1
|
Pålsson A, Walther U, Fior S, Widmer A. Early Life History Divergence Mediates Elevational Adaptation in a Perennial Alpine Plant. Ecol Evol 2024; 14:e70454. [PMID: 39440209 PMCID: PMC11493492 DOI: 10.1002/ece3.70454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Spatially divergent natural selection can drive adaptation to contrasting environments and thus the evolution of ecotypes. In perennial plants, selection shapes life history traits by acting on subsequent life stages, each contributing to fitness. While evidence of adaptation in perennial plants is common, the expression of life history traits is rarely characterized, limiting our understanding of their role in adaptive evolution. We conducted a multi-year reciprocal transplant experiment with seedlings from low and high elevation populations of the alpine carnation Dianthus carthusianorum to test for adaptation linked to contrasting climates and inferred specific contributions of early life stages to fitness. We assessed genotype by environment interactions in single fitness components, applied matrix population models to achieve an integrated estimate of fitness through population growth rates, and performed trade-off analyses to investigate the advantage of alternate life history traits across environments. We found evidence of genotype by environment interactions consistent with elevational adaptation at multiple stages of the early life cycle. Estimates of population growth rates corroborated a strong advantage of the local genotype. Early reproduction and survival are alternate major contributors to adaptation at low and high elevation, respectively, and are linked by trade-offs that underlie the evolution of divergent life history traits across environments. While these traits have a strong genetic basis, foreign populations express co-gradient plasticity, reflecting the adaptive strategy of the local populations. Our study reveals that selection associated to climate has driven the evolution of divergent life histories and the formation of elevational ecotypes. While the high energy environment and strong competition favor investment in early reproduction at low elevation, limiting resources favor a more conservative strategy relying on self-maintenance at high elevation. The co-gradient plasticity expressed by high-elevation populations may facilitate their persistence under warming climatic conditions.
Collapse
Affiliation(s)
- Aksel Pålsson
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Ursina Walther
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Simone Fior
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Alex Widmer
- Institute of Integrative BiologyETH ZurichZurichSwitzerland
| |
Collapse
|
2
|
Li Y, Mo YX, Cui HL, Zhang YJ, Dossa GGO, Tan ZH, Song L. Intraspecific plasticity and co-variation of leaf traits facilitate Ficus tinctoria to acclimate hemiepiphytic and terrestrial habitats. TREE PHYSIOLOGY 2024; 44:tpae007. [PMID: 38198737 DOI: 10.1093/treephys/tpae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Despite intensive studies on plant functional traits, the intraspecific variation and their co-variation at the multi-scale remains poorly studied, which holds the potential to unveil plant responses to changing environmental conditions. In this study, intraspecific variations of 16 leaf functional traits of a common fig species, Ficus tinctoria G. Frost., were investigated in relation to different scales: habitat types (hemiepiphytic and terrestrial), growth stages (small, medium and large) and tree crown positions (upper, middle and lower) in Xishuangbanna, Southwest China. Remarkable intraspecific variation was observed in leaf functional traits, which was mainly influenced by tree crown position, growth stage and their interaction. Stable nitrogen isotope (δ15N) and leaf area (LA) showed large variations, while stable carbon isotope (δ13C), stomata width and leaf water content showed relatively small variations, suggesting that light- and nitrogen-use strategies of F. tinctoria were plastic, while the water-use strategies have relatively low plasticity. The crown layers are formed with the growth of figs, and leaves in the lower crown increase their chlorophyll concentration and LA to improve the light energy conversion efficiency and the ability to capture weak light. Meanwhile, leaves in the upper crown increase the water-use efficiency to maintain their carbon assimilation. Moreover, hemiepiphytic medium (transitional stage) and large (free-standing stage) figs exhibited more significant trait differentiation (chlorophyll concentration, δ13C, stomata density, etc.) within the crown positions, and stronger trait co-variation compared with their terrestrial counterparts. This pattern demonstrates their acclimation to the changing microhabitats formed by their hemiepiphytic life history. Our study emphasizes the importance of multi-scaled intraspecific variation and co-variation in trait-based strategies of hemiepiphyte and terrestrial F. tinctoria, which facilitate them to cope with different environmental conditions.
Collapse
Affiliation(s)
- Yuan Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650504, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Li Cui
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Chinese Felid Conservation Alliance, Beijing 101121, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Zheng-Hong Tan
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650504, China
| | - Liang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
3
|
Goebl AM, Kane NC, Doak DF, Rieseberg LH, Ostevik KL. Adaptation to distinct habitats is maintained by contrasting selection at different life stages in sunflower ecotypes. Mol Ecol 2024; 33:e16785. [PMID: 36374153 DOI: 10.1111/mec.16785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Conspecific populations living in adjacent but contrasting microenvironments represent excellent systems for studying natural selection. These systems are valuable because gene flow is expected to force genetic homogeneity except at loci experiencing divergent selection. A history of reciprocal transplant and common garden studies in such systems, and a growing number of genomic studies, have contributed to understanding how selection operates in natural populations. While selection can vary across different fitness components and life stages, few studies have investigated how this ultimately affects allele frequencies and the maintenance of divergence between populations. Here, we study two sunflower ecotypes in distinct, adjacent habitats by combining demographic models with genome-wide sequence data to estimate fitness and allele frequency change at multiple life stages. This framework allows us to estimate that only local ecotypes are likely to experience positive population growth (λ > 1) and that the maintenance of divergent adaptation appears to be mediated via habitat- and life stage-specific selection. We identify genetic variation, significantly driven by loci in chromosomal inversions, associated with different life history strategies in neighbouring ecotypes that optimize different fitness components and may contribute to the maintenance of distinct ecotypes.
