1
|
Zhang J, Liu H, Xu W, Wan X, Zhu K. Comparative analysis of chloroplast genome of Lonicera japonica cv. Damaohua. Open Life Sci 2024; 19:20220984. [PMID: 39533983 PMCID: PMC11554557 DOI: 10.1515/biol-2022-0984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Lonicera japonica is a well-known medicinal plant, and the Damaohua cultivar is one of the oldest known honeysuckle cultivars in China. The 155,151 bp chloroplast genome of this cultivar was obtained through Illumina sequencing. The genome includes a pair of inverted repeats (IRa and IRb; 23,789 bp each), a large single-copy region (88,924 bp), and a small single-copy (SSC) region (18,649 bp). In total, 127 unique genes were identified: 80 protein-coding, 39 tRNA, and 8 rRNA genes. Only ycf3 contained two introns. Eighty-nine large repetitive sequences and 54 simple sequence repeats were detected. Fifty potential RNA editing sites were predicted. Adaptive evolution analysis revealed that infA, matK, petB, petD, rbcL, rpl16, rpl2, rps3, ycf1, and ycf2 were positively selected, possibly reflecting the specific environmental adaptations of this cultivar. Sequence alignment and analysis revealed several candidate fragments for Lonicera species identification, such as the intergenic regions rpoB-petN, rbcL-accD, and psaA-ycf3. The IR region boundary and phylogenetic analysis revealed that the L. japonica cv. Damaohua chloroplast genome was most closely related to the L. japonica genome, but there were five distinct differences between the two. There are four sites with high variability between L. japonica and L. japonica cv. Damaohua with nucleotide variability (Pi) greater than 0.002, including rps2-rpoC2, atpB-rbcL, ycf1, and ycf1-trnN GUU. The differences between L. japonica and L. japonica cv. Damaohua were further confirmed by the single nucleotide polymorphism sites between these two species. Therefore, this study revealed that the chloroplast genome can serve as a universal super barcode for plant identification, which can identify differences and help distinguish Lonicera japonica from related species. An understanding of Lonicera japonica cv. Damaohua chloroplast genomics and a comparative analysis of Lonicera species will provide a scientific basis for breeding, species identification, systematic evolution analysis, and chloroplast genetic engineering research on medicinal honeysuckle plants.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Huichun Liu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Wenting Xu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Xiao Wan
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Kaiyuan Zhu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| |
Collapse
|
2
|
Bolte CE, Phannareth T, Zavala-Paez M, Sutara BN, Can MF, Fitzpatrick MC, Holliday JA, Keller SR, Hamilton JA. Genomic insights into hybrid zone formation: The role of climate, landscape, and demography in the emergence of a novel hybrid lineage. Mol Ecol 2024; 33:e17430. [PMID: 38867593 DOI: 10.1111/mec.17430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Population demographic changes, alongside landscape, geographic and climate heterogeneity, can influence the timing, stability and extent of introgression where species hybridise. Thus, quantifying interactions across diverged lineages, and the relative contributions of interspecific genetic exchange and selection to divergence at the genome-wide level is needed to better understand the drivers of hybrid zone formation and maintenance. We used seven latitudinally arrayed transects to quantify the contributions of climate, geography and landscape features to broad patterns of genetic structure across the hybrid zone of Populus trichocarpa and P. balsamifera and evaluated the demographic context of hybridisation over time. We found genetic structure differed among the seven transects. While ancestry was structured by climate, landscape features influenced gene flow dynamics. Demographic models indicated a secondary contact event may have influenced contemporary hybrid zone formation with the origin of a putative hybrid lineage that inhabits regions with higher aridity than either of the ancestral groups. Phylogenetic relationships based on chloroplast genomes support the origin of this hybrid lineage inferred from demographic models based on the nuclear data. Our results point towards the importance of climate and landscape patterns in structuring the contact zones between P. trichocarpa and P. balsamifera and emphasise the value whole genome sequencing can have to advancing our understanding of how neutral processes influence divergence across space and time.
Collapse
Affiliation(s)
- Constance E Bolte
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tommy Phannareth
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Michelle Zavala-Paez
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brianna N Sutara
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Matthew C Fitzpatrick
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
| | - Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Stephen R Keller
- Department of Plant Biology, University of Vermont, Burlington, Vermont, USA
| | - Jill A Hamilton
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Yang S, Huang J, Qu Y, Zhang D, Tan Y, Wen S, Song Y. Phylogenetic incongruence in an Asiatic species complex of the genus Caryodaphnopsis (Lauraceae). BMC PLANT BIOLOGY 2024; 24:616. [PMID: 38937691 PMCID: PMC11212351 DOI: 10.1186/s12870-024-05050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Caryodaphnopsis, a group of tropical trees (ca. 20 spp.) in the family Lauraceae, has an amphi-Pacific disjunct distribution: ten species are distributed in Southeast Asia, while eight species are restricted to tropical rainforests in South America. Previously, phylogenetic analyses using two nuclear markers resolved the relationships among the five species from Latin America. However, the phylogenetic relationships between the species in Asia remain poorly known. RESULTS Here, we first determined the complete mitochondrial genome (mitogenome), plastome, and the nuclear ribosomal cistron (nrDNA) sequences of C. henryi with lengths of 1,168,029 bp, 154,938 bp, and 6495 bp, respectively. We found 2233 repeats and 368 potential SSRs in the mitogenome of C. henryi and 50 homologous DNA fragments between its mitogenome and plastome. Gene synteny analysis revealed a mass of rearrangements in the mitogenomes of Magnolia biondii, Hernandia nymphaeifolia, and C. henryi and only six conserved clustered genes among them. In order to reconstruct relationships for the ten Caryodaphnopsis species in Asia, we created three datasets: one for the mitogenome (coding genes and ten intergenic regions), another for the plastome (whole genome), and the other for the nuclear ribosomal cistron. All of the 22 Caryodaphnopsis individuals were divided into four, five, and six different clades in the phylogenies based on mitogenome, plastome, and nrDNA datasets, respectively. CONCLUSIONS The study showed phylogenetic conflicts within and between nuclear and organellar genome data of Caryodaphnopsis species. The sympatric Caryodaphnopsis species in Hekou and Malipo SW China may be related to the incomplete lineage sorting, chloroplast capture, and/or hybridization, which mixed the species as a complex in their evolutionary history.
Collapse
Affiliation(s)
- Shiting Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) and Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Jiepeng Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) and Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Yaya Qu
- Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Di Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Yunhong Tan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Shujun Wen
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin, 541006, China.
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) and Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China.
| |
Collapse
|
4
|
Huang J, Hu X, Zhou Y, Peng YJ, Liu Z. Phylogeny, Genetic Diversity and Population Structure of Fritillaria cirrhosa and Its Relatives Based on Chloroplast Genome Data. Genes (Basel) 2024; 15:730. [PMID: 38927666 PMCID: PMC11202927 DOI: 10.3390/genes15060730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Fritillaria cirrhosa and its relatives have been utilized in traditional Chinese medicine for many years and are under priority protection in China. Despite their medicinal and protective value, research on their phylogeny, genetic diversity, and divergence remains limited. Here, we investigate the chloroplast genome variation architecture of 46 samples of F. cirrhosa and its relatives collected from various regions, encompassing the majority of wild populations across diverse geographical areas. The results indicate abundant variations in 46 accessions including 1659 single-nucleotide polymorphisms and 440 indels. Six variable markers (psbJ, ndhD, ycf1, ndhG, trnT-trnL, and rpl32-trnL) were identified. Phylogenetic and network analysis, population structure analysis, and principal component analysis showed that the 46 accessions formed five clades with significant divergence, which were related to their geographical distribution. The regions spanning from the southern Hengduan Mountains to the Qinghai-Tibet Plateau exhibited the highest levels of genetic diversity. F. cirrhosa and its relatives may have suffered a genetic bottleneck and have a relatively low genetic diversity level. Moreover, geographical barriers and discrete patches may have accelerated population divergence. The study offers novel perspectives on the phylogeny, genetic diversity, and population structure of F. cirrhosa and its relatives, information that can inform conservation and utilization strategies in the future.
Collapse
Affiliation(s)
- Jiao Huang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | | | | | | | | |
Collapse
|
5
|
Han B, Tong B, Zhang J, Bu Z, Zhao L, Xian Y, Li D, Xie X. Genomic divergence and demographic history of Quercus aliena populations. BMC PLANT BIOLOGY 2024; 24:39. [PMID: 38195447 PMCID: PMC10775429 DOI: 10.1186/s12870-023-04623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Quercus aliena is a major montane tree species of subtropical and temperate forests in China, with important ecological and economic value. In order to reveal the species' population dynamics, genetic diversity, genetic structure, and association with mountain habitats during the evolutionary process, we re-sequenced the genomes of 72 Q. aliena individuals. RESULTS The whole chloroplast and nuclear genomes were used for this study. Phylogenetic analysis using the chloroplast genome dataset supported four clades of Q. aliena, while the nuclear dataset supported three major clades. Sex-biased dispersal had a critical role in causing discordance between the chloroplast and nuclear genomes. Population structure analysis showed two groups in Q. aliena. The effective population size sharply declined 1 Mya, coinciding with the Poyang Glaciation in Eastern China. Using genotype-climate association analyses, we found a positive correlation between allele frequency variation in SNPs and temperature, suggesting the species has the capacity to adapt to changing temperatures. CONCLUSION Overall, this study illustrates the genetic divergence, genomic variation, and evolutionary processes behind the demographic history of Q. aliena.
Collapse
Affiliation(s)
- Biao Han
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250102, Shandong, China
| | - Boqiang Tong
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250102, Shandong, China
| | - Jiliang Zhang
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250102, Shandong, China
| | - Ziheng Bu
- School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Lijun Zhao
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250102, Shandong, China
| | - Yang Xian
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250102, Shandong, China
| | - Dezhu Li
- 3Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Xiaoman Xie
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250102, Shandong, China.
| |
Collapse
|
6
|
Xiao Y, Wang X, He Z, Lv Y, Zhang C, Hu X. Assessing the phylogenetic relationship among varieties of Toona ciliata (Meliaceae) in sympatry with chloroplast genomes. Ecol Evol 2023; 13:e10828. [PMID: 38094154 PMCID: PMC10716671 DOI: 10.1002/ece3.10828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 07/03/2024] Open
Abstract
Toona ciliata is an endangered species due to over-cutting and low natural regeneration in China. Its genetic conservation is of an increasing concern. However, several varieties are recognized according to the leaf and flower traits, which complicates genetic conservation of T. ciliata. Here, we sequenced the whole chloroplast genome sequences of three samples for each of four varieties (T. ciliata var. ciliata, T. ciliata var. yunnanensis, T. ciliata var. pubescens, and T. ciliata var. henryi) in sympatry and assessed their phylogenetic relationship at a fine spatial scale. The four varieties had genome sizes ranged from 159,546 to 159,617 bp and had small variations in genome structure. Phylogenomic analysis indicated that the four varieties were genetically well-mixed in branch groups. Genetic diversity from the whole chloroplast genome sequences of 12 samples was low among varieties (average π = 0.0003). Besides, we investigated genetic variation of 58 samples of the four varieties in sympatry using two markers (psaA and trnL-trnF) and showed that genetic differentiation was generally insignificant among varieties (Ф st = 0%-5%). Purifying selection occurred in all protein-coding genes except for the ycf2 gene that was under weak positive selection. Most amino acid sites in all protein-coding genes were under purifying selection except for a few sites that were under positive selection. The chloroplast genome-based phylogeny did not support the morphology-based classification. The overall results implicated that a conservation strategy based on the T. ciliata complex rather than on intraspecific taxon was more appropriate.
