1
|
Fatima M, Ma X, Zhang J, Ming R. Genome-wide analysis of MADS-box genes and their expression patterns in unisexual flower development in dioecious spinach. Sci Rep 2024; 14:18635. [PMID: 39128921 PMCID: PMC11317516 DOI: 10.1038/s41598-024-68965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Evolution of unisexual flowers involves extreme changes in floral development. Spinach is one of the species to discern the formation and evolution of dioecy. MADS-box gene family is involved in regulation of floral organ identity and development and in many other plant developmental processes. However, there is no systematic analysis of MADS-box family genes in spinach. A comprehensive genome-wide analysis and transcriptome profiling of MADS-box genes were undertaken to understand their involvement in unisexual flower development at different stages in spinach. In total, 54 MADS-box genes found to be unevenly located across 6 chromosomes and can be divided into type I and type II genes. Twenty type I MADS-box genes are subdivided into Mα, Mβ and Mγ subgroups. While thirty-four type II SoMADSs consist of 3 MIKC*, and 31 MIKCC -type genes including sixteen floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in spinach. Gene structure, motif distribution, physiochemical properties, gene duplication and collinearity analyses for these genes are performed in detail. Promoters of both types of SoMADS genes contain mainly MeJA and ABA response elements. Expression profiling indicated that MIKCc genes exhibited more dynamic and intricate expression patterns compared to M-type genes and the majority of type-II genes AP1, SVP, and SOC1 sub-groups showed female flower-biased expression profiles, suggesting their role in carpel development, while PI showed male-biased expression throughout flower developmental stages, suggesting their role in stamen development. These results provide genomic resources and insights into spinach dioecious flower development and expedite spinach improvement.
Collapse
Affiliation(s)
- Mahpara Fatima
- College of Life Science, FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaokai Ma
- College of Life Science, FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jisen Zhang
- College of Life Science, FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, 530004, China
| | - Ray Ming
- College of Life Science, FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
2
|
Li J, Wen J, Wu K, Li L, Fang L, Zeng S. Integrating Physiology, Cytology, and Transcriptome to Reveal the Leaf Variegation Mechanism in Phalaenopsis Chia E Yenlin Variegata Leaves. Biomolecules 2024; 14:963. [PMID: 39199351 PMCID: PMC11352648 DOI: 10.3390/biom14080963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Phalaenopsis orchids, with their unique appearance and extended flowering period, are among the most commercially valuable Orchidaceae worldwide. Particularly, the variegation in leaf color of Phalaenopsis significantly enhances the ornamental and economic value and knowledge of the molecular mechanism of leaf-color variegation in Phalaenopsis is lacking. In this study, an integrative analysis of the physiology, cytology, and transcriptome profiles was performed on Phalaenopsis Chia E Yenlin Variegata leaves between the green region (GR) and yellow region (YR) within the same leaf. The total chlorophyll and carotenoid contents in the YR exhibited a marked decrease of 72.18% and 90.21%, respectively, relative to the GR. Examination of the ultrastructure showed that the chloroplasts of the YR were fewer and smaller and exhibited indistinct stromal lamellae, ruptured thylakoids, and irregularly arranged plastoglobuli. The transcriptome sequencing between the GR and YR led to a total of 3793 differentially expressed genes, consisting of 1769 upregulated genes and 2024 downregulated genes. Among these, the chlorophyll-biosynthesis-related genes HEMA, CHLH, CRD, and CAO showed downregulation, while the chlorophyll-degradation-related gene SGR had an upregulated expression in the YR. Plant-hormone-related genes and transcription factors MYBs (37), NACs (21), ERFs (20), bHLH (13), and GLK (2), with a significant difference, were also analyzed. Furthermore, qRT-PCR experiments validated the above results. The present work establishes a genetic foundation for future studies of leaf-pigment mutations and may help to improve the economic and breeding values of Phalaenopsis.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Chen R, Chen K, Yao X, Zhang X, Yang Y, Su X, Lyu M, Wang Q, Zhang G, Wang M, Li Y, Duan L, Xie T, Li H, Yang Y, Zhang H, Guo Y, Jia G, Ge X, Sarris PF, Lin T, Sun D. Genomic analyses reveal the stepwise domestication and genetic mechanism of curd biogenesis in cauliflower. Nat Genet 2024; 56:1235-1244. [PMID: 38714866 PMCID: PMC11176064 DOI: 10.1038/s41588-024-01744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Cauliflower (Brassica oleracea L. var. botrytis) is a distinctive vegetable that supplies a nutrient-rich edible inflorescence meristem for the human diet. However, the genomic bases of its selective breeding have not been studied extensively. Herein, we present a high-quality reference genome assembly C-8 (V2) and a comprehensive genomic variation map consisting of 971 diverse accessions of cauliflower and its relatives. Genomic selection analysis and deep-mined divergences were used to explore a stepwise domestication process for cauliflower that initially evolved from broccoli (Curd-emergence and Curd-improvement), revealing that three MADS-box genes, CAULIFLOWER1 (CAL1), CAL2 and FRUITFULL (FUL2), could have essential roles during curd formation. Genome-wide association studies identified nine loci significantly associated with morphological and biological characters and demonstrated that a zinc-finger protein (BOB06G135460) positively regulates stem height in cauliflower. This study offers valuable genomic resources for better understanding the genetic bases of curd biogenesis and florescent development in crops.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| | - Ke Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Weed Control in Southern Farmland, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xingwei Yao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaoli Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yingxia Yang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiao Su
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Mingjie Lyu
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Qian Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guan Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Mengmeng Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yanhao Li
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lijin Duan
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Tianyu Xie
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Haichao Li
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yuyao Yang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yutong Guo
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guiying Jia
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Tao Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| |
Collapse
|
4
|
Wei X, Yuan M, Zheng BQ, Zhou L, Wang Y. Genome-wide identification and characterization of TCP gene family in Dendrobium nobile and their role in perianth development. FRONTIERS IN PLANT SCIENCE 2024; 15:1352119. [PMID: 38375086 PMCID: PMC10875090 DOI: 10.3389/fpls.2024.1352119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
TCP is a widely distributed, essential plant transcription factor that regulates plant growth and development. An in-depth study of TCP genes in Dendrobium nobile, a crucial parent in genetic breeding and an excellent model material to explore perianth development in Dendrobium, has not been conducted. We identified 23 DnTCP genes unevenly distributed across 19 chromosomes and classified them as Class I PCF (12 members), Class II: CIN (10 members), and CYC/TB1 (1 member) based on the conserved domain and phylogenetic analysis. Most DnTCPs in the same subclade had similar gene and motif structures. Segmental duplication was the predominant duplication event for TCP genes, and no tandem duplication was observed. Seven genes in the CIN subclade had potential miR319 and -159 target sites. Cis-acting element analysis showed that most DnTCP genes contained many developmental stress-, light-, and phytohormone-responsive elements in their promoter regions. Distinct expression patterns were observed among the 23 DnTCP genes, suggesting that these genes have diverse regulatory roles at different stages of perianth development or in different organs. For instance, DnTCP4 and DnTCP18 play a role in early perianth development, and DnTCP5 and DnTCP10 are significantly expressed during late perianth development. DnTCP17, 20, 21, and 22 are the most likely to be involved in perianth and leaf development. DnTCP11 was significantly expressed in the gynandrium. Specially, MADS-specific binding sites were present in most DnTCP genes putative promoters, and two Class I DnTCPs were in the nucleus and interacted with each other or with the MADS-box. The interactions between TCP and the MADS-box have been described for the first time in orchids, which broadens our understanding of the regulatory network of TCP involved in perianth development in orchids.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
5
|
Zhao X, Li Y, Zhang MM, He X, Ahmad S, Lan S, Liu ZJ. Research advances on the gene regulation of floral development and color in orchids. Gene 2023; 888:147751. [PMID: 37657689 DOI: 10.1016/j.gene.2023.147751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Orchidaceae is one of the largest monocotyledon families and contributes significantly to worldwide biodiversity, with value in the fields of landscaping, medicine, and ecology. The diverse phenotypes and vibrant colors of orchid floral organs make them excellent research objects for investigating flower development and pigmentation. In recent years, a number of orchid genomes have been published, laying the molecular foundation for revealing flower development and color presentation. In this article, we review transcription factors, the structural genes responsible for the floral pigment synthesis pathways, the molecular mechanisms of flower morphogenesis, and the potential relationship between flower type and flower color. This study provides a theoretical reference for the research on molecular mechanisms related to flower morphogenesis and color presentation, genetic improvement, and new variety creation in orchids.
Collapse
Affiliation(s)
- Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Yang F, Guo Y, Li J, Lu C, Wei Y, Gao J, Xie Q, Jin J, Zhu G. Genome-wide association analysis identified molecular markers and candidate genes for flower traits in Chinese orchid ( Cymbidium sinense). HORTICULTURE RESEARCH 2023; 10:uhad206. [PMID: 38046850 PMCID: PMC10689080 DOI: 10.1093/hr/uhad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/07/2023] [Indexed: 12/05/2023]
Abstract
The orchid, the champagne of flowers, brings luxury, elegance, and novelty to nature. Cymbidium sinense is a symbol of gigantic floral variability on account of wavering shapes and sizes of floral organs, although marker-trait association (MTA) has not been studied for its floral traits. We evaluated markers associated with 14 floral traits of C. sinense through a genome-wide association study (GWAS) of 195 accessions. A total of 65 318 522 single-nucleotide polymorphisms (SNPs) and 3 906 176 insertion/deletion (InDel) events were identified through genotyping-by-sequencing. Among these, 4694 potential SNPs and 477 InDels were identified as MTAs at -log10 P > 5. The genes related to these SNPs and InDels were largely associated with floral regulators, hormonal pathways, cell division, and metabolism, playing essential roles in tailoring floral morphology. Moreover, 20 candidate SNPs/InDels linked to 11 genes were verified, 8 of which were situated on exons, one was located in the 5'-UTR and two were positioned in introns. Here, the multitepal trait-related gene RABBIT EARS (RBE) was found to be the most crucial gene. We analyzed the role of CsRBE in the regulation of flower-related genes via efficient transient overexpression in C. sinense protoplasts, and found that the floral homeotic genes CsAP3 and CsPI, as well as organ boundary regulators, including CsCUC and CsTCP genes, were regulated by CsRBE. Thus, we obtained key gene loci for important ornamental traits of orchids using genome-wide association analysis of populations with natural variation. The findings of this study can do a great deal to expedite orchid breeding programs for shape variability.
