs, the HR-inducing AvrBs3 protein and of AvrHah1, a TALE that does not trigger an HR in tomato. Analysis of AvrBs3- and AvrHah1-induced host transcripts and disease phenotypes in CRISPR/Cas9-induced bs4 mutant plants indicates that both TALEs target orthologous transcription factor genes to promote disease in tomato and pepper host plants. Our studies display that tomato mutants lacking the TALE-sensing Bs4 protein provide a novel platform to either uncover TALE-induced disease phenotypes or genetically dissect components of executor-triggered HR.
Collapse
Affiliation(s)
- Kyrylo Schenstnyi
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Annett Strauß
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Angela Dressel
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Robert Morbitzer
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Markus Wunderlich
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Ana Gabriela Andrade
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Trang-Thi-Thu Phan
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | | | - Caterina Brancato
- University of Tübingen, ZMBP - Central Facilities, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Kenneth Wayne Berendzen
- University of Tübingen, ZMBP - Central Facilities, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| | - Thomas Lahaye
- University of Tübingen, ZMBP - General Genetics, Auf der Morgenstelle 32, 72076, Tuebingen, Germany
| |
Collapse
|
42
|
Lu Y, Zhong Q, Xiao S, Wang B, Ke X, Zhang Y, Yin F, Zhang D, Jiang C, Liu L, Li J, Yu T, Wang L, Cheng Z, Chen L. A new NLR disease resistance gene Xa47 confers durable and broad-spectrum resistance to bacterial blight in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1037901. [PMID: 36507384 PMCID: PMC9730417 DOI: 10.3389/fpls.2022.1037901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Bacterial blight (BB) induced by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating bacterial disease in rice. The use of disease resistance (R) genes is the most efficient method to control BB. Members of the nucleotide-binding domain and leucine-rich repeat containing protein (NLR) family have significant roles in plant defense. In this study, Xa47, a new bacterial blight R gene encoding a typical NLR, was isolated from G252 rice material, and XA47 was localized in the nucleus and cytoplasm. Among 180 rice materials tested, Xa47 was discovered in certain BB-resistant materials. Compared with the wild-type G252, the knockout mutants of Xa47 was more susceptible to Xoo. By contrast, overexpression of Xa47 in the susceptible rice material JG30 increased BB resistance. The findings indicate that Xa47 positively regulates the Xoo stress response. Consequently, Xa47 may have application potential in the genetic improvement of plant disease resistance. The molecular mechanism of Xa47 regulation merits additional examination.
Collapse
Affiliation(s)
- Yuanda Lu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Qiaofang Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Suqin Xiao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Bo Wang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Xue Ke
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Yun Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Fuyou Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Dunyu Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Cong Jiang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Li Liu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Jinlu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Tengqiong Yu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Lingxian Wang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Zaiquan Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Ling Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| |
Collapse
|
43
|
Kim CY, Song H, Lee YH. Ambivalent response in pathogen defense: A double-edged sword? PLANT COMMUNICATIONS 2022; 3:100415. [PMID: 35918895 PMCID: PMC9700132 DOI: 10.1016/j.xplc.2022.100415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 05/16/2023]
Abstract
Plants possess effective immune systems that defend against most microbial attackers. Recent plant immunity research has focused on the classic binary defense model involving the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our current understanding comes from studies that relied on information derived from a limited number of pathosystems, newer studies concerning the incredibly diverse interactions between plants and microbes are providing additional insights into other novel mechanisms. Here, we review the roles of both classical and more recently identified components of defense signaling pathways and stress hormones in regulating the ambivalence effect during responses to diverse pathogens. Because of their different lifestyles, effective defense against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Given these opposing forces, the plant potentially faces a trade-off when it mounts resistance to a specific pathogen, a phenomenon referred to here as the ambivalence effect. We also highlight a novel mechanism by which translational control of the proteins involved in the ambivalence effect can be used to engineer durable and broad-spectrum disease resistance, regardless of the lifestyle of the invading pathogen.