Collapse
Affiliation(s)
- Yu Xiao
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Xi Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Zi‐Han He
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Yan‐Wen Lv
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Chun‐Hua Zhang
- Institute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| | - Xin‐Sheng Hu
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| |
Collapse
|
7
|
Borkhert EV, Pushkova EN, Nasimovich YA, Kostina MV, Vasilieva NV, Murataev RA, Novakovskiy RO, Dvorianinova EM, Povkhova LV, Zhernova DA, Turba AA, Sigova EA, Snezhkina AV, Kudryavtseva AV, Bolsheva NL, Krasnov GS, Dmitriev AA, Melnikova NV. Sex-determining region complements traditionally used in phylogenetic studies nuclear and chloroplast sequences in investigation of Aigeiros Duby and Tacamahaca Spach poplars (genus Populus L., Salicaceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1204899. [PMID: 37860260 PMCID: PMC10582643 DOI: 10.3389/fpls.2023.1204899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/07/2023] [Indexed: 10/21/2023]
Abstract
Members of the genus Populus L. play an important role in the formation of forests in the northern hemisphere and are used in urban landscaping and timber production. Populus species of closely related sections show extensive hybridization. Therefore, the systematics of the genus is rather complicated, especially for poplars of hybrid origin. We aimed to assess the efficiency of application of the sex-determining region (SDR) in addition to the nuclear and chloroplast genome loci traditionally used in phylogenetic studies of poplars to investigate relationships in sections Aigeiros Duby and Tacamahaca Spach. Targeted deep sequencing of NTS 5S rDNA, ITS, DSH 2, DSH 5, DSH 8, DSH 12, DSH 29, 6, 15, 16, X18, trnG-psbK-psbI, rps2-rpoC2, rpoC2-rpoC1, as well as SDR and ARR17 gene was performed for 379 poplars. The SDR and ARR17 gene together with traditionally used multicopy and single-copy loci of nuclear and chloroplast DNA allowed us to obtain a clustering that is most consistent with poplar systematics based on morphological data and to shed light on several controversial hypotheses about the origin of the studied taxa (for example, the inexpediency of separating P. koreana, P. maximowiczii, and P. suaveolens into different species). We present a scheme of relationships between species and hybrids of sections Aigeiros and Tacamahaca based on molecular genetic, morphological, and geographical data. The geographical proximity of species and, therefore, the possibility of hybridization between them appear to be more important than the affiliation of species to the same section. We speculate that sections Aigeiros and Tacamahaca are distinguished primarily on an ecological principle (plain and mountain poplars) rather than on a genetic basis. Joint analysis of sequencing data for the SDR and chloroplast genome loci allowed us to determine the ancestors of P. × petrovskoe - P. laurifolia (female tree) × P. × canadensis (male tree), and P. × rasumovskoe - P. nigra (female tree) × P. suaveolens (male tree). Thus, the efficiency of using the SDR for the study of poplars of sections Aigeiros and Tacamahaca and the prospects of its use for the investigation of species of the genus Populus were shown.
Collapse
Affiliation(s)
- Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuri A. Nasimovich
- State Environmental Protection Budgetary Institution of Moscow “Mospriroda”, Moscow, Russia
| | - Marina V. Kostina
- Institute of Biology and Chemistry, Moscow Pedagogical State University, Moscow, Russia
| | | | - Ramil A. Murataev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | | | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Xu N, Du X, Zhang XX, Yang HL. The complete chloroplast genome of Salix lindleyana (salicaceae), a plateau plant species. Mitochondrial DNA B Resour 2023; 8:877-881. [PMID: 37614527 PMCID: PMC10443960 DOI: 10.1080/23802359.2023.2246675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Salix lindleyana Wallich ex Andersson 1851 is a species of genus Salix which mainly grows on mountains above 3000 m at sea level in Qinghai-Tibetan Plateau (including the Himalayas and Hengduan Mountains). To determine its phylogenetic position within Salix, we reconstructed S. lindleyana complete chloroplast (cp) genome sequence by de novo assembly using whole-genome sequencing data. The completed chloroplast genome was 155,304 bp, with a total GC content of 36.7%. It had a very typical tetrad structure, including a large single-copy (LSC) region of 84,539 bp, a small single-copy (SSC) region of 16,161 bp, and two inverted repeats (IR) regions of 27,302 bp. A total of 132 functional genes were distributed in the chloroplast genome, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis showed that S. lindleyana was clustered with Salix dasyclados Wimmer 1849 and Salix variegata Franchet 1887. The complete chloroplast genome of S. lindleyana provides potential genetic resources for further phylogenetic studies.
Collapse
Affiliation(s)
- Nan Xu
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration; Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xin Du
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration; Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiu-Xing Zhang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration; Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hai-Ling Yang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration; Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Yang Y, Forsythe ES, Ding YM, Zhang DY, Bai WN. Genomic Analysis of Plastid-Nuclear Interactions and Differential Evolution Rates in Coevolved Genes across Juglandaceae Species. Genome Biol Evol 2023; 15:evad145. [PMID: 37515592 PMCID: PMC10410296 DOI: 10.1093/gbe/evad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
The interaction between the nuclear and chloroplast genomes in plants is crucial for preserving essential cellular functions in the face of varying rates of mutation, levels of selection, and modes of transmission. Despite this, identifying nuclear genes that coevolve with chloroplast genomes at a genome-wide level has remained a challenge. In this study, we conducted an evolutionary rate covariation analysis to identify candidate nuclear genes coevolving with chloroplast genomes in Juglandaceae. Our analysis was based on 4,894 orthologous nuclear genes and 76 genes across seven chloroplast partitions in nine Juglandaceae species. Our results indicated that 1,369 (27.97%) of the nuclear genes demonstrated signatures of coevolution, with the Ycf1/2 partition yielding the largest number of hits (765) and the ClpP1 partition yielding the fewest (13). These hits were found to be significantly enriched in biological processes related to leaf development, photoperiodism, and response to abiotic stress. Among the seven partitions, AccD, ClpP1, MatK, and RNA polymerase partitions and their respective hits exhibited a narrow range, characterized by dN/dS values below 1. In contrast, the Ribosomal, Photosynthesis, Ycf1/2 partitions and their corresponding hits, displayed a broader range of dN/dS values, with certain values exceeding 1. Our findings highlight the differences in the number of candidate nuclear genes coevolving with the seven chloroplast partitions in Juglandaceae species and the correlation between the evolution rates of these genes and their corresponding chloroplast partitions.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Evan S Forsythe
- Department of Biology, Oregon State University-Cascades, Bend, Oregon, USA
- Integrative Biology Department, Oregon State University, Corvallis, Oregon, USA
| | - Ya-Mei Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- South China Botanical Garden, The Chinese Academy of Sciences, Guangdong, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
Waswa EN, Mkala EM, Odago WO, Amenu SG, Mutinda ES, Muthui SW, Ding SX, Hu GW, Wang QF. Comparative chloroplast genome analysis of Sambucus L. (Viburnaceae): inference for phylogenetic relationships among the closely related Sambucus adnata Wall. ex DC Sambucus javanica Blume. FRONTIERS IN PLANT SCIENCE 2023; 14:1179510. [PMID: 37396648 PMCID: PMC10313135 DOI: 10.3389/fpls.2023.1179510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Sambucus L. is found in the family Viburnaceae (syn. Adoxaceae) and encompasses approximately 29 accepted species. The complex morphology of these species has caused continued confusion concerning their nomenclature, classification, and identification. Despite previous attempts to resolve taxonomic complexities in the Sambucus genus, there are still unclear phylogenetic relationships among several species. In this study, the newly obtained plastome of Sambucus williamsii Hance. as well as the populations of Sambucus canadensis L., Sambucus javanica Blume, and Sambucus adnata Wall. ex DC were sequenced, and their sizes, structural similarity, gene order, gene number, and guanine-cytosine (GC) contents were analyzed. The phylogenetic analyses were conducted using the whole chloroplast genomes and protein-coding genes (PCGs). The findings revealed that the chloroplast genomes of Sambucus species exhibited typical quadripartite double-stranded DNA molecules. Their lengths ranged from 158,012 base pairs (bp) (S. javanica) to 158,716 bp (S. canadensis L). Each genome comprised a pair of inverted repeats (IRs), which separated the large single-copy (LSC) and small single-copy (SSC) regions. In addition, the plastomes contained 132 genes, encompassing 87 protein-coding, 37 tRNA, and four rRNA genes. In the simple sequence repeat (SSR) analysis, A/T mononucleotides had the highest proportion, with the most repetitive sequences observed in S. williamsii. The comparative genome analyses showed high similarities in structure, order, and gene contents. The hypervariable regions in the studied chloroplast genomes were trnT-GGU, trnF-GAA, psaJ, trnL-UAG, ndhF, and ndhE, which may be used as candidate barcodes for species discrimination in Sambucus genus. Phylogenetic analyses supported the monophyly of Sambucus and revealed the separation of S. javanica and S. adnata populations. Sambucus chinensis Lindl. was nested within S. javanica in the same clade, collaborating their conspecific treatment. These outcomes indicate that the chloroplast genome of Sambucus plants is a valuable genetic resource for resolving taxonomic discrepancies at the lower taxonomic levels and can be applied in molecular evolutionary studies.
Collapse
Affiliation(s)
- Emmanuel Nyongesa Waswa
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Elijah Mbandi Mkala
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Wyclif Ochieng Odago
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Sara Getachew Amenu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Elizabeth Syowai Mutinda
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Samuel Wamburu Muthui
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Xiong Ding
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Waswa EN, Mkala EM, Odago WO, Amenu SG, Mutinda ES, Muthui SW, Ding SX, Hu GW, Wang QF. Comparative chloroplast genome analysis of Sambucus L. (Viburnaceae): inference for phylogenetic relationships among the closely related Sambucus adnata Wall. ex DC Sambucus javanica Blume. FRONTIERS IN PLANT SCIENCE 2023; 14. [DOI: https:/doi.org/10.3389/fpls.2023.1179510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Sambucus L. is found in the family Viburnaceae (syn. Adoxaceae) and encompasses approximately 29 accepted species. The complex morphology of these species has caused continued confusion concerning their nomenclature, classification, and identification. Despite previous attempts to resolve taxonomic complexities in the Sambucus genus, there are still unclear phylogenetic relationships among several species. In this study, the newly obtained plastome of Sambucus williamsii Hance. as well as the populations of Sambucus canadensis L., Sambucus javanica Blume, and Sambucus adnata Wall. ex DC were sequenced, and their sizes, structural similarity, gene order, gene number, and guanine–cytosine (GC) contents were analyzed. The phylogenetic analyses were conducted using the whole chloroplast genomes and protein-coding genes (PCGs). The findings revealed that the chloroplast genomes of Sambucus species exhibited typical quadripartite double-stranded DNA molecules. Their lengths ranged from 158,012 base pairs (bp) (S. javanica) to 158,716 bp (S. canadensis L). Each genome comprised a pair of inverted repeats (IRs), which separated the large single-copy (LSC) and small single-copy (SSC) regions. In addition, the plastomes contained 132 genes, encompassing 87 protein-coding, 37 tRNA, and four rRNA genes. In the simple sequence repeat (SSR) analysis, A/T mononucleotides had the highest proportion, with the most repetitive sequences observed in S. williamsii. The comparative genome analyses showed high similarities in structure, order, and gene contents. The hypervariable regions in the studied chloroplast genomes were trnT-GGU, trnF-GAA, psaJ, trnL-UAG, ndhF, and ndhE, which may be used as candidate barcodes for species discrimination in Sambucus genus. Phylogenetic analyses supported the monophyly of Sambucus and revealed the separation of S. javanica and S. adnata populations. Sambucus chinensis Lindl. was nested within S. javanica in the same clade, collaborating their conspecific treatment. These outcomes indicate that the chloroplast genome of Sambucus plants is a valuable genetic resource for resolving taxonomic discrepancies at the lower taxonomic levels and can be applied in molecular evolutionary studies.