Collapse
Affiliation(s)
- Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yudi Guo
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
7
|
Lin ZY, Zhu GF, Lu CQ, Gao J, Li J, Xie Q, Wei YL, Jin JP, Wang FL, Yang FX. Functional conservation and divergence of SEPALLATA-like genes in floral development in Cymbidium sinense. FRONTIERS IN PLANT SCIENCE 2023; 14:1209834. [PMID: 37711312 PMCID: PMC10498475 DOI: 10.3389/fpls.2023.1209834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Cymbidium sinense is one of the most important traditional Chinese Orchids due to its unique and highly ornamental floral organs. Although the ABCDE model for flower development is well-established in model plant species, the precise roles of these genes in C. sinense are not yet fully understood. In this study, four SEPALLATA-like genes were isolated and identified from C. sinense. CsSEP1 and CsSEP3 were grouped into the AGL9 clade, while CsSEP2 and CsSEP4 were included in the AGL2/3/4 clade. The expression pattern of CsSEP genes showed that they were significantly accumulated in reproductive tissues and expressed during flower bud development but only mildly detected or even undetected in vegetative organs. Subcellular localization revealed that CsSEP1 and CsSEP4 were localized to the nucleus, while CsSEP2 and CsSEP3 were located at the nuclear membrane. Promoter sequence analysis predicted that CsSEP genes contained a number of hormone response elements (HREs) and MADS-box binding sites. The early flowering phenotype observed in transgenic Arabidopsis plants expressing four CsSEP genes, along with the expression profiles of endogenous genes, such as SOC1, LFY, AG, FT, SEP3 and TCPs, in both transgenic Arabidopsis and C. sinense protoplasts, suggested that the CsSEP genes played a regulatory role in the flowering transition by influencing downstream genes related to flowering. However, only transgenic plants overexpressing CsSEP3 and CsSEP4 caused abnormal phenotypes of floral organs, while CsSEP1 and CsSEP2 had no effect on floral organs. Protein-protein interaction assays indicated that CsSEPs formed a protein complex with B-class CsAP3-2 and CsSOC1 proteins, affecting downstream genes to regulate floral organs and flowering time. Our findings highlighted both the functional conservation and divergence of SEPALLATA-like genes in C. sinense floral development. These results provided a valuable foundation for future studies of the molecular network underlying floral development in C. sinense.
Collapse
Affiliation(s)
- Zeng-Yu Lin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gen-Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chu-Qiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yong-Lu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian-Peng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feng-Lan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng-Xi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
8
|
Jagram N, Dasgupta I. Principles and practice of virus induced gene silencing for functional genomics in plants. Virus Genes 2023; 59:173-187. [PMID: 36266497 DOI: 10.1007/s11262-022-01941-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Virus induced gene silencing (VIGS) has, of late, emerged as an important tool for transient silencing of genes in plants. This is now being increasingly used to determine functions of novel genes in a wide variety of plants, many of which are important crops yielding food and fiber or are sources of products having pharmaceutical uses. The technology for VIGS comprises the development of vectors derived from viruses, choosing the optimal orientation and size of the gene to be targeted and adopting the most suitable method of inoculation. This review gives a brief overview of the main aspects of VIGS technology as is being practiced. It also discusses the challenges the technology faces and the possible way ahead to improve its robustness, so that the technology finds wider applications.
Collapse
Affiliation(s)
- Neelam Jagram
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
9
|
Fan J, Huang J, Pu Y, Niu Y, Zhang M, Dai S, Huang H. Transcriptomic analysis reveals the formation mechanism of anemone-type flower in chrysanthemum. BMC Genomics 2022; 23:846. [PMID: 36544087 PMCID: PMC9773529 DOI: 10.1186/s12864-022-09078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ray and disc florets on the chrysanthemum capitulum are morphologically diverse and have remarkably abundant variant types, resulting in a rich variety of flower types. An anemone shape with pigmented and elongated disk florets is an important trait in flower shape breeding of chrysanthemums. The regulatory mechanism of their anemone-type disc floret formation was not clear, thus limiting the directional breeding of chrysanthemum flower types. In this study, we used morphological observation, transcriptomic analysis, and gene expression to investigate the morphogenetic processes and regulatory mechanisms of anemone-type chrysanthemum. RESULT Scanning electron microscopy (SEM) observation showed that morphological differences between non-anemone-type disc florets and anemone-type disc florets occurred mainly during the petal elongation period. The anemone-type disc florets elongated rapidly in the later stages of development. Longitudinal paraffin section analysis revealed that the anemone-type disc florets were formed by a great number of cells in the middle layer of the petals with vigorous division. We investigated the differentially expressed genes (DEGs) using ray and disc florets of two chrysanthemum cultivars, 082 and 068, for RNA-Seq and their expression patterns of non-anemone-type and anemone-type disc florets. The result suggested that the CYCLOIDEA2 (CYC2s), MADS-box genes, and phytohormone signal-related genes appeared significantly different in both types of disc florets and might have important effects on the formation of anemone-type disc florets. In addition, it is noteworthy that the auxin and jasmonate signaling pathways might play a vital role in developing anemone-type disc florets. CONCLUSIONS Based on our findings, we propose a regulatory network for forming non-anemone-type and anemone-type disc florets. The results of this study lead the way to further clarify the mechanism of the anemone-type chrysanthemum formation and lay the foundation for the directive breeding of chrysanthemum petal types.
Collapse
Affiliation(s)
- Jiawei Fan
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Jialu Huang
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Ya Pu
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Yajing Niu
- National Bot Garden, Beijing, 100093 China
| | | | - Silan Dai
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - He Huang
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
10
|
Chen L, Yan Y, Ke H, Zhang Z, Meng C, Ma L, Sun Z, Chen B, Liu Z, Wang G, Yang J, Wu J, Li Z, Wu L, Zhang G, Zhang Y, Wang X, Ma Z. SEP-like genes of Gossypium hirsutum promote flowering via targeting different loci in a concentration-dependent manner. FRONTIERS IN PLANT SCIENCE 2022; 13:990221. [PMID: 36531379 PMCID: PMC9752867 DOI: 10.3389/fpls.2022.990221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
SEP genes are famous for their function in the morphological novelty of bisexual flowers. Although the diverse functions of SEP genes were reported, only the regulatory mechanisms underlying floral organ development have been addressed. In this study, we identified SEP-like genes in Gossypium and found that SEP3 genes were duplicated in diploid cotton varieties. GhSEP4.1 and GhSEP4.2 were abundantly transcribed in the shoot apical meristem (SAM), but only GhSEP4.2 was expressed in the leaf vasculature. The expression pattern of GhSEPs in floral organs was conserved with that of homologs in Arabidopsis, except for GhSEP2 that was preponderantly expressed in ovules and fibers. The overexpression and silencing of each single GhSEP gene suggested their distinct role in promoting flowering via direct binding to GhAP1 and GhLFY genomic regions. The curly leaf and floral defects in overexpression lines with a higher expression of GhSEP genes revealed the concentration-dependent target gene regulation of GhSEP proteins. Moreover, GhSEP proteins were able to dimerize and interact with flowering time regulators. Together, our results suggest the dominant role of GhSEP4.2 in leaves to promote flowering via GhAP1-A04, and differently accumulated GhSEP proteins in the SAM alternately participate in forming the dynamic tetramer complexes to target at the different loci of GhAP1 and GhLFY to maintain reproductive growth. The regulatory roles of cotton SEP genes reveal their conserved and diversified functions.
Collapse
|
11
|
Jia Y, Yu P, Shao W, An G, Chen J, Yu C, Kuang H. Up-regulation of LsKN1 promotes cytokinin and suppresses gibberellin biosynthesis to generate wavy leaves in lettuce. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6615-6629. [PMID: 35816166 DOI: 10.1093/jxb/erac311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Lettuce (Lactuca sativa) is one of the most popular vegetables worldwide, and diverse leaf shapes, including wavy leaves, are important commercial traits. In this study, we examined the genetics of wavy leaves using an F2 segregating population, and identified a major QTL controlling wavy leaves. The candidate region contained LsKN1, which has previously been shown to be indispensable for leafy heads in lettuce. Complementation tests and knockout experiments verified the function of LsKN1 in producing wavy leaves. The LsKN1∇ allele, which has the insertion of a transposon and has previously been shown to control leafy heads, promoted wavy leaves in our population. Transposition of the CACTA transposon from LsKN1 compromised its function for wavy leaves. High expression of LsKN1 up-regulated several key genes associated with cytokinin (CK) to increase the content in the leaves, whereas it down-regulated the expression of genes in the gibberellin (GA) biosynthesis pathway to decrease the content. Application of CK to leaves enhanced the wavy phenotype, while application of GA dramatically flattened the leaves. We conclude that the changes in CK and GA contents that result from high expression of LsKN1 switch determinate cells to indeterminate, and consequently leads to the development of wavy leaves.
Collapse
Affiliation(s)
- Yue Jia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Pei Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wei Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Guanghui An
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Changchun Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
12
|
Wang R, Mao C, Ming F. PeMYB4L interacts with PeMYC4 to regulate anthocyanin biosynthesis in Phalaenopsis orchid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111423. [PMID: 35995112 DOI: 10.1016/j.plantsci.2022.111423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Phalaenopsis spp., one genus of Orchidaceae, have become very popular worldwide for their fascinating flowers with various colors and pigmentation patterns. Several R2R3-MYB transcription factors have been reported to function in anthocyanin accumulation in Phalaenopsis spp. However, its molecular mechanism underlying the detailed regulatory pathway remains poorly understood. In this study, we identified a novel subgroup 2 R2R3-MYB transcription factor PeMYB4L, the expression profile of which was concomitant with red color formation in Phalaenopsis spp. flowers. Virus-induced gene silencing (VIGS) and transient overexpression assay verified that PeMYB4L promotes anthocyanin accumulation in flower tissues. In addition, PeMYB4L could directly regulates the expression of Phalaenopsis spp. chalcone synthase gene (PeCHS) through MYBST1 (GGATA) binding site. It's interesting that the basic-helix-loop-helix (bHLH) protein PeMYC4 shows opposite expression pattern from PeMYB4L in anthocyanin accumulation. Furthermore, PeMYC4 was verified to form MYB-bHLH complex with PeMYB4L, and attenuated the expression of PeCHS and weakened anthocyanin production, indicating a novel regulatory model of MYB-bHLH complex. Our findings uncover the detailed regulatory pathway of MYB-bHLH, and might provide a new insight into the complicated anthocyanin pigmentation in Phalaenopsis spp.
Collapse
Affiliation(s)
- Rui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
13
|
Dreni L, Ferrándiz C. Tracing the Evolution of the SEPALLATA Subfamily across Angiosperms Associated with Neo- and Sub-Functionalization for Reproductive and Agronomically Relevant Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2934. [PMID: 36365387 PMCID: PMC9656651 DOI: 10.3390/plants11212934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral organ identities. However, there are published reports that suggest that some SEP members also regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence architecture, with potential for application in breeding programs in crops. The SEP subfamily underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking advantage of the many whole genomic sequences now available, we present a revised and expanded SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot supports the evidence that the major SEP3 clade is highly specialized for the specification of the three innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that their evolution was driven by whole-genome duplications rather than small-scale duplication events. Our work may help to identify those SEP lineages that are the best candidates for the improvement of inflorescence traits, even in far distantly related crops.