Collapse
Affiliation(s)
- April M Goebl
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Daniel F Doak
- Environmental Studies Programme, University of Colorado, Boulder, Colorado, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
4
|
Williamson M, Gerhard D, Hulme PE, Millar A, Chapman H. High-performing plastic clones best explain the spread of yellow monkeyflower from lowland to higher elevation areas in New Zealand. J Evol Biol 2023; 36:1455-1470. [PMID: 37731241 DOI: 10.1111/jeb.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The relative contribution of adaptation and phenotypic plasticity can vary between core and edge populations, with implications for invasive success. We investigated the spread of the invasive yellow monkeyflower, Erythranthe gutatta in New Zealand, where it is spreading from lowland agricultural land into high-elevation conservation areas. We investigated the extent of phenotypic variation among clones from across the South Island, looked for adaptation and compared degrees of plasticity among lowland core versus montane range-edge populations. We grew 34 clones and measured their vegetative and floral traits in two common gardens, one in the core range at 9 m a.s.l. and one near the range-edge at 560 m a.s.l. Observed trait variation was explained by a combination of genotypic diversity (as identified through common gardens) and high phenotypic plasticity. We found a subtle signature of local adaptation to lowland habitats but all clones were plastic and able to survive and reproduce in both gardens. In the range-edge garden, above-ground biomass was on average almost double and stolon length almost half that of the same clone in the core garden. Clones from low-elevation sites showed higher plasticity on average than those from higher elevation sites. The highest performing clones in the core garden were also top performers in the range-edge garden. These results suggest some highly fit general-purpose genotypes, possibly pre-adapted to New Zealand montane conditions, best explains the spread of E. gutatta from lowland to higher elevation areas.
Collapse
Affiliation(s)
- Michelle Williamson
- Institute of Environmental Science and Research ESR Christchurch, Christchurch, New Zealand
| | - Daniel Gerhard
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Philip E Hulme
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
- Bioprotection Aotearoa, Lincoln University, Lincoln, New Zealand
| | - Aaron Millar
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Hazel Chapman
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
5
|
Wadgymar SM, DeMarche ML, Josephs EB, Sheth SN, Anderson JT. Local adaptation: Causal agents of selection and adaptive trait divergence. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2022; 53:87-111. [PMID: 37790997 PMCID: PMC10544833 DOI: 10.1146/annurev-ecolsys-012722-035231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Divergent selection across the landscape can favor the evolution of local adaptation in populations experiencing contrasting conditions. Local adaptation is widely observed in a diversity of taxa, yet we have a surprisingly limited understanding of the mechanisms that give rise to it. For instance, few have experimentally confirmed the biotic and abiotic variables that promote local adaptation, and fewer yet have identified the phenotypic targets of selection that mediate local adaptation. Here, we highlight critical gaps in our understanding of the process of local adaptation and discuss insights emerging from in-depth investigations of the agents of selection that drive local adaptation, the phenotypes they target, and the genetic basis of these phenotypes. We review historical and contemporary methods for assessing local adaptation, explore whether local adaptation manifests differently across life history, and evaluate constraints on local adaptation.
Collapse
Affiliation(s)
| | - Megan L DeMarche
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Seema N Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602
| |
Collapse
|
6
|
Mo YX, Corlett RT, Wang G, Song L, Lu HZ, Wu Y, Hao GY, Ma RY, Men SZ, Li Y, Liu WY. Hemiepiphytic figs kill their host trees: acquiring phosphorus is a driving factor. THE NEW PHYTOLOGIST 2022; 236:714-728. [PMID: 35811425 DOI: 10.1111/nph.18367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Hemiepiphytic figs killing their host trees is an ecological process unique to the tropics. Yet the benefits and adaptive strategies of their special life history remain poorly understood. We compared leaf phosphorus (P) content data of figs and palms worldwide, and functional traits and substrate P content of hemiepiphytic figs (Ficus tinctoria), their host palm and nonhemiepiphytic conspecifics at different growth stages in a common garden. We found that leaf P content of hemiepiphytic figs and their host palms significantly decreased when they were competing for soil resources, but that of hemiepiphytic figs recovered after host death. P availability in the canopy humus and soil decreased significantly with the growth of hemiepiphytic figs. Functional trait trade-offs of hemiepiphytic figs enabled them to adapt to the P shortage while competing with their hosts. From the common garden to a global scale, the P competition caused by high P demand of figs may be a general phenomenon. Our results suggest that P competition is an important factor causing host death, except for mechanically damaging and shading hosts. Killing hosts benefits hemiepiphytic figs by reducing interspecific P competition and better acquiring P resources in the P-deficient tropics, thereby linking the life history strategy of hemiepiphytic figs to the widespread P shortage in tropical soils.