Collapse
|
12
|
Sun J, Wang Y, Qiao P, Zhang L, Li E, Dong W, Zhao Y, Huang L. Pueraria montana Population Structure and Genetic Diversity Based on Chloroplast Genome Data. PLANTS (BASEL, SWITZERLAND) 2023; 12:2231. [PMID: 37375857 DOI: 10.3390/plants12122231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Despite having a generally conserved structure, chloroplast genome data have been helpful for plant population genetics and evolution research. To mine Pueraria montana chloroplast genome variation architecture and phylogeny, we investigated the chloroplast variation architecture of 104 P. montana accessions from across China. P. montana's chloroplast genome showed high diversity levels, with 1674 variations, including 1118 single nucleotide polymorphisms and 556 indels. The intergenic spacers, psbZ-trnS and ccsA-ndhD, are the two mutation hotspot regions in the P. montana chloroplast genome. Phylogenetic analysis based on the chloroplast genome dataset supported four P. montana clades. P. montana variations were conserved among and within clades, which showed high gene flow levels. Most P. montana clades were estimated to have diverged at 3.82-5.17 million years ago. Moreover, the East Asian summer monsoon and South Asian summer monsoon may have accelerated population divergence. Our results show that chloroplast genome sequences were highly variable and can be used as molecular markers to assess genetic variation and relationships in P. montana.
Collapse
Affiliation(s)
- Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Yiheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Ping Qiao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lei Zhang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuping Zhao
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
13
|
Percy DM, Sveinsson S, Ponomarev A, Yang JY, Cronk QCB. Chloroplast markers for the Malvaceae and the plastome of Henderson's checkermallow (Sidalcea hendersonii S.Wats.), a rare plant from the Pacific Northwest. BMC Res Notes 2023; 16:87. [PMID: 37221603 DOI: 10.1186/s13104-023-06357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVE Sidalcea is a genus of flowering plants restricted to the west coast of North America, commonly known as checkermallows. Remarkably, of the ~ 30 recognized species, 16 are of conservation concern (vulnerable, imperilled or critically imperilled). To facilitate biological studies in this genus, and in the wider Malvaceae, we have sequenced the whole plastid genome of Sidalcea hendersonii. This will allow us both to check those regions already developed as general Malvaceae markers in a previous study, and to search for new regions. RESULTS By comparing the Sidalcea genome to that of Althaea, we have identified a hypervariable circa 1 kb region in the short single copy region. This region shows promise for examining phylogeographic pattern, hybridization and haplotype diversity. Remarkably, considering the conservation of plastome architecture between Sidalcea and Althaea, the former has a 237 bp deletion in the otherwise highly conserved inverted repeat region. Newly designed primers provide a PCR assay to determine presence of this indel across the Malvaceae. Screening of previously designed chloroplast microsatellite markers indicates two markers with variation within S. hendersonii that would be useful in future population conservation genetics.
Collapse
Affiliation(s)
- Diana M Percy
- Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada.
| | | | - Andrew Ponomarev
- Department of Biology, Langara College, V5Y 2Z6, Vancouver, BC, Canada
| | - Ji Yong Yang
- Department of Biology, Langara College, V5Y 2Z6, Vancouver, BC, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
- Beaty Biodiversity Museum, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| |
Collapse
|
14
|
Yu J, Niu Y, You Y, Cox CJ, Barrett RL, Trias-Blasi A, Guo J, Wen J, Lu L, Chen Z. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. THE NEW PHYTOLOGIST 2023; 238:888-903. [PMID: 36305244 DOI: 10.1111/nph.18580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Hybridization caused by frequent environmental changes can lead both to species diversification (speciation) and to speciation reversal (despeciation), but the latter has rarely been demonstrated. Parthenocissus, a genus with its trifoliolate lineage in the Himalayan-Hengduan Mountains (HHM) region showing perplexing phylogenetic relationships, provides an opportunity for investigating speciation dynamics based on integrated evidence. We investigated phylogenetic discordance and reticulate evolution in Parthenocissus based on rigorous analyses of plastome and transcriptome data. We focused on reticulations in the trifoliolate lineage in the HHM region using a population-level genome resequencing dataset, incorporating evidence from morphology, distribution, and elevation. Comprehensive analyses confirmed multiple introgressions within Parthenocissus in a robust temporal-spatial framework. Around the HHM region, at least three hybridization hot spots were identified, one of which showed evidence of ongoing speciation reversal. We present a solid case study using an integrative methodological approach to investigate reticulate evolutionary history and its underlying mechanisms in plants. It demonstrates an example of speciation reversal through frequent hybridizations in the HHM region, which provides new perspectives on speciation dynamics in mountainous areas with strong topographic and environmental heterogeneity.
Collapse
Affiliation(s)
- Jinren Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanting Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yichen You
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-319, Portugal
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
| | | | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Limin Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
15
|
Geometric Morphometric Versus Genomic Patterns in a Large Polyploid Plant Species Complex. BIOLOGY 2023; 12:biology12030418. [PMID: 36979110 PMCID: PMC10045763 DOI: 10.3390/biology12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Plant species complexes represent a particularly interesting example of taxonomically complex groups (TCGs), linking hybridization, apomixis, and polyploidy with complex morphological patterns. In such TCGs, mosaic-like character combinations and conflicts of morphological data with molecular phylogenies present a major problem for species classification. Here, we used the large polyploid apomictic European Ranunculus auricomus complex to study relationships among five diploid sexual progenitor species and 75 polyploid apomictic derivate taxa, based on geometric morphometrics using 11,690 landmarked objects (basal and stem leaves, receptacles), genomic data (97,312 RAD-Seq loci, 48 phased target enrichment genes, 71 plastid regions) from 220 populations. We showed that (1) observed genomic clusters correspond to morphological groupings based on basal leaves and concatenated traits, and morphological groups were best resolved with RAD-Seq data; (2) described apomictic taxa usually overlap within trait morphospace except for those taxa at the space edges; (3) apomictic phenotypes are highly influenced by parental subgenome composition and to a lesser extent by climatic factors; and (4) allopolyploid apomictic taxa, compared to their sexual progenitor, resemble a mosaic of ecological and morphological intermediate to transgressive biotypes. The joint evaluation of phylogenomic, phenotypic, reproductive, and ecological data supports a revision of purely descriptive, subjective traditional morphological classifications.
Collapse
|
16
|
Maternal Donor and Genetic Variation of Lagerstroemia indica Cultivars. Int J Mol Sci 2023; 24:ijms24043606. [PMID: 36835020 PMCID: PMC9964644 DOI: 10.3390/ijms24043606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Lagerstroemia indica L. is a well-known ornamental plant with large pyramidal racemes, long flower duration, and diverse colors and cultivars. It has been cultivated for nearly 1600 years and is essential for investigating the germplasm and assessing genetic variation to support international cultivar identification and breeding programs. In this study, 20 common Lagerstroemia indica cultivars from different varietal groups and flower morphologies, as well as multiple wild relative species, were analyzed to investigate the maternal donor of Lagerstroemia indica cultivars and to discover the genetic variation and relationships among cultivars based on plastome and nuclear ribosomal DNA (nrDNA) sequences. A total of 47 single nucleotide polymorphisms (SNPs) and 24 insertion/deletions (indels) were identified in the 20 L. indica cultivars' plastome and 25 SNPs were identified in the nrDNA. Phylogenetic analysis based on the plastome sequences showed that all the cultivars formed a clade with the species of L. indica, indicating that L. indica was the maternal donor of the cultivars. Population structure and PCA analyses supported two clades of cultivars, which exhibited significant genetic differences according to the plastome dataset. The results of the nrDNA supported that all 20 cultivars were divided into three clades and most of the cultivars had at least two genetic backgrounds and higher gene flow. Our results suggest that the plastome and nrDNA sequences can be used as molecular markers for assessing the genetic variation and relationships of L. indica cultivars.
Collapse
|
17
|
Osuna-Mascaró C, Rubio de Casas R, Gómez JM, Loureiro J, Castro S, Landis JB, Hopkins R, Perfectti F. Hybridization and introgression are prevalent in Southern European Erysimum (Brassicaceae) species. ANNALS OF BOTANY 2023; 131:171-184. [PMID: 35390125 PMCID: PMC9904350 DOI: 10.1093/aob/mcac048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Hybridization is a common and important force in plant evolution. One of its outcomes is introgression - the transfer of small genomic regions from one taxon to another by hybridization and repeated backcrossing. This process is believed to be common in glacial refugia, where range expansions and contractions can lead to cycles of sympatry and isolation, creating conditions for extensive hybridization and introgression. Polyploidization is another genome-wide process with a major influence on plant evolution. Both hybridization and polyploidization can have complex effects on plant evolution. However, these effects are often difficult to understand in recently evolved species complexes. METHODS We combined flow cytometry, analyses of transcriptomic sequences and pollen tube growth assays to investigate the consequences of polyploidization, hybridization and introgression on the recent evolution of several Erysimum (Brassicaceae) species from the South of the Iberian Peninsula, a well-known glacial refugium. This species complex differentiated in the last 2 million years, and its evolution has been hypothesized to be determined mainly by polyploidization, interspecific hybridization and introgression. KEY RESULTS Our results support a scenario of widespread hybridization involving both extant and 'ghost' taxa. Several taxa studied here, most notably those with purple corollas, are polyploids, probably of allopolyploid origin. Moreover, hybridization in this group might be an ongoing phenomenon, as pre-zygotic barriers appeared weak in many cases. CONCLUSIONS The evolution of Erysimum spp. has been determined by hybridization to a large extent. Species with purple (polyploids) and yellow flowers (mostly diploid) exhibit a strong signature of introgression in their genomes, indicating that hybridization occurred regardless of colour and across ploidy levels. Although the adaptive value of such genomic exchanges remains unclear, our results demonstrate the significance of hybridization for plant diversification, which should be taken into account when studying plant evolution.
Collapse
Affiliation(s)
| | - Rafael Rubio de Casas
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Ecología, Universidad de Granada, Granada, Spain
| | - José M Gómez
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA‐CSIC), Almería, Spain
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Silvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jacob B Landis
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- The Arnold Arboretum, 1300 Centre Street, Boston, MA, USA
| | | |
Collapse
|
18
|
Phylogenomics and genome size evolution in Amomum s. s. (Zingiberaceae): Comparison of traditional and modern sequencing methods. Mol Phylogenet Evol 2023; 178:107666. [PMID: 36384185 DOI: 10.1016/j.ympev.2022.107666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS A targeted enrichment NGS approach was used to construct the phylogeny of Amomum Roxb. (Zingiberaceae). Phylogenies based on hundreds of nuclear genes, the whole plastome and the rDNA cistron were compared with an ITS-based phylogeny. Trends in genome size (GS) evolution were examined, chromosomes were counted and the geographical distribution of phylogenetic lineages was evaluated. METHODS In total, 92 accessions of 54 species were analysed. ITS was obtained for 79 accessions, 37 accessions were processed with Hyb-Seq and sequences from 449 nuclear genes, the whole cpDNA, and the rDNA cistron were analysed using concatenation, coalescence and supertree approaches. The evolution of absolute GS was analysed in a phylogenetic and geographical context. The chromosome numbers of 12 accessions were counted. KEY RESULTS Four groups were recognised in all datasets though their mutual relationships differ among datasets. While group A (A. subulatum and A. petaloideum) is basal to the remaining groups in the nuclear gene phylogeny, in the cpDNA topology it is sister to group B (A. repoeense and related species) and, in the ITS topology, it is sister to group D (the Elettariopsis lineage). The former Elettariopsis makes a monophyletic group. There is an increasing trend in GS during evolution. The largest GS values were found in group D in two tetraploid taxa, A. cinnamomeum and A. aff. biphyllum (both 2n = 96 chromosomes). The rest varied in GS (2C = 3.54-8.78 pg) with a constant chromosome number 2n = 48. There is a weak connection between phylogeny, GS and geography in Amomum. CONCLUSIONS Amomum consists of four groups, and the former Elettariopsis is monophyletic. Species in this group have the largest GS. Two polyploids were found and GS greatly varied in the rest of Amomum.