Collapse
|
14
|
Zhang D, Zhao XW, Li YY, Ke SJ, Yin WL, Lan S, Liu ZJ. Advances and prospects of orchid research and industrialization. HORTICULTURE RESEARCH 2022; 9:uhac220. [PMID: 36479582 PMCID: PMC9720451 DOI: 10.1093/hr/uhac220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Orchidaceae is one of the largest, most diverse families in angiosperms with significant ecological and economical values. Orchids have long fascinated scientists by their complex life histories, exquisite floral morphology and pollination syndromes that exhibit exclusive specializations, more than any other plants on Earth. These intrinsic factors together with human influences also make it a keystone group in biodiversity conservation. The advent of sequencing technologies and transgenic techniques represents a quantum leap in orchid research, enabling molecular approaches to be employed to resolve the historically interesting puzzles in orchid basic and applied biology. To date, 16 different orchid genomes covering four subfamilies (Apostasioideae, Vanilloideae, Epidendroideae, and Orchidoideae) have been released. These genome projects have given rise to massive data that greatly empowers the studies pertaining to key innovations and evolutionary mechanisms for the breadth of orchid species. The extensive exploration of transcriptomics, comparative genomics, and recent advances in gene engineering have linked important traits of orchids with a multiplicity of gene families and their regulating networks, providing great potential for genetic enhancement and improvement. In this review, we summarize the progress and achievement in fundamental research and industrialized application of orchids with a particular focus on molecular tools, and make future prospects of orchid molecular breeding and post-genomic research, providing a comprehensive assemblage of state of the art knowledge in orchid research and industrialization.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue-Wei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Lun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Duan K, Fu H, Fang D, Wang K, Zhang W, Liu H, Sahu SK, Chen X. Genome-Wide Analysis of the MADS-Box Gene Family in Holoparasitic Plants ( Balanophora subcupularis and Balanophora fungosa var. globosa). FRONTIERS IN PLANT SCIENCE 2022; 13:846697. [PMID: 35712591 PMCID: PMC9197559 DOI: 10.3389/fpls.2022.846697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
MADS-box is an important transcription factor family that is involved in the regulation of various stages of plant growth and development, especially flowering regulation and flower development. Being a holoparasitic plant, the body structure of Balanophoraceae has changed dramatically over time, and its vegetative and reproductive organs have been extensively modified, with rudimentary flower organs. Meanwhile, extraordinary gene losses have been identified in holoparasitic plants compared with autotrophs. Our study reveals that the MADS-box gene family contracted sharply in Balanophora subcupularis and Balanophora fungosa var. globosa, and some subfamilies were lost, exhibiting reduced redundancy in both. The genes that functioned in the transition from the vegetative to floral production stages suffered a significant loss, but the ABCE model genes remained intact. We further investigated genes related to flowering regulation in B. subcupularis and B. fungosa var. globosa, vernalization and autonomous ways of regulating flowering time remained comparatively integrated, while genes in photoperiod and circadian clock pathways were almost lost. Convergent gene loss in flowering regulation occurred in Balanophora and another holoparasitic plant Sapria himalayana (Rafflesiaceae). The genome-wide analysis of the MADS-box gene family in Balanophora species provides valuable information for understanding the classification, gene loss pattern, and flowering regulation mechanism of MADS-box gene family in parasitic plants.
Collapse
Affiliation(s)
- Kunyu Duan
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Fu
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Kaimeng Wang
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Zhang
- China National GeneBank, Beijing Genomics Institute, Shenzhen, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Xiaoli Chen
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| |
Collapse
|
16
|
Cheng H, Xie X, Ren M, Yang S, Zhao X, Mahna N, Liu Y, Xu Y, Xiang Y, Chai H, Zheng L, Ge H, Jia R. Characterization of Three SEPALLATA-Like MADS-Box Genes Associated With Floral Development in Paphiopedilum henryanum (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:916081. [PMID: 35693163 PMCID: PMC9178235 DOI: 10.3389/fpls.2022.916081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Paphiopedilum (Orchidaceae) is one of the world's most popular orchids that is found in tropical and subtropical forests and has an enormous ornamental value. SEPALLATA-like (SEP-like) MADS-box genes are responsible for floral organ specification. In this study, three SEP-like MADS-box genes, PhSEP1, PhSEP2, and PhSEP3, were identified in Paphiopedilum henryanum. These genes were 732-916 bp, with conserved SEPI and SEPII motifs. Phylogenetic analysis revealed that PhSEP genes were evolutionarily closer to the core eudicot SEP3 lineage, whereas none of them belonged to core eudicot SEP1/2/4 clades. PhSEP genes displayed non-ubiquitous expression, which was detectable across all floral organs at all developmental stages of the flower buds. Furthermore, subcellular localization experiments revealed the localization of PhSEP proteins in the nucleus. Yeast two-hybrid assays revealed no self-activation of PhSEPs. The protein-protein interactions revealed that PhSEPs possibly interact with B-class DEFICIENS-like and E-class MADS-box proteins. Our study suggests that the three SEP-like genes may play key roles in flower development in P. henryanum, which will improve our understanding of the roles of the SEP-like MADS-box gene family and provide crucial insights into the mechanisms underlying floral development in orchids.
Collapse
Affiliation(s)
- Hao Cheng
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xiulan Xie
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Maozhi Ren
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Shuhua Yang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhao
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Yi Liu
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Yufeng Xu
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yukai Xiang
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Hua Chai
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Liang Zheng
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Hong Ge
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruidong Jia
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Zhao ML, Zhou ZF, Chen MS, Xu CJ, Xu ZF. An ortholog of the MADS-box gene SEPALLATA3 regulates stamen development in the woody plant Jatropha curcas. PLANTA 2022; 255:111. [PMID: 35478059 DOI: 10.1007/s00425-022-03886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of JcSEP3 causes defective stamen development in Jatropha curcas, in which brassinosteroid and gibberellin signaling pathways may be involved. SEPALLATAs (SEPs), the class E genes of the ABCE model, are required for floral organ determination. In this study, we investigated the role of the JcSEP3 gene in floral organ development in the woody plant Jatropha curcas. Transgenic Jatropha plants overexpressing JcSEP3 displayed abnormal phenotypes such as deficient anthers and pollen, as well as free stamen filaments, whereas JcSEP3-RNA interference (RNAi) transgenic plants had no obvious phenotypic changes, suggesting that JcSEP3 is redundant with other JcSEP genes in Jatropha. Moreover, we compared the transcriptomes of wild-type plants, JcSEP3-overexpressing, and JcSEP3-RNAi transgenic plants. In the JcSEP3-overexpressing transgenic plants, we discovered 25 upregulated genes involved in anther and pollen development, as well as 12 induced genes in brassinosteroid (BR) and gibberellin (GA) signaling pathways. These results suggest that JcSEP3 directly or indirectly regulates stamen development, concomitant with the regulation of BR and GA signaling pathways. Our findings help to understand the roles of SEP genes in stamen development in perennial woody plants.
Collapse
Affiliation(s)
- Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zhi-Fang Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| | - Chuan-Jia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
18
|
Li Y, Zhang B, Yu H. Molecular genetic insights into orchid reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1841-1852. [PMID: 35104310 DOI: 10.1093/jxb/erac016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Orchids are members of the Orchidaceae, one of the largest families of flowering plants, and occupy a wide range of ecological habitats with highly specialized reproductive features. They exhibit unique developmental characteristics, such as generation of storage organs during flowering and spectacular floral morphological features, which contribute to their reproductive success in different habitats in response to various environmental cues. Here we review current understanding of the molecular genetic basis of orchid reproductive development, including flowering time control, floral patterning and flower color, with a focus on the orchid genes that have been functionally validated in plants. Furthermore, we summarize recent progress in annotating orchid genomes, and discuss how integration of high-quality orchid genome sequences with other advanced tools, such as the ever-improving multi-omics approaches and genome editing technologies as well as orchid-specific technical platforms, could open up new avenues to elucidate the molecular genetic basis of highly specialized reproductive organs and strategies in orchids.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Bin Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
| |
Collapse
|
19
|
An Integrated Analysis of Transcriptome and miRNA Sequencing Provides Insights into the Dynamic Regulations during Flower Morphogenesis in Petunia. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Published genome sequences can facilitate multiple genome sequencing studies of flower development, which can serve as the basis for later analysis of variation in flower phenotypes. To identify potential regulators related to flower morphology, we captured dynamic expression patterns under five different developmental stages of petunia flowers, a popular bedding plant, using transcriptome and miRNA sequencing. The significant transcription factor (TF) families, including MYB, MADS, and bHLH, were elucidated. MADS-box genes exhibited co-expression patterns with BBR-BPC, GATA, and Dof genes in different modules according to a weighted gene co-expression network analysis. Through miRNA sequencing, a total of 45 conserved and 26 novel miRNAs were identified. According to GO and KEGG enrichment analysis, the carbohydrate metabolic process, photosynthesis, and phenylalanine metabolism were significant at the transcriptomic level, while the response to hormone pathways was significantly enriched by DEmiR-targeted genes. Finally, an miRNA–RNA network was constructed, which suggested the possibility of novel miRNA-mediated regulation pathways being activated during flower development. Overall, the expression data in the present study provide novel insights into the developmental gene regulatory network facilitated by TFs, miRNA, and their target genes.
Collapse
|
20
|
Wong DCJ, Perkins J, Peakall R. Anthocyanin and Flavonol Glycoside Metabolic Pathways Underpin Floral Color Mimicry and Contrast in a Sexually Deceptive Orchid. FRONTIERS IN PLANT SCIENCE 2022; 13:860997. [PMID: 35401591 PMCID: PMC8983864 DOI: 10.3389/fpls.2022.860997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/10/2023]
Abstract
Sexually deceptive plants secure pollination by luring specific male insects as pollinators using a combination of olfactory, visual, and morphological mimicry. Flower color is a key component to this attraction, but its chemical and genetic basis remains poorly understood. Chiloglottis trapeziformis is a sexually deceptive orchid which has predominantly dull green-red flowers except for the central black callus projecting from the labellum lamina. The callus mimics the female of the pollinator and the stark color contrast between the black callus and dull green or red lamina is thought to enhance the visibility of the mimic. The goal of this study was to investigate the chemical composition and genetic regulation of temporal and spatial color patterns leading to visual mimicry, by integrating targeted metabolite profiling and transcriptomic analysis. Even at the very young bud stage, high levels of anthocyanins were detected in the dark callus, with peak accumulation by the mature bud stage. In contrast, anthocyanin levels in the lamina peaked as the buds opened and became reddish-green. Coordinated upregulation of multiple genes, including dihydroflavonol reductase and leucoanthocyanidin dioxygenase, and the downregulation of flavonol synthase genes (FLS) in the callus at the very young bud stage underpins the initial high anthocyanin levels. Conversely, within the lamina, upregulated FLS genes promote flavonol glycoside over anthocyanin production, with the downstream upregulation of flavonoid O-methyltransferase genes further contributing to the accumulation of methylated flavonol glycosides, whose levels peaked in the mature bud stage. Finally, the peak anthocyanin content of the reddish-green lamina of the open flower is underpinned by small increases in gene expression levels and/or differential upregulation in the lamina in select anthocyanin genes while FLS patterns showed little change. Differential expression of candidate genes involved in specific transport, vacuolar acidification, and photosynthetic pathways may also assist in maintaining the distinct callus and contrasting lamina color from the earliest bud stage through to the mature flower. Our findings highlight that flower color in this sexually deceptive orchid is achieved by complex tissue-specific coordinated regulation of genes and biochemical pathways across multiple developmental stages.