Collapse
Affiliation(s)
- Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Liang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Hua-Zheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yi Wu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110010, China
| | - Ren-Yi Ma
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountains, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Shi-Zheng Men
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yuan Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Wen-Yao Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
7
|
Olito C, Vries CD. The demographic costs of sexually antagonistic selection in partially selfing populations. Am Nat 2022; 200:401-418. [DOI: 10.1086/720419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Cubry P, Oddou-Muratorio S, Scotti I, Lefèvre F. Interactions between microenvironment, selection and genetic architecture drive multiscale adaptation in a simulation experiment. J Evol Biol 2022; 35:451-466. [PMID: 35170114 PMCID: PMC9306464 DOI: 10.1111/jeb.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
When environmental conditions differ both within and among populations, multiscale adaptation results from processes at both scales and interference across scales. We hypothesize that within-population environmental heterogeneity influences the chance of success of migration events, both within and among populations, and maintains within-population adaptive differentiation. We used a simulation approach to analyze the joint effects of environmental heterogeneity patterns, selection intensity and number of QTL controlling a selected trait on local adaptation in a hierarchical metapopulation design. We show the general effects of within-population environmental heterogeneity: (i) it increases occupancy rate at the margins of distribution ranges, under extreme environments and high levels of selection; (ii) it increases the adaptation lag in all environments; (iii) it impacts the genetic variance in each environment, depending on the ratio of within- to between-populations environmental heterogeneity; (iv) it reduces the selection-induced erosion of adaptive gene diversity. Most often, the smaller the number of QTL involved, the stronger are these effects. We also show that both within- and between-populations phenotypic differentiation (QST ) mainly results from covariance of QTL effects rather than QTL differentiation (FSTq ), that within-population QTL differentiation is negligible, and that stronger divergent selection is required to produce adaptive differentiation within populations than among populations. With a high number of QTL, when the difference between environments within populations exceeds the smallest difference between environments across populations, high levels of within-population differentiation can be reached, reducing differentiation among populations. Our study stresses the need to account for within-population environmental heterogeneity when investigating local adaptation.
Collapse
Affiliation(s)
- Philippe Cubry
- Ecologie des Forêts Méditerranéennes, URFM, INRAE, Avignon, France.,DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Sylvie Oddou-Muratorio
- Ecologie des Forêts Méditerranéennes, URFM, INRAE, Avignon, France.,ECOBIOP, Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, Saint-Pée-sur-Nivelle, France
| | - Ivan Scotti
- Ecologie des Forêts Méditerranéennes, URFM, INRAE, Avignon, France
| | - François Lefèvre
- Ecologie des Forêts Méditerranéennes, URFM, INRAE, Avignon, France
| |
Collapse
|
9
|
Kreiner JM, Caballero A, Wright SI, Stinchcombe JR. Selective ancestral sorting and de novo evolution in the agricultural invasion of Amaranthus tuberculatus. Evolution 2021; 76:70-85. [PMID: 34806764 DOI: 10.1111/evo.14404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022]
Abstract
The relative role of hybridization, de novo evolution, and standing variation in weed adaptation to agricultural environments is largely unknown. In Amaranthus tuberculatus, a widespread North American agricultural weed, adaptation is likely influenced by recent secondary contact and admixture of two previously isolated lineages. We characterized the extent of adaptation and phenotypic differentiation accompanying the spread of A. tuberculatus into agricultural environments and the contribution of ancestral divergence. We generated phenotypic and whole-genome sequence data from a manipulative common garden experiment, using paired samples from natural and agricultural populations. We found strong latitudinal, longitudinal, and sex differentiation in phenotypes, and subtle differences among agricultural and natural environments that were further resolved with ancestry inference. The transition into agricultural environments has favored southwestern var. rudis ancestry that leads to higher biomass and treatment-specific phenotypes: increased biomass and earlier flowering under reduced water availability, and reduced plasticity in fitness-related traits. We also detected de novo adaptation in individuals from agricultural habitats independent of ancestry effects, including marginally higher biomass, later flowering, and treatment-dependent divergence in time to germination. Therefore, the invasion of A. tuberculatus into agricultural environments has drawn on adaptive variation across multiple timescales-through both preadaptation via the preferential sorting of var. rudis ancestry and de novo local adaptation.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, V6T 1Z4, Canada.,Current Address: Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Current Address: Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Amalia Caballero
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, V6T 1Z4, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, V6T 1Z4, Canada.,Koffler Scientific Reserve, University of Toronto, King City, ON, L7B 1K5, Canada
| |
Collapse
|
10
|
Wright SJ, Goad DM, Gross BL, Muñoz PR, Olsen KM. Genetic trade-offs underlie divergent life history strategies for local adaptation in white clover. Mol Ecol 2021; 31:3742-3760. [PMID: 34532899 DOI: 10.1111/mec.16180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023]
Abstract
Local adaptation is common in plants, yet characterization of its underlying genetic basis is rare in herbaceous perennials. Moreover, while many plant species exhibit intraspecific chemical defence polymorphisms, their importance for local adaptation remains poorly understood. We examined the genetic architecture of local adaptation in a perennial, obligately-outcrossing herbaceous legume, white clover (Trifolium repens). This widespread species displays a well-studied chemical defence polymorphism for cyanogenesis (HCN release following tissue damage) and has evolved climate-associated cyanogenesis clines throughout its range. Two biparental F2 mapping populations, derived from three parents collected in environments spanning the U.S. latitudinal species range (Duluth, MN, St. Louis, MO and Gainesville, FL), were grown in triplicate for two years in reciprocal common garden experiments in the parental environments (6,012 total plants). Vegetative growth and reproductive fitness traits displayed trade-offs across reciprocal environments, indicating local adaptation. Genetic mapping of fitness traits revealed a genetic architecture characterized by allelic trade-offs between environments, with 100% and 80% of fitness QTL in the two mapping populations showing significant QTL×E interactions, consistent with antagonistic pleiotropy. Across the genome there were three hotspots of QTL colocalization. Unexpectedly, we found little evidence that the cyanogenesis polymorphism contributes to local adaptation. Instead, divergent life history strategies in reciprocal environments were major fitness determinants: selection favoured early investment in flowering at the cost of multiyear survival in the southernmost site versus delayed flowering and multiyear persistence in the northern environments. Our findings demonstrate that multilocus genetic trade-offs contribute to contrasting life history characteristics that allow for local adaptation in this outcrossing herbaceous perennial.