Collapse
|
19
|
Kjær KH, Winther Pedersen M, De Sanctis B, De Cahsan B, Korneliussen TS, Michelsen CS, Sand KK, Jelavić S, Ruter AH, Schmidt AMA, Kjeldsen KK, Tesakov AS, Snowball I, Gosse JC, Alsos IG, Wang Y, Dockter C, Rasmussen M, Jørgensen ME, Skadhauge B, Prohaska A, Kristensen JÅ, Bjerager M, Allentoft ME, Coissac E, Rouillard A, Simakova A, Fernandez-Guerra A, Bowler C, Macias-Fauria M, Vinner L, Welch JJ, Hidy AJ, Sikora M, Collins MJ, Durbin R, Larsen NK, Willerslev E. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature 2022; 612:283-291. [PMID: 36477129 PMCID: PMC9729109 DOI: 10.1038/s41586-022-05453-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/18/2022] [Indexed: 12/12/2022]
Abstract
Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11-19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.
Collapse
Affiliation(s)
- Kurt H Kjær
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bianca De Sanctis
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Binia De Cahsan
- Section for Molecular Ecology and Evolution, The Globe Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Thorfinn S Korneliussen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Michelsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Karina K Sand
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Jelavić
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, Grenoble, France
| | - Anthony H Ruter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Astrid M A Schmidt
- Nordic Foundation for Development and Ecology (NORDECO), Copenhagen, Denmark
- DIS Study Abroad in Scandinavia, University of Copenhagen, Copenhagen, Denmark
| | - Kristian K Kjeldsen
- Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Alexey S Tesakov
- Geological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Ian Snowball
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - John C Gosse
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Inger G Alsos
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Yucheng Wang
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Ana Prohaska
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jeppe Å Kristensen
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Geological Survey of Denmark and Greenland, (GEUS), Copenhagen, Denmark
| | - Morten Bjerager
- Department of Geophysics and Sedimentary Basins, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Eric Coissac
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, Tromsø, Norway
- University of Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Alexandra Rouillard
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Geosciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | | | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL, Paris, France
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Lasse Vinner
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Alan J Hidy
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Collins
- Department of Archaeology, University of Cambridge, Cambridge, UK
- Section for GeoBiology, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Nicolaj K Larsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Department of Zoology, University of Cambridge, Cambridge, UK.
- MARUM, University of Bremen, Bremen, Germany.
| |
Collapse
|
20
|
Han B, Zhang MJ, Xian Y, Xu H, Cui CC, Liu D, Wang L, Li DZ, Li WQ, Xie XM. Variations in genetic diversity in cultivated Pistacia chinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:1030647. [PMID: 36438104 PMCID: PMC9691265 DOI: 10.3389/fpls.2022.1030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Identification of the evolution history and genetic diversity of a species is important in the utilization of novel genetic variation in this species, as well as for its conservation. Pistacia chinensis is an important biodiesel tree crop in China, due to the high oil content of its fruit. The aim of this study was to uncover the genetic structure of P. chinensis and to investigate the influence of intraspecific gene flow on the process of domestication and the diversification of varieties. We investigated the genetic structure of P. chinensis, as well as evolution and introgression in the subpopulations, through analysis of the plastid and nuclear genomes of 39 P. chinensis individuals from across China. High levels of variation were detected in the P. chinensis plastome, and 460 intraspecific polymorphic sites, 104 indels and three small inversions were identified. Phylogenetic analysis and population structure using the plastome dataset supported five clades of P. chinensis. Population structure analysis based on the nuclear SNPs showed two groups, clearly clustered together, and more than a third of the total individuals were classified as hybrids. Discordance between the plastid and nuclear genomes suggested that hybridization events may have occurred between highly divergent samples in the P. chinensis subclades. Most of the species in the P. chinensis subclade diverged between the late Miocene and the mid-Pliocene. The processes of domestication and cultivation have decreased the genetic diversity of P. chinensis. The extensive variability and structuring of the P. chinensis plastid together with the nuclear genomic variation detected in this study suggests that much unexploited genetic diversity is available for improvement in this recently domesticated species.
Collapse
Affiliation(s)
- Biao Han
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, Shandong, China
| | - Ming-Jia Zhang
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yang Xian
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, Shandong, China
| | - Hui Xu
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, Shandong, China
| | - Cheng-Cheng Cui
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, Shandong, China
| | - Dan Liu
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, Shandong, China
| | - Lei Wang
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, Shandong, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Qing Li
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, Shandong, China
| | - Xiao-Man Xie
- Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji’nan, Shandong, China
| |
Collapse
|
21
|
Zhang K, Li J, Li G, Zhao Y, Dong Y, Zhang Y, Sun W, Wang J, Yao J, Ma Y, Wang H, Zhang Z, Wang T, Xie K, Wendel JF, Liu B, Gong L. Compensatory Genetic and Transcriptional Cytonuclear Coordination in Allopolyploid Lager Yeast (Saccharomyces pastorianus). Mol Biol Evol 2022; 39:msac228. [PMID: 36260528 PMCID: PMC9665066 DOI: 10.1093/molbev/msac228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cytonuclear coordination between biparental-nuclear genomes and uniparental-cytoplasmic organellar genomes in plants is often resolved by genetic and transcriptional cytonuclear responses. Whether this mechanism also acts in allopolyploid members of other kingdoms is not clear. Additionally, cytonuclear coordination of interleaved allopolyploid cells/individuals within the same population is underexplored. The yeast Saccharomyces pastorianus provides the opportunity to explore cytonuclear coevolution during different growth stages and from novel dimensions. Using S. pastorianus cells from multiple growth stages in the same environment, we show that nuclear mitochondria-targeted genes have undergone both asymmetric gene conversion and growth stage-specific biased expression favoring genes from the mitochondrial genome donor (Saccharomyces eubayanus). Our results suggest that cytonuclear coordination in allopolyploid lager yeast species entails an orchestrated and compensatory genetic and transcriptional evolutionary regulatory shift. The common as well as unique properties of cytonuclear coordination underlying allopolyploidy between unicellular yeasts and higher plants offers novel insights into mechanisms of cytonuclear evolution associated with allopolyploid speciation.
Collapse
Affiliation(s)
- Keren Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yue Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yuefan Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Ying Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Junsheng Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Science, Changchun, Jilin 130033, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang, Liaoning 110036, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Kun Xie
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
22
|
Karbstein K, Tomasello S, Hodač L, Wagner N, Marinček P, Barke BH, Paetzold C, Hörandl E. Untying Gordian knots: unraveling reticulate polyploid plant evolution by genomic data using the large Ranunculus auricomus species complex. THE NEW PHYTOLOGIST 2022; 235:2081-2098. [PMID: 35633497 DOI: 10.1111/nph.18284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Speciation via hybridization and polyploidization is a major evolutionary force in plant evolution but is still poorly understood for neopolyploid groups. Challenges are attributed to high heterozygosity, low genetic divergence, and missing information on progenitors, ploidy, and reproduction. We study the large Eurasian Ranunculus auricomus species complex and use a comprehensive workflow integrating reduced-representation sequencing (RRS) genomic data to unravel reticulate evolution, genome diversity and composition of polyploids. We rely on 97 312 restriction site-associated DNA sequencing (RAD-Seq) loci, 576 targeted nuclear genes (48 phased), and 71 plastid regions derived from 78 polyploid apomictic taxa and four diploid and one tetraploid putative sexual progenitor species. We applied (phylo)genomic structure, network, and single nucleotide polymorphism (SNP)-origin analyses. Results consistently showed only 3-5 supported and geographically structured polyploid genetic groups, each containing extant sexual and one unknown progenitor species. Combined analyses demonstrated predominantly allopolyploid origins, each involving 2-3 different diploid sexual progenitor species. Young allotetraploids were characterized by subgenome dominance and nonhybrid SNPs, suggesting substantial post-origin but little lineage-specific evolution. The biodiversity of neopolyploid complexes can result from multiple hybrid origins involving different progenitors and substantial post-origin evolution (e.g. homoeologous exchanges, hybrid segregation, gene flow). Reduced-representation sequencing genomic data including multi-approach information is efficient to delimit shallow reticulate relationships.
Collapse
Affiliation(s)
- Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
- Georg-August University School of Science (GAUSS), University of Göttingen, 37073, Göttingen, Germany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Natascha Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Birthe Hilkka Barke
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Claudia Paetzold
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, 60325, Frankfurt (Main), Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| |
Collapse
|
23
|
Liu L, Zhang Y, Tumi L, Suni ML, Arakaki M, Burgess KS, Ge X. Genetic markers in Andean Puya species (Bromeliaceae) with implications on plastome evolution and phylogeny. Ecol Evol 2022; 12:e9159. [PMID: 35919393 PMCID: PMC9336176 DOI: 10.1002/ece3.9159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
The Andean plant endemic Puya is a striking example of recent and rapid diversification from central Chile to the northern Andes, tracking mountain uplift. This study generated 12 complete plastomes representing nine Puya species and compared them to five published plastomes for their features, genomic evolution, and phylogeny. The total size of the Puya plastomes ranged from 159,542 to 159,839 bp with 37.3%-37.4% GC content. The Puya plastomes were highly conserved in organization and structure with a typical quadripartite genome structure. Each of the 17 consensus plastomes harbored 133 genes, including 87 protein-coding genes, 38 tRNA (transfer RNA) genes, and eight rRNA (ribosomal RNA) genes; we found 69-78 tandem repeats, 45-60 SSRs (simple sequence repeats), and 8-22 repeat structures among 13 species. Four protein-coding genes were identified under positive site-specific selection in Puya. The complete plastomes and hypervariable regions collectively provided pronounced species discrimination in Puya and a practical tool for future phylogenetic studies. The reconstructed phylogeny and estimated divergence time for the lineage suggest that the diversification of Puya is related to Andean orogeny and Pleistocene climatic oscillations. This study provides plastome resources for species delimitation and novel phylogenetic and biogeographic studies.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu‐Qu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- College of PharmacyShaanxi University of Chinese MedicineXi'anChina
| | - Liscely Tumi
- Facultad de Ciencias BiológicasUniversidad Nacional Mayor de San MarcosLimaPeru
| | - Mery L. Suni
- Facultad de Ciencias BiológicasUniversidad Nacional Mayor de San MarcosLimaPeru
| | - Mónica Arakaki
- Facultad de Ciencias BiológicasUniversidad Nacional Mayor de San MarcosLimaPeru
| | - Kevin S. Burgess
- Department of Biology, Columbus State UniversityUniversity System of GeorgiaColumbusGeorgiaUSA
| | - Xue‐Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Center of Conservation Biology, Core Botanical GardensChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
24
|
Shang C, Li E, Yu Z, Lian M, Chen Z, Liu K, Xu L, Tong Z, Wang M, Dong W. Chloroplast Genomic Resources and Genetic Divergence of Endangered Species Bretschneidera sinensis (Bretschneideraceae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.873100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bretschneidera sinensis is an endangered woody species found in East and South China. Comprehensive intraspecies chloroplast genome studies have demonstrated novel genetic resources to assess the genetic variation and diversity of this species. Using genome skimming method, we assembled the whole chloroplast genome of 12 genotypes of B. sinensis from different geographical locations, covering most wild populations. The B. sinensis chloroplast genome size ranged from 158,959 to 159,045 base pairs (bp) and displayed a typical circular quadripartite structure. Comparative analyses of 12 B. sinensis chloroplast genome revealed 33 polymorphic simple sequence repeats (SSRs), 105 polymorphic single nucleotide polymorphisms (SNPs), and 55 indels. Phylogenetic analysis showed that the 12 genotypes were grouped into 2 branches, which is consistent with the geographical distribution (Eastern clade and Western clade). Divergence time estimates showed that the two clades were divergent from 0.6 Ma in the late Pleistocene. Ex situ conservation is essential for this species. In this study, we identified SNPs, indels, and microsatellites of B. sinensis by comparative analyses of chloroplast genomes and determined genetic variation between populations using these genomic markers. Chloroplast genomic resources are also important for further domestication, population genetic, and phylogenetic analysis, possibly in combination with molecular markers of mitochondrial and/or nuclear genomes.