Collapse
|
21
|
High-density genetic map and genome-wide association studies of aesthetic traits in Phalaenopsis orchids. Sci Rep 2022; 12:3346. [PMID: 35228611 PMCID: PMC8885740 DOI: 10.1038/s41598-022-07318-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Phalaenopsis spp. represent the most popular orchids worldwide. Both P. equestris and P. aphrodite are the two important breeding parents with the whole genome sequence available. However, marker–trait association is rarely used for floral traits in Phalaenopsis breeding. Here, we analyzed markers associated with aesthetic traits of Phalaenopsis orchids by using genome-wide association study (GWAS) with the F1 population P. Intermedia of 117 progenies derived from the cross between P. aphrodite and P. equestris. A total of 113,517 single nucleotide polymorphisms (SNPs) were identified in P. Intermedia by using genotyping-by-sequencing with the combination of two different restriction enzyme pairs, Hinp1 I/Hae III and Apek I/Hae III. The size-related traits from flowers were negatively related to the color-related traits. The 1191 SNPs from Hinp1 I/ Hae III and 23 simple sequence repeats were used to establish a high-density genetic map of 19 homolog groups for P. equestris. In addition, 10 quantitative trait loci were highly associated with four color-related traits on chromosomes 2, 5 and 9. According to the sequence within the linkage disequilibrium regions, 35 candidate genes were identified and related to anthocyanin biosynthesis. In conclusion, we performed marker-assisted gene identification of aesthetic traits with GWAS in Phalaenopsis orchids.
Collapse
|
22
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
23
|
Yang F, Gao J, Wei Y, Ren R, Zhang G, Lu C, Jin J, Ai Y, Wang Y, Chen L, Ahmad S, Zhang D, Sun W, Tsai W, Liu Z, Zhu G. The genome of Cymbidium sinense revealed the evolution of orchid traits. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2501-2516. [PMID: 34342129 PMCID: PMC8633513 DOI: 10.1111/pbi.13676] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 05/04/2023]
Abstract
The Orchidaceae is of economic and ecological importance and constitutes ˜10% of all seed plant species. Here, we report a genome physical map for Cymbidium sinense, a well-known species belonging to genus Cymbidium that has thousands of natural variation varieties of flower organs, flower and leaf colours and also referred as the King of Fragrance, which make it arose into a unique cultural symbol in China. The high-quality chromosome-scale genome assembly was 3.52 Gb in size, 29 638 protein-coding genes were predicted, and evidence for whole-genome duplication shared with other orchids was provided. Marked amplification of cytochrome- and photosystem-related genes was observed, which was consistent with the shade tolerance and dark green leaves of C. sinense. Extensive duplication of MADS-box genes, and the resulting subfunctional and expressional differentiation, was associated with regulation of species-specific flower traits, including wild-type and mutant-type floral patterning, seasonal flowering and ecological adaption. CsSEP4 was originally found to positively regulate gynostemium development. The CsSVP genes and their interaction proteins CsAP1 and CsSOC1 were significantly expanded and involved in the regulation of low-temperature-dependent flowering. Important genetic clues to the colourful leaf traits, purple-black flowers and volatile trait in C. sinense were also found. The results provide new insights into the molecular mechanisms of important phenotypic traits of Cymbidium and its evolution and serve as a powerful platform for future evolutionary studies and molecular breeding of orchids.
Collapse
Affiliation(s)
- Feng‐Xi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yong‐Lu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Rui Ren
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Guo‐Qiang Zhang
- Laboratory for Orchid Conservation and UtilizationThe Orchid Conservation and Research Center of ShenzhenThe National Orchid Conservation Center of ChinaShenzhenChina
| | - Chu‐Qiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jian‐Peng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Ye Ai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya‐Qin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Li‐Jun Chen
- Laboratory for Orchid Conservation and UtilizationThe Orchid Conservation and Research Center of ShenzhenThe National Orchid Conservation Center of ChinaShenzhenChina
| | - Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Di‐Yang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wei‐Hong Sun
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wen‐Chieh Tsai
- Orchid Research and Development CenterNational Cheng Kung UniversityTainanTaiwan
- Institute of Tropical Plant Sciences and MicrobiologyNational Cheng Kung UniversityTainanTaiwan
| | - Zhong‐Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gen‐Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and UtilizationInstitute of Environmental HorticultureGuangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
24
|
Hsiao YY, Fu CH, Ho SY, Li CI, Chen YY, Wu WL, Wang JS, Zhang DY, Hu WQ, Yu X, Sun WH, Zhou Z, Liu KW, Huang L, Lan SR, Chen HH, Wu WS, Liu ZJ, Tsai WC. OrchidBase 4.0: a database for orchid genomics and molecular biology. BMC PLANT BIOLOGY 2021; 21:371. [PMID: 34384382 PMCID: PMC8359044 DOI: 10.1186/s12870-021-03140-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/11/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND The Orchid family is the largest families of the monocotyledons and an economically important ornamental plant worldwide. Given the pivotal role of this plant to humans, botanical researchers and breeding communities should have access to valuable genomic and transcriptomic information of this plant. Previously, we established OrchidBase, which contains expressed sequence tags (ESTs) from different tissues and developmental stages of Phalaenopsis as well as biotic and abiotic stress-treated Phalaenopsis. The database includes floral transcriptomic sequences from 10 orchid species across all the five subfamilies of Orchidaceae. DESCRIPTION Recently, the whole-genome sequences of Apostasia shenzhenica, Dendrobium catenatum, and Phalaenopsis equestris were de novo assembled and analyzed. These datasets were used to develop OrchidBase 4.0, including genomic and transcriptomic data for these three orchid species. OrchidBase 4.0 offers information for gene annotation, gene expression with fragments per kilobase of transcript per millions mapped reads (FPKM), KEGG pathways and BLAST search. In addition, assembled genome sequences and location of genes and miRNAs could be visualized by the genome browser. The online resources in OrchidBase 4.0 can be accessed by browsing or using BLAST. Users can also download the assembled scaffold sequences and the predicted gene and protein sequences of these three orchid species. CONCLUSIONS OrchidBase 4.0 is the first database that contain the whole-genome sequences and annotations of multiple orchid species. OrchidBase 4.0 is available at http://orchidbase.itps.ncku.edu.tw/.
Collapse
Affiliation(s)
- Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Chih-Hsiung Fu
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 70101 Taiwan
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Sau-Yee Ho
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Chung-I Li
- Department of Statistics, National Cheng Kung University, Tainan, 70101 Taiwan
| | - You-Yi Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Wan-Lin Wu
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 70101 Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Jeen-Shing Wang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Di-Yang Zhang
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Wen-Qi Hu
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xia Yu
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Wei-Hong Sun
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Zhuang Zhou
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005 China
| | - Ke-Wei Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084 China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine and Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084 China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine and Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
| | - Si-Ren Lan
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hong-Hwa Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 70101 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Zhong-Jian Liu
- Key Lab of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005 China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Center for Biotechnology and Biomedicine and Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology, Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005 China
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 70101 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101 Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 70101 Taiwan
| |
Collapse
|
25
|
Zhang C, Wei L, Yu X, Li H, Wang W, Wu S, Duan F, Bao M, Chan Z, He Y. Functional conservation and divergence of SEPALLATA-like genes in the development of two-type florets in marigold. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110938. [PMID: 34134845 DOI: 10.1016/j.plantsci.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/06/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Marigold (Tagetes erecta), as one member of Asteraceae family, bears a typical capitulum with two morphologically distinct florets. The SEPALLATA genes are involved in regulating the floral meristem determinacy, organ identity, fruit maturation, seed formation, and plant architecture. Here, five SEP-like genes were cloned and identified from marigold. Sequence alignment and phylogenetic analysis demonstrated that TeSEP3-1, TeSEP3-2, and TeSEP3-3 proteins were grouped into SEP3 clade, and TeSEP1 and TeSEP4 proteins were clustered into SEP1/2/4 clade. Quantitative real-time PCR analysis revealed that TeSEP1 and TeSEP3-3 were broadly expressed in floral organs, and that TeSEP3-2 and TeSEP4 were mainly expressed in pappus and corollas, while TeSEP3-1 was mainly expressed in two inner whorls. Ectopic expression of TeSEP1, TeSEP3-2, TeSEP3-3, and TeSEP4 in arabidopsis and tobacco resulted in early flowering. However, overexpression of TeSEP3-1 in arabidopsis and tobacco caused no visible phenotypic changes. Notably, overexpression of TeSEP4 in tobacco decreased the number of petals and stamens. Overexpression of TeSEP1 in tobacco led to longer sepals and simpler inflorescence architecture. The comprehensive pairwise interaction analysis suggested that TeSEP proteins had a broad interaction with class A, C, D, E proteins to form dimers. The yeast three-hybrid analysis suggested that in ternary complexes, class B proteins interacted with TeSEP3 by forming heterodimer TePI-TeAP3-2. The regulatory network analysis of MADS-box genes in marigold further indicated that TeSEP proteins played a "glue" role in regulating floral organ development, implying functional conservation and divergence of MADS box genes in regulating two-type floret developments. This study provides an insight into the formation mechanism of floral organs of two-type florets, thus broadening our knowledge of the genetic basis of flower evolution.
Collapse
Affiliation(s)
- Chunling Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Ludan Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Xiaomin Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Hang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Wenjing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Shenzhong Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Feng Duan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Yanhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
26
|
Chen YY, Hsiao YY, Li CI, Yeh CM, Mitsuda N, Yang HX, Chiu CC, Chang SB, Liu ZJ, Tsai WC. The ancestral duplicated DL/CRC orthologs, PeDL1 and PeDL2, function in orchid reproductive organ innovation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5442-5461. [PMID: 33963755 DOI: 10.1093/jxb/erab195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Orchid gynostemium, the fused organ of the androecium and gynoecium, and ovule development are unique developmental processes. Two DROOPING LEAF/CRABS CLAW (DL/CRC) genes, PeDL1 and PeDL2, were identified from the Phalaenopsis orchid genome and functionally characterized. Phylogenetic analysis indicated that the most recent common ancestor of orchids contained the duplicated DL/CRC-like genes. Temporal and spatial expression analysis indicated that PeDL genes are specifically expressed in the gynostemium and at the early stages of ovule development. Both PeDLs could partially complement an Arabidopsis crc-1 mutant. Virus-induced gene silencing (VIGS) of PeDL1 and PeDL2 affected the number of protuberant ovule initials differentiated from the placenta. Transient overexpression of PeDL1 in Phalaenopsis orchids caused abnormal development of ovule and stigmatic cavity of gynostemium. PeDL1, but not PeDL2, could form a heterodimer with Phalaenopsis equestris CINCINNATA 8 (PeCIN8). Paralogous retention and subsequent divergence of the gene sequences of PeDL1 and PeDL2 in P. equestris might result in the differentiation of function and protein behaviors. These results reveal that the ancestral duplicated DL/CRC-like genes play important roles in orchid reproductive organ innovation.