Collapse
Affiliation(s)
- Sara J Wright
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - David M Goad
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Briana L Gross
- Biology Department, University of Minnesota-Duluth, Duluth, Minnesota, USA
| | - Patricio R Muñoz
- Horticultural Science Department, University of Florida, Gainesville, Florida, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Colicchio JM, Hamm LN, Verdonk HE, Kooyers NJ, Blackman BK. Adaptive and nonadaptive causes of heterogeneity in genetic differentiation across the Mimulus guttatus genome. Mol Ecol 2021; 30:6486-6507. [PMID: 34289200 DOI: 10.1111/mec.16087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Genetic diversity becomes structured among populations over time due to genetic drift and divergent selection. Although population structure is often treated as a uniform underlying factor, recent resequencing studies of wild populations have demonstrated that diversity in many regions of the genome may be structured quite dissimilar to the genome-wide pattern. Here, we explored the adaptive and nonadaptive causes of such genomic heterogeneity using population-level, whole genome resequencing data obtained from annual Mimulus guttatus individuals collected across a rugged environment landscape. We found substantial variation in how genetic differentiation is structured both within and between chromosomes, although, in contrast to other studies, known inversion polymorphisms appear to serve only minor roles in this heterogeneity. In addition, much of the genome can be clustered into eight among-population genetic differentiation patterns, but only two of these clusters are particularly consistent with patterns of isolation by distance. By performing genotype-environment association analysis, we also identified genomic intervals where local adaptation to specific climate factors has accentuated genetic differentiation among populations, and candidate genes in these windows indicate climate adaptation may proceed through changes affecting specialized metabolism, drought resistance, and development. Finally, by integrating our findings with previous studies, we show that multiple aspects of plant reproductive biology may be common targets of balancing selection and that variants historically involved in climate adaptation among populations have probably also fuelled rapid adaptation to microgeographic environmental variation within sites.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Lauren N Hamm
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Hannah E Verdonk
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Nicholas J Kooyers
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Louisiana, Lafayette, Lafayette, Louisiana, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Coughlan JM, Brown MW, Willis JH. The genetic architecture and evolution of life-history divergence among perennials in the Mimulus guttatus species complex. Proc Biol Sci 2021; 288:20210077. [PMID: 33823671 PMCID: PMC8059554 DOI: 10.1098/rspb.2021.0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ecological divergence is a fundamental source of phenotypic diversity between closely related species, yet the genetic architecture of most ecologically relevant traits is poorly understood. Differences in elevation can impose substantial divergent selection on both complex, correlated suites of traits (such as life-history), as well as novel adaptations. We use the Mimulus guttatus species complex to assess if the divergence in elevation is accompanied by trait divergence in a group of closely related perennials and determine the genetic architecture of this divergence. We find that divergence in elevation is associated with differences in life-history, as well as a unique trait, the production of rhizomes. The divergence between two perennials is largely explained by few mid-to-large effect quantitative trait loci (QTLs). However, the presence of QTLs with correlated, but opposing effects on multiple traits leads to some hybrids with transgressive trait combinations. Lastly, we find that the genetic architecture of the ability to produce rhizomes changes through development, wherein most hybrids produce rhizomes, but only later in development. Our results suggest that elevational differences may shape life-history divergence between perennials, but aspects of the genetic architecture of divergence may have implications for hybrid fitness in nature.
Collapse
Affiliation(s)
- Jenn M. Coughlan
- Biology Department, Duke University, 125 Science Dr., Durham, NC 27708, USA
- Biology Department, University of North Carolina, 250 Bell Tower Dr., Chapel Hill, NC 27599, USA
| | - Maya Wilson Brown
- Biology Department, Duke University, 125 Science Dr., Durham, NC 27708, USA
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - John H. Willis
- Biology Department, Duke University, 125 Science Dr., Durham, NC 27708, USA
| |
Collapse
|
13
|
Multi-level patterns of genetic structure and isolation by distance in the widespread plant Mimulus guttatus. Heredity (Edinb) 2020; 125:227-239. [PMID: 32641721 DOI: 10.1038/s41437-020-0335-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
An understanding of genetic structure is essential for answering many questions in population genetics. However, complex population dynamics and scale-dependent processes can make it difficult to detect if there are distinct genetic clusters present in natural populations. Inferring discrete population structure is particularly challenging in the presence of continuous genetic variation such as isolation by distance. Here, we use the plant species Mimulus guttatus as a case study for understanding genetic structure at three spatial scales. We use reduced-representation sequencing and marker-based genotyping to understand dispersal dynamics and to characterise genetic structure. Our results provide insight into the spatial scale of genetic structure in a widespread plant species, and demonstrate how dispersal affects spatial genetic variation at the local, regional, and range-wide scale. At a fine-spatial scale, we show dispersal is rampant with little evidence of spatial genetic structure within populations. At a regional-scale, we show continuous differentiation driven by isolation by distance over hundreds of kilometres, with broad geographic genetic clusters that span major barriers to dispersal. Across Western North America, we observe geographic genetic structure and the genetic signature of multiple postglacial recolonisation events, with historical gene flow linking isolated populations. Our genetic analyses show M. guttatus is highly dispersive and maintains large metapopulations with high intrapopulation variation. This high diversity and dispersal confounds the inference of genetic structure, with multi-level sampling and spatially-explicit analyses required to understand population history.