Collapse
|
25
|
Nge FJ, Biffin E, Waycott M, Thiele KR. Phylogenomics and continental biogeographic disjunctions: insight from the Australian starflowers (Calytrix). AMERICAN JOURNAL OF BOTANY 2022; 109:291-308. [PMID: 34671970 DOI: 10.1002/ajb2.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Continental-scale disjunctions and associated drivers are core research interests in biogeographic studies. Here, we selected a species-rich Australian plant genus (Calytrix; Myrtaceae) as a case study to investigate these patterns. Species of this endemic Australian starflower genus have a disjunct distribution across the mesic fringes of the continent and are largely absent from the arid center. METHODS We used high-throughput sequencing to generate unprecedented resolution and near complete species-level nuclear and plastid phylogenies for Calytrix. BioGeoBEARS and biogeographic stochastic mapping were used to infer ancestral areas, the relative contributions of vicariance and dispersal events, and directionality of dispersal. RESULTS Present-day disjunctions in Calytrix are explained by a combination of scenarios: (1) retreat of multiple lineages from the continental center to the more mesic fringes as Australia became progressively more arid, with subsequent extinction in the center as well as (2) origination of ancestral lineages in southwestern Australia (SWA) for species-rich clades. The SWA biodiversity hotspot is a major diversification center and the most common source area of dispersals, with multiple lineages originating in SWA and subsequently spreading to the adjacent arid Eremaean region. CONCLUSIONS Our results suggest that major extinction, as a result of cooling and drying of the Australian continent in the Eocene-Miocene, shaped the present-day biogeography of Calytrix. We hypothesize that this peripheral vicariance pattern, which is similar to the African Rand flora, may explain the disjunctions of many other Australian plant groups. Further studies with densely sampled phylogenies are required to test this hypothesis.
Collapse
Affiliation(s)
- Francis J Nge
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- State Herbarium of South Australia, G.P.O. Box 1047, Adelaide, South Australia, 5001, Australia
| | - Ed Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- State Herbarium of South Australia, G.P.O. Box 1047, Adelaide, South Australia, 5001, Australia
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- State Herbarium of South Australia, G.P.O. Box 1047, Adelaide, South Australia, 5001, Australia
| | - Kevin R Thiele
- School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| |
Collapse
|
26
|
Hodel RGJ, Zimmer EA, Liu BB, Wen J. Synthesis of Nuclear and Chloroplast Data Combined With Network Analyses Supports the Polyploid Origin of the Apple Tribe and the Hybrid Origin of the Maleae-Gillenieae Clade. FRONTIERS IN PLANT SCIENCE 2022; 12:820997. [PMID: 35145537 PMCID: PMC8822239 DOI: 10.3389/fpls.2021.820997] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
Plant biologists have debated the evolutionary origin of the apple tribe (Maleae; Rosaceae) for over a century. The "wide-hybridization hypothesis" posits that the pome-bearing members of Maleae (base chromosome number x = 17) resulted from a hybridization and/or allopolyploid event between progenitors of other tribes in the subfamily Amygdaloideae with x = 8 and x = 9, respectively. An alternative "spiraeoid hypothesis" proposed that the x = 17 of Maleae arose via the genome doubling of x = 9 ancestors to x = 18, and subsequent aneuploidy resulting in x = 17. We use publicly available genomic data-448 nuclear genes and complete plastomes-from 27 species representing all major tribes within the Amygdaloideae to investigate evolutionary relationships within the subfamily containing the apple tribe. Specifically, we use network analyses and multi-labeled trees to test the competing wide-hybridization and spiraeoid hypotheses. Hybridization occurred between an ancestor of the tribe Spiraeeae (x = 9) and an ancestor of the clade Sorbarieae (x = 9) + Exochordeae (x = 8) + Kerrieae (x = 9), giving rise to the clade Gillenieae (x = 9) + Maleae (x = 17). The ancestor of the Maleae + Gillenieae arose via hybridization between distantly related tribes in the Amygdaloideae (i.e., supporting the wide hybridization hypothesis). However, some evidence supports an aspect of the spiraeoid hypothesis-the ancestors involved in the hybridization event were likely both x = 9, so genome doubling was followed by aneuploidy to result in x = 17 observed in Maleae. By synthesizing existing genomic data with novel analyses, we resolve the nearly century-old mystery regarding the origin of the apple tribe. Our results also indicate that nuclear gene tree-species tree conflict and/or cytonuclear conflict are pervasive at several other nodes in subfamily Amygdaloideae of Rosaceae.
Collapse
Affiliation(s)
- Richard G. J. Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Elizabeth A. Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Bin-Bin Liu
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
27
|
Nickel J, Schell T, Holtzem T, Thielsch A, Dennis SR, Schlick-Steiner BC, Steiner FM, Möst M, Pfenninger M, Schwenk K, Cordellier M. Hybridization Dynamics and Extensive Introgression in the Daphnia longispina Species Complex: New Insights from a High-Quality Daphnia galeata Reference Genome. Genome Biol Evol 2021; 13:6448229. [PMID: 34865004 PMCID: PMC8695838 DOI: 10.1093/gbe/evab267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Hybridization and introgression are recognized as an important source of variation that influence adaptive processes; both phenomena are frequent in the genus Daphnia, a keystone zooplankton taxon in freshwater ecosystems that comprises several species complexes. To investigate genome-wide consequences of introgression between species, we provide here the first high-quality genome assembly for a member of the Daphnia longispina species complex, Daphnia galeata. We further resequenced 49 whole genomes of three species of the complex and their interspecific hybrids both from genotypes sampled in the water column and from single resting eggs extracted from sediment cores. Populations from habitats with diverse ecological conditions offered an opportunity to study the dynamics of hybridization linked to ecological changes and revealed a high prevalence of hybrids. Using phylogenetic and population genomic approaches, we provide first insights into the intra- and interspecific genome-wide variability in this species complex and identify regions of high divergence. Finally, we assess the length of ancestry tracts in hybrids to characterize introgression patterns across the genome. Our analyses uncover a complex history of hybridization and introgression reflecting multiple generations of hybridization and backcrossing in the Daphnia longispina species complex. Overall, this study and the new resources presented here pave the way for a better understanding of ancient and contemporary gene flow in the species complex and facilitate future studies on resting egg banks accumulating in lake sediment.
Collapse
Affiliation(s)
- Jana Nickel
- Institute of Zoology, Universität Hamburg, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Tania Holtzem
- Department of Ecology, University of Innsbruck, Austria
| | - Anne Thielsch
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Stuart R Dennis
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | | | | | - Markus Möst
- Department of Ecology, University of Innsbruck, Austria
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.,Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.,IoME, Gutenberg University, Mainz, Germany
| | - Klaus Schwenk
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | |
Collapse
|
28
|
Xu L, Yu R, Lin X, Zhang B, Li N, Lin K, Zhang D, Bai W. Different rates of pollen and seed gene flow cause branch-length and geographic cytonuclear discordance within Asian butternuts. THE NEW PHYTOLOGIST 2021; 232:388-403. [PMID: 34143496 PMCID: PMC8519134 DOI: 10.1111/nph.17564] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/13/2021] [Indexed: 05/03/2023]
Abstract
Topological cytonuclear discordance is commonly observed in plant phylogenetic and phylogeographic studies, yet few studies have attempted to detect two other forms of cytonuclear discordance (branch length and geographical) and to uncover the causes of the discordance. We used the whole nuclear and chloroplast genome data from 80 individual Asian butternuts to reveal the pattern and processes of cytonuclear discordance. Our findings indicate that the chloroplast genome had substantially deeper divergence (branch-length discordance) and a steeper cline in the contact zone (geographic discordance) compared with the nuclear genome. After various hypothesis have been tested, the results suggest that incomplete lineage sorting, positive selection and cytonuclear incompatibility are probably insufficient to explain this pattern. However, isolation-by-distance analysis and gene flow estimation point to a much higher level of gene flow by pollen compared with by seeds, which may have slowed down lineage divergence and mediated wider contact for nuclear genome compared with the chloroplast genome. Altogether, this study highlights a critical role of sex-biased dispersal in causing discordance between the nuclear and plastid genome of Asian butternuts. Given its ubiquity among plants, asymmetric gene flow should be given a high priority in future studies of cytonuclear discordance.
Collapse
Affiliation(s)
- Lin‐Lin Xu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijing100875China
| | - Rui‐Min Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijing100875China
| | - Xin‐Rui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijing100875China
| | - Bo‐Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijing100875China
- Centre for Individualised Infection Medicine (CiiM) & TWINCOREJoint ventures between the Helmholtz‐Centre for Infection Research (HZI) and the Hannover Medical School (MHH)Hannover30625Germany
| | - Nan Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijing100875China
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijing100875China
| | - Da‐Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijing100875China
| | - Wei‐Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijing100875China
| |
Collapse
|
29
|
Köhler M, Oakley LJ, Font F, Peñas MLL, Majure LC. On the continuum of evolution: a putative new hybrid speciation event in Opuntia (Cactaceae) between a native and an introduced species in southern South America. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1967510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Matias Köhler
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL, USA
| | - Luis J. Oakley
- Cátedra de Botánica, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Santa Fe, Argentina
- Red List Authority Coordinator for the Temperate South American Plant Specialist Groups – International Union for Conservation of Nature (IUCN), Gland, Switzerland
| | - Fabián Font
- Herbario Museo de Farmacobotánica “Juan A. Domínguez” (BAF), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Laura Las Peñas
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Facultas de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba – CONICET, Córdoba, Argentina
| | - Lucas C. Majure
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL, USA
| |
Collapse
|
30
|
Wagner ND, Volf M, Hörandl E. Highly Diverse Shrub Willows ( Salix L.) Share Highly Similar Plastomes. FRONTIERS IN PLANT SCIENCE 2021; 12:662715. [PMID: 34539686 PMCID: PMC8448165 DOI: 10.3389/fpls.2021.662715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/23/2021] [Indexed: 05/23/2023]
Abstract
Plastome phylogenomics is used in a broad range of studies where single markers do not bear enough information. Phylogenetic reconstruction in the genus Salix is difficult due to the lack of informative characters and reticulate evolution. Here, we use a genome skimming approach to reconstruct 41 complete plastomes of 32 Eurasian and North American Salix species representing different lineages, different ploidy levels, and separate geographic regions. We combined our plastomes with published data from Genbank to build a comprehensive phylogeny of 61 samples (50 species) using RAxML (Randomized Axelerated Maximum Likelihood). Additionally, haplotype networks for two observed subclades were calculated, and 72 genes were tested to be under selection. The results revealed a highly conserved structure of the observed plastomes. Within the genus, we observed a variation of 1.68%, most of which separated subg. Salix from the subgeneric Chamaetia/Vetrix clade. Our data generally confirm previous plastid phylogenies, however, within Chamaetia/Vetrix phylogenetic results represented neither taxonomical classifications nor geographical regions. Non-coding DNA regions were responsible for most of the observed variation within subclades and 5.6% of the analyzed genes showed signals of diversifying selection. A comparison of nuclear restriction site associated DNA (RAD) sequencing and plastome data on a subset of 10 species showed discrepancies in topology and resolution. We assume that a combination of (i) a very low mutation rate due to efficient mechanisms preventing mutagenesis, (ii) reticulate evolution, including ancient and ongoing hybridization, and (iii) homoplasy has shaped plastome evolution in willows.