Collapse
Affiliation(s)
- You-Yi Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Chung-I Li
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan
| | - Chuan-Ming Yeh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hong-Xing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Chenshan Plant Science Research Center, CAS, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Chi-Chou Chiu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Chieh Tsai
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
27
|
Tian X, Li X, Yu Q, Zhao H, Liao J. Asymmetric expression patterns of B- and C-class MADS-box genes correspond to the asymmetrically specified androecial identities of Canna indica. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:540-545. [PMID: 33342001 DOI: 10.1111/plb.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Canna indica is a common ornamental plant with asymmetric flowers having colourful petaloid staminodes. The only fertile stamen comprises a one-theca anther and a petaloid appendage and represents the lowest stamen number in the order Zingiberales. The molecular mechanism for the asymmetric androecial petaloidy remains poorly understood. Here, we studied the identity specification in Canna stamen. We observed four types of abnormal flower in terms of androecium identity transformation and analysed the corresponding floral symmetry changes. We further tested the expression patterns of B- and C-class MADS-box genes using in situ hybridization in normal Canna stamen. Homeotic conversions in the androecium were accompanied by floral symmetry changes, and the asymmetric stamen is key in contributing to the floral asymmetry. Both B- and C-class genes exhibited higher expression levels in the anther primordium than in other androecial parts. This asymmetric expression pattern precisely corresponded to the asymmetric identities of the Canna androecium. We identified C. indica as a model species for studying androecial organ identity and floral symmetry synthetically in Zingiberales. We hypothesized that homeotic genes specify floral organ identity in a putative dose-dependent manner. The results add to the current understanding of organ identity-related floral symmetry.
Collapse
Affiliation(s)
- X Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - X Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Q Yu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - H Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Xinxing Vocational School of Traditional Chinese Medicine, Xinxing, Guangdong, China
| | - J Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Liu H, Yang L, Tu Z, Zhu S, Zhang C, Li H. Genome-wide identification of MIKC-type genes related to stamen and gynoecium development in Liriodendron. Sci Rep 2021; 11:6585. [PMID: 33753780 PMCID: PMC7985208 DOI: 10.1038/s41598-021-85927-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
The organogenesis and development of reproductive organs, i.e., stamen and gynoecium, are important floral characteristics that are closely related to pollinators and reproductive fitness. As a genus from Magnoliaceae, Liriodendron has only two relict species: L. chinense and L. tulipifera. Despite the similar flower shapes of these species, their natural seed-setting rates differ significantly, implying interspecies difference in floral organogenesis and development. MADS-box genes, which participate in floral organogenesis and development, remain unexplored in Liriodendron. Here, to explore the interspecies difference in floral organogenesis and development and identify MADS-box genes in Liriodendron, we examined the stamen and gynoecium primordia of the two Liriodendron species by scanning electron microscopy combined with paraffin sectioning, and then collected two types of primordia for RNA-seq. A total of 12 libraries were constructed and 42,268 genes were identified, including 35,269 reference genes and 6,999 new genes. Monoterpenoid biosynthesis was enriched in L. tulipifera. Genome-wide analysis of 32 MADS-box genes was conducted, including phylogenetic trees, exon/intron structures, and conserved motif distributions. Twenty-six genes were anchored on 17 scaffolds, and six new genes had no location information. The expression profiles of MIKC-type genes via RT-qPCR acrossing six stamen and gynoecium developmental stages indicates that the PI-like, AG/STK-like, SEP-like, and SVP-like genes may contribute to the species-specific differentiation of the organogenesis and development of reproductive organs in Liriodendron. Our findings laid the groundwork for the future exploration of the mechanism underlying on the interspecific differences in reproductive organ development and fitness in Liriodendron.
Collapse
Affiliation(s)
- Huanhuan Liu
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Lichun Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zhonghua Tu
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shenghua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chengge Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Huogen Li
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
29
|
Hsu HF, Chen WH, Shen YH, Hsu WH, Mao WT, Yang CH. Multifunctional evolution of B and AGL6 MADS box genes in orchids. Nat Commun 2021; 12:902. [PMID: 33568671 PMCID: PMC7876132 DOI: 10.1038/s41467-021-21229-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
We previously found that B and AGL6 proteins form L (OAP3-2/OAGL6-2/OPI) and SP (OAP3-1/OAGL6-1/OPI) complexes to determine lip/sepal/petal identities in orchids. Here, we show that the functional L' (OAP3-1/OAGL6-2/OPI) and SP' (OAP3-2/OAGL6-1/OPI) complexes likely exist and AP3/PI/AGL6 genes have acquired additional functions during evolution. We demonstrate that the presumed L' complex changes the structure of the lower lateral sepals and helps the lips fit properly in the center of the flower. In addition, we find that OAP3-1/OAGL6-1/OPI in SP along with presumed SP' complexes regulate anthocyanin accumulation and pigmentation, whereas presumed L' along with OAP3-2/OAGL6-2/OPI in L complexes promotes red spot formation in the perianth. Furthermore, the B functional proteins OAP3-1/OPI and OAGL6-1 in the SP complex could function separately to suppress sepal/petal senescence and promote pedicel abscission, respectively. These findings expand the current knowledge behind the multifunctional evolution of the B and AGL6 genes in plants.
Collapse
Affiliation(s)
- Hsing-Fun Hsu
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wei-Han Chen
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Yi-Hsuan Shen
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wei-Han Hsu
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wan-Ting Mao
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Chang-Hsien Yang
- grid.260542.70000 0004 0532 3749Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC ,grid.260542.70000 0004 0532 3749Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| |
Collapse
|
30
|
Orchid B sister gene PeMADS28 displays conserved function in ovule integument development. Sci Rep 2021; 11:1205. [PMID: 33441740 PMCID: PMC7806631 DOI: 10.1038/s41598-020-79877-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022] Open
Abstract
The ovules and egg cells are well developed to be fertilized at anthesis in many flowering plants. However, ovule development is triggered by pollination in most orchids. In this study, we characterized the function of a Bsister gene, named PeMADS28, isolated from Phalaenopsis equestris, the genome-sequenced orchid. Spatial and temporal expression analysis showed PeMADS28 predominantly expressed in ovules between 32 and 48 days after pollination, which synchronizes with integument development. Subcellular localization and protein–protein interaction analyses revealed that PeMADS28 could form a homodimer as well as heterodimers with D-class and E-class MADS-box proteins. In addition, ectopic expression of PeMADS28 in Arabidopsis thaliana induced small curled rosette leaves, short silique length and few seeds, similar to that with overexpression of other species’ Bsister genes in Arabidopsis. Furthermore, complementation test revealed that PeMADS28 could rescue the phenotype of the ABS/TT16 mutant. Together, these results indicate the conserved function of BsisterPeMADS28 associated with ovule integument development in orchid.
Collapse
|
31
|
Penin AA, Kasianov AS, Klepikova AV, Kirov IV, Gerasimov ES, Fesenko AN, Logacheva MD. High-Resolution Transcriptome Atlas and Improved Genome Assembly of Common Buckwheat, Fagopyrum esculentum. FRONTIERS IN PLANT SCIENCE 2021; 12:612382. [PMID: 33815435 PMCID: PMC8010679 DOI: 10.3389/fpls.2021.612382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Common buckwheat (Fagopyrum esculentum) is an important non-cereal grain crop and a prospective component of functional food. Despite this, the genomic resources for this species and for the whole family Polygonaceae, to which it belongs, are scarce. Here, we report the assembly of the buckwheat genome using long-read technology and a high-resolution expression atlas including 46 organs and developmental stages. We found that the buckwheat genome has an extremely high content of transposable elements, including several classes of recently (0.5-1 Mya) multiplied TEs ("transposon burst") and gradually accumulated TEs. The difference in TE content is a major factor contributing to the three-fold increase in the genome size of F. esculentum compared with its sister species F. tataricum. Moreover, we detected the differences in TE content between the wild ancestral subspecies F. esculentum ssp. ancestrale and buckwheat cultivars, suggesting that TE activity accompanied buckwheat domestication. Expression profiling allowed us to test a hypothesis about the genetic control of petaloidy of tepals in buckwheat. We showed that it is not mediated by B-class gene activity, in contrast to the prediction from the ABC model. Based on a survey of expression profiles and phylogenetic analysis, we identified the MYB family transcription factor gene tr_18111 as a potential candidate for the determination of conical cells in buckwheat petaloid tepals. The information on expression patterns has been integrated into the publicly available database TraVA: http://travadb.org/browse/Species=Fesc/. The improved genome assembly and transcriptomic resources will enable research on buckwheat, including practical applications.
Collapse
Affiliation(s)
- Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Artem S. Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Klepikova
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | | | | | - Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
- *Correspondence: Maria D. Logacheva,
| |
Collapse
|
32
|
Lin Z, Cao D, Damaris RN, Yang P. Genome-wide identification of MADS-box gene family in sacred lotus (Nelumbo nucifera) identifies a SEPALLATA homolog gene involved in floral development. BMC PLANT BIOLOGY 2020; 20:497. [PMID: 33121437 PMCID: PMC7599106 DOI: 10.1186/s12870-020-02712-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sacred lotus (Nelumbo nucifera) is a vital perennial aquatic ornamental plant. Its flower shape determines the horticultural and ornamental values. However, the mechanisms underlying lotus flower development are still elusive. MADS-box transcription factors are crucial in various features of plant development, especially in floral organogenesis and specification. It is still unknown how the MADS-box transcription factors regulate the floral organogenesis in lotus. RESULTS To obtain a comprehensive insight into the functions of MADS-box genes in sacred lotus flower development, we systematically characterized members of this gene family based on the available genome information. A total of 44 MADS-box genes were identified, of which 16 type I and 28 type II genes were categorized based on the phylogenetic analysis. Furthermore, the structure of MADS-box genes and their expressional patterns were also systematically analyzed. Additionally, subcellular localization analysis showed that they are mainly localized in the nucleus, of which a SEPALLATA3 (SEP3) homolog NnMADS14 was proven to be involved in the floral organogenesis. CONCLUSION These results provide some fundamental information about the MADS-box gene family and their functions, which might be helpful in not only understanding the mechanisms of floral organogenesis but also breeding of high ornamental value cultivars in lotus.