Collapse
|
14
|
Gauzere J, Klein EK, Brendel O, Davi H, Oddou-Muratorio S. Microgeographic adaptation and the effect of pollen flow on the adaptive potential of a temperate tree species. THE NEW PHYTOLOGIST 2020; 227:641-653. [PMID: 32167572 DOI: 10.1111/nph.16537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
In species with long-distance dispersal capacities and inhabiting a large ecological niche, local selection and gene flow are expected to be major evolutionary forces affecting the genetic adaptation of natural populations. Yet, in species such as trees, evidence of microgeographic adaptation and the quantitative assessment of the impact of gene flow on adaptive genetic variation are still limited. Here, we used extensive genetic and phenotypic data from European beech seedlings collected along an elevation gradient, and grown in a common garden, to study the signature of selection on the divergence of eleven potentially adaptive traits, and to assess the role of gene flow in resupplying adaptive genetic variation. We found a significant signal of adaptive differentiation among plots separated by < 1 km, with selection acting on growth and phenological traits. Consistent with theoretical expectations, our results suggest that pollen dispersal contributes to increase genetic diversity for these locally differentiated traits. Our results thus highlight that local selection is an important evolutionary force in natural tree populations and suggest that management interventions to facilitate movement of gametes along short ecological gradients would boost genetic diversity of individual tree populations, and enhance their adaptive potential to rapidly changing environments.
Collapse
Affiliation(s)
- Julie Gauzere
- INRAE, URFM, Avignon, 84000, France
- INRAE, BioSP, Avignon, 84000, France
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | | | - Oliver Brendel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, 54000, France
| | | | | |
Collapse
|
15
|
Merinero S, Dahlberg CJ, Ehrlén J, Hylander K. Intraspecific variation influences performance of moss transplants along microclimate gradients. Ecology 2020; 101:e02999. [PMID: 32004379 PMCID: PMC7317517 DOI: 10.1002/ecy.2999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/23/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022]
Abstract
Identifying the environmental drivers of population dynamics is crucial to predict changes in species abundances and distributions under climate change. Populations of the same species might differ in their responses as a result of intraspecific variation. Yet the importance of such differences remains largely unexplored. We examined the responses of latitudinally distant populations of the forest moss Hylocomiastrum umbratum along microclimate gradients in Sweden. We transplanted moss mats from southern and northern populations to 30 sites with contrasting microclimates (i.e., replicated field common gardens) within a forest landscape, and recorded growth and survival of individual shoots over 3 yr. To evaluate the importance of intraspecific variation in responses to environmental factors, we assessed effects of the interactions between population origin and microclimate drivers on growth and survival. Effects on overall performance of transplanted populations were estimated using the product of survival and growth. We found differences between southern and northern populations in the response to summer temperature and snowmelt date in one of three yearly transitions. In this year, southern populations performed better in warm, southern‐like conditions than in cold, northern‐like conditions; and the reverse pattern was true for northern populations. Survival of all populations decreased with evaporation, consistent with the high hydric demands and poikilohydric nature of mosses. Our results are consistent with population adaptation to local climate, and suggest that intraspecific variation among populations can have important effects on the response of species to microclimate drivers. These findings highlight the need to account for differential responses in predictions of species abundance and distribution under climate change.
Collapse
Affiliation(s)
- Sonia Merinero
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, Sweden
| | - C Johan Dahlberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden.,The County Administrative Board of Västra Götaland, Gothenburg, SE-403 40, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-106 91, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
16
|
Popovic D, Lowry DB. Contrasting environmental factors drive local adaptation at opposite ends of an environmental gradient in the yellow monkeyflower (Mimulus guttatus). AMERICAN JOURNAL OF BOTANY 2020; 107:298-307. [PMID: 31989586 DOI: 10.1002/ajb2.1419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Identifying the environmental factors responsible for natural selection across different habitats is crucial for understanding the process of local adaptation in plants. Despite its importance, few studies have successfully isolated the environmental factors driving local adaptation in nature. In this study, we evaluated the agents of selection responsible for local adaptation of the monkeyflower Mimulus guttatus to California's coastal and inland habitats. METHODS We implemented a manipulative reciprocal transplant experiment at coastal and inland sites, where we excluded aboveground stressors in an effort to elucidate their role in the evolution of local adaptation. RESULTS Excluding aboveground stressors, most likely a combination of salt spray and herbivory, completely rescued inland annual plant fitness when transplanted to coastal habitat. The exclosures in inland habitat provided a benefit to the performance of coastal perennial plants. However, the exclosures are unlikely to provide much fitness benefit to the coastal plants at the inland site because of their general inability to flower in time to escape from the summer drought. CONCLUSIONS Our study demonstrates that a distinct set of selective agents (aboveground vs. belowground) are responsible for local adaptation at opposite ends of an environmental gradient.