Collapse
Affiliation(s)
- Natascha D. Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Goettingen, Göttingen, Germany
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Goettingen, Göttingen, Germany
| |
Collapse
|
31
|
Zhou J, Zhang S, Wang J, Shen H, Ai B, Gao W, Zhang C, Fei Q, Yuan D, Wu Z, Tembrock LR, Li S, Gu C, Liao X. Chloroplast genomes in Populus (Salicaceae): comparisons from an intensively sampled genus reveal dynamic patterns of evolution. Sci Rep 2021; 11:9471. [PMID: 33947883 PMCID: PMC8096831 DOI: 10.1038/s41598-021-88160-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
The chloroplast is one of two organelles containing a separate genome that codes for essential and distinct cellular functions such as photosynthesis. Given the importance of chloroplasts in plant metabolism, the genomic architecture and gene content have been strongly conserved through long periods of time and as such are useful molecular tools for evolutionary inferences. At present, complete chloroplast genomes from over 4000 species have been deposited into publicly accessible databases. Despite the large number of complete chloroplast genomes, comprehensive analyses regarding genome architecture and gene content have not been conducted for many lineages with complete species sampling. In this study, we employed the genus Populus to assess how more comprehensively sampled chloroplast genome analyses can be used in understanding chloroplast evolution in a broadly studied lineage of angiosperms. We conducted comparative analyses across Populus in order to elucidate variation in key genome features such as genome size, gene number, gene content, repeat type and number, SSR (Simple Sequence Repeat) abundance, and boundary positioning between the four main units of the genome. We found that some genome annotations were variable across the genus owing in part from errors in assembly or data checking and from this provided corrected annotations. We also employed complete chloroplast genomes for phylogenetic analyses including the dating of divergence times throughout the genus. Lastly, we utilized re-sequencing data to describe the variations of pan-chloroplast genomes at the population level for P. euphratica. The analyses used in this paper provide a blueprint for the types of analyses that can be conducted with publicly available chloroplast genomes as well as methods for building upon existing datasets to improve evolutionary inference.
Collapse
Affiliation(s)
- Jiawei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shuo Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- School of Landscape and Architecture, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Hongmei Shen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- The Second Peoples's Hospital of Nantong, Nantong, 226000, Jiangsu, China
| | - Bin Ai
- Foshan Green Development Innovation Research Institute, Foshan, 528000, Guangdong, China
| | - Wei Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qili Fei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhiqiang Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- The College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Sen Li
- The College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Cuihua Gu
- School of Landscape and Architecture, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
32
|
Wang M, Wang X, Sun J, Wang Y, Ge Y, Dong W, Yuan Q, Huang L. Phylogenomic and evolutionary dynamics of inverted repeats across Angelica plastomes. BMC PLANT BIOLOGY 2021; 21:26. [PMID: 33413122 PMCID: PMC7792290 DOI: 10.1186/s12870-020-02801-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Angelica L. (family Apiaceae) is an economically important genus comprising ca. One hundred ten species. Angelica species are found on all continents of the Northern Hemisphere, and East Asia hosts the highest number of species. Morphological characters such as fruit anatomy, leaf morphology and subterranean structures of Angelica species show extreme diversity. Consequently, the taxonomic classification of Angelica species is complex and remains controversial, as the classifications proposed by previous studies based on morphological data and molecular data are highly discordant. In addition, the phylogenetic relationships of major clades in the Angelica group, particularly in the Angelica s. s. clade, remain unclear. Chloroplast (cp) genome sequences have been widely used in phylogenetic studies and for evaluating genetic diversity. RESULTS In this study, we sequenced and assembled 28 complete cp genomes from 22 species, two varieties and two cultivars of Angelica. Combined with 36 available cp genomes in GenBank from representative clades of the subfamily Apioideae, the characteristics and evolutionary patterns of Angelica cp genomes were studied, and the phylogenetic relationships of Angelica species were resolved. The Angelica cp genomes had the typical quadripartite structure including a pair of inverted repeats (IRs: 5836-34,706 bp) separated by a large single-copy region (LSC: 76,657-103,161 bp) and a small single-copy region (SSC: 17,433-21,794 bp). Extensive expansion and contraction of the IR region were observed among cp genomes of Angelica species, and the pattern of the diversification of cp genomes showed high consistency with the phylogenetic placement of Angelica species. Species of Angelica were grouped into two major clades, with most species grouped in the Angelica group and A. omeiensis and A. sinensis grouped in the Sinodielsia with Ligusticum tenuissimum. CONCLUSIONS Our results further demonstrate the power of plastid phylogenomics in enhancing the phylogenetic reconstructions of complex genera and provide new insights into plastome evolution across Angelica L.
Collapse
Affiliation(s)
- Mengli Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xin Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Shenyang Medical College, Shenyang, 110034, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yiheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yang Ge
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Qingjun Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
33
|
Zhu S, Chen J, Zhao J, Comes HP, Li P, Fu C, Xie X, Lu R, Xu W, Feng Y, Ye W, Sakaguchi S, Isagi Y, Li L, Lascoux M, Qiu Y. Genomic insights on the contribution of balancing selection and local adaptation to the long-term survival of a widespread living fossil tree, Cercidiphyllum japonicum. THE NEW PHYTOLOGIST 2020; 228:1674-1689. [PMID: 32643803 DOI: 10.1111/nph.16798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/27/2020] [Indexed: 05/25/2023]
Abstract
'Living fossils' are testimonies of long-term sustained ecological success, but how demographic history and natural selection contributed to their survival, resilience, and persistence in the face of Quaternary climate fluctuations remains unclear. To better understand the interplay between demographic history and selection in shaping genomic diversity and evolution of such organisms, we assembled the whole genome of Cercidiphyllum japonicum, a widespread East Asian Tertiary relict tree, and resequenced 99 individuals of C. japonicum and its sister species, Cercidiphyllum magnificum (Central Japan). We dated this speciation event to the mid-Miocene, and the intraspecific lineage divergence of C. japonicum (China vs Japan) to the Early Pliocene. Throughout climatic upheavals of the late Tertiary/Quaternary, population bottlenecks greatly reduced the genetic diversity of C. japonicum. However, this polymorphism loss was likely counteracted by, first, long-term balancing selection at multiple chromosomal and heterozygous gene regions, potentially reflecting overdominance, and, second, selective sweeps at stress response and growth-related genes likely involved in local adaptation. Our findings contribute to a better understanding of how living fossils have survived climatic upheaval and maintained an extensive geographic range; that is, both types of selection could be major factors contributing to the species' survival, resilience, and persistence.
Collapse
Affiliation(s)
- Shanshan Zhu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing Zhao
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Hans Peter Comes
- Department of Biosciences, Salzburg University, Salzburg, A-5020, Austria
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiao Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ruisen Lu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wuqin Xu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Feng
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenqing Ye
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Yingxiong Qiu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
34
|
Meerow AW, Gardner EM, Nakamura K. Phylogenomics of the Andean Tetraploid Clade of the American Amaryllidaceae (Subfamily Amaryllidoideae): Unlocking a Polyploid Generic Radiation Abetted by Continental Geodynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:582422. [PMID: 33250911 PMCID: PMC7674842 DOI: 10.3389/fpls.2020.582422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 05/27/2023]
Abstract
One of the two major clades of the endemic American Amaryllidaceae subfam. Amaryllidoideae constitutes the tetraploid-derived (n = 23) Andean-centered tribes, most of which have 46 chromosomes. Despite progress in resolving phylogenetic relationships of the group with plastid and nrDNA, certain subclades were poorly resolved or weakly supported in those previous studies. Sequence capture using anchored hybrid enrichment was employed across 95 species of the clade along with five outgroups and generated sequences of 524 nuclear genes and a partial plastome. Maximum likelihood phylogenetic analyses were conducted on concatenated supermatrices, and coalescent-based species tree analyses were run on the gene trees, followed by hybridization network, age diversification and biogeographic analyses. The four tribes Clinantheae, Eucharideae, Eustephieae, and Hymenocallideae (sister to Clinantheae) are resolved in all analyses with > 90 and mostly 100% support, as are almost all genera within them. Nuclear gene supermatrix and species tree results were largely in concordance; however, some instances of cytonuclear discordance were evident. Hybridization network analysis identified significant reticulation in Clinanthus, Hymenocallis, Stenomesson and the subclade of Eucharideae comprising Eucharis, Caliphruria, and Urceolina. Our data support a previous treatment of the latter as a single genus, Urceolina, with the addition of Eucrosia dodsonii. Biogeographic analysis and penalized likelihood age estimation suggests an origin in the Cauca, Desert and Puna Neotropical bioprovinces for the complex in the mid-Oligocene, with more dispersals than vicariances in its history, but no extinctions. Hymenocallis represents the only instance of long-distance vicariance from the tropical Andean origin of its tribe Hymenocallideae. The absence of extinctions correlates with the lack of diversification rate shifts within the clade. The Eucharideae experienced a sudden lineage radiation ca. 10 Mya. We tie much of the divergences in the Andean-centered lineages to the rise of the Andes, and suggest that the Amotape-Huancabamba Zone functioned as both a corridor (dispersal) and a barrier to migration (vicariance). Several taxonomic changes are made. This is the largest DNA sequence data set to be applied within Amaryllidaceae to date.
Collapse
Affiliation(s)
- Alan W. Meerow
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| | - Elliot M. Gardner
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
- Institute of Environment, Florida International University, Miami, FL, United States
| | - Kyoko Nakamura
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| |
Collapse
|
35
|
Liang H, Zhang Y, Deng J, Gao G, Ding C, Zhang L, Yang R. The Complete Chloroplast Genome Sequences of 14 Curcuma Species: Insights Into Genome Evolution and Phylogenetic Relationships Within Zingiberales. Front Genet 2020; 11:802. [PMID: 32849804 PMCID: PMC7396571 DOI: 10.3389/fgene.2020.00802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Zingiberaceae is taxonomically complex family where species are perennial herb. However, lack of chloroplast genomic information severely hinders our understanding of Zingiberaceae species in the research of evolution and phylogenetic relationships. In this study, the complete chloroplast (cp) genomes of fourteen Curcuma species were assembled and characterized using next-generation sequencing. We compared the genome features, repeat sequences, sequence divergence, and constructed the phylogenetic relationships of the 25 Zingiberaceae species. In each Zingiberaceae species, the 25 complete chloroplast genomes ranging from 155,890 bp (Zingiber spectabile) to 164,101 bp (Lanxangia tsaoko) contained 111 genes consisting of 77 protein coding genes, 4 ribosomal RNAs and 30 transfer RNAs. These chloroplast genomes are similar to most angiosperm that consisted of a four-part circular DNA molecules. Moreover, the characteristics of the long repeats sequences and simple sequence repeats (SSRs) were found. Six divergent hotspots regions (matK-trnk, Rps16-trnQ, petN-psbM, rpl32, ndhA, and ycf1) were identified in the 25 Zingiberaceae chloroplast genomes, which could be potential molecular markers. In addition to Wurfbainia longiligularis, the ψycf1 was discovered among the 25 Zingiberaceae species. The shared protein coding genes from 52 Zingiberales plants and four other family species as out groups were used to construct phylogenetic trees distinguished by maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) and showed that Musaceae was the basal group in Zingiberales, and Curcuma had a close relationship with Stahlianthu. Besides this, Curcuma flaviflora was clustered together with Zingiber. Its distribution area (Southeast Asia) overlaps with the latter. Maybe hybridization occur in related groups within the same region. This may explain why Zingiberaceae species have a complex phylogeny, and more samples and genetic data were necessary to confirm their relationship. This study provide the reliable information and high-quality chloroplast genomes and genome resources for future Zingiberaceae research.