Collapse
Affiliation(s)
- Zhongyuan Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Dingding Cao
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
33
|
Pu ZQ, Ma YY, Lu MX, Ma YQ, Xu ZQ. Cloning of a SEPALLATA4-like gene (IiSEP4) in Isatis indigotica Fortune and characterization of its function in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:229-237. [PMID: 32563851 DOI: 10.1016/j.plaphy.2020.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
E-class MADS-box genes, SEPALLATA (SEP), participate in various aspects of plant development together with B-, C- and D-class MADS-box genes. IiSEP4, a homologous gene of SEP4, was cloned from Isatis indigotica. IiSEP4 was highly expressed in sepals, and its mRNA was mildly detected in leaves, inflorescences, flowers, stamens and young silicles. Constitutive expression of IiSEP4 in Arabidopsis thaliana caused early flowering, accompanied by the reduction of flowers and floral organs. Moreover, the sepals in some flowers were transformed into carpelloid structures with stigmatic papillae, and obviously accompanied by ovule formation. Yeast two-hybrid assays demonstrated that IiSEP4 interacts with other woad MADS proteins to determine the identity of floral organs. These findings reveal the important roles of IiSEP4 in floral development of I. indigotica. The results of this study can lay a foundation for further study on biological functions of MADS transcriptional factors in I. indigotica.
Collapse
Affiliation(s)
- Zuo-Qian Pu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Meng-Xin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan-Qin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
34
|
Genome-Wide Identification of YABBY Genes in Orchidaceae and Their Expression Patterns in Phalaenopsis Orchid. Genes (Basel) 2020; 11:genes11090955. [PMID: 32825004 PMCID: PMC7563141 DOI: 10.3390/genes11090955] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
The plant YABBY transcription factors are key regulators in the lamina development of lateral organs. Orchid is one of the largest families in angiosperm and known for their unique floral morphology, reproductive biology, and diversified lifestyles. However, nothing is known about the role of YABBY genes in orchids, although biologists have never lost their fascination with orchids. In this study, a total of 54 YABBY genes, including 15 genes in CRC/DL, eight in INO, 17 in YAB2, and 14 in FIL clade, were identified from the eight orchid species. A sequence analysis showed that all protein sequences encoded by these YABBY genes share the highly conserved C2C2 zinc-finger domain and YABBY domain (a helix-loop-helix motif). A gene structure analysis showed that the number of exons is highly conserved in the same clades. The genes in YAB2 clade have six exons, and genes in CRC/DL, INO, and FIL have six or seven exons. A phylogenetic analysis showed all 54 orchid YABBY genes could be classified into four major clades, including CRC/DL, INO, FIL, and YAB2. Many of orchid species maintain more than one member in CRC/DL, FIL, and YAB2 clades, implying functional differentiation among these genes, which is supported by sequence diversification and differential expression. An expression analysis of PhalaenopsisYABBY genes revealed that members in the CRC/DL clade have concentrated expressions in the early floral development stage and gynostemium, the fused male and female reproductive organs. The expression of PeINO is consistent with the biological role it played in ovule integument morphogenesis. Transcripts of members in the FIL clade could be obviously detected at the early developmental stage of the flowers. The expression of three genes, PeYAB2,PeYAB3, and PeYAB4, in the YAB2 clade could be revealed both in vegetative and reproductive tissues, and PeYAB4 was transcribed at a relatively higher level than that of PeYAB2 and PeYAB3. Together, this comprehensive analysis provides the basic information for understanding the function of the YABBY gene in Orchidaceae.
Collapse
|
35
|
Pramanik D, Dorst N, Meesters N, Spaans M, Smets E, Welten M, Gravendeel B. Evolution and development of three highly specialized floral structures of bee-pollinated Phalaenopsis species. EvoDevo 2020; 11:16. [PMID: 32793330 PMCID: PMC7418404 DOI: 10.1186/s13227-020-00160-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background Variation in shape and size of many floral organs is related to pollinators. Evolution of such organs is driven by duplication and modification of MADS-box and MYB transcription factors. We applied a combination of micro-morphological (SEM and micro 3D-CT scanning) and molecular techniques (transcriptome and RT-PCR analysis) to understand the evolution and development of the callus, stelidia and mentum, three highly specialized floral structures of orchids involved in pollination. Early stage and mature tissues were collected from flowers of the bee-pollinated Phalaenopsis equestris and Phalaenopsis pulcherrima, two species that differ in floral morphology: P. equestris has a large callus but short stelidia and no mentum, whereas P. pulcherrima has a small callus, but long stelidia and a pronounced mentum. Results Our results show the stelidia develop from early primordial stages, whereas the callus and mentum develop later. In combination, the micro 3D-CT scan analysis and gene expression analyses show that the callus is of mixed petaloid-staminodial origin, the stelidia of staminodial origin, and the mentum of mixed sepaloid-petaloid-staminodial origin. SEP clade 1 copies are expressed in the larger callus of P. equestris, whereas AP3 clade 1 and AGL6 clade 1 copies are expressed in the pronounced mentum and long stelidia of P. pulcherrima. AP3 clade 4, PI-, AGL6 clade 2 and PCF clade 1 copies might have a balancing role in callus and gynostemium development. There appears to be a trade-off between DIV clade 2 expression with SEP clade 1 expression in the callus, on the one hand, and with AP3 clade 1 and AGL6 clade 1 expression in the stelidia and mentum on the other. Conclusions We detected differential growth and expression of MADS box AP3/PI-like, AGL6-like and SEP-like, and MYB DIV-like gene copies in the callus, stelidia and mentum of two species of Phalaenopsis, of which these floral structures are very differently shaped and sized. Our study provides a first glimpse of the evolutionary developmental mechanisms driving adaptation of Phalaenopsis flowers to different pollinators by providing combined micro-morphological and molecular evidence for a possible sepaloid–petaloid–staminodial origin of the orchid mentum.
Collapse
Affiliation(s)
- Dewi Pramanik
- Naturalis Biodiversity Center, Endless Forms Group, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Intitute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Indonesian Ornamental Crops Research Institute (IOCRI), Jl. Raya Ciherang, Pacet-Cianjur, 43253 West Java Indonesia
| | - Nemi Dorst
- Faculty of Science and Technology, University of Applied Sciences Leiden, Zernikedreef 11, 2333 CK Leiden, The Netherlands
| | - Niels Meesters
- Life Sciences, HAN University of Applied Sciences, Ruitenbergerlaan 31, 6826 CC Arnhem, The Netherlands
| | - Marlies Spaans
- Faculty of Science and Technology, University of Applied Sciences Leiden, Zernikedreef 11, 2333 CK Leiden, The Netherlands
| | - Erik Smets
- Naturalis Biodiversity Center, Endless Forms Group, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Intitute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Ecology, Evolution and Biodiversity Conservation, KU Leuven, Kasteelpark Arenberg 31, P.O. Box 2435, 3001 Heverlee, Belgium
| | - Monique Welten
- Naturalis Biodiversity Center, Endless Forms Group, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Barbara Gravendeel
- Naturalis Biodiversity Center, Endless Forms Group, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Intitute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,IWWR, Radboud University, Heyendaalseweg 135, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
36
|
Wei Y, Jin J, Yao X, Lu C, Zhu G, Yang F. Transcriptome Analysis Reveals Clues into leaf-like flower mutant in Chinese orchid Cymbidium ensifolium. PLANT DIVERSITY 2020; 42:92-101. [PMID: 32373767 PMCID: PMC7195592 DOI: 10.1016/j.pld.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 06/11/2023]
Abstract
The floral morphology of Cymbidium ensifolium, a well-known orchid in China, has increasingly attracted horticultural and commercial attention. However, the molecular mechanisms that regulate flower development defects in C. ensifolium mutants are poorly understood. In this work, we examined a domesticated variety of C. ensifolium named 'CuiYuMuDan', or leaf-like flower mutant, which lacks typical characteristics of orchid floral organs but continues to produce sepal-to leaf-like structures along the inflorescence. We used comparative transcriptome analysis to identify 6234 genes that are differentially expressed between mutant and wild-type flowers. The majority of these differentially expressed genes are involved in membrane-building, anabolism regulation, and plant hormone signal transduction, implying that in the leaf-like mutant these processes play roles in the development of flower defects. In addition, we identified 152 differentially expressed transcription factors, including the bHLH, MYB, MIKC, and WRKY gene families. Moreover, we found 20 differentially expressed genes that are commonly involved in flower development, including MADS-box genes, CLAVATA3 (CLV3), WUSCHEL (WUS), and PERIANTHIA (PAN). Among them, floral homeotic genes were further investigated by phylogenetic analysis and expression validation, which displayed distinctive spatial expression patterns and significant changes between the wild type and the mutant. This is the first report on the C. ensifolium leaf-like flower mutant transcriptome. Our results shed light on the molecular regulation of orchid flower development, and may improve our understanding of floral patterning regulation and advance molecular breeding of Chinese orchids.
Collapse
|
37
|
Li BJ, Zheng BQ, Wang JY, Tsai WC, Lu HC, Zou LH, Wan X, Zhang DY, Qiao HJ, Liu ZJ, Wang Y. New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Commun Biol 2020; 3:89. [PMID: 32111943 PMCID: PMC7048853 DOI: 10.1038/s42003-020-0821-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
An unbalanced pigment distribution among the sepal and petal segments results in various colour patterns of orchid flowers. Here, we explored this type of mechanism of colour pattern formation in flowers of the Cattleya hybrid 'KOVA'. Our study showed that pigment accumulation displayed obvious spatiotemporal specificity in the flowers and was likely regulated by three R2R3-MYB transcription factors. Before flowering, RcPAP1 was specifically expressed in the epichile to activate the anthocyanin biosynthesis pathway, which caused substantial cyanin accumulation and resulted in a purple-red colour. After flowering, the expression of RcPAP2 resulted in a low level of cyanin accumulation in the perianths and a pale pink colour, whereas RcPCP1 was expressed only in the hypochile, where it promoted α-carotene and lutein accumulation and resulted in a yellow colour. Additionally, we propose that the spatiotemporal expression of different combinations of AP3- and AGL6-like genes might participate in KOVA flower colour pattern formation.
Collapse
Affiliation(s)
- Bai-Jun Li
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Bao-Qiang Zheng
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Jie-Yu Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, 701, Tainan City, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, 701, Tainan City, Taiwan
| | - Hsiang-Chia Lu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Long-Hai Zou
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 311300, Lin'an, China
| | - Xiao Wan
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, 311202, Hangzhou, China
| | - Di-Yang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Hong-Juan Qiao
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
- College of Forestry and Landscape Architecture, South China Agricultural University, 510642, Guangzhou, China.
| | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China.
| |
Collapse
|
38
|
Lai PH, Huang LM, Pan ZJ, Jane WN, Chung MC, Chen WH, Chen HH. PeERF1, a SHINE-Like Transcription Factor, Is Involved in Nanoridge Development on Lip Epidermis of Phalaenopsis Flowers. FRONTIERS IN PLANT SCIENCE 2020; 10:1709. [PMID: 32082333 PMCID: PMC7002429 DOI: 10.3389/fpls.2019.01709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Phalaenopsis orchids have a spectacular floral morphology with a highly evolved lip that offers a landing platform for pollinators. The typical morphological orchid lip features are essential for the special pollination mechanism of Phalaenopsis flowers. Previously, we found that in the lip, a member of the AP2/EREBP protein family was highly expressed. Here, we further confirmed its high expression and characterized its function during lip development. Phylogenetic analysis showed that AP2/EREBP belongs to the Va2 subgroup of ERF transcription factors. We named it PeERF1. We found that PeERF1 was only expressed at stage 5, as flowers opened. This coincided with both thickening of the cuticle and development of nanoridges. We performed knockdown expression of PeERF1 using CymMV-based virus-induced gene silencing in either the AP2 conserved domain, producing PeERF1_AP2-silenced plants, or the SHN specific domain, producing PeERF1_SHN-silenced plants. Using cryo-SEM, we found that the number of nanoridges was reduced only in the PeERF1_AP2-silenced group. This change was found on both the abaxial and adaxial surfaces of the central lip lobe. Expression of PeERF1 was reduced significantly in PeERF1_AP2-silenced plants. In cutin biosynthesis genes, expression of both PeCYP86A2 and PeDCR was significantly decreased in both groups. The expression of PeCYP77A4 was reduced significantly only in the PeERF1_AP2-silenced plants. Although PeGPAT expression was reduced in both silenced plants, but to a lesser degree. The expression of PeERF1 was significantly reduced in the petal-like lip of a big-lip variant. PeCYP77A4 and PeGPAT in the lip were also reduced, but PeDCR was not. Furthermore, heterologous overexpression of PeERF1 in the genus Arabidopsis produced leaves that were shiny on the adaxial surface. Taken together, our results show that in Phalaenopsis orchids PeERF1 plays an important role in formation of nanoridges during lip epidermis development.