Collapse
Affiliation(s)
- Chi-Yeol Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea; Center for Fungal Genetic Resources, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
44
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
45
|
Zhu J, Zhou L, Li T, Ruan Y, Zhang A, Dong X, Zhu Y, Li C, Fan J. Genome-Wide Investigation and Characterization of SWEET Gene Family with Focus on Their Evolution and Expression during Hormone and Abiotic Stress Response in Maize. Genes (Basel) 2022; 13:genes13101682. [PMID: 36292567 PMCID: PMC9601529 DOI: 10.3390/genes13101682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022] Open
Abstract
The sugar will eventually be exported transporters (SWEET) family is an important group of transport carriers for carbon partitioning in plants and has important functions in growth, development, and abiotic stress tolerance. Although the SWEET family is an important sugar transporter, little is known of the functions of the SWEET family in maize (Zea mays), especially in response to abiotic stresses. To further explore the response pattern of maize SWEET to abiotic stress, a bioinformatics-based approach was used to predict and identify the maize SWEET gene (ZmSWEET) family. Twenty-four ZmSWEET genes were identified using the MaizeGDB database. Phylogenetic analysis resolved these twenty-four genes into four clades. One tandem and five segmental duplication events were identified, which played a major role in ZmSWEET family expansion. Synteny analysis provided insight into the evolutionary characteristics of the ZmSWEET genes with those of three graminaceous crop species. A heatmap showed that most ZmSWEET genes responded to at least one type of abiotic stress. By an abscisic acid signaling pathway, among which five genes were significantly induced under NaCl treatment, eight were obviously up-regulated under PEG treatment and five were up-regulated under Cd stress, revealing their potential functions in response to abiotic stress. These findings will help to explain the evolutionary links of the ZmSWEET family and contribute to future studies on the functional characteristics of ZmSWEET genes, and then improve abiotic stress tolerance in maize through molecular breeding.
Collapse
Affiliation(s)
- Jialun Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lu Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianfeng Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.L.); (J.F.)
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.L.); (J.F.)
| |
Collapse
|
46
|
Kumari D, Prasad BD, Dwivedi P, Hidangmayum A, Sahni S. CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism. Mol Biol Rep 2022; 49:11587-11600. [DOI: 10.1007/s11033-022-07851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
|
47
|
Characterization of Transposon-Derived Accessible Chromatin Regions in Rice (Oryza Sativa). Int J Mol Sci 2022; 23:ijms23168947. [PMID: 36012213 PMCID: PMC9408979 DOI: 10.3390/ijms23168947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Growing evidence indicates that transposons or transposable elements (TEs)-derived accessible chromatin regions (ACRs) play essential roles in multiple biological processes by interacting with trans-acting factors. However, the function of TE-derived ACRs in the regulation of gene expression in the rice genome has not been well characterized. In this study, we examined the chromatin dynamics in six types of rice tissues and found that ~8% of ACRs were derived from TEs and exhibited distinct levels of accessibility and conservation as compared to those without TEs. TEs exhibited a TE subtype-dependent impact on ACR formation, which can be mediated by changes in the underlying DNA methylation levels. Moreover, we found that tissue-specific TE-derived ACRs might function in the tissue development through the modulation of nearby gene expression. Interestingly, many genes in domestication sweeps were found to overlap with TE-derived ACRs, suggesting their potential functions in the rice domestication. In addition, we found that the expression divergence of 1070 duplicate gene pairs were associated with TE-derived ACRs and had distinct distributions of TEs and ACRs around the transcription start sites (TSSs), which may experience different selection pressures. Thus, our study provides some insights into the biological implications of TE-derived ACRs in the rice genome. Our results imply that these ACRs are likely involved in the regulation of tissue development, rice domestication and functional divergence of duplicated genes.