Collapse
Affiliation(s)
- Heng Liang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Yan Zhang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Jiabin Deng
- School of Geography and Tourism, Guizhou Education University, Guiyang, China
| | - Gang Gao
- College of Life Sciences and Food Engineering, Yibin University, Yibin, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
36
|
Li B, Lin F, Huang P, Guo W, Zheng Y. Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing. Biol Res 2020; 53:21. [PMID: 32410692 PMCID: PMC7227249 DOI: 10.1186/s40659-020-00289-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/29/2020] [Indexed: 01/25/2023] Open
Abstract
Background Liriodendron chinense ranges widely in subtropical China and northern Vietnam; however, it inhabits several small, isolated populations and is now an endangered species due to its limited seed production. The objective of this study was to develop a set of nuclear SSR (simple sequence repeats) and multiple chloroplast genome markers for genetic studies in L. chinense and their characterization in diverse germplasm. Results We performed low-coverage whole genome sequencing of the L. chinense from four genotypes, assembled the chloroplast genome and identified nuclear SSR loci by searching in contigs for SSR motifs. Comparative analysis of the four chloroplast genomes of L. chinense revealed 45 SNPs, 17 indels, 49 polymorphic SSR loci, and five small inversions. Most chloroplast intraspecific polymorphisms were located in the interspaces of single-copy regions. In total, 6147 SSR markers were isolated from low-coverage whole genome sequences. The most common SSR motifs were dinucleotide (70.09%), followed by trinucleotide motifs (23.10%). The motif AG/TC (33.51%) was the most abundant, followed by TC/AG (25.53%). A set of 13 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 109 L. chinense individuals, representing distinct varieties or germplasm. The number of alleles per locus ranged from 8 to 28 with an average of 21 alleles. The expected heterozygosity (He) varied from 0.19 to 0.93 and the observed heterozygosity (Ho) ranged from 0.11 to 0.79. Conclusions The genetic resources characterized and tested in this study provide a valuable tool to detect polymorphisms in L. chinense for future genetic studies and breeding programs.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Wenying Guo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China. .,Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. .,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
37
|
Unraveling the Chloroplast Genomes of Two Prosopis Species to Identify Its Genomic Information, Comparative Analyses and Phylogenetic Relationship. Int J Mol Sci 2020; 21:ijms21093280. [PMID: 32384622 PMCID: PMC7247323 DOI: 10.3390/ijms21093280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Genus Prosopis (family Fabaceae) are shrubby trees, native to arid and semi-arid regions of Asia, Africa, and America and known for nitrogen fixation. Here, we have sequenced the complete chloroplast (cp) genomes of two Prosopis species (P. juliflora and P. cineraria) and compared them with previously sequenced P. glandulosa, Adenanthera microsperma, and Parkia javanica belonging to the same family. The complete genome sequences of Prosopis species and related species ranged from 159,389 bp (A. microsperma) to 163,677 bp (P. cineraria). The overall GC contents of the genomes were almost the similar (35.9–36.6%). The P. juliflora and P. cineraria genomes encoded 132 and 131 genes, respectively, whereas both the species comprised of 85 protein-coding genes higher than other compared species. About 140, 134, and 129 repeats were identified in P. juliflora, P. cineraria and P. glandulosa cp genomes, respectively. Similarly, the maximum number of simple sequence repeats were determined in P. juliflora (88), P. cineraria (84), and P. glandulosa (78). Moreover, complete cp genome comparison determined a high degree of sequence similarity among P. juliflora, P. cineraria, and P. glandulosa, however some divergence in the intergenic spacers of A. microsperma and Parkia javanica were observed. The phylogenetic analysis showed that P. juliflora is closer to P. cineraria than P. glandulosa.
Collapse
|
38
|
Stull GW, Soltis PS, Soltis DE, Gitzendanner MA, Smith SA. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. AMERICAN JOURNAL OF BOTANY 2020; 107:790-805. [PMID: 32406108 DOI: 10.1002/ajb2.1468] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
PREMISE Discordance between nuclear and organellar phylogenies (cytonuclear discordance) is a well-documented phenomenon at shallow evolutionary levels but has been poorly investigated at deep levels of plant phylogeny. Determining the extent of cytonuclear discordance across major plant lineages is essential not only for elucidating evolutionary processes, but also for evaluating the currently used framework of plant phylogeny, which is largely based on the plastid genome. METHODS We present a phylogenomic examination of a major angiosperm clade (Asteridae) based on sequence data from the nuclear, plastid, and mitochondrial genomes as a means of evaluating currently accepted relationships inferred from the plastome and exploring potential sources of genomic conflict in this group. RESULTS We recovered at least five instances of well-supported cytonuclear discordance concerning the placements of major asterid lineages (i.e., Ericales, Oncothecaceae, Aquifoliales, Cassinopsis, and Icacinaceae). We attribute this conflict to a combination of incomplete lineage sorting and hybridization, the latter supported in part by previously inferred whole-genome duplications. CONCLUSIONS Our results challenge several long-standing hypotheses of asterid relationships and have implications for morphological character evolution and for the importance of ancient whole-genome duplications in early asterid evolution. These findings also highlight the value of reevaluating broad-scale angiosperm and green-plant phylogeny with nuclear genomic data.
Collapse
Affiliation(s)
- Gregory W Stull
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
- Department of Botany, Smithsonian Institution, Washington, D.C., 20013, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | | | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
39
|
Ottenburghs J. Ghost Introgression: Spooky Gene Flow in the Distant Past. Bioessays 2020; 42:e2000012. [DOI: 10.1002/bies.202000012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Jente Ottenburghs
- Department of Evolutionary Biology, Evolutionary Biology Centre Uppsala University Norbyvägen 18D Uppsala SE‐752 36 Sweden
- Wildlife Ecology and Conservation Group Wageningen University Droevendaalsesteeg 3a Wageningen 6708 PB The Netherlands
- Forest Ecology and Forest Management Group Wageningen University Droevendaalsesteeg 3a Wageningen 6708 PB The Netherlands
| |
Collapse
|
40
|
Li MM, Wang DY, Zhang L, Kang MH, Lu ZQ, Zhu RB, Mao XX, Xi ZX, Tao M. Intergeneric Relationships within the Family Salicaceae s.l. based on Plastid Phylogenomics. Int J Mol Sci 2019; 20:ijms20153788. [PMID: 31382526 PMCID: PMC6696080 DOI: 10.3390/ijms20153788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Many Salicaceae s.l. plants are recognized for their important role in the production of products such as wood, oils, and medicines, and as a model organism in life studies. However, the difference in plastid sequence, phylogenetic relationships, and lineage diversification of the family Salicaceae s.l. remain poorly understood. In this study, we compare 24 species representing 18 genera of the family. Simple sequence repeats (SSRs) are considered effective molecular markers for plant species identification and population genetics. Among them, a total of 1798 SSRs were identified, among which mononucleotide repeat was the most common with 1455 accounts representing 80.92% of the total. Most of the SSRs are located in the non-coding region. We also identified five other types of repeats, including 1750 tandems, 434 forward, 407 palindromic, 86 reverse, and 30 complementary repeats. The species in Salicaceae s.l. have a conserved plastid genome. Each plastome presented a typical quadripartite structure and varied in size due to the expansion and contraction of the inverted repeat (IR) boundary, lacking major structural variations, but we identified six divergence hotspot regions. We obtained phylogenetic relationships of 18 genera in Salicaceae s.l. and the 24 species formed a highly supported lineage. Casearia was identified as the basal clade. The divergence time between Salicaceae s.l. and the outgroup was estimated as ~93 Mya; Salix, and Populus diverged around 34 Mya, consistent with the previously reported time. Our research will contribute to a better understanding of the phylogenetic relationships among the members of the Salicaceae s.l.
Collapse
Affiliation(s)
- Meng-Meng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - De-Yan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ming-Hui Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhi-Qiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Ren-Bin Zhu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Xing-Xing Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhen-Xiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ma Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
41
|
Zhang D, Tang L, Cheng Y, Hao Y, Xiong Y, Song G, Qu Y, Rheindt FE, Alström P, Jia C, Lei F. 'Ghost introgression' as a cause of deep mitochondrial divergence in a bird species complex. Mol Biol Evol 2019; 36:2375-2386. [PMID: 31364717 DOI: 10.1093/molbev/msz170] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022] Open
Abstract
In the absence of nuclear-genomic differentiation between two populations, deep mitochondrial divergence (DMD) is a form of mito-nuclear discordance. Such instances of DMD are rare and might variably be explained by unusual cases of female-linked selection, by male-biased dispersal, by 'speciation reversal' or by mitochondrial capture through genetic introgression. Here we analyze DMD in an Asian Phylloscopus leaf warbler (Aves: Phylloscopidae) complex. Bioacoustic, morphological and genomic data demonstrate close similarity between the taxa affinis and occisinensis, even though DMD previously led to their classification as two distinct species. Using population genomic and comparative genomic methods on 45 whole genomes, including historical reconstructions of effective population size, genomic peaks of differentiation and genomic linkage, we infer that the form affinis is likely the product of a westward expansion in which it replaced a now-extinct congener that was the donor of its mtDNA and small portions of its nuclear genome. This study provides strong evidence of 'ghost introgression' as the cause of DMD, and we suggest that 'ghost introgression' may be a widely overlooked phenomenon in nature.