Collapse
Affiliation(s)
- Damian Popovic
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
17
|
Coughlan JM, Wilson Brown M, Willis JH. Patterns of Hybrid Seed Inviability in the Mimulus guttatus sp. Complex Reveal a Potential Role of Parental Conflict in Reproductive Isolation. Curr Biol 2020; 30:83-93.e5. [PMID: 31883810 PMCID: PMC7017923 DOI: 10.1016/j.cub.2019.11.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 11/19/2022]
Abstract
Genomic conflicts may play a central role in the evolution of reproductive barriers. Theory predicts that early-onset hybrid inviability may stem from conflict between parents for resource allocation to offspring. Here, we describe M. decorus: a group of cryptic species within the M. guttatus species complex that are largely reproductively isolated by hybrid seed inviability (HSI). HSI between M. guttatus and M. decorus is common and strong, but populations of M. decorus vary in the magnitude and directionality of HSI with M. guttatus. Patterns of HSI between M. guttatus and M. decorus, as well as within M. decorus, conform to the predictions of parental conflict: first, reciprocal F1s exhibit size differences and parent-of-origin-specific endosperm defects; second, the extent of asymmetry between reciprocal F1 seed size is correlated with asymmetry in HSI; and third, inferred differences in the extent of conflict predict the extent of HSI between populations. We also find that HSI is rapidly evolving, as populations that exhibit the most HSI are each others' closest relative. Lastly, although all populations appear largely outcrossing, we find that the differences in the inferred strength of conflict scale positively with π, suggesting that demographic or life history factors other than transitions to self-fertilization may influence the rate of parental-conflict-driven evolution. Overall, these patterns suggest the rapid evolution of parent-of-origin-specific resource allocation alleles coincident with HSI within and between M. guttatus and M. decorus. Parental conflict may therefore be an important evolutionary driver of reproductive isolation.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA; Biology Department, University of North Carolina, Chapel Hill, 120 South Road, Chapel Hill, NC 27599, USA.
| | - Maya Wilson Brown
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| | - John H Willis
- Biological Sciences, Duke University, 25 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
18
|
Peterson ML, Angert AL, Kay KM. Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol Evol 2020; 10:612-625. [PMID: 32015830 PMCID: PMC6988539 DOI: 10.1002/ece3.5710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/10/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022] Open
Abstract
One of the strongest biological impacts of climate change has been the movement of species poleward and upward in elevation. Yet, what is not clear is the extent to which the spatial distribution of locally adapted lineages and ecologically important traits may also shift with continued climate change. Here, we take advantage of a transplant experiment mimicking up-slope seed dispersal for a suite of ecologically diverse populations of yellow monkeyflower (Mimulus guttatus sensu lato) into a high-elevation common garden during an extreme drought period in the Sierra Nevada mountains, California, USA. We use a demographic approach to quantify fitness and test for selection on life history traits in local versus lower-elevation populations and in normal versus drought years to test the potential for up-slope migration and phenotypic selection to alter the distribution of key life history traits in montane environments. We find that lower-elevation populations tend to outperform local populations, confirming the potential for up-slope migration. Although selection generally favored some local montane traits, including larger flowers and larger stem size at flowering, drought conditions tended to select for earlier flowering typical of lower-elevation genotypes. Taken together, this suggests that monkeyflower lineages moving upward in elevation could experience selection for novel trait combinations, particularly under warmer and drier conditions that are predicted to occur with continued climate change.
Collapse
Affiliation(s)
- Megan L. Peterson
- Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCalifornia
| | - Amy L. Angert
- Department of Botany and ZoologyUniversity of British ColumbiaVancouverBCCanada
| | - Kathleen M. Kay
- Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCalifornia
| |
Collapse
|
19
|
Kooyers NJ, Colicchio JM, Greenlee AB, Patterson E, Handloser NT, Blackman BK. Lagging Adaptation to Climate Supersedes Local Adaptation to Herbivory in an Annual Monkeyflower. Am Nat 2019; 194:541-557. [DOI: 10.1086/702312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Samis KE, Stinchcombe JR, Murren CJ. Population climatic history predicts phenotypic responses in novel environments for Arabidopsis thaliana in North America. AMERICAN JOURNAL OF BOTANY 2019; 106:1068-1080. [PMID: 31364776 DOI: 10.1002/ajb2.1334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/28/2019] [Indexed: 05/28/2023]
Abstract
PREMISE Determining how species perform in novel climatic environments is essential for understanding (1) responses to climate change and (2) evolutionary consequences of biological invasions. For the vast majority of species, the number of population characteristics that will predict performance and patterns of natural selection in novel locations in the wild remains limited. METHODS We evaluated phenological, vegetative, architectural, and fitness-related traits in experimental gardens in contrasting climates (Ontario, Canada, and South Carolina, USA) in the North American non-native distribution of Arabidopsis thaliana. We assessed the effects of climatic distance, geographic distance, and genetic features of history on performance and patterns of natural selection in the novel garden settings. RESULTS We found that plants had greater survivorship, flowered earlier, were larger, and produced more fruit in the south, and that genotype-by-environment interactions were significant between gardens. However, our analyses revealed similar patterns of natural selection between gardens in distinct climate zones. After accounting for genetic ancestry, we also detected that population climatic distance best predicted performance within gardens. CONCLUSIONS These data suggest that colonization success in novel, non-native environments is determined by a combination of climate and genetic history. When performance at novel sites was assessed with seed sources from geographically and genetically disparate, established non-native populations, proximity to the garden alone was insufficient to predict performance. Our study highlights the need to evaluate seed sources from diverse origins to describe comprehensively phenotypic responses to novel environments, particularly for taxa in which many source populations may contribute to colonization.