Collapse
Affiliation(s)
- Pei-Han Lai
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Li-Min Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Zhao-Jun Pan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Chu Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
39
|
Chandler JW, Werr W. A phylogenetically conserved APETALA2/ETHYLENE RESPONSE FACTOR, ERF12, regulates Arabidopsis floral development. PLANT MOLECULAR BIOLOGY 2020; 102:39-54. [PMID: 31807981 PMCID: PMC6976583 DOI: 10.1007/s11103-019-00936-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Arabidopsis ETHYLENE RESPONSE FACTOR12 (ERF12), the rice MULTIFLORET SPIKELET1 orthologue pleiotropically affects meristem identity, floral phyllotaxy and organ initiation and is conserved among angiosperms. Reproductive development necessitates the coordinated regulation of meristem identity and maturation and lateral organ initiation via positive and negative regulators and network integrators. We have identified ETHYLENE RESPONSE FACTOR12 (ERF12) as the Arabidopsis orthologue of MULTIFLORET SPIKELET1 (MFS1) in rice. Loss of ERF12 function pleiotropically affects reproductive development, including defective floral phyllotaxy and increased floral organ merosity, especially supernumerary sepals, at incomplete penetrance in the first-formed flowers. Wildtype floral organ number in early formed flowers is labile, demonstrating that floral meristem maturation involves the stabilisation of positional information for organogenesis, as well as appropriate identity. A subset of erf12 phenotypes partly defines a narrow developmental time window, suggesting that ERF12 functions heterochronically to fine-tune stochastic variation in wild type floral number and similar to MFS1, promotes meristem identity. ERF12 expression encircles incipient floral primordia in the inflorescence meristem periphery and is strong throughout the floral meristem and intersepal regions. ERF12 is a putative transcriptional repressor and genetically opposes the function of its relatives DORNRÖSCHEN, DORNRÖSCHEN-LIKE and PUCHI and converges with the APETALA2 pathway. Phylogenetic analysis suggests that ERF12 is conserved among all eudicots and appeared in angiosperm evolution concomitant with the generation of floral diversity.
Collapse
Affiliation(s)
- J. W. Chandler
- Developmental Biology, Institute of Zoology, Cologne Biocenter, University of Cologne, Zuelpicher Straße 47b, 50674 Cologne, Germany
| | - W. Werr
- Developmental Biology, Institute of Zoology, Cologne Biocenter, University of Cologne, Zuelpicher Straße 47b, 50674 Cologne, Germany
| |
Collapse
|
40
|
Ding L, Zhao K, Zhang X, Song A, Su J, Hu Y, Zhao W, Jiang J, Chen F. Comprehensive characterization of a floral mutant reveals the mechanism of hooked petal morphogenesis in Chrysanthemum morifolium. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2325-2340. [PMID: 31050173 PMCID: PMC6835125 DOI: 10.1111/pbi.13143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 05/17/2023]
Abstract
The diversity of form of the chrysanthemum flower makes this species an ideal model for studying petal morphogenesis, but as yet, the molecular mechanisms underlying petal shape development remain largely unexplored. Here, a floral mutant, which arose as a bud sport in a plant of the variety 'Anastasia Dark Green', and formed straight, rather than hooked petals, was subjected to both comparative morphological analysis and transcriptome profiling. The hooked petals only became discernible during a late stage of flower development. At the late stage of 'Anastasia Dark Green', genes related to chloroplast, hormone metabolism, cell wall and microtubules were active, as were cell division-promoting factors. Auxin concentration was significantly reduced, and a positive regulator of cell expansion was down-regulated. Two types of critical candidates, boundary genes and adaxial-abaxial regulators, were identified from 7937 differentially expressed genes in pairwise comparisons, which were up-regulated at the late stage in 'Anastasia Dark Green' and another two hooked varieties. Ectopic expression of a candidate abaxial gene, CmYAB1, in chrysanthemum led to changes in petal curvature and inflorescence morphology. Our findings provide new insights into the regulatory networks underlying chrysanthemum petal morphogenesis.
Collapse
Affiliation(s)
- Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yueheng Hu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
41
|
Teo ZWN, Zhou W, Shen L. Dissecting the Function of MADS-Box Transcription Factors in Orchid Reproductive Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1474. [PMID: 31803211 PMCID: PMC6872546 DOI: 10.3389/fpls.2019.01474] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
The orchid family (Orchidaceae) represents the second largest angiosperm family, having over 900 genera and 27,000 species in almost all over the world. Orchids have evolved a myriad of intriguing ways in order to survive extreme weather conditions, acquire nutrients, and attract pollinators for reproduction. The family of MADS-box transcriptional factors have been shown to be involved in the control of many developmental processes and responses to environmental stresses in eukaryotes. Several findings in different orchid species have elucidated that MADS-box genes play critical roles in the orchid growth and development. An in-depth understanding of their ecological adaptation will help to generate more interest among breeders and produce novel varieties for the floriculture industry. In this review, we summarize recent findings of MADS-box transcription factors in regulating various growth and developmental processes in orchids, in particular, the floral transition and floral patterning. We further discuss the prospects for the future directions in light of new genome resources and gene editing technologies that could be applied in orchid research and breeding.
Collapse
Affiliation(s)
- Zhi Wei Norman Teo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Wei Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Mitoma M, Kajino Y, Hayashi R, Endo M, Kubota S, Kanno A. Molecular mechanism underlying pseudopeloria in Habenaria radiata (Orchidaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:439-451. [PMID: 30924980 DOI: 10.1111/tpj.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/27/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Habenaria radiata (Orchidaceae) has two whorls of perianth, comprising three greenish sepals, two white petals and one lip (labellum). By contrast, the pseudopeloric (with a decreased degree of zygomorphy) mutant cultivar of H. radiata, 'Hishou', has changes in the identities of the dorsal sepal to a petaloid organ and the two ventral sepals to lip-like organs. Here, we isolated four DEFICIENS-like and two AGL6-like genes from H. radiata, and characterized their expression. Most of these genes revealed similar expression patterns in the wild type and in the 'Hishou' cultivar, except HrDEF-C3. The HrDEF-C3 gene was expressed in petals and lip in the wild type but was ectopically expressed in sepal, petals, lip, leaf, root and bulb in 'Hishou'. Sequence analysis of the HrDEF-C3 loci revealed that the 'Hishou' genome harbored two types of HrDEF-C3 genes: one identical to wild-type HrDEF-C3 and the other carrying a retrotransposon insertion in its promoter. Genetic linkage analysis of the progeny derived from an intraspecific cross between 'Hishou' and the wild type demonstrated that the mutant pseudopeloric trait was dominantly inherited and was linked to the HrDEF-C3 gene carrying the retrotransposon. These results indicate that the pseudopeloric phenotype is caused by retrotransposon insertion in the HrDEF-C3 promoter, resulting in the ectopic expression of HrDEF-C3. As the expression of HrAGL6-C2 was limited to lateral sepals and lip, the overlapping expression of HrDEF-C3 and HrAGL6-C2 is likely to be responsible for the sepal to lip-like identity in the lateral sepals of the 'Hishou' cultivar.
Collapse
Affiliation(s)
- Mai Mitoma
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Yumi Kajino
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Risa Hayashi
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Miyako Endo
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Shosei Kubota
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Akira Kanno
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
43
|
Ghaemizadeh F, Dashti F, Shafeinia A. Expression pattern of ABCDE model genes in floral organs of bolting garlic clone. Gene Expr Patterns 2019; 34:119059. [PMID: 31201930 DOI: 10.1016/j.gep.2019.119059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/27/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022]
Abstract
A correct understanding of the ABCDE model genes expression, especially genes involved in the development of the reproductive floral organs, in bolting and fertile garlic clones improves the process of its fertilization and breeding programs. Therefore, Real-Time PCR was employed to evaluate the temporal and spatial expression patterns of some floral organ identity genes in the inflorescence and different floret organs in the two stages of green and purple florets of bolting garlic clone. Relative expression of the studied genes, except AsSTK, in the mature inflorescence increased significantly during the early stages of initiation and differentiation of floral organs. Relative expression of the AsAP1 in the tepal and carpel, and AsAP2 in the tepal, stamen and carpel increased significantly. The highest relative expression levels of the AsAP1 and AsAP2 were found in the tepal of green florets and in the carpel of purple florets, respectively. AsAP3 and AsPI expression increased significantly in the stamen and carpel, and the highest relative expression of these two genes were observed in the green floret tepal. Relative expression of the AsAG increased significantly only in the reproductive floral organs and decreased significantly both in the carpel and stamen at floret maturity. The AsSEP1, 3 were expressed in all floral organs, but the AsSTK was only expressed in the carpel and its relative expression increased significantly at floret maturity. Finally, since considerable expression levels of the above genes were observed in the floral organs, these genes seem to be influential in the formation of floral organs in bolting garlic.