Collapse
|
48
|
Characterization of the SWEET Gene Family in Longan (Dimocarpus longan) and the Role of DlSWEET1 in Cold Tolerance. Int J Mol Sci 2022; 23:ijms23168914. [PMID: 36012186 PMCID: PMC9408694 DOI: 10.3390/ijms23168914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Sugars will eventually be exported transporters (SWEET), a group of relatively novel sugar transporters, that play important roles in phloem loading, seed and fruit development, pollen development, and stress response in plants. Longan (Dimocarpus longan), a subtropic fruit tree with high economic value, is sensitive to cold. However, whether the SWEET gene family plays a role in conferring cold tolerance upon longan remains unknown. Here, a total of 20 longan SWEET (DlSWEET) genes were identified, and their phylogenetic relationships, gene structures, cis-acting elements, and tissue-specific expression patterns were systematically analyzed. This family is divided into four clades. Gene structures and motifs analyses indicated that the majority of DlSWEETs in each clade shared similar exon–intron organization and conserved motifs. Tissue-specific gene expression suggested diverse possible functions for DlSWEET genes. Cis-elements analysis and quantitative real-time PCR (qRT-PCR) analysis revealed that DlSWEET1 responded to cold stress. Notably, the overexpression of DlSWEET1 improved cold tolerance in transgenic Arabidopsis, suggesting that DlSWEET1 might play a positive role in D. longan’s responses to cold stress. Together, these results contribute to a better understanding of SWEET genes, which could serve as a foundation for the further functional identification of these genes.
Collapse
|
49
|
Ji QT, Hu DK, Mu XF, Tian XX, Zhou L, Yao S, Wang XH, Xiang SZ, Ye HJ, Fan LJ, Wang PY. Cucurbit[7]uril-Mediated Supramolecular Bactericidal Nanoparticles: Their Assembly Process, Controlled Release, and Safe Treatment of Intractable Plant Bacterial Diseases. NANO LETTERS 2022; 22:4839-4847. [PMID: 35667033 DOI: 10.1021/acs.nanolett.2c01203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A safe, biocompatible, and stimuli-responsive cucurbit[7]uril-mediated supramolecular bactericidal nanoparticle was fabricated by encapsulating a highly bioactive carbazole-decorated imidazolium salt (A1, EC50 = 0.647 μg/mL against phytopathogen Xanthomonas oryzae pv oryzae) into the host cucurbit[7]uril (CB[7]), thereby leading to self-assembled topographies from microsheets (A1) to nanospheroidal architectures (A1@CB[7]). The assembly behaviors were elucidated by acquired single-crystal structures, 1H NMR, ITC, and X-ray powder diffraction experiments. Complex A1@CB[7] displayed lower phytotoxicity and could efficiently switch on its potent antibacterial ability via introducing a simple competitor 1-adamantanamine hydrochloride (AD). In vivo antibacterial trials against rice bacterial blight revealed that A1@CB[7] could relieve the disease symptoms after being triggered by AD and provide a workable control efficiency of 42.6% at 100 μg/mL, which was superior to bismerthiazol (33.4%). These materials can provide a viable platform for fabricating diverse stimuli-responsive supramolecular bactericides for managing bacterial infections with improved safety.
Collapse
Affiliation(s)
- Qing-Tian Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - De-Kun Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xian-Fu Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Xue Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Si Yao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Hui Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao-Jie Ye
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Jun Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
50
|
Sun L, Deng R, Liu J, Lai M, Wu J, Liu X, Shahid MQ. An overview of sucrose transporter (SUT) genes family in rice. Mol Biol Rep 2022; 49:5685-5695. [PMID: 35699859 DOI: 10.1007/s11033-022-07611-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Photosynthesis provides the energy basis for the life activities of plants by producing organic compounds, mainly sugar. As the main energy form of photosynthesis, sugar affects the growth and development of plants. During long-distance transportation, sucrose is the main form of transportation. The rate of sugar transport and the allocation of carbohydrates affect the biomass of crops and are closely related to the reproductive growth of crops. MAIN TEXT The transportation of sugar is divided into active transportation and passive transportation. So how does the sucrose transporters (SUT) genes, which are the main carriers of sucrose in active transportation, affect the performance of rice agronomic traits is still to be explored. In this article, we describe the structure of inflorescence and review the transport forms and metabolic processes of sucrose in rice, such as how CO2 is fixed, carbohydrate assimilation, and transport of organic matter. Sucrose transporters exhibited remarkable effects on the development of reproductive organs in rice. CONCLUSIONS Here, the effects of different factors, such as the effects of anthers morphology on starch enrichment of pollen, effects of biotic and abiotic factors on sucrose transporters, effects of changes in trace elements on sucrose transporters, were discussed. Moreover, the regulation of transcription or translation level provides ideas for future research on sucrose transporters.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ruilian Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China. .,College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|