Collapse
Affiliation(s)
- Karen E Samis
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Koffler Scientific Reserve at Joker's Hill, University of Toronto, Toronto, Ontario, Canada
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, South Carolina, 29424, USA
| |
Collapse
|
21
|
Kesselring H, Hamann E, Armbruster GFJ, Stöcklin J, Scheepens JF. Local adaptation is stronger between than within regions in alpine populations of Anthyllis vulneraria. Evol Ecol 2019. [DOI: 10.1007/s10682-019-09999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Haselhorst MSH, Parchman TL, Buerkle CA. Genetic evidence for species cohesion, substructure and hybrids in spruce. Mol Ecol 2019; 28:2029-2045. [DOI: 10.1111/mec.15056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
|
23
|
To mix or not to mix the sources of relocated plants? The case of the endangered Iris lortetii. J Nat Conserv 2018. [DOI: 10.1016/j.jnc.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Coughlan JM, Willis JH. Dissecting the role of a large chromosomal inversion in life history divergence throughout the Mimulus guttatus species complex. Mol Ecol 2018; 28:1343-1357. [PMID: 30028906 DOI: 10.1111/mec.14804] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Chromosomal inversions can play an important role in adaptation, but the mechanism of their action in many natural populations remains unclear. An inversion could suppress recombination between locally beneficial alleles, thereby preventing maladaptive reshuffling with less-fit, migrant alleles. The recombination suppression hypothesis has gained much theoretical support but empirical tests are lacking. Here, we evaluated the evolutionary history and phenotypic effects of a chromosomal inversion which differentiates annual and perennial forms of Mimulus guttatus. We found that perennials likely possess the derived orientation of the inversion. In addition, this perennial orientation occurs in a second perennial species, M. decorus, where it is strongly associated with life history differences between co-occurring M. decorus and annual M. guttatus. One prediction of the recombination suppression hypothesis is that loci contributing to local adaptation will predate the inversion. To test whether the loci influencing perenniality pre-date this inversion, we mapped QTLs for life history traits that differ between annual M. guttatus and a more distantly related, collinear perennial species, M. tilingii. Consistent with the recombination suppression hypothesis, we found that this region is associated with life history in the absence of the inversion, and this association can be broken into at least two QTLs. However, the absolute phenotypic effect of the LG8 inversion region on life history is weaker in M. tilingii than in perennials which possess the inversion. Thus, while we find support for the recombination suppression hypothesis, the contribution of this inversion to life history divergence in this group is likely complex.
Collapse
Affiliation(s)
| | - John H Willis
- Biology Department, Duke University, Durham, North Carolina
| |
Collapse
|
25
|
Pantoja PO, Paine CET, Vallejo-Marín M. Natural selection and outbreeding depression suggest adaptive differentiation in the invasive range of a clonal plant. Proc Biol Sci 2018; 285:20181091. [PMID: 30051824 PMCID: PMC6053932 DOI: 10.1098/rspb.2018.1091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/14/2018] [Indexed: 11/12/2022] Open
Abstract
Analyses of phenotypic selection and demography in field populations are powerful ways to establishing the potential role of natural selection in shaping evolution during biological invasions. Here we use experimental F2 crosses between native and introduced populations of Mimulus guttatus to estimate the pattern of natural selection in part of its introduced range, and to seek evidence of outbreeding depression of colonists. The F2s combined the genome of an introduced population with the genome of either native or introduced populations. We found that the introduced × introduced cross had the fastest population growth rate owing to increased winter survival, clonality and seed production. Our analysis also revealed that selection through sexual fitness favoured large floral displays, large vegetative and flower size, lateral spread and early flowering. Our results indicate a source-of-origin effect, consistent with outbreeding depression exposed by mating between introduced and native populations. Our findings suggest that well-established non-native populations may pay a high fitness cost during subsequent bouts of admixture with native populations, and reveal that processes such as local adaptation in the invasive range can mediate the fitness consequences of admixture.
Collapse
Affiliation(s)
- Pauline O Pantoja
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - C E Timothy Paine
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
26
|
Walter GM, Wilkinson MJ, Aguirre JD, Blows MW, Ortiz-Barrientos D. Environmentally induced development costs underlie fitness tradeoffs. Ecology 2018; 99:1391-1401. [PMID: 29856491 DOI: 10.1002/ecy.2234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/05/2018] [Accepted: 03/19/2018] [Indexed: 11/07/2022]
Abstract
Local adaptation can lead to genotype-by-environment interactions, which can create fitness tradeoffs in alternative environments, and govern the distribution of biodiversity across geographic landscapes. Exploring the ecological circumstances that promote the evolution of fitness tradeoffs requires identifying how natural selection operates and during which ontogenetic stages natural selection is strongest. When organisms disperse to areas outside their natural range, tradeoffs might emerge when organisms struggle to reach key life history stages, or alternatively, die shortly after reaching life history stages if there are greater risks of mortality associated with costs to developing in novel environments. We used multiple populations from four ecotypes of an Australian native wildflower (Senecio pinnatifolius) in reciprocal transplants to explore how fitness tradeoffs arise across ontogeny. We then assessed whether the survival probability for plants from native and foreign populations was contingent on reaching key developmental stages. We found that fitness tradeoffs emerged as ontogeny progressed when native plants were more successful than foreign plants at reaching seedling establishment and maturity. Native and foreign plants that failed to reach seedling establishment died at the same rate, but plants from foreign populations died quicker than native plants after reaching seedling establishment, and died quicker regardless of whether they reached sexual maturity or not. Development rates were similar for native and foreign populations, but changed depending on the environment. Together, our results suggest that natural selection for environment-specific traits early in life history created tradeoffs between contrasting environments. Plants from foreign populations were either unable to develop to seedling establishment, or they suffered increased mortality as a consequence of reaching seedling establishment. The observation of tradeoffs together with environmentally dependent changes in development rate suggest that foreign environments induce organisms to develop at a rate different from their native habitat, incurring consequences for lifetime fitness and population divergence.