Collapse
Affiliation(s)
- Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Linfang Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, Sweden.,Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7007, Uppsala, Sweden
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
42
|
Jin FY, Y X, Xie DF, Li H, Yu Y, Zhou SD, He XJ. Comparative Complete Chloroplast Genome Analyses and Contribution to the Understanding of Chloroplast Phylogeny and Adaptive Evolution in Subgenus Anguinum. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Zong D, Gan P, Zhou A, Li J, Xie Z, Duan A, He C. Comparative analysis of the complete chloroplast genomes of seven Populus species: Insights into alternative female parents of Populus tomentosa. PLoS One 2019; 14:e0218455. [PMID: 31216332 PMCID: PMC6583991 DOI: 10.1371/journal.pone.0218455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Populus tomentosa, of section Populus, is distributed mainly in northern China. This species has high resistance to many diseases and insects, and it plays key roles in shelterbelts and urban afforestation in northern China. It has long been suspected to be a hybrid, but its parents remain unknown. In the present study, we report four newly sequenced complete cp genomes from section Populus and comparative genomic analyses of these new sequences and three published cp genome sequences. The seven cp genomes ranged from 155,853 bp (P. tremula var. davidiana) to 156,746 bp (P. adenopoda) in length, and their gene orders, gene numbers and GC contents were similar. We analyzed SNPs, indels, SSRs and repeats among the seven cp genomes, and eight small inversions were detected in the ndhC-trnV, rbcL-accD, petA-psbJ, trnW-trnP, rpl16-rps3, trnL-ycf15, ycf15-trnL, and ndhF-trnL intergenic regions. Furthermore, seven divergent regions (trnH-psbA, matK, psbM-psbD, ndhC-trnV, ycf1, ndhF-ccsA and ccsA-ndhD) were found in more highly variable regions. The phylogenetic tree reveals that P. tomentosa is closely related to P. alba and P. alba var. pyramidalis. Hence, P. alba was involved in the formation of P. tomentosa.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Anpei Zhou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Jinyu Li
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhongli Xie
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Anan Duan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
44
|
Ouyang F, Hu J, Wang J, Ling J, Wang Z, Wang N, Ma J, Zhang H, Mao JF, Wang J. Complete plastome sequences of Picea asperata and P. crassifolia and comparative analyses with P. abies and P. morrisonicola. Genome 2019; 62:317-328. [PMID: 30998854 DOI: 10.1139/gen-2018-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Picea asperata and P. crassifolia have sympatric ranges and are closely related, but the differences between these species at the plastome level are unknown. To better understand the patterns of variation among Picea plastomes, the complete plastomes of P. asperata and P. crassifolia were sequenced. Then, the plastomes were compared with the complete plastomes of P. abies and P. morrisonicola, which are closely and distantly related to the focal species, respectively. We also used these sequences to construct phylogenetic trees to determine the relationships among and between the four species as well as additional taxa from Pinaceae and other gymnosperms. Analysis of our sequencing data allowed us to identify 438 single nucleotide polymorphism (SNPs) point mutation events, 95 indel events, four inversion events, and seven highly variable regions, including six gene spacer regions (psbJ-petA, trnT-psaM, trnS-trnD, trnL-rps4, psaC-ccsA, and rps7-trnL) and one gene (ycf1). The highly variable regions are appropriate targets for future use in the phylogenetic reconstructions of closely related, sympatric species of Picea as well as Pinaceae in general.
Collapse
Affiliation(s)
- Fangqun Ouyang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Jiwen Hu
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Junchen Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China.,b Northwest Agriculture & Forestry University, Xi'an, P.R. China
| | - Juanjuan Ling
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Zhi Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Nan Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Jianwei Ma
- c Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Gansu, P.R. China
| | - Hanguo Zhang
- d State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, P.R. China
| | - Jian-Feng Mao
- e National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Junhui Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| |
Collapse
|
45
|
Alwadani KG, Janes JK, Andrew RL. Chloroplast genome analysis of box-ironbark Eucalyptus. Mol Phylogenet Evol 2019; 136:76-86. [PMID: 30954587 DOI: 10.1016/j.ympev.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
Eucalyptus L'Hérit. (Myrtaceae) is a taxonomically complex and highly speciose genus that dominates much of Australia's woody vegetation. However, very little information is available about the molecular biology and chloroplast diversity of certain groups, such as Eucalyptus section Adnataria, which is found in many woodland habitats of eastern Australia. We report four new complete chloroplast genomes of Eucalyptus, including three genomes from species previously lacking any chloroplast reference sequences. Plastomes of E. albens, E. conica, E. crebra and E. melliodora assembled using a de novo approach were shown to be largely identical to each other, and similar in size and structure to previously published chloroplast genomes from Eucalyptus. A total of 132 genes (114 single-copy genes and 18 duplicated genes in the IR regions) were identified, and shown to be highly conserved in terms of gene order, content and organization. Slightly higher divergence in the intergenic spacers was identified through comparative genomic analyses. Chloroplast sequences of 35 additional individuals representing 12 species were assembled using a reference guided approach. Rates of nucleotide substitution varied among the protein coding genes, with 17 genes under possible positive selection, and 29 invariant genes. Phylogenetic analysis of either the whole reconstructed plastome sequences or the individual genes revealed extreme discordance with expected species boundaries or higher-level relationships. Plastome relationships were better predicted by geography than by nuclear DNA or taxonomic relationships, suggesting a substantial influence of gene flow over and above the effects of incomplete lineage sorting. These results provide resources for future research and valuable insights into the prevalence of interspecific gene flow among Eucalyptus species.
Collapse
Affiliation(s)
- Khawla G Alwadani
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Biology Department, Faculty of Science, Jazan University, Saudi Arabia
| | - Jasmine K Janes
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Biology Department, Faculty of Science and Technology, Vancouver Island University, British Columbia, Canada
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
46
|
Wang D, Wang Z, Kang X, Zhang J. Genetic analysis of admixture and hybrid patterns of Populus hopeiensis and P. tomentosa. Sci Rep 2019; 9:4821. [PMID: 30886279 PMCID: PMC6423230 DOI: 10.1038/s41598-019-41320-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 03/06/2019] [Indexed: 12/25/2022] Open
Abstract
Hybridization and introgression have resulted in reticulate evolution within the genus Populus. Consequently, the origin and evolutionary history of some hybrids has become blurred. P. hopeiensis and P. tomentosa are endemic to China, and there is still controversy about their origin. We employ phylogeny, Bayesian estimation of admixture, and approximate Bayesian computation to investigate their origin with 10 nuclear DNA and 6 cpDNA regions. The combined evidences firmly support the hypothesis that they are hybrids and dominated by F1s. P. hopeiensis was generated via hybridization between the paternal species P. alba and maternal species P. davidiana. Surprisingly, P. tomentosa was divided into two genetic types with different maternal parents. P. adenopoda hybridized with P. alba directly to generate the first genetic type (mb1) and hybridized with P. davidiana followed by P. alba to generate the second (mb2). In both genetic types, P. alba acted as the male parent. The maternal parent was P. adenopoda and P. davidiana for mb1 and mb2, respectively. Hybridization not only generated these hybrids but also resulted in a unidirectional gene flow from P. davidiana to P. adenopoda. The Populus species have maintained a delicate balance between their genetic integrity and gene exchange.
Collapse
Affiliation(s)
- Dongsheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- College of Horticulture Sciences & Technology, Hebei Normal University of Science & Technology, 066004, Qinhuangdao, China
| | - Zhaoshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiangyang Kang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100091, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
47
|
Jo S, Kim YK, Cheon SH, Kim KJ. The complete plastome sequence from the family Malpighiaceae, Bunchosia argentea (Jacq.) DC. MITOCHONDRIAL DNA PART B 2019. [DOI: 10.1080/23802359.2019.1584065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sangjin Jo
- School of Life Sciences, Korea University, Seoul, South Korea
| | - Young-Kee Kim
- School of Life Sciences, Korea University, Seoul, South Korea
| | - Se-Hwan Cheon
- School of Life Sciences, Korea University, Seoul, South Korea
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
48
|
Zong D, Gan P, Zhou A, Zhang Y, Zou X, Duan A, Song Y, He C. Plastome Sequences Help to Resolve Deep-Level Relationships of Populus in the Family Salicaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:5. [PMID: 30723484 PMCID: PMC6349946 DOI: 10.3389/fpls.2019.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/07/2019] [Indexed: 05/30/2023]
Abstract
Populus, a core genus of Salicaceae, plays a significant ecological role as a source of pioneer species in boreal forests. However, interspecific hybridization and high levels of morphological variation among poplars have resulted in great difficulty in classifying species for systematic and comparative evolutionary studies. Here, we present phylogenetic analyses of 24 newly sequenced Populus plastomes and 36 plastomes from GenBank, which represent seven genera of Salicaceae, in combination with a matrix of eighteen morphological characters of 40 Populus taxa to reconstruct highly supported relationships of genus Populus. Relationships among the 60 taxa of Salicaceae strongly supported two monophyletic genera: Populus and Salix. Chosenia was nested within the genus Salix, and five clades within Populus were divided. Clade I included the three taxa P. euphratica, P. pruinosa, and P. ilicifolia. Clade II contained thirteen taxa [P. adenopoda, P. alba, P. bolleana, P. davidiana, P. hopeiensis, P. nigra, P. qiongdaoensis, P. rotundifolia, P. rotundifolia var. duclouxiana, P. tremula, P. tremula × alba, P. tomentosa, and P. tomentosa (NC)]. Clade III included the ten taxa P. haoana, P. kangdingensis, P. lasiocarpa, P. pseudoglauca, P. qamdoensis, P. schneideri, P. simonii, P. szechuanica, P. szechuanica var. tibetica, and P. yunnanensis. Clade IV included P. cathayana, P. gonggaensis, P. koreana, P. laurifolia, P. trinervis, P. wilsonii, and P. xiangchengensis. The last clade comprised P. angustifolia, P. balsamifera, P. deltoides, P. deltoides × nigra, P. fremontii, P. mexicana, and P. trichocarpa. This phylogeny is also supported by morphological traits, including bark smoothness, bud size, petiole shape, leaf inflorescence, male anther length and male anther tip.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Anpei Zhou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Yao Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Xinlian Zou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Anan Duan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
49
|
Lee-Yaw JA, Grassa CJ, Joly S, Andrew RL, Rieseberg LH. An evaluation of alternative explanations for widespread cytonuclear discordance in annual sunflowers (Helianthus). THE NEW PHYTOLOGIST 2019; 221:515-526. [PMID: 30136727 DOI: 10.1111/nph.15386] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Cytonuclear discordance is commonly observed in phylogenetic studies, yet few studies have tested whether these patterns reflect incomplete lineage sorting or organellar introgression. Here, we used whole-chloroplast sequence data in combination with over 1000 nuclear single-nucleotide polymorphisms to clarify the extent of cytonuclear discordance in wild annual sunflowers (Helianthus), and to test alternative explanations for such discordance. Our phylogenetic analyses indicate that cytonuclear discordance is widespread within this group, both in terms of the relationships among species and among individuals within species. Simulations of chloroplast evolution show that incomplete lineage sorting cannot explain these patterns in most cases. Instead, most of the observed discordance is better explained by cytoplasmic introgression. Molecular tests of evolution further indicate that selection may have played a role in driving patterns of plastid variation - although additional experimental work is needed to fully evaluate the importance of selection on organellar variants in different parts of the geographic range. Overall, this study represents one of the most comprehensive tests of the drivers of cytonuclear discordance and highlights the potential for gene flow to lead to extensive organellar introgression in hybridizing taxa.
Collapse
Affiliation(s)
- Julie A Lee-Yaw
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher J Grassa
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Harvard University Herbaria, Cambridge, MA, 02138, USA
| | - Simon Joly
- Institut Recherche en Biologie Végétale, QC, H1X 2B2, Canada
- Jardin botanique de Montréal, Department Sciences Biologiques, Université de Montréal, Montréal, QC, H1X 2B2, Canada
| | - Rose L Andrew
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
50
|
Yu X, Yang D, Guo C, Gao L. Plant phylogenomics based on genome-partitioning strategies: Progress and prospects. PLANT DIVERSITY 2018; 40:158-164. [PMID: 30740560 PMCID: PMC6137260 DOI: 10.1016/j.pld.2018.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 05/26/2023]
Abstract
The rapid expansion of next-generation sequencing (NGS) has generated a powerful array of approaches to address fundamental questions in biology. Several genome-partitioning strategies to sequence selected subsets of the genome have emerged in the fields of phylogenomics and evolutionary genomics. In this review, we summarize the applications, advantages and limitations of four NGS-based genome-partitioning approaches in plant phylogenomics: genome skimming, transcriptome sequencing (RNA-seq), restriction site associated DNA sequencing (RAD-Seq), and targeted capture (Hyb-seq). Of these four genome-partitioning approaches, targeted capture (especially Hyb-seq) shows the greatest promise for plant phylogenetics over the next few years. This review will aid researchers in their selection of appropriate genome-partitioning approaches to address questions of evolutionary scale, where we anticipate continued development and expansion of whole-genome sequencing strategies in the fields of plant phylogenomics and evolutionary biology research.
Collapse
Affiliation(s)
- Xiangqin Yu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Dan Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lianming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|