Collapse
Affiliation(s)
| | - Farshad Dashti
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Alireza Shafeinia
- Department of Agronomy and Plant Breeding, Ramin Agriculture and Natural University, Khuzestan, Iran.
| |
Collapse
|
44
|
He C, Si C, Teixeira da Silva JA, Li M, Duan J. Genome-wide identification and classification of MIKC-type MADS-box genes in Streptophyte lineages and expression analyses to reveal their role in seed germination of orchid. BMC PLANT BIOLOGY 2019; 19:223. [PMID: 31138149 PMCID: PMC6540398 DOI: 10.1186/s12870-019-1836-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/17/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND MADS-box genes play crucial roles in plant floral organ formation and plant reproductive development. However, there is still no information on genome-wide identification and classification of MADS-box genes in some representative plant species. A comprehensive investigation of MIKC-type genes in the orchid Dendrobium officinale is still lacking. RESULTS Here we conducted a genome-wide analysis of MADS-box proteins from 29 species. In total, 1689 MADS-box proteins were identified. Two types of MADS-box genes, termed type I and II, were found in land plants, but not in liverwort. The SQUA, DEF/GLO, AG and SEP subfamilies existed in all the tested flowering plants, while SQUA was absent in the gymnosperm Ginkgo biloba, and no genes of the four subfamilies were found in a charophyte, liverwort, mosses, or lycophyte. This strongly corroborates the notion that clades of floral organ identity genes led to the evolution of flower development in flowering plants. Nine subfamilies of MIKCC genes were present in two orchids, D. officinale and Phalaenopsis equestris, while the TM8, FLC, AGL15 and AGL12 subfamilies may be lost. In addition, the four clades of floral organ identity genes in both orchids displayed a conservative and divergent expression pattern. Only three MIKC-type genes were induced by cold stress in D. officinale while 15 MIKC-type genes showed different levels of expression during seed germination. CONCLUSIONS MIKC-type genes were identified from streptophyte lineages, revealing new insights into their evolution and development relationships. Our results show a novel role of MIKC-type genes in seed germination and provide a useful clue for future research on seed germination in orchids.
Collapse
Affiliation(s)
- Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | | | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd, Nanjing, 210014 China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
45
|
Kant R, Dasgupta I. Gene silencing approaches through virus-based vectors: speeding up functional genomics in monocots. PLANT MOLECULAR BIOLOGY 2019; 100:3-18. [PMID: 30850930 DOI: 10.1007/s11103-019-00854-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/02/2019] [Indexed: 05/20/2023]
Abstract
The design and use of existing VIGS vectors for revealing monocot gene functions are described and potential new vectors are discussed, which may expand their repertoire. Virus induced gene silencing (VIGS) is a method of transient gene silencing in plants, triggered by the use of modified viral vectors. VIGS has found widespread use in deciphering the functions of plant genes, mainly for dicots. In the last decade, however, its use in monocots has increased noticeably, involving not only previously described viruses for monocots, but also those described for dicots. Additional viruses have been modified for VIGS to bring a larger collection of monocots under the ambit of this method. For monocots, new methods of inoculation have been tried to obtain increased silencing efficiency. The issue of insert stability and duration of silencing have also been addressed by various research groups. VIGS has been used to unravel the functions of a fairly large collection of monocot genes. This review summarizes the above developments, bringing out some of the gaps in our understanding and identifies directions to develop this technology further in the coming years.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
46
|
Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. Virus-induced gene silencing: empowering genetics in non-model organisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:757-770. [PMID: 30452695 DOI: 10.1093/jxb/ery411] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 05/19/2023]
Abstract
Virus-induced gene silencing (VIGS) is an RNA interference-based technology used to transiently knock down target gene expression by utilizing modified plant viral genomes. VIGS can be adapted to many angiosperm species that cover large phylogenetic distances, allowing the analysis of gene functions in species that are not amenable to stable genetic transformation. With a vast amount of sequence information already available and even more likely to become available in the future, VIGS provides a means to analyze the functions of candidate genes identified in large genomic or transcriptomic screens. Here, we provide a comprehensive overview of target species and VIGS vector systems, assess recent key publications in the field, and explain how plant viruses are modified to serve as VIGS vectors. As many reports on the VIGS technique are being published, we also propose minimal reporting guidelines for carrying out these experiments, with the aim of increasing comparability between experiments. Finally, we propose methods for the statistical evaluation of phenotypic results obtained with VIGS-treated plants, as analysis is challenging due to the predominantly transient nature of the silencing effect.
Collapse
Affiliation(s)
- Anna B Dommes
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Thomas Gross
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Denise B Herbert
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Kimmo I Kivivirta
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring, Gießen, Germany
| |
Collapse
|
47
|
Hsu CC, Lai PH, Chen TC, Tsai WC, Hsu JL, Hsiao YY, Wu WL, Tsai CH, Chen WH, Chen HH. PePIF1, a P-lineage of PIF-like transposable element identified in protocorm-like bodies of Phalaenopsis orchids. BMC Genomics 2019; 20:25. [PMID: 30626325 PMCID: PMC6327408 DOI: 10.1186/s12864-018-5420-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/27/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Orchids produce a colorless protocorm by symbiosis with fungi upon seed germination. For mass production of orchids, the prevailing approaches are both generation of protocorm-like bodies (PLBs) from callus and multiplication of adventitious buds on inflorescence. However, somaclonal variations occur during micropropagation. RESULTS We isolated the two most expressed transposable elements belonging to P Instability Factor (PIF)-like transposons. Among them, a potential autonomous element was identified by similarity analysis against the whole-genome sequence of Phalaenopsis equestris and named PePIF1. It contains a 19-bp terminal inverted repeat flanked by a 3-bp target site duplication and two coding regions encoding ORF1- and transposase-like proteins. Phylogenetic analysis revealed that PePIF1 belongs to a new P-lineage of PIF. Furthermore, two distinct families, PePIF1a and PePIF1b, with 29 and 37 putative autonomous elements, respectively, were isolated, along with more than 3000 non-autonomous and miniature inverted-repeat transposable element (MITE)-like elements. Among them, 828 PePIF1-related elements were inserted in 771 predicted genes. Intriguingly, PePIF1 was transposed in the somaclonal variants of Phalaenopsis cultivars, as revealed by transposon display, and the newly inserted genes were identified and sequenced. CONCLUSION A PIF-like element, PePIF1, was identified in the Phalaenopsis genome and actively transposed during micropropagation. With the identification of PePIF1, we have more understanding of the Phalaenopsis genome structure and somaclonal variations during micropropagation for use in orchid breeding and production.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Han Lai
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tien-Chih Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Chung Hsing University, Tainan, Taiwan
| | - Jui-Lin Hsu
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Luan Wu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Chung Hsing University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
48
|
Wang SL, Viswanath KK, Tong CG, An HR, Jang S, Chen FC. Floral Induction and Flower Development of Orchids. FRONTIERS IN PLANT SCIENCE 2019; 10:1258. [PMID: 31649713 PMCID: PMC6795766 DOI: 10.3389/fpls.2019.01258] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 05/19/2023]
Abstract
Orchids comprise one of the largest, most highly evolved angiosperm families, and form an extremely peculiar group of plants. Various orchids are available through traditional breeding and micro-propagation since they are valuable as potted plants and/or cut flowers in horticultural markets. The flowering of orchids is generally influenced by environmental signals such as temperature and endogenous developmental programs controlled by genetic factors as is usual in many flowering plant species. The process of floral transition is connected to the flower developmental programs that include floral meristem maintenance and floral organ specification. Thanks to advances in molecular and genetic technologies, the understanding of the molecular mechanisms underlying orchid floral transition and flower developmental processes have been widened, especially in several commercially important orchids such as Phalaenopsis, Dendrobium and Oncidium. In this review, we consolidate recent progress in research on the floral transition and flower development of orchids emphasizing representative genes and genetic networks, and also introduce a few successful cases of manipulation of orchid flowering/flower development through the application of molecular breeding or biotechnology tools.
Collapse
Affiliation(s)
- Shan-Li Wang
- Biotechnology Center in Southern Taiwan (BCST) of the Agricultural Biotechnology Research Center (ABRC), Academia Sinica, Tainan, Taiwan
| | - Kotapati Kasi Viswanath
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chii-Gong Tong
- Biotechnology Center in Southern Taiwan (BCST) of the Agricultural Biotechnology Research Center (ABRC), Academia Sinica, Tainan, Taiwan
| | - Hye Ryun An
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, South Korea
- *Correspondence: Seonghoe Jang, ; Fure-Chyi Chen,
| | - Fure-Chyi Chen
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
- *Correspondence: Seonghoe Jang, ; Fure-Chyi Chen,
| |
Collapse
|
49
|
Chuang YC, Hung YC, Tsai WC, Chen WH, Chen HH. PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4363-4377. [PMID: 29982590 PMCID: PMC6093345 DOI: 10.1093/jxb/ery246] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/20/2018] [Indexed: 05/22/2023]
Abstract
Floral scent is an important factor in attracting pollinators and repelling florivores. In Phalaenopsis bellina (Orchidaceae), the major floral scent components are monoterpenoids. Previously, we determined that expression of GERANYL DIPHOSPHATE SYNTHASE (PbGDPS) is highly correlated with monoterpene biosynthesis in Phalaenosis orchids. Here, we found that both cis- and trans-regulation were present on the GDPS promoters, with trans-regulation playing a key role. To investigate the regulation of biosynthesis of floral scent, we compared the transcriptomic data of two Phalaenopsis orchids with contrasting scent phenotypes. Eight transcription factors (TFs) that exhibited sequential elevation in abundance through floral development in P. bellina were identified, and their transcript levels were higher in the scented orchid than the scentless one. Five of these TFs transactivated several structural genes involved in monoterpene biosynthesis including PbbHLH4, PbbHLH6, PbbZIP4, PbERF1, and PbNAC1. Ectopic transient expression of each of these TFs in scentless orchids resulted in stimulation of terpenoid biosynthesis. PbbHLH4 most profoundly induced monoterpene biosynthesis, with a 950-fold increase of monoterpenoid production in the scentless orchid. In conclusion, we determined that biosynthesis of orchid floral monoterpenes was sequentially regulated, with PbbHLH4 playing a crucial role for monoterpene biosynthesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chu Hung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
- Correspondence:
| |
Collapse
|
50
|
Chuang YC, Hung YC, Tsai WC, Chen WH, Chen HH. PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. JOURNAL OF EXPERIMENTAL BOTANY 2018. [PMID: 29982590 DOI: 10.5061/dryad.kt056q7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Floral scent is an important factor in attracting pollinators and repelling florivores. In Phalaenopsis bellina (Orchidaceae), the major floral scent components are monoterpenoids. Previously, we determined that expression of GERANYL DIPHOSPHATE SYNTHASE (PbGDPS) is highly correlated with monoterpene biosynthesis in Phalaenosis orchids. Here, we found that both cis- and trans-regulation were present on the GDPS promoters, with trans-regulation playing a key role. To investigate the regulation of biosynthesis of floral scent, we compared the transcriptomic data of two Phalaenopsis orchids with contrasting scent phenotypes. Eight transcription factors (TFs) that exhibited sequential elevation in abundance through floral development in P. bellina were identified, and their transcript levels were higher in the scented orchid than the scentless one. Five of these TFs transactivated several structural genes involved in monoterpene biosynthesis including PbbHLH4, PbbHLH6, PbbZIP4, PbERF1, and PbNAC1. Ectopic transient expression of each of these TFs in scentless orchids resulted in stimulation of terpenoid biosynthesis. PbbHLH4 most profoundly induced monoterpene biosynthesis, with a 950-fold increase of monoterpenoid production in the scentless orchid. In conclusion, we determined that biosynthesis of orchid floral monoterpenes was sequentially regulated, with PbbHLH4 playing a crucial role for monoterpene biosynthesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chu Hung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|