Collapse
Affiliation(s)
- Greg M Walter
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - J David Aguirre
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, 4072, Australia.,Institute of Natural and Mathematical Sciences, Massey University, Auckland, 0745, New Zealand
| | - Mark W Blows
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
27
|
Rubin MJ, Friedman J. The role of cold cues at different life stages on germination and flowering phenology. AMERICAN JOURNAL OF BOTANY 2018; 105:749-759. [PMID: 29683478 DOI: 10.1002/ajb2.1055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The timing of major phenological transitions is critical to lifetime fitness, and life history theory predicts differences for annual and perennial plants. To correctly time these transitions, many plants rely on environmental cues such as exposure to extended periods of cold, which may occur at different stages throughout their lifetime. METHODS We studied the role of cold at different life stages, by jointly exposing seed (stratification) and rosettes (vernalization) to cold. We used 23 populations of Mimulus guttatus, which vary from annuals to perennials, and investigated how cold at one or both stages affected germination, flowering, growth, and biomass. KEY RESULTS We found that stratification and vernalization interact to affect life cycle transitions, and that cold at either stage could synchronize flowering phenology. For perennials, either stratification or vernalization is necessary for maximum flowering. We also found that germination timing covaried with later traits. Moreover, plants from environments with dissimilar climates displayed different phenological responses to stratification or vernalization. CONCLUSIONS In general, cold is more important for seed germination in annuals and plants from environments with warm temperatures and variable precipitation. In contrast, cold is more important for flowering in perennials: it accelerates flowering in plants from lower precipitation environments, and it increases flowering proportion in plants from cooler, more stable precipitation environments. We discuss our findings in the context of the variable environments plants experience within a population and the variation encountered across the biogeographic native range of the species.
Collapse
Affiliation(s)
- Matthew J Rubin
- Department of Biology, Syracuse University, 110 College Place, Syracuse, NY, 13244, USA
| | - Jannice Friedman
- Department of Biology, Syracuse University, 110 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
28
|
Wright SJ, Cui Zhou D, Kuhle A, Olsen KM. Continent-Wide Climatic Variation Drives Local Adaptation in North American White Clover. J Hered 2017; 109:78-89. [PMID: 28992131 DOI: 10.1093/jhered/esx060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Climate-associated clines in adaptive polymorphisms are commonly cited as evidence of local adaptation within species. However, the contribution of the clinally varying trait to overall fitness is often unknown. To address this question, we examined survival, vegetative growth, and reproductive output in a central US common garden experiment using 161 genotypes of white clover (Trifolium repens L.) originating from 15 locations across North America. White clover is polymorphic for cyanogenesis (hydrogen cyanide release upon tissue damage), a chemical defense against generalist herbivores, and climate-associated cyanogenesis clines have repeatedly evolved across the species range. Over a 12-month experiment, we observed striking correlations between the population of origin and plant performance in the common garden, with climatic distance from the common garden site predicting fitness more accurately than geographic distance. Assessments of herbivore leaf damage over the 2015 growing season indicated marginally lower herbivory on cyanogenic plants; however, this effect did not result in increased fitness in the common garden location. Linear mixed modeling suggested that while cyanogenesis variation had little predictive value for vegetative growth, it is as important as climatic variation for predicting reproductive output in the central United States. Together, our findings suggest that knowledge of climate similarity, as well as knowledge of locally favored adaptive traits, will help to inform transplantation strategies for restoration ecology and other conservation efforts in the face of climate change.
Collapse
Affiliation(s)
- Sara J Wright
- Department of Biology, Washington University, St. Louis, MO 63130-4899
| | - Daniel Cui Zhou
- Department of Biology, Washington University, St. Louis, MO 63130-4899
| | | | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, MO 63130-4899
| |
Collapse
|
29
|
|
30
|
Walter GM, Wilkinson MJ, James ME, Richards TJ, Aguirre JD, Ortiz‐Barrientos D. Diversification across a heterogeneous landscape. Evolution 2016; 70:1979-92. [DOI: 10.1111/evo.13009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Greg M. Walter
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Melanie J. Wilkinson
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Maddie E. James
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Thomas J. Richards
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - J. David Aguirre
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
- Institute of Natural and Mathematical Sciences Massey University Auckland 0745 New Zealand
| | | |
Collapse
|
31
|
von Wettberg EJB, Marques E, Murren CJ. Local adaptation or foreign advantage? Effective use of a single-test site common garden to evaluate adaptation across ecological scales. THE NEW PHYTOLOGIST 2016; 211:8-10. [PMID: 27240708 DOI: 10.1111/nph.14029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Eric J B von Wettberg
- Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, 33199, USA
| | - Edward Marques
- Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, 33199, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| |
Collapse
|